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Abstract
This paper proposes a novel approach to do online analysis

of accidental fault localization for dynamic systems by us-

ing Hidden Markov Model (HMM). By introducing reason-

able and appropriate abstraction of complex system, HMM is

used to represent the fault and no-fault states of system’s com-

ponents and system’s behaviour. The HMM is parametrized

to be statistically equivalent to real system’s behaviour. In-

spired by the principles of Fault Tree Analysis and maximum

entropy in Bayesian probability theory, we propose the algo-

rithms to estimate HMM’s parameters, instead of learning,

because in real systems the learning data for accidental fault

is difficult to obtain. We design a specific test bed to gener-

ate large quantity of test cases, and give out the experimental

results to assess the accuracy and efficiency. Meanwhile, we

apply the approach to a simple helicopter control system case

study, and give out convincing results.

1. INTRODUCTION

Fault Detection and Isolation (FDI) is dedicated to moni-

toring a system, identifying when a fault has occurred, and

pinpointing the type of fault and its location. One main FDI

approach derives the faults from some model, classified into

the category Model-Based FDI, while another main category

is Signal Processing based FDI. In model-based FDI, the sys-

tem model may be mathematical, or knowledge based, in-

cluding observer-based approach, parity-space approach, pa-

rameter identification based methods, etc [1]. As the dynamic

systems’ complexity increases, the resource-consuming sim-

ulation technology is insufficient for detecting faults in sys-

tems. Thus, it becomes urgent to use abstract model to rep-

resent complex system by keeping necessary and sufficient

information. The efficiency and accuracy of model-based ap-

proach depends on the appropriate abstraction and reasonable

assumptions.

Many theories and techniques exist for the analysis and

simulation of large dynamic systems. Our previous work [2]

proposes a co-analysis framework for the automated analysis

of cyber-physical systems (CPS) [3], in which the behaviour

of Simulink is taken in an as-is manner determined by the

simulation algorithms. The approach combines logic-based

formal analysis methods with numerical simulations to enable

the analysis of an under-constrained controller design, which

cannot be handled by co-simulation. An open question pro-

posed by the perspective in [2] concerns the fault detection

and localization in systems. CPS introduce a new paradigm

to software-intensive systems, in which the controller (sys-

tem) is strongly affected by feedback from the plant (envi-

ronment). As shown in Fig. 1, a controller may have several

control modes and changes itself with transitions between the

modes. Since some of the Simulink model descriptions rep-

resent hardware components, the controller is expected to be

able to do online analysis of the accidental fault localization

F (t) occurring in the hardware.
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Figure 1. Cyber-Physical System with Control Modes

In this paper, we aim to solve the above problem by us-

ing a statistical model, Hidden Markov Model (HMM) [4]. In

HMM, the system being modeled is assumed to be a Markov

process with unobserved (hidden) states. By analysing the ob-

served outputs of the hidden states, system’s behaviour can be

deduced. HMM has thus been widely used in temporal pat-

tern recognition such as speech, handwriting, gesture recog-

nition, etc. HMM has been used to diagnose and prognose

the whole system’s health condition in some existing works

[5] [6]. The learning tasks are used to train the parameters in

HMM. However, the learning task is based on rich observed

sequences with enough fault experience, which is not easy

to obtain for accidental faults. In this work, we propose a

novel approach to use HMM to do online analysis of acci-

dental fault localization in dynamic systems. We introduce

appropriate abstraction of complex dynamic systems and rea-

sonable assumptions of HMM parameters, to represent the

fault and no-fault states of system’s components and system’s

behaviour. Inspired by the principles of Fault Tree Analysis

(FTA) [7] and of maximum entropy [8] in Bayesian probabil-



ity theory, we propose an algorithm to estimate the parameters

in HMM without learning task. We evaluate the accuracy and

efficiency of proposed algorithm by using a specific test bed

to generate 1000 test cases, and then apply the approach to a

simple helicopter control system case study.

