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Abstract  

The critical importance of heat exchangers (HXs) on energy systems has been widely 

recognized, which can largely determine the overall efficiency. With the rise of the 

topology optimization (TO) and additive manufacturing techniques, it is anticipated 

that the TO may became a leading optimization technique in designing HX structures 

for the heat transfer intensification. Various algorithms for TO of HXs are dispersed in 

the literature, while a comprehensive and comparative review on their features, 

advantages, disadvantages, and limitations, is still lacking. Therefore, this paper aims 

at filling the literature gap by providing a comprehensive state-of-the art review on the 

TO for HXs over the past decades, so as to indicate the most promising technology 

roadmap. Each stage of the TO, i.e. the design parametrization, the heat transfer 

modeling, the optimization, and the final realization, is analyzed carefully in the 

corresponding section, highlighting the major pros, cons and challenges. Our statistics 

demonstrate that the current TO, though well-developed and fast improved, still have 

numerous limitations in handling the industrial HXs that hold the complicate structures 

and flow patterns. Eventually, three emerging schemes, i.e. machine learning, model 

order reduction, and moving morphable components, aimed to improve the efficiency 

of TO are also discussed.  

Key Words: Topology optimization, Heat exchangers, Conjugate heat transfer, 

Additive manufacturing, Machine learning. 
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Nomenclature 

γ     Densities (Design variables) 

α     Inverse permeability 

λ     Physical properties 

∅     Level Set function 

q     Penalization factor 

𝑣     Velocity (m/s) 

𝑇     Temperature (K) 

𝜌𝑓     Fluid density (kg/m3) 

𝜌𝑠     Solid density (kg/m3) 

𝐶𝑝𝑓     Specific heat capacity for fluid (J.kg-1.K-1) 

𝐶𝑝𝑠     Specific heat capacity for solid (J.kg-1.K-1) 

𝜇𝑓     Fluid dynamic viscosity (Pa.s) 

𝑃     Pressure (Pa) 

𝑓     Fictious force 

𝑄     Heat transfer rate (W) 

𝑈     Overall heat transfer coefficient (W.m-2.K-1) 

∆𝑇𝑚     Mean temperature difference (K) 

𝑡     Time (s) 

𝑆     Source Term (W) 

𝑘𝑠     Solid thermal conductivity (W.m-1.K-1) 

𝑘𝑓     Fluid thermal conductivity (W.m-1.K-1) 

𝐴     Heat transfer surface area (m2) 

𝑋     Position vector 

 

Abbreviations  

 

TO  Topology Optimization 

HX  Heat Exchanger 

AM  Additive Manufacturing 

RAMP Rational Approximation of Material Properties 

SIMP Solid Isotropic Material with Penalization 

NS   Navier-Stokes 

CM   Conventional Manufacturing 

 

LBM  Lattice Boltzmann Method 

XFEM Extended Finite Element Method 

VOF  Volume of Fluid method 

BCM  Building Cube Method  

GA   Genetic Algorithm 

RANS  Reynolds Averaged Navier Stokes 

MMA  Method of Moving Asymptotes 

GCMMA  Globally Convergent MMA  

SQL  Sequential Quadratic Programming 

MOSQL  Multi-objective SQL 

NSA  Null Space Algorithm 

SLP   Sequential Linear Programming 

SLA  Stereolithography 

DLP   Digital Light Processing 

EDM  Electrical Discharge Machining 

NSGA  Nondominated Sorting Genetic Algorithm 

CFD  Computational Fluid Dynamics 

CNC  Computer Numerical Control 

CV   Control Volume 

LES   Large Eddy Simulation 

DES  Detached Eddy Simulation 

BO   Bayesian Optimization 

ML   Machine Learning  

MMC Moving Morphable Component 

MOR  Model Order Reduction 

S-D   Steepest Descent Method 

H-J   Hamilton-Jacobi equation 

R-D  Reaction-Diffusion equation 

FVM  Finite Volume Method 

FEM  Finite Element Method 

LSF   Level Set Function 

LSM  Level Set Method 

EA   Evolutionary Algorithm 

GP   Gaussian Process 

AI    Artificial intelligence 
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1. Introduction 

 Energy, environment and sustainable development are closely related topics, while 

energy is at the center of the sustainable development paradigm. All energy conversion 

systems involve the heat transfer via fluid flows. More than two thirds of energy is lost 

in the energy conversion chain, from capture, conversion, transport, production, 

distribution, storage to end use. Increasing energy efficiency has been identified as one 

of the main challenges for energy systems and has attracted increasing attention from 

the academic and industrial communities [1]–[3]. 

Heat exchanger (HX) is a classical component [4]–[6] and the basic element not 

only for all systems and processes of energy conversion, production and use but also 

for many industries (food, cosmetics, medical, textile, chemical, metallurgical, 

materials, building, embedded systems, aeronautics, aerospace...). HXs are everywhere, 

indispensable, in different forms, to meet various needs, and are often subject to strong 

functional and operational constraints. It is a highly applied research topic that requires 

fundamental sciences such as thermodynamics, transport phenomena, fluid mechanics, 

materials, combined with high-performance numerical methods and optimization tools. 

The objective is to increase their overall performance. The key points are the 

intensification of heat transfer on the one hand, and the optimized management of fluid 

flows on the other hand, at each structural and temporary scale [6]–[9]. Therefore, how 

to improve the thermal performance of HXs has long been a hot topic in the research 

community of energy engineering. 

  Many theorems and methodologies have been developed for enhancing the heat 
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transfer rate of HXs at the given pressure loss [10]–[14]. Starting with the basic heat 

transfer equation for HXs [10]: 

 𝑄 = 𝑈𝐴∆𝑇𝑚 (1) 

where 𝑄 is the heat transfer rate (W), 𝑈 is the overall heat transfer coefficient (W.m-

2.K-1), 𝐴  is the heat transfer surface area (m2) and ∆𝑇𝑚  is the mean temperature 

difference or the heat flux driving force (K). 𝑈  is composed of conduction and 

convection coefficients which are associated to the transport properties. Both heat 

transfer mechanisms (conduction and convection) could be magnified by enhancing the 

thermal properties of the HX material and by affecting the fluid flow pattern near to the 

heat transfer surfaces, respectively. Moreover, it is evident that increasing 𝐴 and better 

allocating the heat transfer driving force (∆𝑇𝑚) will also intensify the heat transfer. For 

all these three aspects, a determinant factor is the shape/form/arrangement of the solid-

fluid interface within the HX, on which the size/shape/topology optimization methods 

could be employed to play a critical role.  

In general, the optimization of HXs can be classified into three types: the size 

optimization, the shape optimization and the topology optimization (TO). The 

size/shape optimization has been well developed for years [15]–[17], which refers to 

the design process that searches for the optimal size or shape in the given configuration 

or arrangement for a specific HX [18]. In practice, good performance improvement can 

still be achieved with the careful selection of the initial structures and optimization 

criteria [19]. Nevertheless, the size/shape optimization could not significantly change 

the prescribed configuration or arrangement of HXs set by designers, which may limit 
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the optimization performance. Different from the size/shape optimization, the TO act 

directly on the topology of the (interface) geometry by spatially optimizing the 

distribution of fluid or solid phase and their connectivity, within a defined domain, 

which may attain any topology that minimize/maximize the optimization objective 

under some constraints. In theory, it holds the possibly maximum degrees of freedom 

in optimization, though in practice, the optimization objectives and constraints can also 

have a significant influence on the final results. In recent years, the TO has been 

regarded as a groundbreaking technique to obtain the innovative designs of HXs with 

greatly improved effectiveness, and has drawn more and more attention of researchers. 

