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Abstract

This paper deals with inventory sharing and routing in the context of decentralized supply chains. The supply chain considered
in this paper consists of a single manufacturer distributing its products through a network of independents Points of Sale (POS).
The problem is modeled as a 1-leader - n-followers Stackelberg game. A new mixed-integer bi-level program is developed, in
which the manufacturer decides first on inventory levels and the distribution routes, considering each follower’s (POS) response
function that minimizes the follower’s own cost. A trade-off solution to manage conflict of interests between the parties involved in
the supply chain is also proposed. To solve the mixed-integer bi-level program an original hybrid Genetic Algorithm coupled with
deep reinforcement learning is developed and used to solve a set of large-size instances. The gap analysis shows that the proposed
hybrid algorithm performs quite well and that inventory sharing allows the network to improve its service level.

© 2021 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the 24th Euro Working Group on Transportation Meeting.
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1. Introduction

To increase service levels and reduce logistics costs manufacturers tend to encourage, through lateral transshipment
(LT) policy, sharing of inventories between a network of points of sale (POS) belonging to the same echelon (Wang
et al., 2019). To successfully achieve such economies of scale, each LT policy has to balance conflicting interests and
manage inventories and deliveries. Moreover, it has to choose the appropriate LT price so that both manufacturer and
POS would benefit from LT and its related cost would not exceed the profit to be made (Shao et al., 2011; Atan et al.,
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2018). This is the case of decentralized supply chains in which the same manufacturer does not own POS, and each
decision-maker or level of the supply chain works to optimize its costs (?Li et al., 2020).

In the literature on vehicle routing (VRP) or inventory routing with LT, the problem is thoroughly studied in its
centralized version (?Peres et al., 2017; Lefever et al., 2018). Moreover, to simplify the optimization problems, most
papers assume that LT operations are outsourced and performed by another carrier; only consider decision variables
that determine nodes to visit and periods when LT may occur. However, LT often takes place with independent POS
not owned by manufacturer. On decentralized decision making, LT has been extensively studied in the context of news
vendor-related supply chains (Rudi et al., 2001; Hu et al., 2007; Arikan and Silbermayr, 2018). Two approaches are
used. Non-cooperative game framework in which a manufacturer acts as a Stackelberg leader (?). The other approach
uses cooperative game framework (Anupindi et al., 2001; Granot and Sošić, 2003; Sošić, 2006). Authors address
inventory control problems in which a set of competitive retailers define their inventories unilaterally before satisfying
the demands of their customers and then collectively decide how to share their inventory. It remains, however, that the
LT has been usually treated as the single simplified manufacturer multiple customers inventory management problem
in which vehicle routing, delivery scheduling decision, and the relative power of all parties in the decision making are
not considered.

This paper contributes to the literature in three main dimensions. First, it studies a multi-product multi-vehicle Ve-
hicle Routing Problem (VRP) with LT and Inventory Management (VRP-TIM) in a decentralized supply chain. The
supply chain consists of a manufacturer who distributes products through a network of independent POS. Demand for
finite horizon planning is deterministic but time-varying. Product delivery to the POS is carried out using a homoge-
neous capacitated fleet of vehicles. Moreover, unlike other research, our approach considers that LT is not outsourced.
That is, its related decision is integrated into the design of vehicle routing. Each player’s preliminary decision is to
enhance the service level while maintaining a minimum total cost, which includes transportation, inventory, lost sales,
and LT. Second, the paper suggests a trade-off solution to manage conflict of interests between the supply chain’s
players. Indeed, as a part of the collaboration, the manufacturer and the POS may agree to incur each their own hold-
ing cost as well as a part of the cost of lost sales associated with the products shortage and a part of the cost of LT.
The manufacturer incurs in turn the vehicle routing cost for regular shipments. Therefore, inventory sharing can only
be attractive to all players if the LT and lost sales costs share are optimally defined. Such policies are often optimized
locally as both players aim at reducing their objective functions that are narrowly defined. Therefore, solving such
problems requires hierarchical decision-making, which belongs to the multilevel optimization family (?). Finally, to
handle the combinatorial complexity of the model, an original hybrid Genetic Algorithm (HGA) coupled with deep
reinforcement learning is proposed.

