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Abstract Stochastic Block Model (SBM) provides a statistical tool for mod-
eling and clustering network data. In this paper, we propose an extension of
this model for discrete-time dynamic networks that takes into account the vari-
ability in node degrees, allowing us to model a broader class of networks. We
develop a probabilistic model that generates temporal graphs with a dynamic
cluster structure and time-dependent degree corrections for each node. Thanks
to these degree corrections, the nodes can have variable in- and out-degrees,
allowing us to model complex cluster structures as well as interactions that
decrease or increase over time. We compare the proposed model to a model
without degree correction and highlight its advantages in the case of inho-
mogenous degree distributions in the clusters and in the recovery of unstable
cluster dynamics. We propose an inference procedure based on Variational
Expectation-Maximization (VEM) that also provides the means to estimate
the time-dependent degree corrections. Extensive experiments on simulated
and real datasets confirm the benefits of our approach and show the effective-
ness of the proposed algorithm.
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1 Introduction

The Stochastic Block Model (SBM) (Wang and Wong, 1987) has been ex-
tensively studied over the past years for the statistical modeling of relations
among objects (Snijders and Nowicki, 1997; Daudin et al., 2008; Airoldi et al.,
2008; Mariadassou et al., 2010; Abbe, 2017). It provides a powerful tool for
clustering network data with latent variables and can be seen as an extension
of the mixture models for relational data. However, real-world networks are
often time-dependent (e.g. social networks, transportation networks, citation
networks), making of great interest the extension of this model to dynamic
data.

Dynamic graphs can be represented in a discrete-time setup as a series
of adjacency matrices. We focus on the task of clustering the nodes of the
graph at each time step, where we aim at finding meaningful structure in
each snapshot of the graph, while preserving the coherence in the dynamics
of the structure (Fu et al., 2009; Xu and Hero, 2014; Sewell and Chen, 2016;
Matias and Miele, 2017). Classical SBM, applied frame by frame, are here
unsatisfactory, since they would miss the temporal structure of the network.
Therefore, in this paper, we focus on discrete-time dynamic multigraphs –
which can also be seen as temporal graph with non-negative integer weights –
and take into account two specificities of dynamic real-world networks.

First, in such networks, the number of interactions can greatly vary over
time, and nodes can join or leave the network. For instance, in a transportation
network, the number of trips greatly varies from opening to rush hour and some
stations are not served by the rest of the network at certain times.

Second, real-world networks exhibit high degree heterogeneity, where the
degrees approximately follow a power-law distribution (Barabási and Albert,
1999). Classical SBM tends to cluster together nodes with similar degrees, de-
gree corrections are necessary to model graphs with heterogeneous degrees (Kar-
rer and Newman, 2011).

The main contributions of the paper are as follows:

– We propose a model with dynamic degree corrections, for the clustering
of dynamic networks. This allows to model more complex (and arguably
more realistic) graph structures and their dynamics, while keeping the in-
terpretation of the clusters simple (see Sect. 3.1).

– We propose a method to estimate the time-dependent degree corrections
by making use of their regularity (see Sect. 3.3).

– We present in detail an efficient VEM algorithm for this model, and provide
the proofs of the main results (see Sect. 4).

– We illustrate the advantages of applying dynamic degree correction to both
simulated and real-world data (see Sect. 5) and demonstrate the efficiency
of the proposed algorithm by applying the algorithm to real-world dynamic
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Fig. 1: Matrix representation of the dynamic graph

graphs with more than 700 nodes as well as dynamic graphs with more than
500 snapshots (see Sect. 5.2).

Notations Vectors, matrices and tensors are denoted with boldface letters.
We consider a discrete-time temporal network with N nodes in interaction,
represented by a series of adjacency matrices X = (Xt)t∈{1,...,T}, where T
corresponds to the number of snapshots. Xt is the weighted adjacency matrix
of the graph, where Xt

ij ∈ N (see Fig. 1). The graph is directed and without

self-loops (Xt
ii = 0). We note Xt

.j =
∑N

i=1 X
t
ij and Xt

i. =
∑N

j=1 X
t
ij the in- and

out-degrees. Let (Zt
i )t∈{1,...,T} be the discrete latent process associated with

node i, and K denote the number of clusters. If node i belongs to cluster k at
time t, we write Zt

i = k, or equivalently Zt
ik = 1. The sums and the products

relating to time steps, nodes and clusters will be subscripted respectively by
the letters t, i, j, k and ℓ, with implicit limits of variations, so

∑
t,
∑

i,
∑

j ,∑
k and

∑
ℓ will denote respectively

∑T
t=1

∑N
i=1,

∑N
j=1,

∑K
k=1 and

∑K
ℓ=1.