 

 

Figure 1: The basic stages (the corresponding section) in the TO process 
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Figure 1 shows a representative workflow of TO that includes four basic stages: (1) 

Design parametrization, (2) Heat transfer modeling, (3) Optimization process, and (4) 

Final realization. Compared to structural TO for mechanics, the issues that limit the 

TO’s utilization for the HXs can emerge in each stage of the TO process. The HXs 

involve the conjugate flow and heat transfer [20]. Thus, the fluid problems should be 

solved during the iteration process of TO, leading to large computational expenses. This 

is actually the major obstacle for the practical utilization of TO for the real HXs of 

which the intermediate or final interface structures/topologies can be really complicated. 

Meanwhile, the mixing among different flows should be avoided by carefully designing 

the parametrization scheme, when updating the geometry of the solid phase that 

separates different fluids [21]. Additionally, maximizing the heat transfer rate is not 

always the only goal when designing HXs; the pressure loss should also be considered. 

To address this issue, the weighted-sum objective function [22] or a multiple-objective 

optimizer, such as NSGA-II [23], should be employed. Moreover, even if the rapid 

development of additive manufacturing (AM) techniques has greatly improved the 

ability to realize the optimized designs obtained by the TO, there are still some 

manufacturing constraints when applying a specific AM technique [24], and the proper 

post-treatments on the TO-derived structures are highly needed [25]. Actually, there are 

few researches that consider the fabricating constraints directly into the TO of HXs. 

Researchers have proposed some specific solutions for the issues mentioned above, 

which are dispersed among the literature. In the past years, several review articles were 
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published to cover the literature of TO for microfluid devices [26], heat transfer systems 

[27], and fluid-based problems [28]. However, a comprehensive and comparative 

review on different TO stage’s features, advantages, disadvantages, and limitations, is 

still lacking particularly for HXs. 

  Here, we will analyze and compare the researches on the TO for HXs in the most 

recent years with the main objectives of defining a research guideline for the 

development and improvement of TO for HXs. A brief understanding of different 

methods employed in all TO stages is intended to be provided which will help and 

clarify the implementation procedure for interested readers. However, there have been 

few TO researches handling such practical multi-flow HXs at the component level. In 

fact, most of the TO papers just deal with a specific element (such as a duct) within the 

whole HX structure. In order to extend the coverage of our review, the papers for single-

flow heat sinks and fins that involve the physics of conjugate heat transfer are also 

included, while the pure heat conduction, the radiation, the phase change (evaporation, 

condensation), transient operations (thermal energy storage for example), and 

exothermic/endothermic reaction problems are excluded for clarity. According to this 

inclusion criterion, 91 studies published in the past fifteen years are covered in this 

review, which can well reflect the mostly-recent progress in the TO for HXs. 

  The present paper is organized following the procedure of TO, that is, each stage of 

TO will be discussed in the corresponding section. Those common approaches are 

presented, with emphasis in the issues that limit their utilization for the practical HXs. 

Afterwards, some new trends in this area aimed to improve the efficiency, like the 
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integration of machine learning techniques, will also be covered in Section 6. A series 

of statistics, comparative tables and figures will be given in each section to demonstrate 

the features, advantages, disadvantages, and limitations of the developed schemes in 

the TO of HXs.  

2. Design Parametrization 

Design parametrization refers to the representation of optimization variables 

determining the design configurations that establish the relationship between the design 

variables (e.g., the density distribution describing the flow paths in the density-based 

TO problems) and the physical properties by the interpolation functions. Its sensitive 

representation strongly affects the TO’s output results [29]. Furthermore, the design 

parametrization can vary from TO types, problem descriptions, and physical 

phenomena. It should be carefully chosen according to the problem’s features, 

considering both efficiency and accuracy. As given in Tab. 1, there are three main types 

of parametrization methods: Density-based, Level set and Direct explicit. 

Table 1: Summary and comparison of design parametrization methods 

Parametrization  Advantages Disadvantages 

Density-based  
 Fixed mesh;  

 Well developed in TO for years. 

 No interface described; 

 Numerical instabilities; 

 Modified governing 

equations. 

Level-set  

 Crisp description of interface 

profile;  

 No re-meshing in general.  

 Slow convergence; 

 Results dependent on initial 

configurations; 

 Numerical artifacts. 
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Direct explicit  

 Interface described explicitly; 

 Straight-forward & relatively 

simple. 

 Applicable only for simple 

geometries. 

2.1 Density-based method 

The density-based method is the most popular means, which was first proposed by 

Bendsøe [30] in 1989. It is based on representing the design domain by densities or 

porosities to parametrize the fluid and solid phases. Researches started with the single-

flow problems from Borrvall and Petersson [31]. Their representation of design 

variables (the density γ) consists of assigning γ = 0 for the solid phase or non-existing 

fluid phase, and γ = 1 for the fluid phase. The governing equation need be modified by 

introducing a fictitious force (the detailed equations will be given in Sec.3), which is 

determined by an inverse permeability (α) for each element, with αmin corresponding to 

γ = 1 (fluid region) and αmax corresponding to γ = 0 (solid region). In the elements of 

solid with γ = 0, the fictitious force is maximum to block the flowing of fluid. During 

the iteration process, the inverse permeability (α) is changing continuously in every 

element, which is determined by an interpolation function. Taking the widely-used 

SIMP (solid isotropic material with penalization) [30] as an example, it is given by,   

𝜆(𝜌) = 𝜆𝑚𝑎𝑥 + (𝜆𝑚𝑖𝑛 − 𝜆𝑚𝑎𝑥)𝛾𝑞 (2) 

where 𝑞 > 1 is a penalization coefficient to minimize the presence of the gray elements, 

i.e. the ones of partial density from 0 to 1, 𝜆𝑚𝑖𝑛, 𝜆𝑚𝑎𝑥 are the minimum and maximum 

physical properties values (e.g., thermal conductivity), respectively. Note that the gray 

elements are usually regarded to hold no physical meaning and thus should be avoided 

by adjusting q. Thereafter, the above density-based representation with the different 



11 

 

penalization functions, including SIMP and RAMP (rational approximation of material 

properties), etc., have been utilized in a wide range of single-flow HX problems [32]–

[85]. Additionally, some other researchers [86]–[101] used an opposite representation 

of design parametrization by assigning γ = 1 for the solid phase or non-existing fluid 

phase and γ = 0 for the fluid phase. Note that no evidence demonstrates that such 

different representation of solid and liquid phases will significantly affect the solutions 

or efficiency of TO in the single-flow heat transfer problems. Currently, the first kind 

of representation accounts for the largest portion in the published articles, as shown in 

Fig.2b.  

Furthermore, the density-based method was extended to the multi-flow HX 

problems, which involve two or more fluids separated by one or more solid phases [21], 

[101]–[105]. For instance, Kobayashi et al. [105] used one density (γ) to describe the 

multi-fluid problem by assigning γ = 0 for fluid 1, γ = 1 for fluid 2 and intermediate 

values (0 < γ < 1) for the solid phase. Tang et al. [101] divided a dual flow heat transfer 

problem into two independent one-flow and one-solid sub-problems, and thus one 

design variable (density) is used for both sub-problems.  

The density-based method has shown its high efficiency by avoiding the re-meshing 

process at each iteration. As for the interpolation functions, the RAMP has proved the 

ability to penalize the larger range of design variables compared to the SIMP function 

[106]. In fact, the majority of TO publications are based on the density-based method, 

as shown in Fig. 2a. However, some numerical issues are usually encountered, like the 

mesh-dependent results, the bad formation of solid/fluid cells in the optimized structure 
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in which they are ordered similarly to the checkerboard configurations, and the 

intermediate densities values, etc. [107]. To remedy these instabilities, densities filters 

and projections should be implemented [107],[108]. More importantly, it is not able to 

exactly describe the interface between different phases due to the element by element 

updating procedure, and thus not suitable for the problems where the interfacial profiles 

or the properties near the interfaces are important [109]. 