2. Problem modeling

Since the supply chain is decentralized, we formulate the problem as a bi-level program (BLP). We assume that
the manufacturer acts as a Stackelberg leader (Upper Level: UL) that chooses stocking levels and routes to be built,
knowing each POS’s (Lower Level: LL) response function arising from minimizing its costs. In addition, we define
parameter 0 ≤ ϵ ≤ 1 to denote the relative share of the cost of lost sales incurred by POS and 0 ≤ β ≤ 1 to denote the
relative share of the transshipment costs incurred by POS receiving products. The manufacturer incurs the remaining
parts (1 − ϵ) and (1 − β). The parameters ϵ and β can thus be seen as measures of the relative power of the partners
in the supply chain. The related BLP is defined on a graph G = (V, E) where V = {0, . . . , n} the vertex set and
E = {(i, j) : i, j ∈ V, i , j} is the edge set. Let V0 = V\{0} be the set of n POS (LL) and 0 be the vertex representing
the manufacturer (UL). Both the LL and UL incur an inventory holding cost hpi per product p ∈ P = {1, ...,m}.
Each has a maximum inventory holding capacity Ci. The length of the planning horizon is T with discrete periods
t ∈ H = {1, ...,T }. We assume that at the beginning of the planning horizon the current inventory-levels for each
product p, noted Ipi0 and expressed in terms of Stock Keeping Unit (SKU), are known for each i ∈ V . Dpit is the
demand a point of sale i ∈ V0 has for each period t and product p. Let k ∈ K = {1, ..., u} be the available set of
homogeneous vehicles. Each vehicle has a capacity Q (in equivalent SKU), with a fixed transportation cost ck. A
distance di j (expressed in km) is associated to (i, j) ∈ E. The unit cost associated with a product p transshipped from
a POS i to a POS j is api j. spi is the lost sale cost associated with product p at the level of the POS i. fpt the quantity
of product p produced by the manufacturer at period t. The model’s notation summary is given below.
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Nomenclature

V set of nodes including the manufacturer
P set of products indexed by p
K set of available vehicles indexed by k
H set of periods indexed by t

Ci maximum inventory capacity at node i ∈ V
IpiO inventory level at the beginning of the planning horizon at each node i and product p
Dpi demand to be satisfied per POS i ∈ V0 and product p
Q capacity of vehicle
ck fixed transportation cost for each vehicle k
di j distance in km between nodes (i, j) ∈ E
hpi unit inventory holding cost for each node i ∈ V and product p
api j unit transshipment cost of a product p from a POS i ∈ V0 to POS j ∈ V0
spi loss sales cost associated to the product p at the level of a POS i ∈ V0
fpt quantity of product p produced at the manufacturer at period t

Ipit inventory level of product p at node i ∈ V at the end of period t
Qpit quantity of product p directly shipped from the manufacturer to node i ∈ V0 in period t
qpi jkt quantity of product p shipped from node i ∈ V0 to node j ∈ V0 by vehicle k in period t. It includes regular

shipment from manufacturer and LT between POS
wpi jkt quantity of product p transshipped from POS i ∈ V0 to POS j ∈ V0 by vehicle k in order to sidestep the

shortage of the product p in period t
ypit lost sales quantity of product p at POS i ∈ V0 in period t
zkt equal to 1 if the vehicle k is used in period p, 0 otherwise
xi jkt equal to 1 if the arc (i, j) ∈ E is visited by a vehicle k in period t, 0 otherwise

The BLP for VRP-TIM can be then written as:

• Upper level:

min
∑
t∈H

∑
p∈P

hp0Ip0t +
∑
t∈H

∑
k∈K

ck

∑
i∈V

∑
j∈V,i, j

di j xi jkt + (1 − ϵ)
∑
t∈H

∑
k∈K

∑
i∈V0

∑
j∈V0 ,i, j

∑
p∈P

api jwpi jkt + (1 − β)
∑
t∈H

∑
i∈V0

∑
p∈P

spiypit (1)

Ip0t = Ip0t−1 −
∑
i∈V0

Qpit + fpt ∀p ∈ P, t ∈ H (2)

Qp jt −
∑
k∈K

∑
i∈V0 ,i, j

(wp jikt − wpi jkt) =
∑
k∈K

∑
i∈V0 ,i, j

(qpi jkt − qp jikt) ∀p ∈ P, j ∈ V0, t ∈ H (3)

