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Abstract: This paper proposes a new approach, i.e., virtual pooling, for optimising returnable
transport item (RTI) flows in a two-level closed-loop supply chain. The supply chain comprises a set
of suppliers delivering their products loaded on RTIs to a set of customers. RTIs are of various types.
The objective is to model a deterministic, multi-supplier, multi-customer inventory routing problem
with pickup and delivery of multi-RTI. The model includes inventory-level constraints, the availability
of empty RTIs to suppliers, and the minimisation of the total cost, including inventory holding,
screening, maintenance, transportation, sharing, and purchasing costs for new RTIs. Furthermore,
suppliers with common customers coordinate to virtually pool their inventory of empty RTIs held by
customers so that, when loaded RTIs are delivered to customers, each may benefit from this visit to
pick up the empty RTI, regardless of the ownership. To handle the combinatorial complexity of the
model, a new artificial-immune-system-based algorithm coupled with deep reinforcement learning
is proposed. The algorithm combines artificial immune systems’ strong global search ability and
a strong self-adaptability ability into a goal-driven performance enhanced by deep reinforcement
learning, all tailored to the suggested mathematical model. Computational experiments on randomly
generated instances highlight the performance of the proposed approach. From a managerial point of
view, the results stress that this new approach allows for economies of scale and cost reduction at
the level of all involved parties to about 40%. In addition, a sensitivity analysis on the unit cost of
transportation and the procurement of new RTIs is conducted, highlighting the benefits and limits of
the proposed model compared to dedicated and physical pooling modes.

Keywords: closed loop supply chain; returnable transport items; pickup and delivery; inventory
routing problem; artificial immune systems; deep reinforcement learning

1. Introduction

Returnable transport items (RTIs) are all reusable assets used to facilitate product
shipping, storing, handling, and protection in the supply chain [1]. RTIs cover reusable
drums, pallets, crates, rolls, boxes, and barrels [2–4]. Along with globalised supply chains,
the use of RTIs has become more popular in recent decades as they eliminate the wastes
that one-way secondary packaging may generate [5]. The use of RTIs has been proved to
be an enabler for better ergonomics and productivity while facilitating automation, better
inventory control, and improved quality [3,4,6,7]. Furthermore, their operational benefits
help reduce the disposal costs of packaging material and improve productivity [8]. These
assets usually flow in a closed-loop supply chain between players [5,9]. Loaded RTIs are
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received and unloaded at a given level of the supply chain. Either the empty RTI can be
collected and returned to the sender or the receiver can reuse them to ship his products and
thus continue to flow downstream the supply chain. Therefore, there exist two flows of RTIs
that must be managed [10]: forward flows, which correspond to the forward distribution
of goods loaded on RTIs, and reverse flows, which correspond to the collection and return
of empty RTIs to their owners. This paper aims to optimise both forward and reverse flows
of RTIs in a two-level closed supply chain.

Managing such assets has become a primary concern of supply chain managers, along
with managing warehouses, machines, and vehicles [7,9]. Indeed, it has become very
pressing for companies to effectively package products and guarantee to have them in the
proper quantity, at the right place, and at the right time. To avoid shortages, many com-
panies frequently tend to invest in more RTIs, resulting in higher holding and purchasing
costs [3,11]. Moreover, supply chain players experience RTI losses with rates varying from
3 to 20% [12]. This mismanagement lengthens turnaround times and pushes players to
overinvest in these assets, leading to inefficient budgetary practices: companies buy new
RTIs to replace the lost ones and recruit additional staff to handle them [2,9,12].

According to [7,13,14], RTI management can be divided into two modes depending
on the ownership of empty RTIs: a dedicated mode (private RTIs) and a shared mode
(public RTIs). The dedicated mode (DM) refers to the case where RTIs are owned by
players (suppliers, for example) who use them exclusively to deliver their products without
considering sharing them with others. They are responsible, in general, for collecting,
refurbishing, and managing the inventory of their specific assets. In this system, RTIs
received by a partner are shipped back to their specific owner. In the shared mode (SM),
players agree to share their RTIs within a “pooled” system. A service provider company
manages this shared system, and running such a pool is its core business [15]. In this pool,
empty RTIs are physically stored and can be used by all players without any obligation for
these assets to return to their starting point at their next movement [15]. RTI pools can be
categorised into two types: “rented” and “open” pools [15]. The “rented” pool is based
on a one-owner pool model: RTIs are owned by one company that rents and provides the
supply chain players with the empty RTIs they need. In this case, the company manages
and oversees its RTI pool’s day-to-day operations and services. The “open” pool is based
on a changing-owner pool model: all partners store their RTIs in a pool, and when an RTI
is used, its ownership is transferred to the receiving partner, who must return similar RTIs
of comparable quality (1:1 exchange concept). In both cases, a pooling system involves a
pooler responsible for supplying ready-to-use RTIs to all partners, collecting them from
downstream levels, refurbishing damaged ones, and holding inventory within its facilities
until new RTI orders are placed [16].

The literature review (see Section 2) shows that most papers exclusively address DM
and SM and highlight each mode’s benefits on the overall supply chain performance.
However, both modes may not always be profitable and practicable. Compared to the SM,
the DM may be easier to implement and it does not lead to resource dependency, as each
player is always free to manage and use his inventory of empty RTIs [7]. On the other hand,
the SM is typically less expensive, as it may offer cost benefits through the shared use of
RTIs among tier suppliers [13,14]. However, the prerequisites of commonly serviceable
RTIs for various materials from several suppliers are hard to meet [13]. Moreover, the SM
compels advanced decision-making on where to locate pooler facilities, how to set facilities’
capacities, and how to distribute transportation flows (i.e., delivery, pickup, inventory bal-
ancing, and supply) across the network, which may imply additional managerial costs (i.e.,
transportation, inventory holding) and a need for solid information system support [17].
The SM may also establish a resource dependency, as each player is not always free to pick
up the empty RTIs needed to deliver his products. This is particularly true for complex
supply chains, which include multiple origins and destinations and multiple RTIs that flow
within, and in which constraints such as variable demands, vehicle capacity, and shortage
are to be considered. This paper proposes a new approach to overcome the shortcomings
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above of both modes in a closed-loop supply chain. Specifically, we consider the case of a
two-level closed-loop supply chain comprising a set of suppliers delivering products to
joint customers. We assume that each supplier owns RTIs that can be held in either his or
the customer’s inventory. In addition, each supplier is responsible, as in DM, for collecting,
refurbishing, and managing his inventory. We also assume that the suppliers coordinate
their logistics operations so that, while delivering loaded RTIs to customers, each supplier
may benefit from this visit to pick up empty RTIs regardless of the ownership. This has
earmarks of the classic lateral transshipment that relies on authorising the virtual pooling
of finished products’ inventory between members belonging to the same echelon of supply
chains [18]. This practice usually takes place to re-balance the entire system’s stock levels
to react to scenarios where one of the locations faces a shortage while others have residual
stock in hand. Accordingly, instead of calling upon a pooler or a leasing company to ac-
quire the needed quantities of RTIs, this paper suggests that suppliers arrange to “virtually”
pool/share their stock of identically substitutable RTIs: no need for a real and physical pool
to store RTIs as in SM. As such, we conserve the ownership of RTIs as in the DM and allow
the shared use of RTIs as in SM (Table 1). Moreover, each supplier buys, when needed,
and adds new RTIs to the whole system. Therefore, the order may be filled, the customers
receive what they want, and the partners free up space in their inventory and reduce idle
stock. It is mutually beneficial for all parties. Consequently, suppliers can sidestep the
shortage of empty RTIs at their levels and reduce the cost of transportation, inventory
holding, and the procurement of new RTIs. Such a strategy creates a valuable partnership
but implies additional logistics operations that must be optimised.

Table 1. Characteristics of RTIs management strategies.

DM SM Virtual Pooling Mode

Owner of RTIs Each supplier All suppliers or a pooler
company Each supplier

Management of empty RTIs,
collection, refurbishing. . . Each supplier One pooler company All suppliers

Storage of empty and shared
RTIs - In dedicated facilities At suppliers’ level

Our paper has three main contributions. First, we develop a new mathematical formu-
lation of the RTI pickup and delivery problem in a closed-loop supply chain consisting of a
set of suppliers shipping their products to a set of common customers (e.g., plants, retailers)
and using a set of RTIs, i.e., a multi-supplier multi-customer inventory routing problem
with the pickup and delivery of multi-type shared RTIs (IRPPDS). We assume that supply
chain partners adopt a vendor-managed inventory policy (VMI): their operations are coor-
dinated to organise deliveries and pickups to fulfil customers’ demands. Thus, we address
a multi-supplier, multi-customer, multi-RTI inventory routing problem that is hard to solve
due to its inherent combinatorial complexity. Suggesting an efficient way to cope with this
complexity by developing a breakthrough solving approach is the second contribution of
this paper. Indeed, we use a matheuristic that hybridises an artificial-immune-system-based
metaheuristic and a mathematical programming algorithm. Furthermore, thanks to its
generality and flexibility, this matheuristic uses deep reinforcement learning techniques
that were initially proposed by [19] for solving dynamic and stochastic inventory routing
problems successfully. Furthermore, the performance of the approach is compared to the
one developed in [19] and to two pure metaheuristics. Finally, broad experiment campaigns
are conducted on instances of large sizes. These experiments stress that the resolution
approach is very competitive compared to other existent metaheuristics: it leads to better
quality solutions and reduces computational time. Furthermore, we evaluate the cost
reduction enabled by the virtual pooling of RTIs compared to DM and SM.
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The remainder of the paper is organised as follows. Section 2 presents an overview of
related works. After a detailed definition of the problem in Section 3, the mathematical for-
mulation is provided in Section 4. Section 5 describes the proposed resolution approach and
explains the hybridisation scheme used to integrate the mathematical model, the artificial-
immune-system-based algorithm and the deep reinforcement learning technique. Section 6
provides the computational results and presents the matheuristic performance analysis
compared to three resolution approaches. Finally, Section 7 summarises the main findings
and provides perspectives for further research.

2. Related Work

This section reviews research streams that are mostly related to our work. The objective
is to position our contributions in line with papers on the inventory routing problem (IRP)
with pickup and delivery and RTIs management modes and highlight our contribution to
the resolution approaches applied to solve similar problems.