In paper [9], the author aims to prove the validation of

CPS’s behavioural properties by statistical model. Our main

ideas are identical: using statistical model to deduce the con-

clusion, except that [9] introduces a formal description in

BLTL (Bounded Linear Temporal Logic), instead of HMM,

to interpret the probable result sequence, which is the same

concept as our observation sequence. By using importance-

sampling and cross-entropy (two classic statistical methods),

the main obstacle [9] encounters is that it needs much more

samples to give out a convincing conclusion. The reason be-

hind is that BLTL treats each element in a result sequence

in a pure statistical thus relatively independent way, while

HMM assumes that there must be some explicit dependency

between the elements.

This paper is organized as follows: Section 2. details the

problem we aim to solve; Section 3. gives an overview of our

approach by introducing HMM modeling and analysis meth-

ods; Section 4. presents the approach of online analysing ac-

cidental fault localization for complex dynamic systems by

using HMM; Section 5. experiments the approach in a spe-

cific test bed; applies the approach to a simple helicopter con-

trol system case study; and discusses the generalization of the

approach; Section 6. gives some concluding and perspective

remarks.

2. PROBLEM DESCRIPTION
The accidental fault may occur on the hardware during sys-

tem’s execution. Since the accidental fault does not frequently

occurs, a reasonable assumption is made in this work.

Assumption 1. A system encounters accidental fault means

at this moment, at most one device is the fault source. Two

devices cannot encounter accidental fault at the same time.

The prior knowledge in this work consists of devices’ de-

fault parameters and system’s specification. The device’s de-

fault parameters indicate a device’s fault occurrence proba-

bility. This parameter is usually provided by the device man-

ufacture according to the testing result before selling. Alter-

natively, MTBF (Mean Time Between Failures) can be used

to deduce this parameter if information is lacking. System’s

specification describes the expected functional constraints.

Example 1 (Problem Description Example). During a fi-

nite simulation period T , we choose N observation time

points for the system with components A, B, C, D, etc (Fig.

2). Assume M functional constraints (FC) are described in

the specification. vi(i = 1...11) are output/input variables be-

tween the components.
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Figure 2. Problem Description Example

After time T , we obtain the violation status (R for respect-

ing specification, V for violating specification) for the M

functional constraints at time points t (t = 1...N), i.e.

FCt
1(v1,v3,v5) =V

...

FCt
M(v2) = R

When a functional constraint is violated, one of the de-

vices must have encountered an accidental fault. However

once we detect a wrong output from a device, usually the

others’ outputs will be bad due to failure propagation. Thus

the problem is distinguishing and locating accidental fault’s

source device. This can be considered as a pattern recognition

question. Moreover, the accidental fault localization approach

should support online analysis, which implies that the method

needs to be computation-economic and easy to implemented

by most onboard dynamic systems.

The simulation technology is able to provide analysable

evidence to help fault identification. Nevertheless, it lacks the

mechanism to automatically locate the accidental fault. We

introduce HMM in this work, because HMM, a good com-

promise between Bayesian network and time-based sequence,

disposes of a natural capacity to deal with time-related pattern

recognition problems. As shown in Fig. 3, HMM can be used

to diagnostics, prognostics and online analysis.
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Figure 3. HMM Diagnostics and Prognostics

On the other hand, HMM, as the abstraction of real sys-

tem, simulates statistically system’s inner states and their be-

haviours. Once HMM is trained or built, it can be used to di-

agnose system’s past and current health condition and prog-

noses future condition. Some works are aimed to detect the

whole system’s health condition, while in this work we aim

to go further, to locate the fault source in the system.

3. HMM MODELING AND ANALYSIS
An HMM is defined as a statistical model used to repre-

sent stochastic processes, where the states are not directly ob-

served. A basic HMM can be described as follows:



• N: number of states

• M: number of observations

• MI: initial probability distribution;
N

∑
i=1

MI(i) = 1

• MT: probability distribution of transitions from states to

states;
N

∑
j=1

MT(i, j) = 1, i = 1...N

• ME: emission distribution for the observations associ-

ated with states;
M

∑
j=1

ME(i, j) = 1, i = 1...N

Example 2 (HMM Example). A two states HMM exam-

ple abstracting a system’s health condition is given by Fig.