∑
p∈P

qpi0kt = 0 ∀i ∈ V0, k ∈ K, t ∈ H (4)

∑
p∈P

Ip0t ≤ C0 ∀t ∈ H (5)

∑
p∈P

qpi jkt ≤ Qzkt ∀(i, j) ∈ E, k ∈ K, t ∈ H (6)

∑
i∈V

xi jkt =
∑
i∈V

x jikt ∀ j ∈ V0, k ∈ K, t ∈ H (7)
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i∈V

∑
k∈K

xi jkt ≤ 1 ∀ j ∈ V0, k ∈ K, t ∈ H (8)

∑
j∈V0

x0 jkt = zkt ∀k ∈ K, t ∈ H (9)

∑
k∈K

zkt ≤ u ∀t ∈ H (10)

• Lower level:

min
∑
t∈H

∑
i∈V0

∑
p∈P

hpiIpit + ϵ
∑
t∈H

∑
k∈K

∑
i∈V0

∑
j∈V0 ,i, j

∑
p∈P

api jwpi jkt + β
∑
t∈H

∑
i∈V0

∑
p∈P

spiypit (11)

Ipit = Ipit−1 + Qpit − Dpit −
∑
k∈K

∑
j∈V0 ,i, j

(wp jikt − wpi jkt) + ypit ∀i ∈ V0, p ∈ P, t ∈ H (12)

∑
p∈P

Ipit ≤ Ci ∀i ∈ V0t ∈ H (13)

∑
k∈K

∑
j∈V0

wpi jkt ≤ Ipit−1 ∀(i, j) ∈ E, k ∈ K, t ∈ H (14)

The objective function (1) at the UL minimizes its total cost. The first sum corresponds to the inventory cost. The second sum is
for transportation costs. The third is the total shared cost of transshipment (1 − ϵ). The last sum is the total shared cost of lost sales
(1 − β). Constraints (2) indicate the conservation conditions of inventory at the manufacturer over successive periods. Constraints
(3) express the conservation of flows (inflows and outflows) at each POS j. Constraints (4) guarantee that at the end of a period,
vehicles are emptied when returned to the manufacturer. Constraints (5) guarantee that inventory levels at the manufacturer do
not exceed the maximal holding capacity. Constraints (6) state that the quantities transported do not exceed the vehicle capacity.
Constraints (7) stipulate that when a vehicle k visits the POS j in period t, the POS j must be left in period t. Constraints (8) ensure
that at the most, a POS is visited once by a vehicle k per period t. Constraints (9) stipulate that only vehicles shipping products
are used. Constraints (10) indicate that only available vehicles are used. The objective function (11) at the LL minimizes the POS
costs. The first sum corresponds to the inventory cost. The second is the total shared cost of transshipment (ϵ). The last sum is the
total shared cost of lost sales (β). Constraints (12) indicate the conservation conditions of inventory at the POS over successive
periods. The constraints (13) guarantee that inventory levels at each POS do not exceed the maximal holding capacity. Constraints
(14) state that the quantity latterly transshipped from POS i at a period t does not exceed the initial inventory level.

2.1. Reformulation of LL model using Karush-Kuhn-Tucker conditions

The traditional idea of the reformulation of the BLP is to substitute the LL mathematical program by its Karush-Kuhn-Tucker
(KKT) conditions as sufficient and necessary optimality conditions (Bouza Allende and Still, 2012). We use the Lagrangian function
to compute the relative complementary conditions and dual feasibility. Accordingly, the BLP is converted into a single linear
program subject to the UL feasibility constraints, LL primal and dual feasibility constraints, and complementary conditions.