2 Related work

In the purpose of modeling real-world dynamic networks with SBM, we first
focus on models that account for the degree heterogeneity in the network, then
we present existing works on dynamic SBM.

Degree correction in SBM We first consider the following general model for a
static SBM with edges distributed according to

Xij |(Zi = k, Zj = ℓ) ∼ F(λijkℓ)

where F is a scalar parametric distribution and λijkℓ corresponds to the pa-
rameter of the edge Xij between clusters k and ℓ. In Karrer and Newman
(2011), the authors propose to take into account the variability in nodes’ de-
gree in a network by multiplying a node-specific degree correction parameter
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µ to the cluster connectivity matrix γ such that λijkℓ = µiµjγkℓ. For identi-
fiability constraints, µi is normalized such that

∑
i µiZik = 1 for each cluster

k, and can then be interpreted as the probability that an edge in the cluster
of the node i is connected to i. The authors then show that, in contrast to
classical SBM where only the block’s expected values are preserved, this model
also preserves the nodes degrees. The proposed normalization has an intuitive
interpretation, but still depends on the latent factors Z, which makes it dif-
ficult to use in the context of the EM algorithm and thus requires heuristic
methods for inference. This idea is developed in Qiao et al. (2017) in order to
model networks closer to scale-free networks for Bernoulli-distributed edges,
where λijkℓ = γ

1+µi+µj

kℓ , where µi is called the degree-decay variable and is
chosen to follow an exponential prior. Under the assumption that the node
degree is mostly due to the contribution of nodes inside its cluster (assortative
mixing), the authors show that the degree of a node converges to a random
variable that approximately follows a power law distribution. However, the
inference is complex and the authors thus have to rely on MAP estimation
and gradient ascent for the estimation of the parameters. In the context of the
Latent Block Model (Ailem et al., 2017b,a; Govaert and Nadif, 2018) propose
to add a row effect and a column effect λijkℓ = µiνjγkℓ and normalize µi and
νj such that E(Xi.) = µi and E(X.j) = νj ; the model is simply replaced by
λijkℓ = Xi.X.jγkℓ. However, this normalization is not applicable in the context
of the SBM because of a dependency structure stricter than in LBM.

Dynamic extensions of SBM Using a continuous approach, Matias et al. (2018)
consider the set of all timestamped interactions between nodes without any
aggregation as a realisation of a point process. A non-homogeneous Poisson
counting process is associated to the point process, with a SBM latent struc-
ture that imposes a common intensity function in each block. The authors
propose a VEM algorithm with two different M-steps for the estimation of the
infinite-dimensional intensity functions based on an histogram method and a
kernel method. Corneli et al. (2018) consider the same model but assume that
the intensities are constant on some unobserved intervals that are determined
as the changepoints of the intensity functions.

In a discrete-time approach, Corneli et al. (2016) propose to extend SBM
to dynamic graphs with discrete time steps by seeking clusters of nodes that do
not evolve over time and clusters of time periods. In this approach, the edges
of the graph are modeled with non homogeneous Poisson processes and the
intensity function for a given block is considered constant on each clustered
time interval. For the inference, the authors rely on a greedy maximization
of the Integrated Classification Likelihood (ICL) (Biernacki et al., 2000) in a
Bayesian context. Another approach is presented in Matias and Miele (2017),
in an algorithm referred to as dynsbm, where the latent variables can evolve
over time, based on independent and identically distributed Markov chains.
Thus, the nodes of the graph can change cluster over time, and the initial
distribution over the clusters as well as the transition probabilities between
clusters of consecutive time steps are estimated. The authors show that, in
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order to ensure the identifiability of the model: either the clusters are defined
by a constant set of nodes and the clusters can have different characteristics
over time, or the nodes can change cluster membership over time but the
clusters must have some time-independent characteristics. For the inference,
the authors follow a variational EM approach. In Rastelli et al. (2018), the
authors rely on a model relatively similar to Matias and Miele (2017) but in a
Bayesian context. It differs in that the parameters of the blocks’ distributions
are fixed over time. The authors must then rely on possibly empty clusters at
some time steps to provide the model with flexibility. The inference and the
model selection are then realized as in Corneli et al. (2016). In the two previous
models, the intra-cluster connectivities are time-independent and, since there
is no degree correction, the degree distribution inside a cluster is homogeneous.
Consequently, if one wants to model decreasing or growing interactions, the
model will require a large number of clusters which, for most snapshots, will
be empty.