The vehicle routing problem (VRP) calls for determining the optimal set of routes to
be performed by a fleet of vehicles to serve a given set of customers [20]. In the literature,
three different variants related to the structure of pickup and delivery and the number
of origins and destinations are to be distinguished [21]: one-to-one (1-1), in which a
request is originated at one location and destined for another location; one-to-many-to-one
(1-M-1), in which each customer receives a delivery originating from a common depot
and sends a pickup quantity to the depot; and finally, many-to-many (M-M), in which a
commodity may be picked up at one of many locations and also delivered to one of many
locations [22–25]. The IRP calls for inventory management, vehicle routing, and delivery
scheduling decision-making problems [26]. Our paper’s most relevant research stream
addresses IRP with pickup and delivery (IRPPD). According to [27], this problem has three
variations regarding vehicle routing: (1) VRP with simultaneous pickup and delivery (SPD),
in which products are delivered whilst others are simultaneously sent back to the origin;
(2) VRP with backhauls, where all deliveries must be undertaken before any pickup on each
route; (3) VRP with mixed pickup and delivery, which can be characterised as a particular
case of the VRP with SPD in which customers may have pickup or delivery demands. Some
recent applications of the VRP/IRP with pickups and deliveries can be found in [4,7,28–31].
IRP problems have been intensively studied in the literature, and the reader is referred
to [26] for a thorough overview of more related papers. Furthermore, for the more recent
papers on decision support models for RTIs, the reader is referred to the review by [5,32],
which provides a systematic literature review of decision models in managing closed-loop
supply chains, including RTIs. Along with developing decision support models, significant
research efforts have also been devoted to investigating RTI management strategiesin both
the dedicated and the shared modes [14]. Most related works address the management of
RTIs as part of a VMI policy and develop decision support models for cost reduction under
stochastic or deterministic environments for the dedicated mode. Applications can be
found in [1,2,14]. In [4,33,34], the authors propose models for inventory routing problems
with simultaneous pickups and deliveries for a single-supplier, single-RTI, multi-customer
(1-M-1) closed-loop supply chain. The models consider the maintenance costs of the reused
RTIs returned from customers and the cost of buying a new one. In [33], other scheduled
pickups and the supply of new RTIs are integrated as alternatives to sidestep the shortage
of empty RTIs at the supplier level. Finally, in [11], a decentralised two-stage supply chain
with a Retailer Stackelberg game is studied. The authors develop an analytical model to
determine lot-sizing and pricing decisions for the product and its secondary packaging.
As for the shared mode, most related work has studied different scenarios for the pooling
or rental of RTIs with the help of mathematical modelling and simulation. The authors
of [35] investigate a lot-sizing problem and assignment strategy that minimises the pallet
management cost under environmental constraints. The authors of [36] study the pallet
allocation problem under stochastic supply scenarios and customer priority, while those
of [6] study a fresh fruit and vegetable supply chain and develop a mathematical model to
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select the best packaging (reusable/disposable) and minimise holding and handling costs.
The authors of [37] analyse the effects of pallet service conditions and repair facilityon the
economic and environmental performance of a pallet pooling system. In their paper, a new
RTI procurement decision is also taken into consideration. The authors of [38] analyse
the reverse logistics of plastic pallets in Canada, focusing on recovery options, such as
reusing, remanufacturing, and recycling. A mathematical model is developed to determine
the best locations in a pallet reverse logistics network and optimise the distribution flows
between the network players. The authors of [16] analyse the transportation operations
of a pallet pooling company serving a set of retailers. A pooler company is assumed to
be responsible for supplying, collecting, and refurbishing pallets. Buying/selling and
pooling management strategies are assessed and compared through what-if analysis. The
authors of [39] study the service centres’ location problem considering a pallet pool mode.
By integrating the forward and reverse flow of pallets, the objective is to minimise the total
cost, including fixed construction, inventory, delivery, and recovery costs. The authors
of [7] develop a mixed-integer program model for planning the distribution and vehicle
routing for a single type of RTI and in a single period. They consider a pooler company
responsible for dispatching leased empty containers to its customers and collecting the
customers’ surplus empty containers. In their model, minimising procurement, storage,
and maintenance costs is not considered. The authors of [40] use a simulation-based
approach to model sharing a single RTI between two producers in a closed-loop supply
chain. The results show that collaboration can lead to economies of scale and cost reduction.
They also highlight the need for a third party to manage the entire system to promise
mutual benefits for the concerned parties. On the other hand, the routing decisions are not
optimised in their simulation model. Moreover, the model is not generic and realistic, as it
considers a simple supply chain and only one type of RTI that flows in.

As for combinatorial complexity, VRP/IRP with pickup and delivery problems are
well known to be NP-hard [41,42]. To tackle this complexity, approximation algorithms or
metaheuristics are used. The most commonly encountered metaheuristics are either stochas-
tic algorithms such as simulated annealing (SA) or ones based on artificial intelligence
algorithms such as artificial immune system (AIS), genetic algorithm (GA), particle swarm
optimisation (PSO) and ant colony (AC). Though AIS-based algorithms are a relatively
new complex-problem-solving approach compared to other metaheuristics, the inherent
characteristics of the immune memory, vaccination process, and self-recognition ability of
the antibody and the diversity of immunity allow it to have a high level of flexibility and a
good balance between global and local search [43]. Furthermore, AIS has demonstrated
efficiency in convergence compared to other algorithms for large instances. The authors
of [44–49] reported that AIS has a higher convergence rate than GA, PSO, AC, and SA.
Therefore, AIS is used to solve our model for large-sized instances for all the reasons above.

To further enhance the convergence speed of AIS, we use machine learning (ML)
techniques. Indeed, metaheuristics, through their iterative search processes, generate a lot
of data that can be turned into explicit knowledge if coupled with ML models. This data
concern decision-making solutions and the objective spaces visited during the search pro-
cess, the sequence of solutions or trajectories, successive populations of solutions, moves,
recombination, local optima, elite solutions, and bad solutions [50]. ML techniques can help
analyse this data, extract valuable knowledge, and enhance metaheuristics’ search perfor-
mance. Thus, metasearch techniques become “data-driven”, “well informed”, and therefore
“smarter”. In this respect, ML was used to address discrete optimisation problems that
focus on the travelling salesman problem and VRP. The data-driven metaheuristics have
been proven to be advantageous in convergence speed, solution quality, and robustness.
The methodologies in ML for decision problems, typically addressed by operation research
(OR), are mainly found in reinforcement learning (RL), learning to search, and multi-armed
bandits. The authors of [19,51–55] illustrate the recent successes achieved by RL concerning
problems typically addressed by OR. For instance, the authors of [19] develop a matheuris-
tic enhanced by RL techniques to solve a dynamic and stochastic IRP. The authors of [56,57]
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introduce ML in the solution processes of inventory and location problems. Finally, the
authors of [58–60] use an RL-based technique to solve a VRP. As far as we are concerned,
our paper is the first that combines RL with AIS to solve a multi-supplier multi-customer
multi-RTI IRP with pickup and delivery in a closed-loop supply chain [61,62].

This review shows that despite the extensive literature on RTIs related to IRP, there is
a lack of efficient tools and techniques to solve complex combinatorial problems such as
closed-loop multi-product, multi-period, inventory routing problems with deliveries and
pickups of multiple types of RTIs. As already mentioned, our research makes three main sci-
entific contributions. Firstly, we develop a mathematical model to address the deterministic,
multi-supplier, multi-customer (M-M), inventory routing problem, considering the delivery
and return flows of multiple RTIs which are virtually pooled between a given number of
suppliers. Secondly, we use a new artificial-immune-system-based algorithm and combine
its strong global search capability with RL’s strong self-adaptability and goal-driven per-
formance, all tailored to the mathematical model. Thirdly, computational experiments on
specially designed instances highlight the performance of the proposed algorithm. From a
managerial point of view, the results stress that this new approach allows for economies of
scale and cost reduction at the level of all the involved parties. Furthermore, a sensitivity
analysis on unit cost and the procurement of new RTIs is conducted and highlights the
benefits and limits of the proposed model compared to other RTI management modes.

3. Mathematical Formulation

This section presents the mathematical models developed for IRPPDS, DM, and SM.

3.1. Mathematical Model for IRPPDS

We examine a multi-supplier, multi-customer, multi-RTI closed-loop supply chain.
A set of m suppliers distribute different types of products using a set of r types of RTIs
to a set of n common customers over a finite planning horizon. Each supplier delivers
RTIs loaded with products to a set of customers. Each customer uses these products in
his production process and constitutes an inventory of empty RTIs. The supplier then
collects those empty RTIs to be reused for future productions and deliveries at his level. We
assume that all supply chain players adopt a centralised management policy to synchronise
operations according to each player’s requirements, optimise deliveries and pickups,
and meet customers’ expectations.

The planning horizon is defined by a discrete and finite set of periods (days). Each
player has a storage zone separated into two areas: an area for the inventory of empty RTIs
(E) and another for the inventory of loaded RTIs (L). Each of these inventory areas is char-
acterised by an initial inventory level and a maximum holding capacity. Initial inventories
of loaded and empty RTIs are supposed to be positive and known at the beginning of the
planning horizon. Deliveries and pickups are carried out by a set of homogeneous fleets
of vehicles. Each vehicle can transport loaded or empty RTIs, or both, with a determined
capacity in terms of the number of RTIs without distinction between empty and loaded
RTIs (foldable RTIs are not considered). It is assumed that each constructed route starts
from a supplier to visit a set of customers, and there is no route built between suppliers. Fur-
thermore, customers are visited by each supplier independently of other suppliers’ planned
routes. Since vehicles have a limited capacity, multiple suppliers’ routes are allowed. We
assume that a vehicle can perform at most one pickup and delivery per period, all routes
start and finish at each supplier, and split pickup/deliveries are not allowed. In each period,
the sequence of events is as follows. First, each supplier prepares the quantity of loaded
RTIs to be shipped by considering the current inventory. He uses his empty RTIs and those
of other suppliers to load products on the appropriate type of RTIs. Then, each supplier
visits each customer in each period to deliver the required quantity of products (in terms
of loaded RTIs) for his production. The available inventory of empty RTIs at each level of
the supply chain is checked. Depending on the demand that he must satisfy in the next
period, each supplier picks up empty RTIs belonging to him. If these are not sufficient, he
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picks up other RTIs belonging to the other suppliers as long as these latter have sufficient
inventory to meet demands for the next period. After pickups are performed, the empty
RTIs are subject to quality control at each supplier location. Damaged RTIs are disposed
of, serviceable RTIs are repaired, and undamaged RTIs are transferred to the inventory of
empty RTIs. All the RTIs present in the inventory (repaired/cleaned) at the end of each
period can be reused in the next period. Moreover, we assume that, in addition to the
virtual pooling of empty RTIs, a supplier can purchase empty RTIs that he may need to
fulfil future demands. In this case, buying RTIs is permitted in each period, and each RTI is
available for use in the following one.

The objective of the IRPPDS model is to determine, for each level of the supply
chain and over the finite planning horizon, the quantity of loaded RTIs to be delivered
by each supplier and the quantity of empty RTIs to be picked up by each customer and
shared. The demand is supposed to be deterministic by being time-varying. Such planning
considers the inventory-level constraints (no shortages, backlogs, or overstocking are
allowed), the availability of empty RTIs to suppliers, and the minimisation of the total cost,
including inventory holding, maintenance, transportation, sharing, and the purchasing of
new RTIs.