4, where the system owns two states Healthy and Faulty,

and two observations which represent whether the ouputs

respect the functional constraints (R) or violate the func-

tional constraints (V ). The three distributions MIMTME are:
(
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)

(
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Figure 4. A Two States Hidden Markov Model

HMM, as abstract model of real system, is statistically

identical to system’s real behaviour. When modeling a sys-

tem, HMM separates the concept into two conceptually in-

dependent paradigms: behaviour and observation. Behaviour

refers to what the system really is; while observation to what

the system exhibits that is used for its recognition. MI gives

indication about the probability that a behaviour becomes the

first behaviour when system runs. MT decides how probably

will the system behave from one state to the other states. This

is statistically equivalent to the real system’s behaviour. ME

provides a distribution that connects the behaviour and the

observation: if at a given time the behaviour is known, how

probably an observed sequence will occur.

MI,MT and ME can be obtained by modelling or through

a learning process. Once all these matrix parameters are esti-

mated, HMM is capable to deduce, given an observed output

sequence or a set of such sequences, the maximum likelihood

estimation of inner-state transition sequences. The work [5]

shows a traditional way of applying HMM to system diagno-

sis and prognosis, as shown in Fig. 5. The trained HMM will
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Figure 5. Traditional HMM Approach

be used to estimate system’s past condition, predict system’s

future condition and compute a future observed sequence’s

occurrence probability.

In Ex. 2, we can observe an output sequence Seq(t) from

the observers Output R and Output V within a certain obser-

vation time T , e.g.
(

V V V V R V V V
)

.

As the parameters are pre-defined, we can derive sys-

tem’s behaviour State(t) during T by using Viterbi algorithm

[10], in which H means healthy, and F means faulty, i.e.
(

F F F F H F F F
)

.

In this work, our objective is to find out how system per-

forms in terms of behaviour, however, the only available in-

formation source for the external world is the observation.

Therefore a backward analysis is necessary to recover the be-

haviour from the observation. As we aim to tell the exact lo-

cation of the fault, not only detecting unhealthy condition of a

system, the core issue is how to construct HMM representing

a system with probable fault.

The learning task cannot be used in this work. Because the

accidental fault does not frequently happen, thus the learning

task cannot be trained with rich fault experience. The model-

ing method in our research allows to pre-define some HMM

parameters by using prior knowledge of devices’ fault occur-

rence probability.

4. ONLINE ANALYSIS OF ACCIDENTAL
FAULT LOCALIZATION

The approach takes all the components in a system as a

whole model. When modeling HMM, a hidden state repre-

sents, at this moment, on which components one accidental

fault occurs, or not. Instead of using learning task to train

the parameters in HMM, we define the specific states and ob-

servations dedicated to accidental fault localization, and pro-

pose our own algorithms to compute the HMM’s parameters

by analysing system’s architecture and using devices’ fault

occurrence probability. The proposed algorithms have been

evaluated in the experiments by using our test bed and real

case study, which will be presented in the next part.



Definition 1 (Physical Variable). A component C in a system

has NI inputs and NO outputs variables, which connect C with

other components. These NI together with NO variables are

the physical variables of C.

By running the system, for some physical variables,

whether it violates or not the functional constraints will be

known. If it is possible to observe M physical variables’ value

sequence, the whole system can be modeled by M HMMs.

Each represents whether current system’s behaviour will lead

to one physical variable violating the functional constraints,

and which kind of violation.

4.1. System States
System states represent the health condition of all its com-

ponents. A system with N components is seen as a coupling

entity with N +1 states, each of them represents at the given

moment, which component encounters a certain context that

leads it to give out unwanted output. HMM states are either

all healthy (NF ) or having one faulty component (Fi), mod-

eled as
(

NF F1 F2 ... Fi ... FN

)

.