  

  

2.2 Level set method 

The level-set method (LSM) was first developed by Osher and Sethian [110], for 

the purpose of well defining the interface between phases. Most of the time, it implicitly 

describes the interface between multiple phases by a level-set function (LSF) [111]–

[113], which allows a clear description of the interfaces and improves the accuracy of 

Figure 2:Publications statistics for design parametrization methods in TO of heat exchangers (until 1-March-2022) 

(2.a) Publication percentage of different design 

parametrization methods 

(2.b) Publication percentage of Density-based different 

design parametrization. Single flow 1 (γ=1 fluids, γ=0 

solids). Single flow 2 (γ=0 fluids, γ=1 solids) 
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the responses captured at the boundaries. The design parametrization of LSM is given 

by,  

 {

∅(𝑿) > 0 ⬄ (Material Phase) 

∅(𝑿) = 0 ⬄ (Interface)

∅(𝑿) < 0  ⬄(Void)
 (3) 

where ∅ is the level-set function and 𝑿 is the location vector of the design domain. 

The LSF is set to be zero at the interface, and the nodal values of LSF can be solved 

based on a governing equation or interpolated on the computational domain by a space 

function called “basis functions”. The LSM has also been applied in the TO of HXs 

[96], [104], [114]–[123]. Feppon et al. [117] even used the LSM to deal with the 2D 

and 3D HXs involving two fluids. Furthermore, the LSF can be described in an explicit 

way [120],[124]. Li et al. [124] suggested a component-based level-set parametrization 

to describe explicitly the solid/fluid interface for the TO of a micro-channel heat sink.        

The clear and crisp description of interface in the LSM makes it a good option for 

the problems where the interfacial profiles or the properties near the interfaces really 

matter. Generally in the LSM, re-meshing is not needed, except in the case of 

conforming discretization (referring to the conforming discretization section in Ref. 

[125]). In this sense, the LSM can be well suitable for the HXs where heat transfer rate 

is largely determined by the flow velocity and temperature fields near the solid-liquid 

or liquid-solid-liquid interfaces. However, the dependence of output results on the 

initial configurations can significantly affect the accuracy and efficiency of LSM [125]. 

Another disadvantage is the slow convergence compared to the density-based method 

[125]. Moreover, similar to the density-based method, the regularization techniques are 

always necessary to avoid numerical artifacts and enhance the convergence rate in the 
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LSM [125]. 

2.3 Direct explicit method 

Direct explicit parametrization permits to describe interfaces in a direct way. One 

or several functions or arrays are used to describe the interfacial profiles explicitly. 

Among the literature, the direct explicit parametrization is very well established for 

shape optimization [126]–[128], but only applicable for some simple problems. As for 

TO of HXs, it is infrequently applied (see Figure 2.a), though it can eliminate the 

numerical artifacts encountered by the implicit representations [129]. For example, 

Mekki et al. [130] proposed an explicit voxel parametrization for optimizing the 2D 

fins of a HX: each voxel can represent either solid or liquid, and can be iteratively 

switched during the optimization process. Moreover, Shimoyama and Komiya [131] 

suggested a new explicit parametrization by representing the 3D lattice-structured heat 

sink using a point/edge system. However, up to date, there has been no published 

research that used the direct explicit method in the TO for complex HX problems. 

 

3. Heat transfer modeling  

  The conjugate heat transfer in HXs is characterized by four equations, i.e., continuity 

eq. (4a), (b) momentum eq. (4b), and energy balance eq. (4c) for fluids, (4d) for solids,  
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𝜕𝜌𝑓

𝜕𝑡
+ ∇. (𝜌𝑓𝑣) = 0    (𝑎) 

𝜌𝑓 (
𝜕𝑣

𝜕𝑡
+ 𝑣. ∇𝑣) = −∇𝑃 + 𝜇𝑓 . ∇2𝑣 + 𝑓    (𝑏) 

𝜌𝑓𝐶𝑝𝑓

𝜕𝑇

𝜕𝑡
+ 𝜌𝑓𝐶𝑝𝑓𝑣. ∇𝑇 = ∇ . (𝑘𝑓∇𝑇) + 𝑆    (𝑐) 

𝜌𝑠𝐶𝑝𝑠

𝜕𝑇

𝜕𝑡
= ∇ . (𝑘𝑠∇𝑇) + 𝑆    (𝑑) 

 

 

(4) 

where 𝐶𝑝𝑓 and 𝐶𝑝𝑠 are the specific heat at constant pressure for fluid and solid phases 

respectively (J.kg-1.K-1), 𝑘𝑠 and 𝑘𝑓 are the thermal conductivities for solid and fluid 

phase respectively (W.m-1.K-1), 𝑣 the velocity (m.s-1), 𝑇 the temperature (K), 𝑃 the 

pressure (Pa), 𝜇𝑓  the fluid dynamic viscosity (Pa.s), 𝜌𝑓  and 𝜌𝑠  are the fluid and 

solid phases densities (kg.m-3), 𝑡 is the time (s),  𝑆 is the heat source term (W) and 

𝑓 is the fictious force equal to -αv, where α is the inverse permeability. This fictious 

force is an indispensable term specifically in density-based TO which represents the 

solid phase force on the fluid phase. Nevertheless, this fictious term is infrequently used 

in level set TO; in the direct explicit case, it is not needed. In the TO, the governing 

equations should be solved at each iteration to compute the objective function values. 

Apparently, the solver efficiency and accuracy will greatly affect the performance of 

TO. Furthermore, these numerical solvers encountered some difficulties to correctly 

and efficiently simulate turbulent flows which are usually described by the velocity, 

pressure chaotic changes and unsteady eddies. In decades, several solvers have been 

developed to solve Eq. (4), as given in Tab. 2. In the majority of HXs applications, some 

acceptable simplifications and assumptions are made to simplify the numerical 

modeling e.g., steady-state, temperature independent thermophysical properties for 

fluid and solid phases, incompressible flows, etc. Additionally, some rare exceptional 
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studies dealt with some more complicated conditions, e.g. temperature dependent 

thermophysical properties [60].  

 

Table 2: Summary and comparison of the solvers in TO of HXs 

Methods Advantages Disadvantages 

FEM 

 High availability in TO;   

 Flexible with a wide range of 

physics. 

 Not ensuring the conservation law 

locally; 

 Numerical instabilities for convection. 

FVM 

 Ensuring the conservation law 

locally; 

 Suitable for CFD problems. 

 Relatively low availability in TO;   

 Tough to design higher order schemes 

with high accuracy; 

 High requirement of mesh quality 

especially for complex geometries. 

XFEM  Well capturing interfaces. 

 Very low availability in TO; 

 Not ensuring the conservation law 

locally. 

LBM 

 Ensuring the conservation 

law locally; 

 Able to consider the size effects 

at microscale; 

 Easy-meshing. 

 Very low availability in TO;   

 Difficulties in handling the multiphase 

flow, compressibility and 3D extension; 

 Memory intensive. 

 

3.1 Finite element method (FEM) 

The FEM is one of the well-developed techniques for solving partial differential 

equations. It was first proposed by Hrennikoff [132] and McHenry [133] on structural 

problems. FEM consists of discretizing the domains into small domains called “finite 

elements” to transform a continuous problem into a discrete one. Thereafter, the 

governing equations are integrated over each element by the weighted residual methods 
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[134], e.g., Galerkin method. The elemental matrices are then formulated and 

assembled into the global discretized system of equations that enable to calculate the 

unknown variables at each node. FEM has proved its high flexibility of being applied 

to a wide range of physics with highly accurate results [135].  