To model IRPPDS, we introduce different notations. We consider: a set N = i|i = 1, . . . n
of n customers; a set P = 0p|0p = 01, . . . 0m of m suppliers; a set Np = i|i = 0p, 1 . . . n
that represents the n customers, and the node 0p that represents the supplier p; a set
R = r|r = 1, . . . u of u types of RTIs that are used to carry on different types of products;
and a set V = v|v = 1, . . . k of k homogeneous vehicles with a capacity of Q in terms of
the number of RTIs. Accordingly, loaded and empty RTIs occupy the same volume as
in the case of boxes and containers. We also consider a horizon T = t|t = 1, . . . l of l
periods. Each supplier p and customer i incurs a holding cost for loaded RTIs (L) and
empty RTIs (E): HL,r

p , hL,r
i , HE,r

p and hE,r
i (e per unit), respectively. IL,r

p0 , LL,r
i0 , IE,r

p0 and LE,r
i0

represent the initial inventory level of loaded and empty RTI of type r, respectively, at the
supplier p and customer i. CL

p , cL
i , CE

p and cE
i represent the maximum holding capacity for

loaded and empty RTI, respectively, for the supplier p and customer i. At the beginning
of the planning horizon, each supplier p receives information on demand to satisfy Dr

pit
(expressed in terms of loaded RTIs) of each customer i ∈ N for each period t ∈ T and for
each RTI r. The distance between actors i ∈ Np and j ∈ Np is denoted by dp

ij. The fixed
cost of transportation is represented by a in e per km, and b represents the variable cost of
transportation in e per weight unit and per km. The weights of a loaded and empty RTI
are wr

L and wr
E, respectively. The cost of buying an RTI is er in e per unit. The sharing cost

incurred by each supplier p is sr per unit of unowned empty RTIs of type r belonging to
other suppliers p used at his level to deliver products. This cost represents the utilisation
cost of an unowned RTI used by each supplier if it occurs. Finally, gr is the maintenance
cost per RTI of type r used by the suppliers to deliver products, including inspection and
cleaning costs. The model’s notation is summarised in Table 2.

Table 2. Model’s notation summary.

Sets

N Set of n customers.
P Set of m suppliers.
R Set of u RTIs.
V Set of k vehicles.
T Set of l periods.
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Table 2. Cont.

Parameters

a Fixed cost of transportation (e per km).
b Variable cost of transportation (e per weight per km).
HL,r

p , hL,r
i , HE,r

p ,
HE,r

i
Cost of holding inventory of loaded and empty RTIs, respectively, for each supplier p and customer i.

er Cost of buying a new RTI of type r (e per unit).

sr
Cost of sharing incurred by each supplier which is proportional to the number of unowned empty RTIs of a
type r used at his level to deliver products (e per unit of unowned RTI used).

gr Cost of maintenance of one RTI of type r (e per RTI loaded).

wr
L, wr

E Weights of a loaded and empty RTIs of type r, respectively.
Q Capacity of vehicle in terms of the number of RTIs.
dp

ij Distance between nodes i and j ∈ Np.
Dr

pit Demand of each customer i for each period t loaded on an RTI r satisfied by supplier p.

IL,r
p0 , LL,r

i0 , IE,r
p0 , LE,r

i0 Initial inventory level of loaded and empty RTIs of type r, respectively, for the supplier p and customer i.
CL

p , cL
i , CE

p , cE
i Maximum holding capacity for loaded and empty RTIs, respectively, for the supplier p and customer i.

Decision variables

xp
ijvt Binary variable stating whether the vehicle v visited node j immediately after node i in period t.

Fp′t
pt

Quantity of empty RTIs of type r owned by supplier p that have been filled with products by supplier p in
period t. This quantity also includes the case where p = p′ (supplier uses his RTI).

Ipt
Lr Inventory level of loaded RTIs of type r held by the supplier p at the end of period t.

LLr
pit Inventory level of RTIs of type r filled with the product of supplier p by customer i at the end of period t.

Qp′r
pit

Quantity of loaded RTIs of type r owned by supplier p′ and delivered by supplier p to customer i in period t.

Xpr
ijt

Quantity of loaded RTIs of type r filled with a product of supplier p transported from node i to node j in
period t.

LEr
it Inventory level of empty RTIs of type r held by the customer i at the end of period t.

IEr
pt Total quantities of all empty RTIs of type r held by the supplier p at the end of period t.

Zpr
it Quantity of empty RTIs of type r owned by supplier p collected from a customer i in period t.

Wpr
ip′t Quantity of empty RTIs of type r owned by supplier p and collected from customer i by supplier p in period t.

Epr
ijt Quantity of empty RTIs of type r collected by supplier p transported from node i to node j in period t.

npr
t Quantity of RTIs of type r bought by supplier p in period t.

The IRPPDS in a multi-supplier, multi-customer, multi-RTI closed-loop supply chain
is modelled as follows:

min ∑
i∈N

∑
t∈T

∑
r∈R

(hLr
i LLr

it + hEr
i LEr

it ) + ∑
p∈P

∑
t∈T

∑
r∈R

(HL,r
p ILr

pt + HEr
p IEr

pt )+

∑
p∈P

∑
t∈T

∑
r∈R

ernp,r
t + ∑

p∈P
∑
t∈T

∑
p′∈P

∑
r∈R

grFp′r
pt +

∑
i∈N

∑
p∈P

∑
p′∈P

∑
t∈T

∑
r∈R

srW
pr
ip′t+

∑
p∈P

∑
t∈T

∑
i∈Np

∑
j∈Np

(
a ∑

v∈V
xp

ijvt + ∑
r∈R

b (wr
LXpr

ijt + wr
EEpr

ijt) dp
ij

) (1)

subject to:
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LLr
pit = LLr

pit−1 + ∑
p′∈P

Qp′r
pit − Dr

pit ∀i ∈ N, t ∈ T, p ∈ P, r ∈ R (2)

ILr
pt = ILr

pt−1 − ∑
i∈N

∑
p′∈P

Qp′r
pit + ∑

p′∈P
Fp′r

pt ∀t ∈ T, p ∈ P, r ∈ R (3)

LEr
it = LEr

it−1 − ∑
p∈P

Zpr
it + ∑

p∈P
Dr

pit − ∑
p∈P

∑
p′∈P

Wpr
ip′t ∀i ∈ N, t ∈ T, r ∈ R (4)

IEr
pt = IEr

pt−1 + ∑
i∈N

Zpr
it − ∑

p′∈P
Fp′r

pt + npr
t + ∑

p′∈P
Wpr

ip′t ∀p ∈ P, t ∈ T, r ∈ R (5)

∑
i∈Np ,i 6=j

(Xpr
ijt − Xpr

jit) = ∑
p′∈P

Qp′r
pjt ∀j ∈ N, p ∈ P, t ∈ T, r ∈ R (6)

∑
i∈Np ,i 6=j

(Epr
jit − Epr

ijt) = Zpr
jt + ∑

p′∈P
Wpr

jp′t ∀j ∈ N, p ∈ P, t ∈ T, r ∈ R (7)

0 ≤ ∑
p∈P

∑
r∈R

LLr
pit ≤ cL

i ∀i ∈ N, t ∈ T (8)

0 ≤ ∑
r∈R

ILr
pt ≤ CL

p ∀p ∈ P, t ∈ T (9)

0 ≤ ∑
p∈P

∑
r∈R

LEr
pit ≤ cE

i ∀i ∈ N, t ∈ T (10)

0 ≤ ∑
r∈R

IEr
pt ≤ CE

p ∀p ∈ P, t ∈ T (11)

∑
p∈P

∑
r∈R

(Xpr
ijt + Epr

ijt) ≤ Q ∑
p∈P

∑
v∈V

xp
ijvt ∀i, j ∈ Np, t ∈ T (12)

∑
i∈Np

∑
v∈V

xp
ijvt ≤ 1 ∀j ∈ N, p ∈ P, t ∈ T (13)

∑
i∈Npi 6=j

xp
ijvt = ∑

i∈Npi 6=j
xp

jivt ∀vs. ∈ V, j ∈ Np, p ∈ P, t ∈ T (14)

∑
j∈N

xp
0p jvt ≤ 1 ∀vs. ∈ V, p ∈ P, t ∈ T (15)

The objective function (1) minimises inventory costs at the level of each customer
and supplier, the costs of purchasing new RTIs, the cost of the maintenance of RTIs, the
sharing cost of RTIs undertaken by each supplier, and finally, the fixed and variable cost
of transportation for pickup and delivery. Constraints (2) define the conditions for the
conservation of the inventory levels of loaded RTIs owned by supplier p at the level of
each customer i. Constraints (3) state that at the level of each supplier p, the inventory
level of loaded RTIs at the end of period t is equal to the inventory level at the beginning
of the period minus the quantities of loaded RTIs delivered to all customers and plus the
quantities of empty RTIs that were loaded by supplier p in period t. Constraints (4) indicate
that the inventory level for customer i at the end of period t of empty RTIs, held by supplier
p, is equal to the inventory level of empty RTIs at the beginning of the period minus the
quantity picked up by each supplier p plus the RTIs that have been emptied after demand
has been satisfied minus the quantity of empty RTIs belonging to each supplier p that
other suppliers have collected. Constraints (5) indicate that at the level of each supplier p,
the inventory level of empty RTIs at the end of period t is equal to the inventory level at the
beginning of the period plus the quantity of his empty RTIs collected from all customers
plus the quantity of empty RTIs belonging to other suppliers that have been collected
from customers by supplier p, minus the quantity of empty RTIs that have been loaded
in period t plus the quantity of purchased RTIs. Constraints (6) ensure that the quantities
of loaded RTIs owned by supplier p are delivered to customer j. Constraints (7) show
that the flow of empty RTIs belonging to supplier p outgoing from node j is equal to the
quantity of empty RTIs belonging to supplier p collected by supplier p, plus the quantity of
empty RTIs belonging to other suppliers collected by supplier p, minus the inflow from all
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customers. Constraints (8)–(11) indicate the boundaries of the inventory levels of loaded
and empty RTIs at the level of each supplier p and customer i. Constraints (12) stipulate
that the quantities delivered and collected between two nodes i and j must not exceed the
capacity of the vehicles on the arc (i, j). Constraints (13)–(15) express the conditions for
the construction of tours. Constraints (13) indicate that at most one vehicle is used to visit
node j. Constraints (14) guarantee the continuity of a tour. Constraints (15) ensure that
vehicles leave the supplier only once per period or remain at the depot. Finally, constraints
that define the non-negative constraints and the binary nature of the decision variables
are imposed.

3.2. Mathematical Model for DM

For the DM model, there is no pooling of empty RTIs between the suppliers. That

is, Wpr
ip′t = Fp′r

pt = 0, i f p′ 6= p, ∀p, p′ ∈ P, i ∈ N, t ∈ T, r ∈ R. Each supplier manages, inde-
pendently of other suppliers, the deliveries of his loaded RTIs to customers, the pickups
of empty ones from customers, and their inventories at his level and customers’ location.
Accordingly, the mathematical model is solved for each supplier independently and costs
to minimise include inventory holding of empty and loaded RTIs, the transportation cost
for delivery and pickups, maintenance, and the procurement of new RTIs. Accordingly,
the formulation of the DM model, ∀p ∈ P, is as follows:

min ∑
i∈N

∑
t∈T

∑
r∈R

(hLr
i LLr

it + hEr
i LEr

it ) + ∑
t∈T

∑
r∈R

(HL,r
p ILr

pt + HEr
p IEr

pt )+

∑
t∈T

∑
r∈R

ernp,r
t + ∑

t∈T
∑
r∈R

grFr
pt+

∑
t∈T

∑
i∈Np

∑
j∈Np

(
a ∑

v∈V
xp

ijvt + ∑
r∈R

b (wr
LXpr

ijt + wr
EEpr

ijt) dp
ij

) (16)

The objective function minimises inventory costs for the supplier p and each customer,
the costs of purchasing new RTIs, the maintenance cost of RTIs, and finally, the fixed and
variable transportation costs for pickup and delivery.