4.2. Observations & Observed Sequence
The observations represent that physical variables violate

the functional constraints or not.

Definition 2 (Non-Violation (VN)). When a physical vari-

able does not violate functional constraint, this is defined as

non-violation.

Definition 3 (Independent Violation (VI)). When a physical

variable v violates functional constraint with only this vari-

able, i.e. FC(v), this is defined as independent violation.

Definition 4 (Coupling Violation (VC)). When a physical

variable v violates functional constraint with other variables,

i.e. FC′(v,v1,v2, ...), the source of violation cannot be con-

firmed among the variables. The probability of each is thus

given out. It is defined as coupling violation.

Each HMM has these 3 observations: VN , VI and VC . A

system with M physical variables has M HMMs (Fig. 6).
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Figure 6. System’s HMM Structure

4.3. Initial Probability Distribution MI

The devices’ default occurrence parameters are provided

by the manufacture. A component’s fault parameter can be

estimated when it is well designed, e.g. a functional block

provided by the library of Simulink can be fully trusted, with

fault occurrence parameter 0. For a system with N compo-

nents, let ωi(i = 1...N) be the fault occurrence parameter of

the ith component. MI is thus computed as follows:

MI(0) =

N

∏
i=1

(1−ωi)

N

∏
i=1

(1−ωi)+
N

∑
i=1

ωi

(1)

MI(i) =
ωi

N

∏
i=1

(1−ωi)+
N

∑
i=1

ωi

, i = 1...N (2)

Eqs. 1 and 2 describe the likelihood that no component has

failed at time 0 (i.e., no failure at the start) and the likelihood

that some component i has failed at the start.

If prior knowledge about ωi is unknown, MTBF is used to

deduce the initial parameters. Therefore, the most reasonable

hypothesis is
N

∑
i, j=1

|ωi−ω j|= 0. If some indications exist, like

the ith component is twice more probable to have fault than

the jth, then ωi = 2ω j will replace ωi = ω j.
N

∑
i, j=1

|ωi−ω j|= 0

will be generalized to min(
N

∑
i, j=1

|ωi −ω j|). This can be solved

because
N

∑
i=0

MI(i) = 1.

4.4. Transition Probability Matrix MT

MT(i, j) represents the probability of the transition from

state i to state j. We propose to compute MT by using the

devices’ fault parameters ωi. When the system transits from

current state to all components healthy state, the transition

probability is
N

∏
k=1

(1−ωk). When the system transits to one

component faulty state j, the probability is ω j

N

∏
k=1,k 6= j

(1−ωk).

After normalization, MT is as follows:

MT(i,0) =

N

∏
k=1

(1−ωk)

N

∏
k=1

(1−ωk)+
N

∑
n=1

(ωn

N

∏
k=1,k 6=n

(1−ωk))

,

i = 0...N

(3)



MT(i, j) =

ω j

N

∏
k=1,k 6= j

(1−ωk)

N

∏
k=1

(1−ωk)+
N

∑
n=1

(ωn

N

∏
k=1,k 6=n

(1−ωk))

,

i = 0...N, j = 1...N

(4)

Eqs. 3 and 4 are the probability from component i failing to

no component failing at a time t > 0 and from component i

failing to component j failing at time t > 0.

4.5. Emission Probability Matrix ME

ME represents, if a component occurs fault, how probably

it will influence the functional constraints. More precisely,

how probably the physical variables will violate the func-

tional constraints. Inspired by the principles of FTA and the

principle of maximum entropy in Bayesian probability the-

ory, we propose the algorithm for computing ME in Fig. 7.

We will explain the definitions and the proposed algorithms

in the following parts.
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Figure 7. ME Algorithm

4.5.1. Computing Influence Graph GI

Definition 5 (Dependency Graph GD). Dependency graph

represents the dependency between system’s components.