In the TO of HXs, the solvers based on the FEM have been extensively used for the 

steady-state laminar flow in both 2D and 3D cases [21],[32]–[37], [44],[46],[48]–[55], 

[59]–[62], [64]–[78], [80], [82]–[84], [86], [89], [91], [94]–[100], [103]–[105], [116]–

[119], [121], [122], [136]–[138]. As for the single-flow HXs, for instance, Dede et al. 

[46],[89] used the FEM solver in the TO of a liquid cooled heat sink, and Matsumori et 

al. [32] optimized the channels of a HX using the FEM-integrated TO. In the multi-

flow HX cases, the FEM was adopted in the TO by Papazoglou [21]. Sun et al. [36] 

executed the TO on a fin and tube HX using the FEM-based COMSOL Multiphysics 

software. Different from the preceding references, under laminar transient conditions, 

Zeng et al. [56] performed a TO on a 3D heat sink using a finite element solver. On the 

other hand, a few researches on the TO of HXs involving the turbulent flow have also 

been conducted mainly using the FEM to solve the RANS (Reynolds averaged Navier-

Stokes) equations [40],[61],[85],[87],[124]. For example, Zhao et al. [87] adopted the 

Darcy-flow and RANS models for the TO of cooling channels problems under steady 

state conditions: the FEM-based commercial software (COMSOL Multiphysics) was 

employed to simulate the turbulent flow in the channels.  

The combination of density-based method and FEM is the most convenient transfer 

from the TO of structural mechanics to that of conjugated heat transfer. In decades, a 
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series of algorithms and codes have been developed, and recently the TO module has 

even be integrated in the FEM-based commercial software. Owing to such high 

availability, the FEM is currently the mostly-used solver in the TO of HXs, as illustrated 

in Fig. 3. However, in the FEM, the conservation law is not well guaranteed locally for 

each finite element [139]. This may lead to the numerical instabilities of the conjugate 

heat transfer problems [140], which can largely affect the performance of the TO of 

HXs.  

 

Figure 3:Publications percentages for different solvers used in the TO of HXs under different conditions (until 1-

March-2022)  

3.2 Finite volume method (FVM) 

The FVM is discretizing the design domain into a group of control-volumes (CVs) 
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by directly integrating the governing equations over each CV, and the divergence 

theorem is applied to transform the CV integration into boundaries summation over 

each CV [141]–[143]. It has shown its robustness and stability in CFD (computational 

fluid dynamics) problems [144].  

  FVM was first used in the TO of heat conduction by Gersborg-Hansen et al. [145]. 

Then, it was implemented in a TO algorithm for the steady-state laminar flow HXs 

[38],[43],[45],[58],[63],[81],[90],[101],[102],[130],[131]. Tawk et al. [102] optimized 

both parallel and counter-flow HXs using the FVM-based TO for thermo-hydraulic 

enhancement purposes. Recently, the open source library OpenFoam based on FVM 

becomes popular to solve the flow problems. It has also been applied for TO of HXs 

[45],[130] on a few cases.  

As for the HXs involving turbulent flow, Kontoleontos et al. [88] used the FVM to 

solve the Spalart-Allmaras turbulence model in the TO of a thermal-fluid problem. In 

the same idea, Dilgen et al. [42] studied the turbulence effect on a heat sink using the 

k-w model at steady state conditions. With the intention of studying the turbulence 

effects inside a square tube HX, the FVM was applied by Pietropaoli et al. [93] to solve 

the RANS equations in the TO; then, they carried out a detached eddy simulation (DES) 

to evaluate the thermal performance of optimized structure. Ghosh et al. [79] used a 

FVM-based software (OpenFoam) to model the turbulent flow inside a cooling duct. 

 The FVM ensures the conservativeness over every CV [143], which makes it a 

good option for CFD problems. In fact, the majority of authors that used the FEM- 

based TO mentioned in Subsection 3.1 performed the CFD analysis using FVM solvers 
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to evaluate the performance of the TO-derived structures, which underscores the 

advantages of the FVM over the FEM in CFD applications. However, the portion of the 

FVM-based TO of HXs to date happens to be rather small, as shown in Fig. 3. The low 

availability of the FVM-based TO programs may be the major reason for that. Moreover, 

the optimized results in the FVM-based TO can be mesh dependent, without integrating 

a proper filter [27]; it becomes difficult to design high order schemes that obtain a good 

accuracy using the FVM [146].  

3.3 Extended finite element method (XFEM) 

The XFEM extends the approach of the FEM by adding enrichment degrees of 

freedom on the nodes near the discontinuities to improve the description of 

discontinuities [147],[148]. The XFEM was first used on the 2D cracks by Belytschko 

and Black [149] to study the crack propagation and interfaces.  

  As a very valuable attempt, Coffin and Maute [120] combined the XFEM and the 

LSM in the TO for the 2D and 3D, steady-state and transient single-flow heat transfer 

problems dominated by natural convection. Recently, Lin et al. [123] performed a 

topology optimization using the LSM-XFEM coupling to optimize the channel 

topology for a 2D heat sink under steady-state conditions. Thanks to the features of 

XFEM and LSM, the interface is well captured during the iterative optimization process, 

while the computational burden increases at the same time. In the XFEM-based TO, the 

description of the interface can be improved, however adding new degrees of freedom 

at the nodes near the interfaces induces a high algorithmic complexity that strongly 
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increases the computational time. As demonstrated by Fig. 3, XFEM was scarcely used 

as a numerical solver for the TO of HXs. The same as the FEM, some instability 

problems are encountered due to the deficiency of conservative fluxes at each element 

[139]. Additionally, particularly for transient problems due to the rapid change of the 

physical properties (like temperature jumps near the interface), small time steps are 

required to capture it when using the XFEM [150].  

3.4 Lattice Boltzmann method (LBM)  

  The LBM is a mesoscale method used for solving transport governing equations 

described at the macroscopic scale [151],[152]. A set of Boltzmann transport equations 

are designed to correspond to the macroscopic governing equations, and then are solved 

in the representation of lattice gas. 

The LBM is a relatively young technique compared to the FEM and the FVM. There 

are few researchers attempted to integrate the LBM in the TO for HX problems 

[39],[57],[115]. Yaji et al. [57] implemented a TO based on LBM to optimize the flow 

channels topology of a 2D thermo-fluid problem. In 2018, the LBM was adopted by 

Dugast et al. [115] for the TO of a 2D thermal fluid problem.  

The LBM has showed its robustness and accuracy in the heat and mass transfer 

problems, particularly in the micro-scale cases where the size effects become 

significant [153]. It ensures the local conservation law, and has the advantages when 

dealing with the problems of complicated interfaces and size effects at the microscale. 

In this sense, the LBM-based TO may be promising for the multiscale HXs. However, 
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the LBM has difficulties in handling with the multiphase flow, compressibility and 3D 

extension. Moreover, due to the iterative propagation step, the LBM is a memory-

intensive method [154]. Importantly, the integration of LBM with TO is still at a starting 

stage, which is not enough mature for practical applications. 