3 The proposed model

3.1 Definition of the model

Model Let (Zt
i )i be N independent homogeneous Markov chains on the set

{1, . . . ,K} with initial multinomial distribution of parameter α, transition
matrix π. The weights of the directed edges of the graph Xt

ij are sampled
according to a Poisson distribution, whose intensity is determined by 3 factors:
the margin term µt

i related to the head node i at time t, the margin term νtj
of the tail node j at time t and the constant block term γkℓ corresponding to
interactions between nodes of cluster k and nodes of cluster ℓ. The model can
be written :

Z1
i ∼ Multinomial(1; α1, . . . , αK) (1a)

Zt+1
i |Zt

i = k ∼ Multinomial(1; πk1, . . . , πkK) (1b)

for i ̸= j, Xt
ij |
(
Zt
i = k, Zt

j = ℓ
)

∼ Poisson(µt
iν

t
jγkℓ). (1c)

When using this model in a clustering context, we seek a constant cluster
structure γ and a simple cluster dynamic given by α and π. The use of a
constant connectivity matrix γ allows for a simple interpretation of the clusters
(compared to the dynamic connectivity matrix of dynsbm), while the dynamic
degree corrections µ and ν gives the model the flexibility required in a dynamic
context by preserving the nodes in- and out-degrees.

These degree corrections can also be related to Banerjee et al. (2007), in the
context of co-clustering – i.e. the simultaneous partition of rows and columns
of a data matrix; see for instance (Schepers et al., 2017; Bock, 2020; Affeldt
et al., 2021). Banerjee et al. (2007) show that there only exists six co-clustering
bases, which can be sorted by level of complexity, depending on the number
of statistics preserved by the model. The authors experimentally show that
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more complex bases are required as the clusters separability decreases. Here,
clustering using the degree corrections corresponds to using a more complex
co-clustering base than without degree correction.

Considering a variable number of nodes As proposed in Matias and Miele
(2017), the latent processes can be adapted in order to take into account
nodes entering or leaving the network at certain time steps. This allows us
to deal with zero-degree nodes as well as nodes with a very low degree at
a given time step. For instance, in Sect. 5.2, in order to focus on the main
interactions in the network, we consider that nodes with a degree below 5 at a
given time step are absent. Let V = {1, . . . , N} be the set of all nodes present
over the T snapshots, and let V t ⊂ V be the set of nodes present at time t.
Let {0, . . . ,K} be the set of clusters, where the cluster 0 at time t contains the
nodes considered absent at time t, i.e. V t. For i ∈ V , for k, ℓ ∈ {1, . . . ,K}, we
consider the transition probabilities (2) from and to cluster 0, where 1 equals
1 if its argument is true and 0 otherwise.

P (Zt
i = 0|Zt−1

i = 0) = 1(i ∈ V t), (2a)

P (Zt
i = 0|Zt−1

i = k) = 1(i ∈ V t), (2b)

P (Zt
i = k|Zt−1

i = 0) = αk1(i ∈ V t), (2c)

P (Zt
i = ℓ|Zt−1

i = k) = πkℓ1(i ∈ V t). (2d)

Hence (Zt
i )t∈{1,...,T} forms an inhomogeneous Markov chain on {0, . . . ,K},

with deterministic transitions to the cluster 0, and transitions from cluster 0
modeled with the same parameter α as the distribution at t = 0.

Complete data log-likelihood Let ϕ(.;λ) be the probability mass function of a

Poisson distribution of parameter λ. Let At = V
t−1 ∩ V t be the set of nodes

appearing at time t and St = V t−1 ∩ V t be the set of nodes staying between
time t and t+ 1. The complete data log-likelihood of the model is:

logP (X,Z;θ) =
∑
i∈V 1

∑
k

Z1
ik logαk +

∑
t≥2

∑
i∈At

∑
k

Zt
ik logαk

+
∑
t≥2

∑
i∈St

∑
kℓ

Zt−1
ik Zt

iℓ log πkℓ (3)

+
∑
t

∑
i,j∈V t

i ̸=j

∑
kℓ

Zt
ikZ

t
jℓ log ϕ(X

t
ij ;µ

t
iν

t
jγkℓ).