It is subject to:

LLr
pit = LLr

pit−1 + Qr
pit − Dr

pit ∀i ∈ N, t ∈ T, r ∈ R (17)

ILr
pt = ILr

pt−1 − ∑
i∈N

Qr
pit + Fr

pt ∀t ∈ T, r ∈ R (18)

LEr
it = LEr

it−1 − ∑
p∈P

Zpr
it + ∑

p∈P
Dr

pit ∀i ∈ N, t ∈ T, r ∈ R (19)

IEr
pt = IEr

pt−1 + ∑
i∈N

Zpr
it − Fr

pt + npr
t ∀t ∈ T, r ∈ R (20)

∑
i∈Np ,i 6=j

(Xpr
ijt − Xpr

jit) = Qr
pjt ∀j ∈ N, t ∈ T, r ∈ R (21)

∑
i∈Np ,i 6=j

(Epr
jit − Epr

ijt) = Zpr
jt ∀j ∈ N, t ∈ T, r ∈ R (22)

0 ≤ ∑
p∈P

∑
r∈R

LLr
pit ≤ cL

i ∀i ∈ N, t ∈ T (23)

0 ≤ ∑
r∈R

ILr
pt ≤ CL

p ∀t ∈ T (24)
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0 ≤ ∑
p∈P

∑
r∈R

LEr
pit ≤ cE

i ∀i ∈ N, t ∈ T (25)

0 ≤ ∑
r∈R

IEr
pt ≤ CE

p ∀t ∈ T (26)

∑
p∈P

∑
r∈R

(Xpr
ijt + Epr

ijt) ≤ Q ∑
p∈P

∑
v∈V

xp
ijvt ∀i, j ∈ Np, t ∈ T (27)

∑
i∈Np

∑
v∈V

xp
ijvt ≤ 1 ∀j ∈ N, t ∈ T (28)

∑
i∈Npi 6=j

xp
ijvt = ∑

i∈Npi 6=j
xp

jivt ∀vs. ∈ V, j ∈ Np, t ∈ T (29)

∑
j∈N

xp
0p jvt ≤ 1 ∀vs. ∈ V, t ∈ T (30)

with:

Qr
pit: Quantity of loaded RTIs of type r owned by supplier p and that have been delivered

to customer i in period t.
Fr

pt: Quantity of empty RTIs of type r owned by supplier p and that have been filled with
products at his level in period t.

3.3. Mathematical Model for SM

In the SM model, a pooler company manages the inventory, pickups, and procurement
of empty RTIs. On the other hand, each supplier is responsible for delivering loaded RTIs
and managing their corresponding inventory. Furthermore, empty RTIs are delivered
directly from customers to a series of centres (pooler facilities) managed by the company
rather than to suppliers, as in the DM and IRPPDS models. The centres are assumed
to be located near the suppliers. To determine the location of these centres, we solve a
multi-period weighted clustering problem (MPC). The clustering consists in grouping
supplier nodes into clusters to minimise the total distance between suppliers. Each cluster
centroid of suppliers represents the centre in which empty RTIs of these suppliers are
stored, cleaned, and repaired. When needed, the centre sends empty RTIs to suppliers
so that they can produce and deliver their products to customers. As for costs, two other
costs are to be considered: inventory holding at each centre ι and pooling cost. The latter
incorporates the management of centres by the pooler company and each unowned RTIs
used by each supplier (which is assumed, for the purposes of simplification, to be equivalent
to the sharing cost in IRPPDS). The constraints of IRPPDS for the inventory and routing
of pickups of empty RTIs from customers to centres and from the centres to suppliers are
rewritten accordingly. In the following, the formulation of the SM model is presented.

3.3.1. Multi-Period Clustering Problem

To determine the location of the centres, we first solve an MPC. To do so, we de-
fine the binary variables θpι that have a value of 1 if a supplier p belongs to the cluster
ι(ι ∈ K = {ι| ι = ι, . . . κ ≤ m}), and 0 otherwise with a binary variable εpp′ ι having a value of
1 if the suppliers p and p′ belong to the same cluster. MPC can be then modelled as follows:

min ∑
p,p′∈P

∑
ι∈K

dpp′εpp′ ι (31)

subject to:
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∑
ι∈K

θpι = 1 ∀ p ∈ P (32)

∑
p∈P

∑
r∈R

∑
1≤t′≤t

Dr
pιt′θpι ≤ tQ ∀ ι ∈ K, t ∈ T (33)

εpp′ ι ≤ θpι , εpp′ ι ≤ θp′ ι ∀ι ∈ K, p ∈ P, p′ ∈ P, p 6= p′ (34)

εpp′ ι ≥ θpι + θp′ ι − 1 ∀ι ∈ K, p ∈ P, p′ ∈ P, p 6= p′ (35)

εpp′ ι, θpι ∈ {0, 1} ∀ι ∈ K, p ∈ P, p′ ∈ P, p 6= p′ (36)

The objective function (31) is to minimise the distance between suppliers (p, p′) belonging
to the same cluster (ι). Constraints (32) ensure that each supplier is assigned to a unique
cluster. Constraints (33) state that the aggregate quantity of empty RTIs in each cluster
in terms of demands over the planning horizon must fit into the available capacity, tQ,
where Q is the vehicle capacity. Constraints (34) and (35) state that the distance between
suppliers p, p′, and dpp′ is included in the objective function if and only if suppliers p
and p′ are assigned to the same cluster. Constraints (36) define the binary nature of the
decision variables.

3.3.2. SM Model

In the SM model, two costs are considered:

• Inventory holding at each centre ι : ∑ ι∈K ∑t∈T ∑r∈R HEr
ι L

Er
ιt ;

• Pooling cost for each unowned RTI used by each supplier (which is equivalent to the
sharing cost in IRPPDS).

The constraints of IRPPDS for the inventory and routing of pickups of empty RTIs
from customers to centres and from the centres to suppliers are rewritten as follows.
Conservation of inventory levels and flows of empty RTIs at the level of each supplier p,
customer i, and centre ι ( with θpι and εpp′ ι already determined by solving MPC):

LEr
it = LEr

it−1 −∑
ι∈K

∑
p∈P

θpιZ
pr
it + ∑

ι∈K
∑
p∈P

θpιDr
pit ∀i ∈ N, t ∈ T, r ∈ R (37)

IEr
pt = IEr

pt−1 + ∑
ι∈K

θpιRιr
pt + ∑

p′∈P
∑
i∈N

∑
ι∈K

εpp′ ιW
pr
ip′t − ∑

p′∈P
∑
ι∈K

εpp′ ιF
p′r
pt ∀p ∈ P, t ∈ T, r ∈ R (38)

LEr
ιt = LEr

ιt−1 + ∑
i∈N

∑
p∈P

θpιZ
pr
it − ∑

p∈P
θpιRιr

pt − ∑
p,p′∈P

∑
i∈N

εpp′ ιW
pr
ip′t − ∑

p∈P
∑
i∈N

Zpr
it + nιr

t

∀ι ∈ K, t ∈ T, r ∈ R
(39)

∑
i∈Npι ,i 6=j

(Eιr
jit − Eιr

ijt) = Zpr
jt ∀j ∈ Npι, t ∈ T, r ∈ R, p ∈ P : θpι = 1 ι ∈ K (40)

∑
p′∈P
p′ 6=p

(E
′ ιr
pp′t − E

′ ιr
p′pt) = θpιRιr

pt + ∑
i∈N

∑
p′∈P

εpp′ ιW
pr
ip′t ∀p ∈ P, ι ∈ K, t ∈ T, r ∈ R

(41)

0 ≤ ∑
r∈R
LEr

ιt ≤ cE
ι ∀ ι ∈ K, t ∈ T (42)

∑
p∈P

∑
r∈R

Xp,r
ijt ≤ Q ∑

p∈P
∑

v∈V
xp

ijvt ∀i, j ∈ Np, i 6= j, t ∈ T (43)

∑
r∈R

Eι,r
ijt ≤ Q ∑

v∈V
yι

ijvt ∀i, j ∈ Npι, i 6= j, ι ∈ K, t ∈ T (44)

∑
r∈R

E′ ι,rpp′t ≤ Q ∑
v∈V

yι
pp′vs.t ∀t ∈ T, p, p′ ∈ P, p 6= p′, ι ∈ K : εpp′ ι = 1 (45)

∑
i∈Npι

∑
v∈V

yι
ijvt ≤ 1 ∀j ∈ N, t ∈ T, ι ∈ K (46)
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∑
i∈Npιi 6=j

yι
ijvt = ∑

i∈Npιi 6=j
xι

jivt ∀vs. ∈ V, j ∈ Npι, t ∈ T (47)

∑
j∈N

yι
0ι jvt ≤ 1 ∀v ∈ V, t ∈ T, ι ∈ K (48)

∑
p∈Ppι∪0ι

∑
v∈V

yι
pp′vs.t ≤ 1 ∀p′ ∈ Ppι, t ∈ T, ι ∈ K (49)

∑
p′∈Ppι∪0ι p′ 6=p

yι
p′pvt = ∑

p′∈Ppι∪0ι p′ 6=p
yι

pp′vt ∀vs. ∈ V, p ∈ Ppι, t ∈ T (50)

∑
p∈Ppι

yι
0ι pvt ≤ 1 ∀v ∈ V, t ∈ T, ι ∈ K (51)

with:
Npι: set of customers for whom the supplier p belongs to the cluster of centre ι (node 0ι).
Ppι: set of suppliers belonging to the cluster of centre ι.
Rι,r

pt : quantity of empty RTIs of type r belonging to supplier p and sent to centre ι to which
supplier p belongs.
Eι,r

ijt: quantity of empty RTIs of type r transported from node i to node j in period t and sent
to centre ι.
E′ ι,r

p′pt: quantity of empty RTIs of type r transported from node p to node p′ in period t and
sent by centre ι.
LE,r

ιt : inventory level of empty RTIs of type r at centre ι in period t.
yι

ijvt: binary variable equal to 1 if node j is visited right after node i by vehicle v, 0 otherwise.
yι

0ι jvt: binary variable equal to 1 if customer j is visited by v from node (cluster) 0ι, 0 otherwise.
yι

pp′vs.t: binary variable equal to 1 if supplier p′ is visited right after supplier p by vehicle v,
0 otherwise.
yι

0ι pvt binary variable equal to 1 if supplier p is visited by v from node (cluster) 0ι, 0 otherwise.

4. Resolution Approach

The DM, SM, and IRPPDS models described in the previous section are NP-hard.
To tackle their combinatorial complexity, a resolution approach is proposed.