Definition 6 (Influence Graph GI). Influence graph is a

graph representing how components’ accidental fault influ-

ences physical variables. Influence graph is topologically

identical to dependency graph, with supplementary influence

weight indicating the probability that the component C in-

fluences the variables vi. The influence weights GI(C,vi) are

computed by using Influence Layout Algorithm.

Example 3 (Influence Graph Example). Fig. 8 is an in-

fluence graph with 9 components and 15 physical variables.

GI(A,v3) is the influence weight between A and v3.

Algorithm 1 (Influence Layout Algorithm). Inspired by the

principles of FTA, we propose this influence layout algorithm.

An influence graph with N components and M variables can

be solved by applying linear programming to Eq. 5-8 .

M

∑
i=1

vi = 1 (5)
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Figure 8. Influence Graph Example

vi >
1

δM
, i = 1...M,δ > 1 (6)

For each component C, the sum of input value equals to

the sum of its output value, to ensure C does not introduce

supplementary side effect to system’s failure analysis (Eq. 7).

∑
in

vi −∑
out

v j = 0 (7)

According to the principle of maximum entropy in Bayesian

probability theory, without any prior knowledge, the differ-

ence between variables should be minimised (Eq. 8).

min
v1...vM

M

∑
i=1

|vi −
1

M

M

∑
j=1

vi| (8)

4.5.2. Computing Influence Distribution DI

Definition 7 (Influence Distribution DI). When component

Ci occurs fault, the influence it has for physical variable v j is

defined as DI(i, j).

The direct way to get DI is the use of simulation. If enough

simulation scenarios covering the range of all the variables

are provided, DI can be exactly constructed with simulation

results. However, the use of simulation is not practical for the

non-frequently happening accidental fault. To make a com-

promise between the computation time and the precision, in-

stead of simulation, we compute DI by using the Influence

Graph. This approach may sacrifice some precision, however,

the experimental results in Sec. 5. will prove its accuracy and

efficiency for the accidental fault problem.

When a component’s output physical variable violates

functional constraints, either because it encounters an acci-

dental fault, or because its dependent components has spread-

able fault. The propagation of fault is related to system’s ar-

chitecture that:

• If Ci has encountered an accidental fault, it will prob-

ably generate an output violation. The reason why it

is not a definitive violation is that in one simulation,

the required-context for violation may not happen. This

probability is defined as DA.



• If Ci depends on C j (Ci directly or indirectly takes C j’s

output as input), and if an accidental fault occurs on C j,

Ci will probably have an output violation. It is not a

definitive violation, because either in one simulation, the

required-context for violation may not happen; or the in-

termediate component’s design has fault-tolerance con-

sideration. This probability is defined as DB.

Algorithm 2 (Influence Distribution Algorithm). As DA

and DB are independent, we have DI = DA +DB. DA and

DB can be computed using GI.

• If variable v j does not depend on component Ci (Ci has

no path to v j), DI(i, j) = 0

• If v j directly depends on Ci, DA(i, j) = GI(Ci,v j)

• If v j indirectly depends on Ci, assume there are P paths

from Ci to v j. Let Oik be the kth output of Ci, and S(Ci) is

the index of Ci’s successor component on current path.

The recursive computation is as follow:

DB(i, j) =
P

∑
k=1

GI(Ci,Oik) ·DI(S(Ci), j) (9)

Eq. 9 describes system’s fault propagation and fault exposi-

tion. If some faults occur, the most probable faulty component

should be the one that exchanges the most often the data/in-

formation. That’s why there is always an accumulation.

4.5.3. Computing Emission Probability Matrix (ME)

Algorithm 3 (Emission Matrix Algorithm). For the HMM

of variable v, if the state representing Ci is failing, we use the

following algorithm to compute the probability of generating

the observations VI , VC and VN .

For VI , ME should be a function of DI. According to our

test, we found that function y=x is good enough to give out a

relatively accurate result, as shown in Eq. 10.