 

4. Optimization 

After computing the objective function(s) using the heat transfer solvers, an 

optimization process is conducted to renew the design variables (defined in the 

parametrization stage), in order to minimize or maximize the objective function(s) 

under specific constraints. The objective functions serve as the optimization criteria and 

may influence the final topologies. Regarding the thermal performance, there have been 

at least 10 different objective functions among the literature of TO, including 

minimizing average temperature rise, minimizing thermal compliance, minimizing 

thermal resistance, maximizing exchanged heat, and maximizing recoverable thermal 

power. Optimization criteria of HXs where the subject of long discussions in the 

community of heat transfer [11],[13],[155]. For instance, in the view of 

thermodynamics, minimizing the exergy destruction can also be an objective function 

of heat transfer optimization. However, to our best knowledge, there has been no 

research that carefully investigates the influence of objective functions on the TO of 

HXs up to date. Additionally, the hydraulic performance of HXs can serve as either the 

constraint or one of the objective functions. Regarding the hydraulic performance, the 

choices of optimization criteria (or constraints) are not that diverse: minimizing the 
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pressure drop and the energy dissipation (loss) of flow are the common ones. In addition, 

as illustrated by Fig. 4b, the majority of the researchers dealt with single objective 

functions. Some of these studies take an advantage to enhance the thermo-hydraulic 

performance simultaneously by dealing with a single objective function and setting the 

other objective as an optimization constraint. On the other hand, other researchers 

employed the weighted sum or the true multi-objective optimization for the same 

purpose of intensifying the heat transfer and improving the hydraulic performance 

concurrently of HXs. The optimizer, which is the core part of TO algorithm, determines 

the evolution of design domains and thus the final output result by the TO. Table 3 lists 

some commonly-used optimizers. 

 

 Table 3: Summary and comparison of the optimizers in TO of HXs 

Optimizers Advantages Disadvantages 

Gradient-based 

 Mostly efficient for the large-

design-variable- 

number problems;   

 High availability in TO. 

 Deficiency in multi-objective 

problems;   

 Local optima.  

GA (Genetic 

Algorithm) 

 Gradient-free;  

 Global optima; 

 Efficient in multi-objective 

problems. 

 Slow convergence; 

 Randomness. 

Bayesian  Efficient in big data problems. 

 Expensive and complex 

computation; 

 Scalability weakness with the 

number of objective function 

evaluations. 
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Figure 4: Publications percentages for different optimization techniques in the TO of heat exchangers (until 1-

March-2022): (a) Different optimization techniques; (b) Optimization types.   

 

4.1 Gradient-based optimization 

The gradient-based method also called “sensitivity analysis” is based on computing 

the gradients of the objective functions with respect to the design variables. These 

gradients represent the variation of the objective function with respect to the design 

variables at each iteration and are often solved using the adjoint method [156]. The 

adjoint method has shown its high efficiency in computing the objective function 

gradients [157]. The optimizer renews the design variables based on these gradient 

values.  

(a) Different optimization techniques  (b) Optimization types   



25 

 

 

Figure 5: Publications percentages of the optimizers used in gradient-based TO of heat exchangers (until 1-March-

2022) 

As illustrated in Fig. 5, several gradient-based optimizers are utilized in the TO of 

HXs, including MMA (Method of Moving Asymptotes) [158](44%), GCMMA 

(Globally convergent MMA) [159](25%), SLP (Sequential linear programming) 

[160](6%), SQP (Sequential quadratic programming) [161](9%), Steepest descent 

[162](8%), Tosca [163](1%), Reaction-diffusion [164](4%), Hamilton-Jacobi [96](1%) 

optimizers, and Null Space algorithm [165](2%). These gradient- based optimizers hold 

the different mathematical natures and thus the distinct applications. The detailed 

explanation on their mathematical characteristics are beyond the scope of our review, 

and can be found in the relevant references. 

The utilization of gradient-based optimizers is the mainstream in the TO not limited 

to the problems of HXs [21],[32]–[105],[115]–[124],[136],[137]. According to Fig. 4a, 

more than 90% of papers on the TO of HXs utilize the gradient-based optimizers. This 

is mainly because of its good efficiency in handling problems involving such large 

number of design variables (usually equal to the number of nodes in the solver) [166]. 
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Recently, some gradient-based multi-objective algorithms have been developed, like 

MOSQP (Multi-objective SQP) [167], which has been employed in the structural TO 

[99]; however, up to date there has been no published work on the TO of HXs using 

such algorithm. Additionally, the gradient-based optimization can converge to a local 

optimum when the objective function has several local optimums [134], and thus re-

optimization is needed by setting different initial configurations. 

4.2 Genetic algorithm (GA)  

The GA is a stochastic evolutionary algorithm (EA) based on the biology of 

chromosomes and genes [168]. This evolutionary algorithm obtains the optimized 

solution(s) after several generations. Each generation starts by generating the initial 

population randomly to increase its diversity. Then, the fitness values are evaluated for 

each chromosome in the population using fitness function(s), i.e. objective function(s). 

The parent chromosomes are selected from the initial population using natural selection 

processes, e.g. roulette wheel [169]. The children are then obtained by the combination 

of two parents using crossover [170]. Thereafter, the mutation process based on 

randomness is applied on the children to mutate one or more of their genes before 

moving to the next generation. Finally, the elitism stage [171] moves one chromosome 

to the next generation without being edited by the crossover and mutation.  

The GA has been developed by many researchers in different fields including heat 

transfer [172],[173]. As for the TO of HXs, few researchers implemented the GA for 

generating optimized topologies [61],[114],[130],[131]. Yaji et al. [61] proposed a 



27 

 

multi-fidelity TO for a heat sink using EA main stages (selection, crossover, mutation). 

They first performed a low fidelity optimization problem based on Darcy flow model 

using ɛ-constrained method [174]. According to low fidelity results, a high-fidelity 

evaluation was executed using Navier–Stokes equations. Then, a non-dominated 

sorting strategy (NSGA II) was employed to select the optimal pareto front. 

The GA method avoids the gradient computation of the objective function (s) at 

each iteration. In theory, it will obtain the global optima, and screen the influence from 

the initial guess [172]. Moreover, the GA is a good option for the multi-objective 

problems, since it handles a group of candidates simultaneously, which is of advantage 

to derive the Pareto front [23]. Having similar stochastic behaviors, other evolutionary 

algorithms (e.g., Particle Swarm Optimization) could also be tested with the TO of HXs 

which may possess more efficiency than the GA in some cases. Despite the merits of 

GA, it has been rarely coupled with the TO of HXs, as shown in Fig. 4a. This is mainly 

attributed to the slow convergence of GA [172], which significantly increases the 

computational time of the TO. 

4.3 Bayesian optimization (BO) 

 The BO is an optimization technique based on machine learning concept. It initially 

rose thanks to the work by Kushner [175], Zhilinskas [176] and Mockus [177]. Then it 

was popularized after the paper by Jones et al. [178]. The BO is composed of two main 

parts: statistical modeling and acquisition function. In the Bayesian statistical modeling 

section, a random set is initially generated. After that, the mean vector and the 
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covariance matrix are calculated based on Gaussian process (GP) regression for the 

whole set. The acquisition function is then calculated and its optimum value is used to 

optimize the objective function for the next step (more details referring to section 4 in 

Ref. [179]).  

  The BO is a sequential optimization method that solves tasks in a sequence way. Due 

to its high data efficiency structure, the BO has shown its robustness in the big data 

applications [180]. Some structural TO problems have been studied by integrating the 

BO; for example, Lynch et al. [181] investigated a simple structural TO problem (i.e., 

minimizing the compliance of a 2D beam) to show the possibility of integrating BO in 

the TO for HXs. In fact, the concept of BO was also employed by Yoshimura et al. [114] 

and Shimoyama and Komiya [131] to handle HX problems. Both references built a 

Kriging surrogate model [182] to efficiently evaluate an approximated objective 

function which will emphatically diminishes the computational time. Apparently, the 

utilization of BO in the TO of HXs is very limited, and even less than that of GA up to 

date. The expensive and complex computation of the acquisition function optimization 

procedure at each iteration [183] may be a reason. Indeed, another disadvantage of BO 

is the scalability weakness which is represented by the asymptotically increase of the 

computational time when evaluating the objective function for a new sampling point or 

when computing the objective function derivatives [184].  