We aim at determining over a given planning horizon the required quantities of RTIs
to allow for supplying the needed quantities of products from a set of suppliers to a set of
customers. We also seek to construct the optimal routes for pickups and deliveries of RTIs.
Since the construction of the routes is the most complex part of the problem, we first use an
appropriate heuristic to determine those routes. Once constructed, we solve a modified
version of the three MILPs described in Section 3 to determine the other decision variables
related, for example, to the quantities transported, delivered, and collected. Each of these
versions is a min-cost network flow problem that is easier to solve. Regarding IRPPDS, its
modified version is called FMILP, where the routing decision variables, xp

ijvt, are fixed:
FMILP:

min ∑
i∈N

∑
t∈T

∑
r∈R

(hLr
i LLr

it + hEr
i LEr

it ) + ∑
p∈P

∑
t∈T

∑
r∈R

(HLr
p ILr

pt + HEr
p IEr

pt )+

∑
p∈P

∑
t∈T

∑
r∈R

ernp,r
t + ∑

p∈P
∑
t∈T

∑
p′∈P

∑
r∈R

grFp′r
pt +

∑
i∈N

∑
p∈P

∑
p′∈P

∑
t∈T

∑
r∈R

srW
pr
ip′t

(52)

subject to Constraints (2)–(11).
We use a matheuristic to construct routes and improve the final solution as described

above. The matheuristic hybridises the FMILP with an artificial-immune-system-based
algorithm and a deep Q-learning process into a global solving scheme called AIS-DQL.
The overview of the matheuristic AIS-DQL is presented in Figure 1.
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These steps are described in detail in the following subsections.

4.1. Artificial Immune System

Artificial-immune-system-based algorithms are bio-inspired metaheuristics that imi-
tate the principles and processes of immune system functioning [63]. The algorithms are
typically modelled after the immune system’s characteristics of learning and memory for
use in problem solving. They imitate antigen recognition, antigen and antibody binding,
and the antibody production process. Furthermore, they abstractly use the diversity and
memory mechanism of the immune system. Therefore, they can ensure individual diversity
while maintaining a high affinity, thereby avoiding premature phenomena and showing
a strong global search ability. In this paper, antigens correspond to the input data of the
problem, and the antibodies correspond to the routes to construct or the different suppliers.
Their structure, depicted in Figure 2, consists of sequences of possible nodes to be visited
in each route and for each supplier and each period.

Figure 1. Overview of the implementation of the AIS-DQL matheuristic.
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Figure 2. Structure representing the route of Supplier i (antibodies).

As depicted in Figure 1, AIS starts with an initialisation phase. A population of
random routing solutions representing a pool of antibodies (routes) is initially generated.
The routes are built using a 2-opt local search algorithm [64]. Proliferation and maturation
processes are undergone by cloning each member of the initial pool, i.e., copying each of
the initial solutions based on their affinity. The rate of proliferation is chosen to be directly
proportional to the affinity, such that the higher the affinity, the more offspring there are.
For this purpose, selection, hypermutation (HM), and receptor editing (RE) operators
are used.

4.1.1. Affinity and Cloning Selection

Each time an antibody (routing decisions) is generated, it is used as an input to solve
the FMILP. Therefore, the corresponding feasible objective function (OF) and the remaining
decision variables of the model are computed. The affinity fι of an antibody, ι, is computed
using the corresponding objective function OFι: fι = 1

OFι
. Thus, the higher affinity value

would have a lower total cost. Hence, as an antibody’s cloning rate is proportional to its
affinity, more antibody clones have lower costs in the next generation than antibodies with
higher costs. The probability, PS, of selecting an antibody to be cloned depends on its
affinity. If fι is the affinity of an antibody ι in the population, its probability PSι is defined
as: PSι=

fι

∑ς fς
.

4.1.2. Affinity Maturation

Since the algorithm needs to thoroughly explore and exploit the search space to obtain
a good solution, exploration and exploitation are carried out depending on the evolution
operator’s capability variation. These operators conduct random perturbations on each
gene to generate the next generation’s population in the current population. The variation
in the antibodies is performed through HM and RE mechanisms. The HM mechanism
ensures that the higher-affinity antibodies are hyper-mutated at a slower rate. The HMι the
rate for an antibody ι is defined as HMι = e−ω f ι , where ω is the decay control factor. A new
population is created after hyper-mutation, and each antibody undergoes various affinity
changes. Antibodies are therefore reorganised once again based on the affinity assessment.

After cloning and mutation processes, a percentage of the antibodies in the current
population is eliminated (the worst φ% of the population) and replaced by the randomly
generated antibodies. This mechanism, which is a vertebrate immune system mechanism,
is called receptor editing [44]. This mechanism generates new antibodies that correspond
to the new search area of the search space. Exploring new search areas may help the
algorithm to escape from local optima. The new antibody population then becomes the
next generation of antibodies.

Finally, if a generation’s objective function value does not improve over that of the
previous generation, convergence is assumed to be achieved, and it is possible to retrieve
the best equivalent antibody as the best solution, and the algorithm stops.
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4.2. AIS Enhanced with Deep Q-Learning

In this section, we highlight AIS limitations and present an RL technique used to
overcome them.

4.2.1. AIS and RL

According to [43], although many results have proved the convergence of AISs to a
global optimum, a Markov-chain analysis shows weak convergence of the AIS algorithms.
Indeed, due to the single-point random mutation of the antibody, AIS converges slowly,
meaning that a given antibody selects a gene bit and changes its value randomly to some of
the other selectable values. Moreover, it cannot retain any locally excellent gene blocks in
some low-affinity antibodies because of other poor gene blocks. As a result, the search speed
is low. From this stems the idea of using RL to tackle this problem. Indeed, since random
searching leads to slow evolution and weak AIS convergence efficiency, environmental
feedback signals and the updated action policy of deep Q-learning are used to construct an
algorithm with strong self-adaptability and goal-driven performance.

In this paper, RL is employed to assist in analysing data on moves and recombination
that have been performed to construct solutions to the problem. The goal is to extract
meaningful information from this data to direct and improve the AIS’s search performance
and speed. Indeed, just like a human being, the agent that symbolises the antibody (solution
to the problem) learns of its own to acquire successful strategies that result in the largest
long-term rewards. RL is a paradigm of learning by trial and error based entirely on
rewards or penalties. The agent constructs and learns its information directly from moves it
makes using operators such as HM and RE. RL is indeed used to assist AIS in determining
the optimal actions to take in terms of the best moves for each operator.

4.2.2. Q-Learning

Q-Learning is a self-adaptive RL off-policy method characterised by strong environ-
mental feedback signals [65]. The fundamental idea is to use the feedback signal to adjust
an agent’s action policy to make the best decision when interacting with the environment
(i.e., antibody space). The agent (i.e., antibody) arrives in different states based on actions
(i.e., AIS operators). Actions determine positive and negative rewards. The concept behind
Q-learning is to put the agent in a series of state-action combinations, observe the rewards,
and then change the predictions of a table (called a Q-table) to those rewards until the best
policy properly predicts them. As a result, the “Q” stands for quality, which indicates how
effective a particular action is in earning a possible reward.

4.2.3. Deep Q-Learning

Q-learning is a relatively basic and effective algorithm. However, it may be time-
consuming, as the amount of memory required to save and update the Q-table grows with
the number of states, and the amount of time required to investigate each state to construct
the appropriate Q-table is impracticable. In this paper, these Q-values are estimated using
neural networks known as deep Q-learning (DQ). Accordingly, the state is an input, and the
output is the Q-value of all potential actions. Once the network is trained, selecting the
right action means comparing each action’s possible rewards and choosing the best one.

4.2.4. Deep Q-Learning Architecture

DQ begins by estimating random Q-values to explore the environment, as shown
in Figure 3. DQ enhances its Q-value estimations by employing the same dual-action
paradigm, with a present action having a current Q-predicted value and a target action with
a target Q-value. The direction of the predicted Q-target values varies since the network
and its weights are equal; they remain unchanged but may fluctuate with each update.
The Q-target values are stabilised by employing a second network that has not been trained.
After a pre-determined number of iterations, referred to as C-iteration, the learned weights
from the Q-predicted network are copied to the Q-target network. The DQ design has two
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neural networks (Q-predicted and Q-target) and an experience replay agent, as shown in
Figure 3. For data generation during Q-network training, the experience replay interacts
with the environment. These data contain all of AIS’s operators’ moves, which are recorded
as <st,a,R,st’> tuples (see notation below Equation (53)). Then, a sample is picked randomly
from these data such that it consists of a mix of older and more recent samples. This batch
of training data is used in the Q-predicted and Q-target networks. The Q-predicted network
takes the current state and moves out of each sample, and for that move predicts the
Q-value. The Q-predicted value, the Q-target value, and the observed data sample reward
are used to compute the loss for the Q-network training (see Equation (53)). A batch of
data is selected from all prior experiences to reduce variance and guarantee the algorithm’s
stability in C-iteration. Next, a sample is chosen from these data, with an equal mix of older
and newer samples. The Q-predicted and Q-target networks use this batch of training data.
The Q-predicted network predicts the Q-value based on the current state and moves out of
each sample. The loss for the Q network training is computed using the Q-predicted value,
the Q-target value, and the observed data sample reward (see Equation (53)). After each
C-iteration, a batch of data is selected from all prior experiences to reduce variation and
ensure the algorithm’s stability.

Loss = [Rt+1 + γ max
a

(θTQ(st′, a′)− θTQ(st, a))]2 (53)

where:

• γ: discount-rate parameter to measure the weight of the future awards.
• a, a′: current and future action, respectively.
• st, st′: current and future state, respectively.
• Rt+1: future reward.
• Q(st, a): learned action-value function.
• θT : transpose matrix of network weights.

Finally, as for the AIS memory, a set of the best antibodies having the highest affinity is
stored, and the best moves have been obtained so far. Instead of starting from scratch every
time the algorithm is run to solve the model for a given antigen, similar to the antigens
(instances) already solved, we use the genetic memory to rapidly obtain the best solutions
and the optimal policies for the antibodies. Similar antigens are selected based on the
K-nearest neighbours algorithm [66].

Figure 3. DQ architecture adapted from [19].
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5. Implementation and Experimental Analysis

This section presents the experimental design adopted for this study and the analysis of
the computational results. All the optimisation steps were carried out on a personal computer
(MacBook Pro, macOS Cataline, CPU 3.3 GHz Quad-Core Intel Core i7, 8 GB of RAM).

Experimental Design and Parameters Tuning

The MILP developed for the multi-supplier, multi-customer, multi-RTI closed-loop
supply chain was first solved to optimality for small-and-medium-size instances using the
Branch-and-Cut solver of CPLEX 12.9 (academic version). The objective was to check the
model’s validity, representativeness, and exact solving approach limitations.

To implement the matheuristic, we used Python 3.7 and Pytorch interfaced with
CPLEX. The approach was first tested on the same instances optimally solved using CPLEX.
The objective was to assess its performance. We ran the AIS algorithm without the learning
process (AIS) and compared the improvement provided by the deep Q-learning when
coupled with the AIS algorithm (AIS-DQL). We also compared the algorithm’s performance
with a pure genetic algorithm (GA) and its improved learning version (GA-DQL). GA is
also a population-based metaheuristic that mimics the principle of natural genetics to find
a solution. The algorithm is known for its strong global search. The algorithm starts with
an initial set of random solutions called a population. Each individual in the population
is called a chromosome, representing a solution to the problem at hand. The best parents
(best chromosomes having the highest affinity) are selected from the current generation
and considered for a two-point crossover operation to form their offspring. The mutation
process is also integrated as it helps to obtain new information randomly for the genetic
search process and ultimately helps avoid getting trapped at local optima. In this paper,
the chromosomes also represent the routing decisions and are decoded as the antibodies of
AIS. For a thorough description of GA-DQL, the reader is referred to [19].