3.2 Inference

Variational Inference We seek to jointly infer the latent factors Z and obtain
a maximum likelihood estimate the model parameters θ = {α, π, µ, ν, γ}.
As directly maximizing the likelihood of the model with the EM algorithm is
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not possible, we instead rely on the interpretation of EM proposed in Neal
and Hinton (1998) and use, as in Matias and Miele (2017), a structured
variational approximation (Ghahramani and Jordan, 1997) of the distribu-
tion over the latent variables (Govaert and Nadif, 2005; Daudin et al., 2008).
We use a variational distribution Q among the distributions over the la-
tent space that factorize as N independent inhomogeneous Markov chains
Q(Z) =

∏
i Q(Z1

i )
∏

t≥2 Q(Zt
i |Z

t−1
i ) and define the variational parameters:

q(i, k) = Q(Z1
i = k) and q(t, i, k, ℓ) = Q(Zt

i = ℓ|Zt−1
i = k). We can then re-

cursively compute the marginal probabilities:

Q(Zt
i = k) = q(t, i, k) =

∑
k′

q(t− 1, i, k′)q(t, i, k′, k). (4)

For the Variational EM algorithm, we optimize a lower-bound F (q,θ) of the
log-likelihood ℓ(θ) of the model, where q denotes the vector of variational
parameters:

ℓ(θ) ≥ F (q,θ) = EQ

(
logP (X,Z;θ)− logQ(Z)

)
. (5)

It can be shown (see Appendix A) that:

F (q,θ) =
∑
i∈V 1

∑
k

q(i, k) log
αk

q(i, k)
+
∑
t≥2

∑
i∈At

∑
k

q(t, i, k) log
αk

q(t, i, k)

+
∑
t≥2

∑
i∈St

∑
kℓ

q(t− 1, i, k)q(t, i, k, ℓ) log
πkℓ

q(t, i, k, ℓ)
(6)

+
∑
t

∑
i,j∈V t

i ̸=j

∑
kℓ

q(t, i, k)q(t, j, ℓ) log ϕ(Xt
ij ; µ

t
iν

t
jγkℓ).

Expectation step For the expectation step (E-step), we update the variational
transition probabilities with (7a, 7c, 7b). These formulas are not obtained by
the exact maximization of F (q,θ) w.r.t. q because of the heavy computa-
tions involved (for this, see (Bartolucci and Pandolfi, 2020)) but are rather
obtained by optimizing F for each t with a coordinate ascent algorithm where
the transition and marginal probabilities at time step t′ ̸= t are fixed (see
Appendix B).

Let ϕt
ijkℓ = ϕ(Xt

ij ; µ
t
iν

t
jγkℓ) be the likelihood of edge (i, j) at time t in

block (k, ℓ) and let dtik =
∑

ℓ q(t, i, k, ℓ)
(
log q(t, i, k, ℓ)−log πkℓ

)
, the Kullback-

Leibler divergence between the variational transition probabilities from cluster
k and the model transition probabilities from cluster k. Regarding the last time
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step t = T , we also define dT+1
ik = 0.

∀i ∈ V 1, q(i, k) ∝ αk exp (−d2ik)
∏
j ̸=i

∏
ℓ

(
ϕ1
ijkℓϕ

1
jiℓk

)q(j,ℓ)

, (7a)

∀i ∈ At, q(t, i, k) ∝ αk exp (−dt+1
ik )

∏
j ̸=i

∏
ℓ

(
ϕt
ijkℓϕ

t
jiℓk

)q(t,j,ℓ)

, (7b)

∀i ∈ St, q(t, i, k, ℓ) ∝ πkℓ exp (−dt+1
iℓ )

∏
j ̸=i

∏
ℓ′

(
ϕt
ijℓℓ′ϕ

t
jiℓ′ℓ

)q(t,j,ℓ′)

. (7c)

The term exp (−dt+1
iℓ ) in (7c) penalizes the transition of node i to state ℓ at

time t if the transition from cluster ℓ at time t + 1 is not in accordance with
the estimated cluster dynamics π. E-step (7b) is directly expressed in terms of
marginal probabilities since nodes that appear at a given time step (i.e. nodes
that are present at the current time step and were absent at the previous time
step) are necessarily in cluster 0 at the previous time step: for t ≥ 2 and for

i ∈ V
t−1 ∩ V t, we have q(t, i, k) = q(t, i, 0, k).

Maximization step To update the parameters in the maximization step (M-
step), we use an ECM algorithm (Meng and Rubin, 1993), replacing the max-
imization of F (q,θ) w.r.t. θ by a series of conditional maximizations. The
CM-steps are given in (8). We first update the mixture proportions α and π,
and γ since they only depend on q. Next, we update µ given γ and ν, and
finally ν given γ and µ (see Algorithm 1).