ME(Ci,VI) = DI(Ci,v) (10)

For VC, if v violates several functional constrains with

other variables (vi), the occurrence time of vi in these con-

straints is ni, and the occurrence time of v is n. The coupling

violation is computed as follows:

ME(Ci,VC) =
nDI(Ci,v)

∑
i

niDI(Ci,vi)
(11)

The emission probability from state to VN is:

ME(Ci,VN) = 1−ME(Ci,VI)−ME(Ci,VC) (12)

Since the only valuable information/entropy in fault localiza-

tion method will become maximized only when a fault hap-

pens, therefore it is difficult (even impossible) to find directly

a statistical distribution for those fault-free behaviour. In this

case, in order to not introduce some new assumption, we

choose to use the HMM’s mathematical property (emission

matrix must be semantically exclusive and the sum should be

1) to present the normal state-observation pair by Eq. 12.

Obviously, the healthy state (NF ) will lead to

ME(NF ,VN) = 1, ME(NF ,VI) = 0 and ME(NF ,VC) = 0.

4.6. Online Locating Accidental Fault
If we choose TS simulation time points for all the M

HMMs, we observe TS ·M sequences, with which the most

probable system behaviour can be derived. By computing the

statistic of each state, the state with maximum probability is

located as the fault source. To online locate accidental fault

for time point t, we use the observed sequences in the past

time of t according to the feature of markov process. How-

ever, when t is too long, we might have huge quantity of

observed sequences, which makes the computation time in-

creases. To solve this problem, a sampling window W is in-

troduced to limit the length of t.

Example 4. At time point 5, The observed sequences for 3

variables are:

Seq1 :
(

NF F1 F1 F2 F1

)

Seq2 :
(

F1 F1 F1 F3 F1

)

Seq3 :
(

NF F1 F1 F2 F1

)

The state with maximum probability is F1, which means

component C1 is most probably the fault source.

5. EXPERIMENTAL RESULTS
5.1. Test Bed

Since it is costly to generate test data for real system,

and it is less convincing by replaying a sample, we design

a specific test bed to evaluate the method’s accuracy and effi-

ciency by generating a large quantity of simulated use cases.

Each use case includes: the system architecture which de-

fines the components and physical variables, and their inter-

connections; the failure probability of each component; the

functional specification corresponding to each physical vari-

able or some group of them; the running time counter after

which the system will stop producing output.

The method assumes that: Each component in the system

has a chance to fail. This probability can be 0; All functional

constraints are based on variable’s value itself, and for sim-

plification, they are all range constraint, which means they

delimit only the min/max value of the variables.

If an accidental fault occurs, the test bed will give out an

out-of-range value for this component’s output. This emulates

how a system falls into fault, whatever the model is.

The test bed will extract its architecture and give each com-

ponent a random low probability of falling into accidental

fault as the prior knowledge of device’s fault parameter.



Each component’s input and output will be allocated to a

variable by the test bed. It guarantees that the interconnected

ones share the same variable. The variable will be associated

with a random range, which is the functional specification. If

a device is more probable to fail, the test-bed-generated value

for its entire output variables will be more probable to go out

of the defined range.

The approach will use the generated data and the functional

specification to locate the most probable component as the

accidental fault source if there is some violation observed.

The test bed will then compare this computed conclusion with

the initial context to deduce whether the method is efficient.

5.2. Experiments
Our test bed has generated 1000 test cases to evaluate the

method’s performance in terms of accuracy. The criterion that

impacts the accuracy is the complexity of system’s architec-

ture. This can be measured by component’s average input &

output number (Fig. 9), and component number. (Fig. 10). We

generate different scale test groups from 1 to 50 inputs/out-

puts or components. Each group has 20 test cases. The test re-

sults show the max/min/average accuracy ratio in each group.

We find out this method is more sensible to the average input

& output number, while more scalable to component number.