The tests were performed in 20 replications for the 40 generated instances to evaluate
the stability of the algorithms, and the average value of the objective function is presented.
A statistical analysis using ANOVA was also conducted to assess the eventual randomness
of the differences between the obtained results (see Table 3). These results stress that for
all resolution approaches under consideration, p-value > 0.05, which means that there is
no significant difference between the algorithms and the solutions obtained using CPLEX.
Table 4 reports the algorithm parameters tuned so that a trade-off between the algorithm’s
performance and speed is satisfied.

Table 3. Statistical analysis using ANOVA.

Resolution Approach F p-Value

GA 2.16 0.14
AIS 1.57 0.22
GA-DQL 0.91 0.34
AIS-DQL 0.49 0.49

Table 4. Values of the tuning parameters.

Tuned Parameter Value

Population size (GA/AIS) 200
Maximum iteration number (GA/AIS) 200
Crossover probability (GA/AIS) 0.81
Mutation probability (GA/AIS) 0.46
Selection probability 0.80
Receptor editing rate 0.28

The instances had a number of suppliers varying from 5 to 25, a number of customers
from 6 to 24, and a number of RTIs varying from 2 to 10. The planning horizon of de-
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liveries and pickups was five days, corresponding to a workweek. Customer demands
were randomly generated between 5 and 70 in loaded RTIs. For each instance, suppliers’
and customers’ locations were randomly chosen in the Euclidean space between (0, 0) and
(1000, 1000). Moreover, we considered initial inventory levels and unit costs for trans-
portation, holding and maintenance of the self-same scale as in [4], which considers a
1-M-1 IRP for a single type of RTIs. As the unit cost of an RTI may go from a few euros
for plastic boxes to 1300 euros for stillages, according to the study conducted by [3], we
considered a randomly generated purchase cost varying between 3 and 1000 euros. Finally,
we considered a unit cost of sharing varying between 2 and 10 euros per type of RTI.

In the remainder of the paper, we refer to the instances using the following notation:
(number of RTIs) R, (number of suppliers) S, (number of customers) C, (number of vehicles)
V, and (number of periods) T; e.g., 1R2S5C2V5T refers to the instance where one type of
RTI is shared and used to ship the products of two suppliers to a set of five customers,
transported by two vehicles over a planning horizon of 5 days.

6. Computational Experiments

First, the three models, developed for the DM, SM, and IRPPDS modes, were solved
using CPLEX. The objective was to compare the benefits and limitations of each mode on
the performance of the overall supply chain. Then, given their combinatorial complexity,
the three models were solved using four approaches: AIS and GA with and without DQL.
The performance of each of these approaches was analysed by comparing it to the solutions
obtained using CPLEX on small instances. The benefits of DQL on the performance of the
methods were also highlighted. Given the contribution of DQL, the three models were
solved on large instances using the AIS-DQL and GA-DQL approaches.

6.1. Results on Small Instances Solved Using CPLEX

The SM, DM, and IRPPDS models were first solved using the Branch-and-Cut solver
of CPLEX until reaching optimality. We first considered solving the models with only one
type of RTI for a number of customers varying from 6 to 24 in a planning horizon that
corresponds to a week of 5 days. We also conducted additional experiments in which
we considered a number of RTIs varying from 2 to 10, and finally a number of suppliers
varying between 5 and 25. The objective was to provide partial insights regarding the
benefits of RTI sharing, the representativeness of the results, and the run time needed to
solve this problem. Table 5 summarises the computational results for each instance under
consideration. It reports the breakdown of the total cost (TC), namely: transportation (T),
inventory of the suppliers (I-S), inventory of the customers (I-C), inventory at the centres
for SM (I-K), maintenance (M), procurement of new RTIs (P), and sharing (S). Table 5 also
provides the saving (%) between total costs for SM and IRPPDS regarding the total cost of
DM and the CPU time in seconds. The saving, noted CS, is computed as follows:

CS = Total CostDM−Total CostSM or IRPPDS
Total CostDM

100.

From Table 5, we can see that, as expected, compared to DM, both SM and IRPPDS
reduce total costs. Moreover, IRPPDS can help achieve significant cost savings; for IRPPDS,
the average total cost was reduced by 40% against 17% for SM. Indeed, in DM, each
supplier needs to manage his inventory, deliveries, and the pickups of his empty RTIs from
customers. As no shortage is permitted, if his inventory of empty RTIs is not sufficient
to meet customer demand, he buys this needed quantity, and a procurement cost is then
incurred. Furthermore, regarding transportation costs, as each supplier can only use his
RTIs, which cannot be shared among suppliers, the cost of picking up these latter from
customers is incurred.



Sustainability 2022, 14, 5805 20 of 29

Table 5. Computational results for DM, SM, and IRPPDS on small and medium instances solved
using CPLEX.

Instances Model T (e) I-S (e) I-C (e) I-K (e) M (e) P (e) S (e) TC (e) CS (%) CPU (s)

1R2S6P40V5T
DM 106,899 1386 1428 0 141 280,224 0 390,078 - 424
SM 105,309 592 1368 751 133 122,771 2371 233,294 40 629

IRPPDS 84,854 1188 1308 0 141 98,739 865 187,095 52 451

1R2S12P40V5T
DM 315,279 3706 1721 0 299 907,085 0 1,228,090 - 5050
SM 245,866 2032 1359 2390 331 737,268 8940 998,186 19 6445

IRPPDS 228,259 3562 1190 0 294 415,480 2998 651,784 47 5265

1R2S18P40V5T
DM 519,475 3067 4988 0 366 831,051 0 1,358,947 - 8776
SM 471,330 1710 2680 1765 351 731,678 5504 1,215,018 11 12,115

IRPPDS 402,425 2532 1911 0 352 611,920 4835 1,023,975 25 9331

1R2S24P40V5T
DM 853,012 4136 8040 0 685 3,280,781 0 4,146,653 - 24,314
SM 711,300 3230 4061 2890 688 2,758,063 7761 3,487,994 16 31,701

IRPPDS 552,893 4744 3046 0 696 1,886,929 6107 2,454,415 41 24,399

2R2S5P40V5T
DM 267,334 1013 4607 0 152 1,306,998 0 1,580,105 - 473
SM 203,254 629 2957 746 171 1,188,760 3240 1,399,757 11 591

IRPPDS 158,771 928 2011 0 154 781,631 1326 944,821 40 496

4R2S5P40V5T
DM 575,795 2055 11,269 0 502 1,719,310 0 2,308,932 - 1309
SM 508,117 1177 5829 1432 426 1,493,784 6928 2,017,692 13 1626

IRPPDS 413,915 1859 5141 0 457 1,056,450 5324 1,483,147 36 1316

6R2S5P40V5T
DM 984,677 3886 11,401 0 645 1,953,350 0 2,953,958 - 3013
SM 601,250 1993 13,834 3007 578 1,608,985 12,681 2,242,328 24 4131

IRPPDS 571,245 3372 6552 0 562 1,499,512 14,711 2,095,952 29 4405

8R2S5P40V5T
DM 1,196,050 3559 19,337 0 799 2,649,398 0 3,869,143 - 5423
SM 1,027,848 2099 17,123 3738 734 2,270,434 221,00 3,344,076 14 7346

IRPPDS 704,453 3307 11,693 0 765 1,726,959 15,446 2,462,623 36 5968

10R2S5P40V5T
DM 1,536,319 7376 22,048 0 1005 3,674,097 0 5,240,844 - 7981
SM 1,450,099 3844 23,893 9146 1122 2,852,572 45,735 4,386,411 16 10,675

IRPPDS 878,014 6777 11,199 0 967 2,263,598 18,631 3,179,185 39 8687

1R5S5P40V5T
DM 223,327 1698 3473 0 257 414,556 0 643,312 - 8084
SM 213,934 947 3137 964 241 340,187 3415 562,825 13 13,686

IRPPDS 157,568 1591 1754 0 233 245,555 1440 408,141 37 8969

1R10S5P60V5T
DM 470,266 3753 6052 0 544 1,040,464 0 1,521,078 - 22,526
SM 465,720 1744 5879 1869 537 487,739 4204 967,693 36 33,882

IRPPDS 383,377 2661 5856 0 505 209,126 2136 603,661 60 24,005

1R15S5P40V5T
DM 1,018,250 6620 12,547 0 798 882,493 0 1,920,708 - 32,387
SM 995,463 4898 6364 4941 845 677,583 18,544 1,708,639 11 41,501

IRPPDS 715,381 6145 4966 0 823 612,775 7922 1,348,012 30 34,055

1R20S5P40V5T
DM 1,595,794 9500 21,299 0 1310 1,929,223 0 3,557,125 - 55,543
SM 1,419,879 6413 9549 7967 1139 1,724,055 25,988 3,194,989 10 67,511

IRPPDS 893,618 10,265 7933 0 1181 754,922 9303 1,677,222 53 55,135

1R25S5P40V5T
DM 2,251,175 11,306 28,742 0 1488 1,758,976 0 4,051,687 - 67,115
SM 2,044,658 6530 25,480 5387 1388 1,510,890 17,212 3,611,545 11 85,413

IRPPDS 1,439,157 11,087 14,999 0 1536 1,394,438 13,932 2,875,148 29 63,468

In SM, by contrast, as empty RTIs are owned and centrally managed by a pooler com-
pany, procurement costs could be reduced thanks to the risk pooling effect. Transportation
costs (which include a variable cost that depends on the quantity of RTIs transported)
are slightly reduced. Indeed, deliveries incurred by the suppliers remain the same as in
DM, but not for the pickups of empty RTIs from customers. These empty RTIs are later
transported instead to RTI centres owned by the pooler company, which are assumed to
be located near suppliers, and they are transported to the suppliers when required. How-
ever, in SM, since the requests of RTI are not balanced between the suppliers, the pooler
company must buy the needed quantities and ship them to the suppliers, which increases
transportation and procurement costs.

As for IRPPDS, the transportation and procurement costs are significantly reduced.
Indeed, in this configuration, the supply chain is centrally managed, and each supplier has
his RTIs held at his inventory/customers and picks up empty ones from customers when
vehicles visit customers to deliver the required products. In addition, as each supplier can
also benefit from this visit to pick up not only his RTIs but also the RTIs of other suppliers,
vehicle fill rates are improved (as transportation cost includes a variable cost that depends
on the quantity of RTIs transported), and each supplier no longer needs to buy the RTIs
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he may need to meet his customers’ demand. Orders are thus satisfied by any RTI, and a
procurement order is only triggered if needed, which reduces its relative cost compared
to DM.