α̂k ∝
∑
i

q(i, k) +
∑
t≥2

∑
i∈At

q(t, i, k), (8a)

π̂kℓ ∝
∑
t≥2

∑
i∈St

q(t− 1, i, k)q(t, i, k, ℓ), (8b)

γ̂kℓ =

∑
t

∑
ij|i ̸=j q(t, i, k)q(t, j, ℓ)X

t
ij∑

t

∑
ij|i̸=j q(t, i, k)q(t, j, ℓ)µ

t
iν

t
j

, (8c)

µ̂t
i =

Xt
i.∑

j ̸=i

∑
kℓ q(t, i, k)q(t, j, ℓ)ν

t
jγkℓ

, (8d)

ν̂tj =
Xt

.j∑
i ̸=j

∑
kℓ q(t, i, k)q(t, j, ℓ)µ

t
iγkℓ

. (8e)

We can notice that M-step for µt
i corresponds to setting the expected in-degree

(with current parameters) to the observed in-degree. In fact, for a Poisson
distribution, we have:

EQ

(
E
(
Xt

i.|Z;θ
))

= µt
i

∑
j ̸=i

∑
kℓ

q(t, i, k)q(t, j, ℓ)νtjγkℓ.
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3.3 Temporal smoothing for continuous margins

The margins provide the model with great flexibility (see Sect. 5), but makes
the inference more dependent on the initial parameters. However, in many ap-
plications, the degrees of a node are correlated between two consecutive time
steps. Consequently, the degree correction parameters should exhibit some
regularity. We thus propose to use a method we call temporal smoothing to
better estimate the margins using their regularity. This method consists in
keeping the margins constant over time in a first phase of the VEM algorithm
(µt

i = µi and νtj = νj), and then to progressively release this constraint during
the next iterations of the algorithm. This is equivalent to using the estimated
parameters of a model with constant margins to initialize a model with less
constrained margins. This procedure is iterated until the model without con-
strained margins (i.e. µt

i and νtj are estimated as in (8d, 8e)) is initialized.
In order to release the constraint of constant margins progressively, it

should first be noticed that, if in the model µt
i is constant over time, then its M-

step resolves to
∑

t n
t
µi
/
∑

t d
t
µi
, where nt

µi
and dtµi

are respectively the numer-
ator and denominator of the unconstrained M-step (8d). We consider nµi

=
(n1

µi
, . . . , nT

µi
)⊺ and dµi = (d1µi

, . . . , dTµi
)⊺ and propose a temporal filtering SW τ

for the numerators and denominators nµi and dµi , where τ ∈ [0, 1] controls the

level of smoothing. The filtering is written SW τ (nµi)t =
∑

t′ W
τ
tt′n

t′

µi
, where

W τ
tt′ is given by (9)(see Fig. 2).

W τ
tt′ ∝ exp

(
− τ

1− τ
(t′ − t)2

)
,
∑
t′

Wtt′ = 1. (9)

This expression of the weights has the following properties:

W τ
tt′ −−−→

τ→0

1

T
, W τ

tt′ −−−→
τ→1

1(t′ = t).

We then estimate µt
i and νtj with smoothing parameter τ according to (10).

1 T
0.0

0.5

1.0

1 T 1 T 1 T

Fig. 2: Weights W τ
tt′ of the temporal smoothing as a function of t′ for t = 8,

for increasing amount of smoothing τ ∈ {0, 1/3, 2/3, 1}.

τ µ̂t
i =

SW τ (nµi
)t

SW τ (dµi
)t
, τ ν̂tj =

SW τ (nνj )t

SW τ (dνj
)t
. (10)

The same principle can also be applied successfully to the time-varying con-
nectivity matrix of dynsbm (data not shown). This approach also benefits the
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estimation of the mixture parameters. In fact, we start the inference with a
model with a reduced capacity that will have to first focus on the estimation
of α and π before reaching its full capacity.

Here are some guidelines for the choice of smoothing schedule. The key is to
aim for the objective criterion F (q(c), θ̂(c)) to increase smoothly between two
consecutive values of the smoothing parameter τ . The length of the schedule
should also be increased according to the difficulty of the clustering problem
and the number of snapshots considered. After experimentation, we opted for
a sigmoidal schedule with 10 steps for our experiments.