This method deals with the accidental fault localization for

middle-range systems with accuracy superior to 95%.
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Figure 9. Accuracy by Input Number

The computation of the HMM parameters by resolving

linear system (the influence layout algorithm) and eventu-

ally optimising non-linear system (the initial matrix with-

out complete prior knowledge) consumes time, ranging from

seconds to several minutes according to the system’s com-

plexity. However, it computes only once before the fault

localization process begins, because the HMM’s initializa-

tion is architecture-dependent-only. Once the HMM is pre-

computed, the fault localization algorithm is very fast and

depends only on the observation sequence length. Since the
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Figure 10. Accuracy by Component Number

sampling window is bounded, this method gives a good re-

sponse to the online accidental fault localization problem.

5.3. Helicopter Control System Case Study
After certifying statistically the method’s performance us-

ing the test bed, we rely on a classical Simulink teaching

model of simple helicopter control system [11] to evaluate,

whether the proposed approach works also well for real sys-

tem. A complete mathematical model, including propeller

dynamics, forces generated by the propellers, static and dy-

namic friction of the bearings, etc. is an overkill for method

proofing objectives, therefore a simplified version is chosen.

This helicopter is a linear 4th order system, where the 6 con-

trol matrices are pre-defined.

In order to introduce the accidental fault into the test, we

modify the Simulink model to have some components gen-

erating faulty outputs at some given time point according to

its original functionality. These components will have a com-

puted failure probability which is based on the ratio between

failure count and total simulation time tick. The total simula-

tion time is 10000, while the sampling window size is 1000.

The fault localization method gives a good accuracy through-

out the test, as shown in Fig. 11: the average accuracy de-

grades with the widening of sampling windows, but once the

sampling window is selected, the accuracy stabilizes and the

total accuracy is superior to 90%.

5.4. Discussion
This method needs less complete specification to derive

fault analysis conclusion, because it uses architecture con-

cept. This is an advantage for analysing old-fashioned sys-

tem, when people focus mainly on conception but not formal

specification.

At the very beginning of this paper, we reasonably assume

there is at most one accidental fault in the whole system at
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Figure 11. Helicopter Control System Case Study Result

time point t. In this situation, the computational complexity is

only O(n), which is scalable. If we consider there might be n

accidental fault at time t, it is O(2n) complicated in space and

time, which makes it difficult to scale for large system with

complex architecture. A compromise can be applied in prac-

tice if we pre-know that at most only K component will en-

counter accidental fault at the same time. Therefore the com-

plexity reduce to O(C(n,1)+C(n,2)+ ...+C(n,k)).

A weak point of this method is the quantification of some

hypothesis based on the influence distribution DI. This is also

why we find in the experiment, when the complexity of sys-

tem architecture increases, the method’s accuracy degrades.

To solve this problem, we should introduce an approach

which makes good compromise between architecture-based

HMM parametrization and observation sampling learning-

based HMM initialization. This is our ongoing work.

6. CONCLUSION

This paper proposes a novel approach to do online analysis

of accidental fault localization in dynamic systems by using

HMM. HMM can be used as an abstraction of real system,

and emulates real system’s behaviour. Inspired by the prin-

ciples of FTA and of maximum entropy in Bayesian proba-

bility theory, we propose the algorithms to estimate HMM’s

parameters, avoiding to pass through learning task, because

the learning data for accidental fault in real system is diffi-

cult to obtain. Once HMM is completed, by observing output

sequence within the sampling window, we can online esti-

mate the source of accidental fault. We design a specific test

bed to generate large quantity of test cases. The experimental

results have assessed the accuracy and efficiency of our ap-

proach. The accuracy of accidental fault localization is supe-

rior to 95% for normal scaled systems. Meanwhile, we apply

the approach to a simple helicopter control system case study,

which shows the accuracy is superior to 90%.

We will improve the concreteness of the influence distri-

bution by introducing heuristic algorithms and experiment

the approach on more complicated use cases in future work.

Meanwhile, we will introduce an approach which makes good

compromise between architecture-based HMM parametriza-

tion and observation sampling learning-based HMM initial-

ization. The later is capable be generalized to more applica-

tions, e.g. for detecting and locating design faults in systems.
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