Moreover, in IRPPDS, the risk pooling is maintained as each supplier, when he buys
RTIs, adds them to the system pool. Furthermore, the additional management costs of
SM, including pooling, inventory, and transportation on the level of the pooler company’s
centres, are no longer incurred. Furthermore, as is shown in Figure 4, compared to IRPPDS,
the quantity of new RTIs bought may represent, for some instances, up to 70% of the avail-
able inventory of empty RTIs in SM. More RTIs are purchased at each centre to meet the
needs of the suppliers it serves. Finally, from Table 5 and Figure 4, we notice that IRPPDS
takes on more interest as the number of RTIs and suppliers increases. Indeed, in SM, when
the number of suppliers increases, more centres are needed, especially in different and
distant geographical areas, making it challenging to reduce the cost of logistics and procure-
ment for centres servicing clusters housing a significant number of suppliers. As a result,
the demands for empty RTIs are not balanced; procurement, inventory, and transportation
costs increase as the number of visits from customers to these centres and from these centres
to suppliers increases.

Figure 4. Ratio of quantity of RTIs bought over the inventory level of empty RTIs made available in
SM and IRPPDS.

6.2. First Insights into the Effectiveness of the Resolution Approach on Small Instances

As we can see, solving exactly the three models under consideration is very combi-
natorially complex, and the CPU time increases drastically with the number of suppliers.
As described in the experimental design, the resolution approach AIS-DQL was compared
to other metaheuristics to assess its performance: GA, AIS, and GA-DQL. Table 6 gives the
results of the comparison. The gap regarding total cost is computed as:

Gap = Total CostMetaheuristic−Total CostCPLEX
Total CostCPLEX

100.

From Table 6, we can see that for all the instances under consideration, AIS-DQL,
compared to AIS, GA-DQL, and GA, can find solutions with minor gaps. On average,
GA provided solutions with a gap of 12.6%, AIS with 9.4%, GA-DQL with 4.8%, and
AIS-DQL with a gap of 0.1%. Indeed, AIS-DQL was more stable, as it was less sensitive
to small changes (perturbations) in the input data and the instances’ size. Moreover,
AIS-DQL allowed for reducing the computational time considerably. GA and AIS may
have similar mutation mechanisms, but AIS’s immune memory makes it more robust and
stable. Furthermore, AIS learning requires increasing the relative population size of each
of these antibodies, which proved valuable. A clone is generated temporarily, and those
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low-affinity antibodies are eliminated. The goal is to solve the problem using minimal
resources and time. Therefore, the algorithm’s response efficiency was greatly enhanced
by the memory associated with the first and best antibodies obtained for different and
similar antigens, and it was capable of providing the best solutions with a high affinity
for a given instance only after a few iterations. Indeed, our algorithm ensures that both
the speed and accuracy of the immune response are progressively higher after each model
resolution. In addition, combined with a deep reinforcement learning technique and KNN,
the immune memory further strengthens the interaction with the environment, resulting
in a continuous improvement of the algorithm’s ability and prior knowledge of similar
problems to solve the model for a given instance.

6.3. Extra Experiments on Large Instances Solved Using GA-DQL and AIS-DQL

To obtain more insights into the effectiveness of IRPPDS and AIS-DQL, we further ran
tests on large instances and compared the results to those obtained using GA-DQL. We
solved the DM, SM, and IRPPDS. Then, we computed the total cost and the corresponding
savings. We present the results obtained within a CPU time of less than half an hour.
The computational results are summarised in Table 7. Table 7 also reports the difference
(Diff) between the total costs computed using GA-DQL and AIS-DQL as follows:

Di f f = Total CostGA-DQL−Total CostAIS-DQL
Total CostGA-DQL

100.

As expected, the AIS-DQL allows for feasible solutions to large-sized problems within
a reasonable time. AIS-DQL allowed for obtaining better solutions with an average of
14% compared to GA-DQL and with less time, with an average CPU of 479 s for DM,
557 s for SM, and 556 s for IRPPDS against 743 s for DM, 644 s for SM, and 697 s for
IRPPDS. As for the results, for all the instances under consideration, IRPPDS reduced total
cost compared to DM, with an average saving of 35% (against 16% for SM). Moreover,
the benefits of promoting virtual pooling were highlighted when the number of RTIs and
suppliers increased. Furthermore, if the demands to be satisfied required the use of several
types of RTIs, the benefits of SM were smaller compared to those of IRPDPS and even DM
(according to the results of [14]). This was truer when the number of suppliers increased.
Indeed, even if SM can reduce the long-distance transportation of empty RTIs compared
to DM, when empty RTIs were not balanced, SM’s transportation cost increased since it
includes the incurred costs from customers to the pooler’s centres from these latter to the
suppliers. In addition, even if the centres are located near suppliers (which is often the
case in the automotive industry), it would be challenging to balance the quantity of empty
RTIs between all suppliers. Therefore, SM may work in favour of or against any supplier
regardless of location, the demands they should meet, or the centres’ number.

6.4. Sensitivity Analysis on Unit Cost

Considering that the performances may depend on the different unit costs, a sensitivity
analysis was conducted, and the results are given in this section. Without loss of generality,
we ran tests on the instance 10R20S30C. In each test, we considered three scenarios. The first
scenario represents the case where the unit cost of sharing is significantly lower than the
smallest unit cost of procurement (sr = 5). The second one corresponds to the case where
the unit cost of sharing is equal to a given unit cost of procurement (sr = 700). Furthermore,
the third scenario represents the case where the unit cost of sharing is significantly higher
than the greater unit cost of procurement (sr = 1800). Figures 5 and 6 depict the variation in
cost reduction (CR) for different values of cost parameters. It is worth noting that variable
transportation and procurement costs were chosen to conduct the sensitivity analysis due
to their significant contributions to the total costs.
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Table 6. Assessment of the performance of GA, AIS, GA-DQL, and AIS-DQL compared to CPLEX on relatively small and medium instances.

Instance Model
CPLEX GA AIS GA-DQL AIS-DQL

TC (e) CPU (s) TC (e) CPU (s) Gap TC (e) CPU (s) Gap TC (e) CPU (s) Gap TC (e) CPU (s) Gap
(%) (%) (%) (%)

1R2S6P40V5T
DM 390,078 424 396,319 8 1.6 395,929 28 1.5 396,319 15 1.6 390,078 2 0.0
SM 233,294 629 257,557 9 10.4 254,757 22 9.2 245,892 10 5.4 234,461 31 0.5

IRPPDS 187,095 451 204,308 9 9.2 199,443 41 6.6 200,379 14 7.1 187,095 4 0.0

1R2S12P40V5T
DM 1,228,090 5050 1,331,250 256 8.4 1,312,828 240 6.9 1,251,424 421 1.9 1,228,090 25 0.0
SM 998,186 6445 1,044,102 427 4.6 1,038,113 205 4.0 1,032,124 307 3.4 1,003,177 21 0.5

IRPPDS 651,784 5265 677,204 401 3.9 689,587 57 5.8 682,418 461 4.7 651,784 21 0.0

1R2S18P40V5T
DM 1,358,947 8776 1,498,919 84 10.3 1,382,049 32 1.7 1,394,280 89 2.6 1,358,947 18 0.0
SM 1,215,018 12,115 1,364,466 527 12.3 1,362,036 62 12.1 1,273,339 57 4.8 1,219,879 77 0.4

IRPPDS 1,023,975 9331 1,135,588 824 10.9 1,087,461 925 6.2 1,054,694 483 3 1,023,975 50 0.0

1R2S24P40V5T
DM 4,146,653 24,314 4,486,679 1394 8.2 4,470,092 884 7.8 4,457,652 1674 7.5 4,146,653 47 0.0
SM 3,487,994 31,701 3,857,721 989 10.6 3,864,697 508 10.8 3,808,889 416 9.2 3,508,922 21 0.6

IRPPDS 2,454,415 24,399 2,947,752 2313 20.1 2,923,208 25 19.1 2,648,314 455 7.9 2,454,415 163 0.0

2R2S5P40V5T
DM 1,580,105 473 1,922,988 12 21.7 1,783,939 37 12.9 1,685,972 30 6.7 1,581,685 1 0.1
SM 1,399,757 591 1,542,532 40 10.2 1,511,738 12 8.0 1,426,353 20 1.9 1,402,557 42 0.2

IRPPDS 944,821 496 1,037,413 18 9.8 993,952 4 5.2 963,717 35 2 945,766 3 0.1

4R2S5P40V5T
DM 2,308,932 1309 2,673,743 75 15.8 2,542,134 76 10.1 2,403,598 4 4.1 2,308,932 12 0.0
SM 2,017,692 1626 2,360,700 39 17 2,209,373 41 9.5 2,031,816 51 0.7 2,017,692 22 0.0

IRPPDS 1,483,147 1316 1,739,731 124 17.3 1,576,585 21 6.3 1,566,203 79 5.6 1,483,147 5 0.0

6R2S5P40V5T
DM 2,953,958 3013 3,202,090 63 8.4 3,190,275 42 8.0 3,140,057 227 6.3 2,953,958 6 0.0
SM 2,242,328 4131 2,679,583 58 19.5 2,684,067 6 19.7 2,419,472 8 7.9 2,249,055 53 0.3

IRPPDS 2,095,952 4405 2,290,876 70 9.3 2,292,971 379 9.4 2,179,790 240 4.0 2,098,048 2 0.1

8R2S5P40V5T
DM 3,869,143 5423 4,604,280 538 19.0 4,016,170 527 3.8 3,927,180 392 1.5 3,873,012 29 0.1
SM 3,344,076 7346 3,691,860 525 10.4 3,410,957 604 2.0 3,390,893 209 1.4 3,347,420 41 0.1

IRPPDS 2,462,623 5968 2,856,643 350 16 2,570,978 46 4.4 2,561,128 31 4.0 2,462,623 44 0.0

10R2S5P40V5T
DM 5,240,844 7981 5,801,614 733 10.7 5,848,782 670 11.6 5,382,347 293 2.7 5,246,085 28 0.1
SM 4,386,411 10,675 4,618,891 319 5.3 4,614,504 400 5.2 4,496,071 415 2.5 4,425,888 32 0.9

IRPPDS 3,179,185 8687 3,795,947 447 19.4 3,808,664 206 19.8 3,344,503 177 5.2 3,179,185 60 0.0

1R5S5P40V5T
DM 643,312 8084 702,497 421 9.2 714,720 63 11.1 656,178 30 2.0 643,955 27 0.1
SM 562,825 13,686 665,259 276 18.2 613,479 54 9.0 602,786 38 7.1 567,328 6 0.8

IRPPDS 408,141 8969 454,261 726 11.3 422,426 702 3.5 436,711 100 7.0 408,549 7 0.1

1R10S5P60V5T
DM 1,521,078 22,526 1,718,818 422 13.0 1,630,596 1732 7.2 1,522,599 337 0.1 1,522,599 168 0.1
SM 967,693 33,882 1,065,430 307 10.1 1,065,430 980 10.1 1,047,043 475 8.2 969,628 52 0.2

IRPPDS 603,661 24,005 719,564 285 19.2 705,680 508 16.9 644,106 295 6.7 604,265 160 0.1

1R15S5P40V5T
DM 1,920,708 32,387 2,214,576 2272 15.3 2,212,656 1433 15.2 2,058,999 2871 7.2 1,920,708 48 0.0
SM 1,708,639 41,501 1,942,722 525 13.7 1,905,132 1245 11.5 1,802,614 395 5.5 1,717,182 22 0.5

IRPPDS 1,348,012 34,055 1,419,457 2947 5.3 1,443,721 1598 7.1 1,376,320 949 2.1 1,349,360 289 0.1

1R20S5P40V5T
DM 3,557,125 55,543 4,197,408 1656 18.0 4,030,223 5005 13.3 3,841,695 148 8.0 3,557,125 103 0.0
SM 3,194,989 67,511 3,600,753 910 12.7 3,466,563 406 8.5 3,252,499 510 1.8 3,201,379 12 0.2

IRPPDS 1,677,222 55,135 1,893,584 902 12.9 1,893,584 5312 12.9 1,769,469 451 5.5 1,677,222 296 0.0

1R25S5P40V5T
DM 4,051,687 67,115 4,590,561 3358 13.3 4,517,631 2022 11.5 4,221,858 1636 4.2 4,051,687 524 0.0
SM 3,611,545 85,413 4,174,946 3140 15.6 4,113,549 400 13.9 3,795,733 211 5.1 3,611,545 42 0.0

IRPPDS 2,875,148 63,468 3,346,672 4064 16.4 3,197,165 3750 11.2 2,955,652 70 2.8 2,875,148 385 0.0
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Table 7. Computational results for large instances obtained using GA-DQL and AIS-DQL.