4 Algorithm

4.1 Initialization

As the proposed model relies on the principles of EM for inference, it finds
local optima of the likelihood function, thus making it dependent on its initial-
ization. In static SBM, a natural idea to initialize the parameters is to rely on
k-means applied to the rows of the adjacency matrix to obtain a partition of
the nodes from which we apply M-step. In the dynamic case, in order to avoid
local label-switching issues, we follow the method of Matias and Miele (2017)
and Rastelli et al. (2018) that consists in applying a clustering algorithm on
the N×TN matrix formed by the concatenation of the rows of each adjacency
matrix and setting each node to the same cluster over time. We initialize α
and γ with a first M-step and set µ and ν to 1 for all nodes and time steps.
Since at initialization each node is in the same cluster over time, initializing
π with M-step would result in π = IK , leading the algorithm to favor sta-
ble partitions (i.e. without inter-cluster transitions) during its first iterations,
instead of exploring more complex cluster dynamics. Thus, we propose to ini-
tialize π with πkk = π0 ∈ [0, 1] and for k ̸= ℓ, πkℓ = 1 − π0

K−1 , where π0 can
be chosen according to our prior knowledge on the cluster dynamic (in our
experiments, we set π0 = 0.7). The algorithm is initialized several times for a
given initial partition, and, at each new initialization, a fraction of the nodes
of each snapshot is reassigned to random clusters. We then select the partition
of the nodes and estimated parameters that produces the highest objective
function F .

4.2 Intermediate variables for the E and M steps

To reduce the computing time, note that the E-M steps can be simplified by
considering the expression of the Poisson density function. For this, we rely
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on the intermediate variables (11) before E-step.

At
iℓ′ =

∑
j ̸=i

q(t, j, ℓ′)Xt
ij , Bt

iℓ′ =
∑
j ̸=i

q(t, j, ℓ′)Xt
ji,

M t
k =

∑
i

q(t, i, k)µt
i, N t

ℓ =
∑
j

q(t, j, ℓ)νtj , (11)

M t
jk = M t

k − q(t, j, k)µt
j , N t

iℓ = N t
ℓ − q(t, i, ℓ)νti .

Using (11), E-step (7c) can be written, up to a constant:

∀i ∈ St, log q(t, i, k, ℓ) = log πkℓ − dt+1
iℓ +

∑
ℓ′

(
γℓℓ′A

t
iℓ′ + γℓ′ℓB

t
iℓ′
)

− µt
i

∑
ℓ′

γℓ′ℓN
t
iℓ′ − νti

∑
ℓ′

γℓℓ′M
t
iℓ′ . (12)

The M-steps for γ, µ and ν can be written:

γ̂kℓ =

∑
ti q(t, i, k)A

t
iℓ∑

t M
t
kN

t
ℓ

,

µ̂t
i =

Xt
i.∑

kℓ q(t, i, k)N
t
iℓγkℓ

, ν̂tj =
Xt

.j∑
kℓ q(t, j, ℓ)M

t
jkγkℓ

.

(13)

4.3 Algorithm and computational complexity

The proposed algorithm, which we refer to as pdc-dsbm, is presented in Al-
gorithm 1. The computational bottleneck of the algorithm is the computation
of the intermediate variables and the expectation step of EM (12). Let I be
the total number of iterations of the VEM algorithm, the time complexity
is O(ITN2K2). Regarding the space complexity of the algorithm, the use of
the intermediate quantities A, B, M and N allows E-step to require only
O(TNK) space. The space complexity of the algorithm is thus determined by
X and q, which makes it O(TN2 + TNK2).

5 Experimental results

In this section, we first evaluate pdc-dsbm on synthetic data, where we control
the complexity of the clustering task w.r.t. the class transitions and the class
overlap. We show experimentally the benefits of the margins and compare the
performances of the proposed algorithm with different underlying models (with
and without margins). We then apply pdc-dsbm to two real-world datasets
corresponding to two very different transportation networks and show the
coherence of the obtained results.
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Algorithm 1 pdc-dsbm: Poisson degree corrected dynamic SBM

Input:
– Adjacency matrices X ∈ NT×N×N ,
– Number of clusters K,
– Schedule for the smoothing parameter τ ,

starting from 0 and increasing to 1,
– Stopping criterion ϵ > 0,
– Intra-cluster initial transition probability π0,
– Initial partition of the nodes 0Z obtained following Sect. 3.2.