 

5. Final Realization 

The optimized complex structures obtained by the TO are generally difficult to be 
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fabricated using the conventional manufacturing (CM) techniques. Therefore, additive 

manufacturing (AM) techniques also called as 3D printing have been applied to 

manufacture those very complex structures [25],[185]. Table 4 compares CM and AM 

for fabricating the TO-derived structures of HXs. AM is an additive technique that build 

the structure by adding layers, while the CM techniques are subtractive, which remove 

material from the structure. Generally, the AM can remove the fabrication shackles of 

the CMs, but the equipment and materials of metallic AM are still very expensive 

currently [186]. Importantly, due to the restrictions of AM accuracy, some constraints, 

including length scale, connectivity, and overhang constraints, etc., should be subjected 

to the optimized structures obtained by the TO [24]. Those constraints are critically 

essential to eliminate the un-manufacturable features of the optimized structures. More 

details of those constraints can be found in Ref.[25].  

Table 4: Comparison between AM and CM for TO of HXs 

Techniques  Advantages Disadvantages 

AM 

 Manufacturing ability for complex 

geometries; 

 High manufacturability efficiency 

for complex geometries.   

 Relative limited understanding on 

the manufacturing constraints on the 

TO optimized structures;   

 Expensive equipment and materials;  

 Limited to prototype fabrication; 

 Limited choices of materials.  

CM 

 High availability;  

 High productivity; 

 Cheap equipment compared to AM. 

 Limited manufacturability for TO-

derived structures;  

 Slow fabrication and repairing 

process for complex TO-derived 

structures 

As for the area of HXs optimization, referring to Fig.6, only few researchers (about 

18%) have manufactured the optimized structures obtained by the TO and tested them 
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in practice. As a tradeoff, some researchers realized and tested the engineering 

simplified version of TO-resulted geometry due to the fabrication difficulty, the 

advantages of TO being partially or totally lost [58].  

  

 

Figure 6: Publication statistics for final realization statuses of optimized HXs (until 1-March-2022). Percentage 

(Numbers) of publications 

 

Using AM techniques, some researchers fabricated the TO-optimized HXs to 

validate their numerical results [41],[54],[68],[83],[99],[137]. For example, Lei et al. 

[68] manufactured the optimized structure of a passive HX by the TO using 3D 

stereolithography (SLA) printing technique assisted with investment casting process. 

On the other hand, the CM methods [33],[44],[49],[51],[58]–[60],[74],[89],[124], have 

also been utilized to fabricate some HXs obtained by the TO (mainly the 2D topologies, 

such as the 2D heat sinks). For instance, as referred by Koga et al. [33], the electrical 

discharge machining (EDM) was used to manufacture the optimized structure of a heat 



31 

 

sink with the help of CNC (computer numerical control) milling. Figures 7(a) and (b) 

illustrate the heat sinks fabricated by the AM [68] and the CM [51] techniques, 

respectively. Apparently, the AM method can attain more complex structures especially 

in the 3D case. Note that since the majority of current researches on the TO of HXs 

does not conduct the final realization of designed structures, there have been rare 

discussions on the fabricating constraints on the TO-optimized HXs, which should be 

improved in the further work. One recent paper mentions precisely the integration 

between AM and TO and the implementation of the overhang constraint in the TO for 

a fluidic problem [187]. 

 
Figure 7: (a) Heat sinks manufactured using the AM technique (the SLA printing assisted with investment casting) 

[68]; (b) Heat sink channels manufactured using the CM technique (the CNC) [51].  

Furthermore, in order to give a complete comparison among the existing literature, 

the papers on the TO of HXs analyzed in the sections above, i.e. Design parametrization, 

Heat transfer modeling, Optimization, and Final realization, are summarized in Tab. 5. 
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Table 5: Summary of researches on TO of HXs analyzed in the sections above. 

No. Reference Year Parametrization Solver Objective Function Optimizer Final Realization 

1 Dede [46] 2009 Density (SF1)1 FEM Min (Mean Temperature & Energy Dissipation) Gradient (MMA) Not 4 

2 Yoon [95] 2010 Density (SF2)2 FEM Min (Thermal Compliance) Gradient (MMA) Not 

3 Dede [89] 2012 Density (SF2) FEM Min (Mean Temperature & Energy Dissipation) Gradient (MMA) CM (N/A) 

4 Kontoleontos et al. [88] 2012 Density (SF2) FVM Min (Pressure Drop) & Max (Temperature Difference) Gradient(S-D) Not 

5 Matsumori et al. [32] 2013 Density (SF1) FEM Max (Heat Generation) Gradient (SQP) Not 

6 Marck et al. [63] 2013 Density (SF1) FVM 
Min (Pressure Drop) & Max (The Recoverable 

Thermal Power) 
Gradient (MMA) Not 

7 Koga et al. [33] 2013 Density (SF1) FEM Min (Pressure Drop) & Max (Dissipated Heat) Gradient (SLP) CM (EDM, CNC) 

8 Oevelen et al. [43] 2014 Density (SF1) FVM Min (Thermal Resistance) Gradient (MMA) Not 

9 Alexandersen et al. [64] 2014 Density (SF1) FEM Min (Thermal Compliance) Gradient (MMA) Not 

10 Yaji et al. [119] 2015 LSM FEM Max (Heat Generation) Gradient (R-D) Not 

11 Papazoglou [21] 2015 Density (Multi-flow) FEM Max (Exchanged Heat) Gradient (MMA) Not 

12 Yaji et al. [57] 2015 Density (SF1) LBM Min (Pressure Drop) & Max (Exchanged Heat) Gradient (MMA) Not 

13 Coffin and Maute [120] 2015 LSM XFEM Min (Average Temperature) Gradient (GCMMA) Not 

14 Łaniewski-Wołłk et al. [39] 2016 Density (SF1) LBM Max (Exchanged Heat) Gradient (MMA) Not 

15 Qian and Dede [65] 2016 Density (SF1) FEM Min (Average Temperature & Dissipation Energy) Gradient (MMA) Not 

16 Zhou et al. [136] 2016 Parametrization of [188] FEM Max (Reaction Flux) Gradient (TOSCA) Not 

17 Alexendersen et al. [66] 2016 Density (SF1) FEM Min (Thermal Compliance) Gradient (MMA) Not 

18 Li et al. [138] 2016 Density (N/A3) FEM Min (Heat Potential Capacity) N/A Not 

19 Yoshimura et al. [114] 2017 LSM BCM Min (Pressure Drop) & Max (Bulk Mean Temperature) GA & BO Not 

20 Haertel and Nellis [34] 2017 Density (SF1) FEM Max (Thermal Conductance) Gradient (GCMMA) Not 

21 Zhao et al. [87] 2017 Density (SF2) FEM Min (Mean Temperature) Gradient (MMA) Not 

22 Qian et al. [67] 2017 Density (SF1) FEM Min (RMS Temperature & Energy Dissipation) Gradient (MMA) Not 
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No. Reference Year Parametrization Solver Objective Function Optimizer Final Realization 