Instances

AIS-DQL GA-DQL Diff (%)DM SM IRPPDS CS (%) DM SM IRPPDS CS (%)

TC (e) CPU TC (e) CPU TC (e) CPU SM IRPPDS TC (e) CPU TC (e) CPU TC (e) CPU SM IRPPDS DM SM IRPPDS(s) (s) (s) (s) (s) (s)

15R15S15C90V5T 1,055,305 330 979,362 274 806,191 217 7 24 1,217,822 527 1,074,615 318 902,934 276 12 26 13 9 11
15R20S15C120V5T 2,698,516 824 2,407,032 475 1,827,526 254 11 32 3,192,344 1207 2,919,561 550 2,077,897 316 9 35 15 18 12
15R30S15C190V5T 5,826,310 44 5,075,948 1070 3,877,637 980 13 33 6,659,472 70 5,079,089 1203 4,552,346 1259 24 32 13 0 15
15R40S15C250V5T 13,140,456 181 12,054,126 335 7,920,967 391 8 40 15,715,985 300 14,922,266 372 9,006,139 473 5 43 16 19 12
15R50S15C350V5T 27,632,333 513 19,565,564 395 17,761,072 329 29 36 31,031,110 829 27,865,271 463 20,673,888 410 10 33 11 30 14
15R60S15C450V5T 64,334,836 135 58,442,222 165 42,490,648 256 9 34 72,248,021 227 71,156,121 197 49,884,021 329 2 31 11 18 15
15R70S15C550V5T 143,862,932 97 134,278,723 156 80,904,270 156 7 44 172,347,793 151 134,553,700 169 97,004,220 198 22 44 17 0 17
15R80S15C650V5T 301,974,530 717 268,660,125 922 200,455,201 1145 11 34 339,721,346 1155 286,184,629 1146 225,311,646 1454 16 34 11 6 11

15R100S15C750V5T 641,210,086 398 606,987,781 443 429,635,068 414 5 33 721,361,347 615 612,861,772 471 514,273,176 536 15 29 11 1 16
15R200S15C2000V5T 1,291,975,415 106 832,110,939 694 663,928,176 751 36 49 1,536,158,768 165 1,135,671,285 852 794,722,027 927 26 48 16 27 16
15R300S15C4000V5T 2,721,138,343 728 2,256,821,880 803 2,082,860,769 665 17 23 3,091,213,158 1146 2,503,447,969 870 2,447,361,404 827 19 21 12 10 15
15R400S15C6000V5T 5,791,824,472 268 4,014,243,737 268 3,126,883,840 237 31 46 6,718,516,388 409 4,960,776,575 289 3,592,789,532 292 26 47 14 19 13
15R600S15C8000V5T 11,431,199,715 384 8,504,611,093 357 7,582,649,005 178 26 34 13,603,127,661 624 9,546,143,904 391 8,507,732,184 217 30 37 16 11 11
31R20S34C400V5T 4,428,883 740 3,736,512 845 3,445,812 971 16 22 5,053,356 1105 4,036,051 954 3,979,913 1182 20 21 12 7 13
31R40S34C900V5T 10,976,187 301 7,719,378 569 7,089,787 839 30 35 13,028,734 475 9,160,248 690 8,507,744 1033 30 35 16 16 17

31R60S34C1300V5T 23,233,219 917 16,916,596 395 14,939,103 312 27 36 27,368,732 1388 25,748,719 424 16,731,795 392 6 39 15 34 11
31R80S34C2500V5T 53,970,019 595 43,722,965 622 28,413,814 603 19 47 62,605,222 890 57,142,014 714 31,993,955 745 9 49 14 23 11
31R110S34C4000V5T 120,114,263 331 97,779,299 724 65,665,251 938 19 45 138,972,202 492 103,217,419 858 77,288,000 1188 26 44 14 5 15
31R130S34C5200V5T 265,313,611 515 251,439,010 284 210,348,468 214 5 21 315,457,883 796 299,527,277 346 243,583,526 277 5 23 16 16 14
31R150S34C6000V5T 572,377,195 294 506,511,145 531 410,627,455 495 12 28 681,701,239 456 569,930,183 608 473,453,456 614 16 31 16 11 13
31R200S34C9000V5T 1,227,011,538 942 1,134,046,280 346 959,955,051 172 8 22 1,425,787,407 1481 1,312,205,027 385 1,136,586,780 221 8 20 14 14 16
31R300S34C14000V5T 2,529,324,214 561 2,398,032,183 563 1,745,537,723 435 5 31 3,030,130,408 869 2,645,201,253 697 2,049,261,287 556 13 32 17 9 15
31R400S3418000V5T 5,169,582,108 319 4,520,814,515 483 3,311,432,130 511 13 36 5,789,931,961 516 5,245,182,129 556 3,751,852,603 640 9 35 11 14 12

31R500S34C20000V5T 11,050,906,466 244 8,845,362,928 547 6,925,392,214 728 20 37 13,006,916,910 376 12,963,475,117 614 7,964,201,046 925 0 39 15 32 13
31R600S34C24500V5T 23,471,937,843 1027 18,265,998,726 1128 14,568,743,068 1110 22 38 26,734,537,203 1598 23,081,746,819 1420 17,278,529,279 1412 14 35 12 21 16
31R700S34C29000V5T 49,800,010,407 933 32,665,152,291 1090 26,308,338,166 1160 34 47 57,270,011,968 1439 56,207,283,103 1185 31,096,455,712 1430 2 46 13 42 15

Average 4,489,886,892 479 3,287,441,168 557 2,646,228,016 556 17 35 5,185,154,402 743 4,685,635,081 644 3,092,258,327 697 14 35 14 16 14
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Figure 5. Saving in terms of total costs for the various unit costs of procurement.

Figure 6. Variation in cost reduction for the various unit costs of transportation.

From Figure 5, we see that from a cost-reducing perspective, IRPPDS generally has
obvious advantages compared to DM for the three scenarios under consideration. Moreover,
we notice that any change in the procurement cost has the most significant impact on cost
reduction for IRPPDS. For the lower unit cost of sharing, we see that as the procurement cost
increases, the performance advantages of IRPPDS increase significantly. Indeed, authorising
virtual pooling reduces inventory holding costs for empty RTI owners (lowering the idle
stock of non-used empty RTIs), while suppliers who use these RTIs can meet more demands
when no or fewer RTIs need to be bought. On the other hand, when the procurement cost is
smaller compared to the unit cost of sharing, saving is smaller, and the advantages of DM
and IRPPDS are comparable (this is even more evident in scenario 3). Thus, the advantages
of IRPPDS may lessen as the cost incurred by sharing cannot be offset by the saving it brings
regarding the reduction of procurement costs. Therefore, IRPPDS becomes profitable with a
higher procurement cost. Moreover, as shown in Figure 6, significant savings are achieved
when the sharing cost is smaller. In addition, when the transportation cost increases,
IRPPDS is more profitable compared to DM. Indeed, more empty and loaded RTIs can be
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transported in a period (high fill rates), while fewer customers are visited and fewer RTIs
are bought in the next period. However, the predominance of IRPPDS may weaken when
the sharing cost increases (this was even more evident in scenario 3, with GAP tending to
zero). Indeed, with higher unit costs of sharing and transportation, it would be preferable
and more cost-effective to have low fill rates (i.e., not to accept loading of unowned RTIs
and to send them to the suppliers for further reuse) and to buy the needed RTIs rather
than to have to pay for shared RTIs. Consequently, DM may be more profitable compared
to IRPPDS.

7. Conclusions and Perspectives

This paper considered a deterministic, multi-supplier, multi-customer and multi-RTI
inventory routing problem with delivery and pickup in a collaborative supply chain in
which empty RTIs inventories are virtually pooled among suppliers. We developed an
MILP and solved it using CPLEX. Experiments showed that the virtual pooling of RTIs
significantly reduces new RTI procurement costs as well as inventory and transportation
costs compared to dedicated and shared modes. Moreover, to handle the combinatorial
complexity of the problem, we developed an artificial-immune-system-based algorithm
coupled with deep reinforcement learning tailored to the mathematical program. We
implemented our resolution approach using Python and Pytorch and compared it to the
CPLEX solver and three metaheuristics, namely, AIS without deep learning and GA with
and without deep learning. Both variants of GA and AIS coupled with DQL seem to be
competitive. However, the AIS variant outperformed GA thanks to its immune memory,
which continuously improved the algorithm’s speed and stability in solving the model.
AIS-QDL even allowed for obtaining optimal solutions for some instances and feasible
solutions with a tiny gap and within a small amount of time. Using AIS-QDL, we solved
the model for large instances of up to 700 suppliers, 34 customers, and 31 types of RTIs.
A sensitivity analysis of units’ costs was also conducted. These results highlight how virtual
pooling can be preferable compared to the dedicated and shared modes.

While the benefits of the model and the effectiveness of the AIS-DQL were demon-
strated using randomly generated instances, it would be beneficial to assess further their
effectiveness on real data. Moreover, several possible applications may be investigated.
For example, one could study the integration of cross docks in the RTI flows, as in the
case of automotive supply chains. The idea is to combine and consolidate, when it seems
advantageous, numerous smaller RTI loads provided by different suppliers and to deliver
them downstream. Future research may also investigate the case of stochastic demands as
room to exploit further and assess the limits of the resolution approach to tackle this kind
of problem, the relative power of all parties in decision making, and maximising profit and
its allocation. One way to address this latter may rely on the degree of commitment of the
players. Indeed, as many supply chains experience the highest loss and damage rates of
RTIs (which can be trackable using, for instance, RFID tags), the pool manager can reduce
the costs incurred by “good” users and increase those of the “bad” ones or offer them
training on the use of these RTIs so that they can improve on their weak points, reduce the
environmental impacts, and increase the competitiveness of the whole system. Further-
more, decisions related to fleet composition and fuel consumption are to be considered in
future work.
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