Initialization:
Set the loop counter c = 0 and ∆(0) > ϵ
Set the smoothing parameter τ(0) = 0

Initialize q with the initial partition: ∀k, q(0)(t, i, k, ℓ) = 1 if 0Zt
iℓ = 1

Update the marginal probabilities with (4)
Set µ̂(0) and ν̂(0) to 1
Initialize α̂(0), γ̂(0) with M-step (8a, 8c)
Initialize π̂(0) with π0 following Sect. 3.2,
Initialize µ̂(0) and ν̂(0) with M-step (10)

repeat
repeat

increment c
Compute the intermediate variables (11)
E-step:

for t = 1, . . . , T do
Update q(c)(i, k) with (7a)
Update q(c)(t, i, k, ℓ) with (7c) if i ∈ St

Update q(c)(t, i, k) with (7b) if i ∈ At

Update marginal q(c)(t, i, k) with (4)
end for

M-step:
Update α̂(c) and π̂(c) with (8a) and (8b)
Update γ̂(c) with (8c) using τ(c−1) µ̂(c−1) and τ(c−1) ν̂(c−1)

Update τ(c) µ̂(c) with (10) using γ̂(c) and τ(c−1) ν̂(c−1)

Update τ(c) ν̂(c) with (10) using γ̂(c) and τ(c) µ̂(c)

Compute ∆(c) = |F (q(c), θ̂(c))− F (q(c−1), θ̂(c−1))|
until ∆(c) < ϵ
Update τ(c) according to the smoothing schedule

until τ(c) = 1 and ∆(c) < ϵ

Return: q(c), θ̂(c)

Compared algorithms In Matias and Miele (2017), the authors showed through
intensive experiments – in the context of Bernoulli distributions – that dynsbm
outperforms the algorithm presented in Yang et al. (2011) (in its offline ver-
sion), which gives similar performances compared to the algorithm of Xu and
Hero (2014) but with slower inference. In Yang et al. (2011), the authors
showed that their algorithm outperforms the ones of Lin et al. (2009) and Chi
et al. (2007). Consequently, we choose to compare our algorithm — pdc-dsbm

— to dynsbm for Poisson distributions1. The algorithm dynsbm for complete

1 We could not compare pdc-dsbm directly to the authors’ algorithm because their R
package dynsbm V0.7 only implements Bernoulli, Multinomial and Gaussian distributions,
so we had to re-implement it for Poisson distributions.
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multigraphs corresponds to a model Xt
ij |
(
Zt
i = k, Zt

j = ℓ
)

∼ P(γt
kℓ) with

γt
kk = γkk and with a VEM algorithm, without temporal smoothing.

Comparing partitions with global and local metrics In a dynamic clustering
context, in addition to the global label-switching problem – i.e. we can only
recover the dynamic clusters up to a permutation – we also face the more
challenging but essential problem of local label-switching, that consists in cor-
rectly matching clusters of nodes over time. In order to evaluate the partitions
obtained by the model when one has a reference partition, we consider the
Adjusted Rand Score (ARI) (Hubert and Arabie, 1985). This metric can be
computed for each snapshot of the graph, however this is not informative of
the matching of the clusters over time. Consequently, we use two different ver-
sions of these metrics: the average of the metric on each local snapshot, i.e. T
partitions of N points, and a global metric, considering one partition of TN
points.

5.1 Experiments on synthetic data

Sampling data from the model In the experiments, we consider directed graphs
with self-loops sampled with T = 15 time steps and N = 200 nodes. In the
following, we will denote the model without margins – used in dynsbm – as
M− and the model we propose as M+. For a given parameter θ we sample the
complete data (X,Z) either with M− or M+. For each set of parameters, we
sample 20 samples of complete data. Then, for each complete data, we apply
20 times the two algorithms we compare, each time with the same initializa-
tion not to favor any model. When generating the margins, their values at
t = 0 µ0

i and ν0j are sampled from {1, . . . , 100} with a power law P (k) ∝ k−λ

with λ = 1.5, resulting in skewed margins. The dynamic margins are sam-
pled using a first order auto-regressive process with Gaussian noise, where
µt
i ∼ N (aµt−1

i + b;σAR), where a = 1.15, b = µ0
i (1 − a) and σAR = 0.05. We

add a zero-mean Gaussian noise to each edge sampled from the model, and
we control the class overlap with the standard deviation of the noise (σM−

and σM+
). Edges weights are rounded down and edges with negative weights

are clipped to zero. For a given set of complete data, the compared algorithms
are initialized with the same initial partition, and, at each new initialization, a
fraction f = 0.1 of the nodes of each snapshot is reassigned to random clusters.
The experiments are carried out with K = 3 clusters and α = (0.5, 0.3, 0.2)⊺,
for 4 transition matrices: π0 (diagonal) and π+, π++, π+++ with respectively
10 %, 25 % and 40 % of inter-cluster transitions between two time steps an
equal off-diagonal terms, for σM− ∈ {4, 5, 6} and2 σM+