23 Sato et al. [121] 2018 LSM FEM Max (Heat Generation) & Min (Energy Dissipation) Gradient (R-D) Not 

24 Haertel et al. [35] 2018 Density (SF1) FEM Min (Thermal Resistance) Gradient (GCMMA) Not 

25 Zeng et al. [44] 2018 Density (SF1) FEM Min (Pressure Drop) Gradient (GCMMA) CM (CNC) 

26 Dilgen et al. [42] 2018 Density (SF1) FVM Min (Average Temperature) Gradient (MMA) Not 

27 Dugast et al. [115] 2018 LSM LBM Min (Mean Temperature) & Max (Exchanged Heat) Gradient(S-D) Not 

28 Ramalingom et al. [90] 2018 Density (SF2) FVM 
Min (Pressure Drop) & Max (Recoverable Thermal 

Power) 
Gradient(S-D) Not 

29 Santhanakrishnan et al. [96] 2018 Density (SF2), LSM FEM Min (Thermal Compliance) 
Gradient (MMA, 

H-J) 
Not 

30 Lei et al. [68] 2018 Density (SF1) FEM Min (Thermal Compliance) Gradient (MMA) AM (SLA) 

31 Sun et al. [36] 2018 Density (SF1) FEM Min (Pressure Drop) Gradient (GCMMA) Not 

32 Lurie et al. [97] 2018 Density (SF2) FEM 
Min (Pressure Drop &  

Energy Dissipation) 
Gradient (MMA) Not 

33 Saglietti et al. [37] 2018 Density (SF1) FEM Max (Exchanged Heat) Gradient (MMA) Not 

34 Pietropaoli et al. [92] 2018 Density (SF2) VOF 
Min (Stagnation Pressure Drop) &  

Max (Temperature Gain) 
Gradient(S-D) Not 

35 Makhija and Beran [86] 2018 Density (SF2) FEM Min (Average Temperature) Gradient (GCMMA) Not 

36 Lv and Liu [47] 2018 Density (SF1) N/A 
Max (Heat Dissipation) &  

Min (Energy Dissipation) 
Gradient (MMA) Not 

37 Subramaniam et al. [38] 2019 Density (SF1) FVM 
Min (Pressure Drop) Max (Recoverable Thermal 

Power) 
Gradient (MMA) Not 

38 Saviers et al. [137] 2019 N/A FEM Max (Exchanged Heat) Gradient (GCMMA) AM (SLA) 

39 Yu et al. [69] 2019 Density (SF1) FEM Min (Thermal Compliance & Energy Dissipation) Gradient (MMA) Not 

40 Asmussen et al. [91] 2019 Density (SF2) FEM Min (Thermal Compliance) Gradient (MMA) Not 
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No. Reference Year Parametrization Solver Objective Function Optimizer Final Realization 

41 Zhang and Gao [52] 2019 Density (SF1) FEM Max (Heat Generation) Gradient (MMA) Not 

42 Jahan et al. [98] 2019 Density (SF2) FEM Min (Thermal Compliance) Gradient (MMA) Not 

43 Kobayashi et al. [48] 2019 Density (SF1) FEM Max (Heat Extraction) Gradient (SLP) Not 

44 Tawk et al. [102] 2019 Density (Multi-flow) FVM Min (Pressure Drop) & Max (Exchanged Heat) Gradient (MMA) Not 

45 Zeng and Lee [49] 2019 Density (SF1) FEM Min (Pressure Drop) Gradient (GCMMA) CM (CNC) 

46 Yan et al. [50] 2019 Density (SF1) FEM Min (Maximum Temperature) Gradient (MMA) Not 

47 Li et al. [59] 2019 Density (SF1) FEM Min (Pressure Drop) & Max (Exchanged Heat) Gradient (SQP) CM (CNC) 

48 Li et al. [51] 2019 Density (SF1) FEM Min (Dissipation Energy) & Max (Exchanged Heat) Gradient (SQP) 
CM (CNC, 

Milling) 

49 Dong and Liu [70] 2019 Density (SF1) FEM 
Min (Thermal Resistance & Pressure Drop & Energy 

Dissipation) 
Gradient (SQP) Not 

50 Ghosh and Kapat [45] 2019 Density (SF1) FVM Min (Pressure Drop) & Max (Temperature Rise) Gradient(S-D) Not 

51 Hu et al. [71] 2019 Density (SF1) FEM 
Min (Mean Temperature & 

 Energy Dissipation) 
Gradient (GCMMA) Not 

52 Kambampati et al. [116] 2020 LSM FEM Min (Thermal Compliance) Gradient (SLP) Not 

53 Zhang et al. [53] 2020 Density (SF1) FEM Max (Exchanged Heat) Gradient (GCMMA) Not 

54 Zeng et al. [56] 2020 Density (SF1) FEM Min (Average Temperature) Gradient (GCMMA) Not 

55 Sun et al. [72] 2020 Density (SF1) FEM Min (Average Temperature) Gradient (MMA) Not 

56 Zhang et al. [73] 2020 Density (SF1) FEM Min (Average Temperature) Gradient (GCMMA) Not 

57 Francisco et al. [99] 2020 Density (SF2) FEM Max (Thermal Conductivity) 
Gradient (MMA, 

MOSQP) 
AM (N/A) 

58 Høghøj et al. [103] 2020 Density (Multi-flow) FEM Min (Enthalpy Difference) Gradient (MMA) Not 

59 Troya et al. [104] 2020 Multi-flow, LSM FEM Max (Exchanged Heat) 
Gradient (MMA, 

NSA) 
Not 
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No. Reference Year Parametrization Solver Objective Function Optimizer Final Realization 

60 Lee et al. [100] 2020 Density (SF2) FEM Min (Thermal Resistance) Gradient (MMA) Not 

61 Feppon et al. [117] 2021 LSM FEM Max (Exchanged Heat) Gradient (NSA) Not 

62 Pietropaoli et al. [93] 2021 Density (SF2) FVM 
Min (Stagnation Pressure Drop) &  

Max (Temperature Rise) 
Gradient (S-D) Not 

63 Dong and Liu [62] 2021 Density (SF1) FEM 
Min (Energy Dissipation) &  

Max (Recoverable Thermal Power) 
Gradient (GCMMA) Not 

64 Kobayashi et al. [105] 2021 Density (Multi-flow) FEM Max (Exchanged Heat) Gradient (SLP) Not 

65 Mekki et al. [130] 2021 Explicit FVM Max (Exchanged Heat) & Min (Pressure Drop) GA Not 

66 Lee et al. [58] 2021 Density (SF1) FVM Min (Average Temperature & Dissipation Energy) Gradient (GCMMA) CM (Laser cutting) 

67 Mario et al. [118] 2021 LSM FEM Max (Exchanged Heat) & Min (Energy Dissipation) Gradient (R-D) Not 

68 Zhao et al. [76] 2021 Density (SF1) FEM Min (Average Temperature) Gradient (GCMMA) Not 

69 Zhou et al. [74] 2021 Density (SF1) FEM 
Min (Temperature Difference, Average Temperature, 

Energy Dissipation) 
Gradient (MMA) CM (Machining) 

70 Han et al. [54] 2021 Density (SF1) FEM 
Min (Temperature Difference & Energy Dissipation & 

Average Temperature) 
Gradient (GCMMA) AM (N/A) 

71 Mo et al. [41] 2021 Density (SF1) N/A Min (Average Temperature & Energy Dissipation) Gradient (MMA) AM (N/A) 

72 Ghasemi and Elham [94] 2021 Density (SF2) FEM Min (Thermal Resistance & Pressure Drop) Gradient (GCMMA) Not 

73 Liu et al. [75] 2021 Density (SF1) FEM 
Min (Pumping Power, Mean and Standard Deviation 

of The Temperature) 
Gradient (GCMMA) Not 

74 Liu et al. [55] 2021 Density (SF1) FEM Max (Exchanged Heat) & Min (Energy Dissipation) Gradient (MMA) Not 

75 Zhao et al. [40] 2021 Density (SF1) FEM Min (Average Temperature Rise) Gradient (MMA) Not 

76 Tang et al. [101] 2021 Density (SF2, Multi-flow) FVM Min (Mean Temperature & Pressure Drop) Gradient (MMA) Not 

77 Chen et al. [77] 2021 Density (SF1) FEM Max (Heat Generation) Gradient (SQP) Not 
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No. Reference Year Parametrization Solver Objective Function Optimizer Final Realization 