3. Resolution approach

BLP problems are intrinsically hard, even for convex levels. The simplest bi-level linear programs have been proven to be
strongly NP-hard (?). The complexity induced by multiple levels and/or multiple objectives makes exact approaches non-efficient
to tackle large-sized problems. Solving BLP are intrinsically complex and requires hierarchical decision-making, which belongs
to the multilevel optimization family (?). To be able to handle the combinatorial complexity, researchers suggest turning towards
metaheuristics. Among the metaheuristic algorithms, GA has proved to be practical and quite robust in dealing with discrete
problems (?Amirtaheri et al., 2017). This paper proposes a hybrid Genetic Algorithm (GA) coupled with deep reinforcement
learning. Due to the limited number of pages, we limited ourselves in what follows to give a brief description of the resolution
approach. A thorough description is available upon request.
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3.1. Hybrid Genetic Algorithm coupled with reinforcement learning

GA is fast at global search but slow to converge (Nia and Alipouri, 2009). Furthermore, local search heuristics such as Variable
Neighborhood Search (VNS) are good at fine-tuning but often fall into local optimum. In this paper, a hybrid metaheuristic that
combines the properties of GA and VNS is used. Indeed, GA is used to perform a global search to escape from the local optimum,
whereas VNS is used to conduct fine-tuning.

The first step consists of applying the well-known GA for the UL. An initial population of chromosomes representing the
routing decisions of the UL (a sequence of POS to visit) is generated, and its related mixed-integer program is solved. A fitness that
corresponds to the objective function of the UL is then computed. Later on, a double-point crossover is performed. A VNS method is
used to replace any child created with its better neighbor. A reverse mutation is performed depending on the corresponding mutation
rate. VNS is again applied to replace a mutated child with its better neighbor. The following population from the population size of
the best available solutions is chosen. The best available solution based on the computed fitness is saved. All the steps mentioned
above are repeated up until reaching a maximum number of iterations. Based on the best solution of the UL, the above steps are
performed to find the best solution for the LL. Based on the best solution of the LL, an initial solution for the UL is constructed.
All the steps mentioned above are repeated until no improvement of the solution is noted. All the steps mentioned above are
summarized in Algorithm 1.

Algorithm 1 : HGA
1: Generate an initial population.
2: Calculate the fitness value of each chromosome according to UP’s objective function.
3: Execute the crossover operator.
4: Use VNS to replace any child that is generated by the crossover with its best neighbour.
5: Conduct mutation process.
6: Apply VNS method to substitute any child with its best neighbour generated by mutation.
7: Measure the fitness value of all strengthened chromosomes within the current population; select the next population with the best possible

solutions from the population size and save the best relative solution.
8: Repeat steps 3 to 7 until reaching a given maximum number of iterations.
9: Depending on the best UL solution, repeat the above steps for the LL.

10: Depending on the best LL solution, build an initial solution for UL.
11: Repeat steps 2 to 11 until the until no improvement of the solution is noted or a time limit is reached.

Finally, HGA, through its iterative search processes, generates a lot of data that can be turned into explicit knowledge if coupled
with Machine Learning models (Talbi, 2020). This data concern solutions in the decision and the objective spaces visited during
the search process, moves, elite and bad solutions. In this paper, the Deep Q-learning technique (DQ) is used to help analyze this
data, extract valuable knowledge, and guide to enhance the search performance and speed of the HGA. Indeed, DQ is used to help
HGA figures out precisely the best actions to perform regarding the best moves for crossover and mutation operators. With the help
of a two-layer neural network, the Q-value function is approximated. The state is given as the input, and the Q-value of all possible
actions is generated as the output. Once the network is trained, selecting the right action means comparing each action’s possible
rewards and choosing the best one.

4. Computational experiments

This section summarizes the computational experiments performed on a set of instances generated randomly by Coelho and
Laporte (2013) for a multi-product inventory routing problem. The reader is referred to their paper for further details, and can
be downloaded the data set from http://www.leandro-coelho.com/instances/. As for parameter tuning, we use the Irace package
(López-Ibáñez et al., 2016). This package is implemented in R and uses Iterated Race method, which is a generalization of the
Iterated F-race method for the automatic configuration of optimization algorithms. All optimization steps are carried out on a
personal computer (MacBook Pro, macOS Cataline, CPU 3.3 GHz Quad-Core Intel Core i7, 8 GB of RAM). The problem is solved
using the branch-and-cut solver of CPLEX 12.9 and Python 3.7, and Pytorch. For each instance, we performed ten independent
runs using HGA and recorded the average of results. We refer to the instances using the following notation: [number of products]
P [number of POS] N [number of periods] T.