78 Yaji et al. [61] 2021 Density (SF1) FEM Max (Exchanged Heat) & Min (Energy Dissipation) Gradient (SLP), GA Not 

79 Li et al. [124] 2021 LSM FEM Min (Average Temperature) Gradient (MMA) CM (Milling) 

80 Ghosh et al. [79] 2021 Density (SF1) FVM Max (Gained energy) & Min (Power lost) Gradient (S-D) Not 

81 Qian et al. [60] 2021 Density (SF1) FEM 
Min (RMS5 Temperature &  

Energy Dissipation) 
Gradient (MMA) CM (CNC) 

82 
Shimoyama and 

 Komiya [131] 
2022 Explicit FVM Max (Heat transfer rate) & Min (Material cost) GA & BO Not 

83 Li et al. [122] 2022 LSM FEM Min (Thermal Compliance) Gradient (R-D) Not 

84 Yu et al. [81] 2022 Density (SF1) FVM Min (Maximum Temperature) Gradient (MMA) Not 

85 Zhou et al. [83] 2022 Density (SF1) FEM 
Min (Energy Dissipation, Average Temperature & 

Temperature Difference) 
Gradient (GCMMA) AM (N/A) 

86 Zou et al. [82] 2022 Density (SF1) FEM Min (Average temperature & Pumping power) Gradient (SQP) Not 

87 Marshall and Lee [84] 2022 Density (SF1) FEM Min (Pressure in fin area of the fluid) Gradient (N/A) Not 

88 Yeranee et al. [85] 2022 Density (SF1) FEM Min (Pressure Drop) Gradient (GCMMA) Not 

89 Lin et al. [123] 2022 LSM XFEM Min (Average Temperature) Gradient (GCMMA) Not 

90 Xie et al. [78] 2022 Density (SF1) FEM Min (Pressure Drop) Gradient (GCMMA) Not 

91 Huang et al. [80] 2022 Density (SF1) FEM  Min (Average Temperature) Gradient (SQP) Not 

1 SF1: single flow with γ=1 fluids, γ=0 solids; 2 SF2: single flow with γ=0 fluids, γ=1 solids; 3 N/A: Not Announced; 4 Not: Not Manufactured; 5 RMS: Root mean square 
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6. Some New Trends 

  Here, we will move to discuss some emerging schemes aimed to improve the 

efficiency (i.e. reducing computational time and memory storage) of TO not limited to 

the area of HXs. Currently many of these novel schemes are designed for the structural 

TO problems; nevertheless, it is possible to transfer some of them to deal with the HXs 

problems. 

6.1 Machine learning (ML) 

  With the rapid development of artificial intelligence (AI) in the recent years, the ML 

technique (a subset of AI) has become a powerful tool to handle various engineering 

problems. As for transport phenomena, the ML has exhibited the ability of predicting 

their solutions [189]–[192], due to its high potential of learning from existing data-sets. 

Using different strategies, the ML algorithms can be coupled with the density-based 

TO mainly for the structural problems at the present stage [193]–[196]. As for the TO 

of HXs, in a recent study, a data driven TO based on EA was suggested by Yaji et al. 

[61] for a heat sink under forced convection. In this research, a variational autoencoder 

[197] was implemented to perform the crossover operation by generating a new dataset. 

The ML proved the ability of increasing the TO efficiency by predicting the optimized 

structures for heat transfer problems with negligible time [198]. However, currently the 

research combining the ML and the TO for HXs is still rare, which may be attributed 

to the complexity of conjugating heat transfer (especially the fluid flow part) and the 

complicated structures of HXs. It requires more studies to clarify how to integrate the 
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ML in the TO involving fluids and whether the ML can improve the efficiency. 

6.2 Model order reduction (MOR) 

 The MOR is an approach aiming to decrease the complexity of models. It reduces 

the full original model into a reduced one by capturing the fundamental characteristics 

and neglecting the unimportant ones under certain accuracy [199]. The MOR methods 

were first proposed in 1980s [200]–[202]. Recently, Zhao et al. [87] proposed a poor 

man’s approach to reduce the computational time for the TO of cooling channels: a 

simplified model was derived by imposing the Darcy flow model on NS equation and 

neglecting the effect of body force term. In the TO of a heat sink, Asmussen et al. [91] 

suggested a reduced order model by making some assumptions on the governing 

equations, which significantly reduce the number of degrees of freedom. Even with a 

high simplification, the reduced model obtains the subjectively analogous results with 

the full-based model [203]. Nevertheless, the simplifications are largely dependent on 

the knowledge of designers, and a poor simplification may degrade the accuracy and 

even cause severe computational issues represented mainly by unrealistic results and 

modeling problems. For instance, when the MOR technique is applied to NS equations 

under unsteady conditions or for turbulent flows, some computational problems 

frequently emerge [204].            

6.3 Moving morphable components (MMC) 

 The MMC-based TO was originally proposed in 2014 by Guo et al. [205] then 

enhanced by Zhang et al. [206] for the 2D structural problems. Thereafter, the MMC 



39 

 

method is extended to the 3D TO [207],[208]. It represents the design domain by using 

several structural components. In the optimization process, the mathematical features 

described by center coordinates, width, length and inclination angles of these 

components are updated for achieving an optimized structure. In 2019, Yu et al. [69] 

proposed a density-based TO for a 2D heat transfer problem using the MMC. To take 

an advantage over the traditional MMC, Li et al. [124] utilized the quadratic Bézier 

curve permitting for more movement flexibility of the component. In a recent attempt, 

Yu et al. [81] suggested a component-based representation of the heat source 

distribution with various-intensities for the TO of a liquid cooled heat sink. The MMC-

based TO can obtain optimized shapes in an explicit way, which can avoid the post-

processing problems, like intermediate design variables, and checkboards, etc. [205]. 

Furthermore, the number of design variables is reduced compared to other implicit 

techniques, which may decrease the computational cost [206]. However, the design 

(including its geometry and initial distribution) of the domain components, that 

significant influences both the efficiency and the accuracy of the MMC-based TO, 

largely depends on the experience of designers. Moreover, as yet, it has been limited to 

some 2D HX problems, which may be attributed to the difficulties of explicit methods 

in describing the solid/fluid interface for 3D complex structures [129].  

7. Conclusions and Perspectives 

  The present paper provides a comprehensive review on the literature of the TO for 

HXs in the most recent years. Each stage of the TO is analyzed carefully with the 



40 

 

statistical figures and comparison tables. Our review shows that the current TO methods 

are not powerful enough yet to handle the industrial HXs in energy systems: (a) the 

majority of the researches only deal with the 2D single-flow problems with single 

objective, limited to the relatively simple flow patterns (like the laminar flow and the 

turbulence described by the Reynolds-averaged models); (b) merely a small portion of 

work has manufactured and tested the TO-obtained structures in practice, and (c) few 

discussions have been conducted on the fabricating constraints of the TO-obtained HXs. 

Currently, a combination of the density-based method, the FEM, and the gradient-based 

optimization is the most popular TO method for HXs, since it is a straight-forward 

transfer from the structural mechanics to the conjugate heat transfer. However, the 

conjugate heat transfer holds some very different features compared to the structural 

mechanics, which may not be well addressed in the framework initially developed for 

the structural TO. Furthermore, three emerging schemes, i.e. ML, MOR, and MMC, 

aimed to improve the efficiency of TO are discussed. They are initially designed for the 

structural TO problems and show good performance in that area. Some of them have 

been extended to handle some simple heat transfer problems, and there has been limited 

evidence to prove that they are effective in improving the efficiency of the TO for 

conjugate heat transfer.  

Apparently, future effort is still required for the TO of HXs, particularly to: (a) 

implement the suitable parametrization schemes that can well address the influence of 

interfaces in the conjugate heat transfer, (b) utilize solvers able to predict more complex 

flow problems, (c) develop optimizers able to handle multiple objectives, integrating 
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the fabrication constraints, and (d) increase the realization of component level TO-

optimized HXs, their experimental testing and validation.               
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