Considering a Stackelberg game, the parameters ϵ and β can be seen as measures of the relative and bargaining power of the
players in the supply chain under consideration. The objective is to determine the scenario in which LT is beneficial and the total
costs are minimized. That is, determine ϵ∗ the fair shares relative to LT cost given the shared parameter β of lost sales cost. To
illustrate the findings and without loss of generality, we consider an instance consisting of 10 POS and five products. For a given
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value of β, we vary ϵ ∈ {0; 0.2; 0.4; 0.6; 0.8; 1} and observe the variation of the total cost at the level of manufacturer and POS. The
intersection of the two curves makes it possible to determine ϵ∗ (see Table 1).

Table 1: Optimal shares relative to the LT for a given value of share of lost sales

β 0 0.4 0.8 1
ϵ∗ ˜ 0,95 ˜0.80 ˜0.68 ˜0.6

From Table 1, we can see that the manufacturer tends to become relatively more interested in instituting inventory sharing
schemes, as the POS incurs higher LT and shortage costs. Indeed, whenever the manufacturer incurs a major part of the cost of lost
sales, he becomes more cautious about sharing the cost of LT. And vice versa. If he incurs a large part of the transshipment cost,
it is in his interest to incur a small percentage of the cost of lost sales. As a result, a fair share of costs and inventory sharing is
efficient if only they make at least one party strictly better-off while making no one else worse-off.

To provide insight regarding the benefits of LT and the representativeness of the results, experiments are conducted considering
two scenarios in which we compare the bi-level model for VRP-TIM with a model VRP-IM in which LT is not considered (its
related variables are set to zero). Table 2 summarizes the results of comparison between CPLEX and HGA in terms of total costs
(TC). They also provide the gap (GAP) computed regarding the total costs obtained using CPLEX (with a time limit of 2 hours).
For each instance under consideration, we remade the same tests by varying ϵ and β in order to determine the optimal ϵ∗ and β∗;
corresponding to the lowest cost recorded so far. Table 3 summarizes the results for each instance under consideration. For all
instances, the breakdown of costs is provided, namely: Transportation (T), Inventory (I), Lost sales (LS), and LT (Ts). Table 3 also
provides the service levels computed with regards to the satisfied and lost demands and reports CPU time in second needed to solve
the models using HGA. Extra experiments have been conducted for a number of periods equal to 3 and 5, and a number of products
between 1 and 50. In this paper, these results are not presented due to the limited number of pages but available upon request.

Table 2: Summary of comparison between CPLEX and HGA on small and relatively large instances- number of product varying between 1 and 5

Instance Model
CPLEX (2hrs) HGA

GAP (%) Instance Model
CPLEX (2 hrs) HGA

GAP (%)
TC TC TC TC

1P10N5T
VRP-IM 54906 57374 4.3

1P10N3T
VRP-IM 18516 18552 0.2

VRP-TIM 25520 26571 4.0 VRP-TIM 9187 9233 0.5

3P10N5T
VRP-IM 83486 86809 3.8

3P10N3T
VRP-IM 29513 29810 1.0

VRP-TIM 41948 45754 8.3 VRP-TIM 17262 17326 0.4

5P10N5T
VRP-IM 95773 100671 4.9

5P10N3T
VRP-IM 31768 31859 0.3

VRP-TIM 64473 68463 5.8 VRP-TIM 21266 21402 0.6

1P20N5T
VRP-IM 83858 89549 6.4

1P20N3T
VRP-IM 34593 34885 0.8

VRP-TIM 63147 63336 0.3 VRP-TIM 21355 21530 0.8

3P20N5T
VRP-IM 128805 131262 1.9

3P20N3T
VRP-IM 42537 42890 0.8

VRP-TIM 94850 101505 6.6 VRP-TIM 30651 30950 1.0

5P20N5T
VRP-IM 150075 165037 9.1

5P20N3T
VRP-IM 57323 57775 0.8

VRP-TIM 96008 106671 10.0 VRP-TIM 34759 34855 0.3

1P30N5T
VRP-IM 213697 214955 0.6

1P30N3T
VRP-IM 75214 75413 0.3

VRP-TIM 126989 127369 0.3 VRP-TIM 44183 44526 0.8

3P30N5T
VRP-IM 218268 229654 5.0

3P30N3T
VRP-IM 84497 84502 0.0

VRP-TIM 149120 165583 9.9 VRP-TIM 61422 61765 0.6

5P30N5T
VRP-IM 342772 376994 9.1

5P30N3T
VRP-IM 146285 147026 0.5

VRP-TIM 305375 311610 2.0 VRP-TIM 120758 121877 0.9

1P40N5T
VRP-IM 698592 713216 2.1

1P40N3T
VRP-IM 298157 300525 0.8

VRP-TIM 555475 564037 1.5 VRP-TIM 211125 213115 0.9

3P40N5T
VRP-IM 1116978 1186197 5.8

3P40N3T
VRP-IM 532164 532675 0.1

VRP-TIM 1113083 1136364 2.0 VRP-TIM 312668 314693 0.6

5P40N5T
VRP-IM 2207908 2278178 3.1

5P40N3T
VRP-IM 1045161 1047582 0.2

VRP-TIM 1941518 1998841 2.9 VRP-TIM 560721 564945 0.7
Average 415526 431083 4.6 Average 160045 160821 0.6

From Table 2 we can see that as expected, HGA can provide solutions with a minimum gap and with less amount of time.
Regarding the benefits of LT, Table 3 shows that it is overall efficient as it reduces lost sales and thus enhances service levels. In
addition, any of the involved parties can end up better off once LT is allowed. Hence, depending on the value of the parameters ϵ∗

and β∗, inventory sharing may work both in favor of or against any of the players, regardless of their relative power and leadership
position in the supply chain.
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Table 3: Summary of results for small and relatively large instances (T=3)

Instances Model Level T I LS Tr TC ϵ* (%) β* (%) SL (%) CPU (s)

5P10N3T
VRP-IM

UL 7750 2651 4594 0 14994
- 62 43 19

LL 0 9344 7520 0 16865

VRP-TIM
UL 9165 2592 178 1408 13343

40 28 74 11
LL 0 7059 70 930 8059

5P20N3T
VRP-IM

UL 13884 6379 15996 0 36260
- 39 35 79

LL 0 11156 10359 0 21515

VRP-TIM
UL 13329 4863 25 2944 21160

48 96 87 76
LL 0 10405 615 2675 13695

5P30N3T
VRP-IM

UL 30478 14134 36659 0 81270
- 45 34 37

LL 0 35832 29924 0 65756

VRP-TIM
UL 62146 19060 197 10028 91430

25 25 78 63
LL 0 27109 66 3272 30447

5P40N3T
VRP-IM

UL 155834 111866 300065 0 567764
- 50 33 74

LL 0 173799 306018 0 479818

VRP-TIM
UL 273518 46603 343 77884 398348

19 67 86 47
LL 0 147900 701 17996 166597

5. Conclusions and perspectives

This paper considers a deterministic, multi-product, multi-vehicle routing problem with LT; in a decentralized supply chain. The
supply chain consists of a manufacturer that sells a set of products through a network of independent POS, running on a franchising
scheme. We model the problem as a bi-level mixed-integer program. We consider that the manufacturer acts as a Stackelberg leader.
The LL: POS optimize their objective function subject to the value of the UL variables. The manufacturer’s goal is to choose a
stock level and routes to be constructed (according to his objective function), knowing that the POS will follow optimally; while
satisfying a set of constraints relative to vehicle routing, products availability, and inventory management. The paper also suggests
a trade-off solution to manage conflict of interests between levels. Finally, it presents a novel and an original resolution approach
that combines a hybrid Genetic Algorithm (HGA) coupled with deep reinforcement learning.

Computational results show that if the manufacturer agrees to take part in the costs of transshipment and lost sales, the network
will improve its service level. They also highlight that the manufacturer seems increasingly more involved as more LT and POS
incur shortages. Furthermore, all of the players involved can end up worse-off once LT is permitted depending on the value of ϵ∗

and β∗.
To examine supply chains characterized not only by one or two decision-makers but also by many divisions at the lower level,

and a mix of small and large POS arranged within a hierarchical structure, the bi-level programming problem we develop could
be generalized in order to model such decentralized systems as well. Finally, as for the resolution approach, coupling HGA with
reinforcement learning helps greatly enhance the quality of the feasible solutions and reduce the computational time; it would be
useful to further assess their effectiveness on a real dataset and other or new variants of the problem.
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