∈ {40, 50, 60} respec-

tively corresponding to overlaps σ+, σ++ and σ+++, and for γ =
( 1 2 3
3 2 1
2 1 3

)
. In

order to measure select the noise levels to obtain different degrees of overlap

2 More noise needs to be added for M+ since margins greater than one spread the classes
apart
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of the clusters, we first project the rows and columns of the adjacency matrix
with Correspondence Analysis (CA) (Benzecri, 1973; Greenacre, 2007) onto
RN , then we measure the linear separability of the clusters with Linear Dis-
criminant Analysis. As described in Govaert and Nadif (2013, 2018), there
is a link between a Poisson model and mutual information on the one hand,
and between the mutual information and the χ2 criterion on the other. This
justifies the choice of CA, which uses the χ2 metric (where PCA relies on the
variance). To measure the linear separability of the clusters, we compute the
ratio between the inter-cluster variance and the total variance of the data pro-
jected onto each of the factorial axes. Each of the ratios is in [0, 1], a ratio of
1 meaning that the intra-cluster variance on the factorial axis is null (i.e. the
clusters are linearly separable), and a ratio of 0 meaning that the centers of
gravity of each cluster are projected onto the same point on the factorial axis.
These values, reported on Table 1, show that the three connectivity matrices
lead to clusters that are decreasingly linearly separable. The projection of the
data onto the factorial axes of order greater than 3 cannot separate the classes
since most inertia (measured by χ2) is explained by the first two axes.

Table 1: Ratios of the inter-cluster variance and the total variance of the data
projected by CA onto each of the factorial axes for the rows and the columns
of the adjacency matrix sampled using M+, with different noise levels and
equal mixing proportions. The results are averaged over 100 matrices.

Factorial axis
Class separability Noise level 1 2

σ+ 0.85 ± 0.01 0.45 ± 0.04
Rows σ++ 0.79 ± 0.02 0.33 ± 0.04

σ+++ 0.71 ± 0.02 0.27 ± 0.04
σ+ 0.85 ± 0.01 0.47 ± 0.04

Columns σ++ 0.77 ± 0.02 0.32 ± 0.04
σ+++ 0.69 ± 0.02 0.26 ± 0.03

Benefits of the temporal smoothing We sample complete data with a model
M+ and compare the results obtained when also testing with a model M+,
with and without the proposed temporal smoothing for the parameters µ and
ν on Fig. 3. We observe that the algorithm with temporal smoothing performs
better in terms of global metrics than without temporal smoothing, with the
exception of the smoothing of the margins for a diagonal transition matrix.
This difference in performance is not very consequent in terms of local metrics,
which indicates that the partitions obtained with an algorithm with or without
smoothing mainly differ in that they correctly match the clusters over time.
This can be explained by the fact that the model capacity is reduced at the
beginning of the EM algorithm in order to focus on the mixture proportions.
Hence, the proposed temporal smoothing allows to avoid some of the local
optima that correspond to partitions with local label-switchings. It should
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Fig. 3: Comparison of the clustering performances in terms of local and global
ARI of model M+ with and without smoothing of both µ and ν, for increasing
levels of class separability and class transitions. Data sampled using M+.

nevertheless be noted that this is necessarily done at the expense of a slower
convergence.

Comparison with a model without margins First, we observe that the addi-
tion of margins to the initial model gives qualitatively different results, as
illustrated in Fig. 4. The clusters found with M+ are not limited to nodes
of similar degrees as with M−, but consist of nodes with similar connection
profiles, i.e. nodes that connect in the same proportions to the nodes of other
clusters, which tends to be of greater interest for real-world networks. In order
to assess quantitatively the performances of pdc-dsbm, we set up the following
experiment: the complete data are sampled from the model M+ and M− as
described above. The two algorithms compared use temporal smoothing, as we
showed it results in better performances. We do not report the results when
the data is sampled using M+ since in that case M− always returns partitions
with metrics close to zero (local ARIs below 0.01), whereas M+ correctly re-
covers the clusters, making M+ clearly superior in this setup. We observe on
Fig. 5 that, even in an unfavorable setup, the model M+ remains competitive
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Fig. 4: Clusters obtained respectively with M− (left) and M+ (right). The
initial graph is undirected and sampled using M+. The color of the nodes
represents their true cluster and their position on the plane corresponds to
the clusters obtained with the algorithm. The weights of the edges are given
by their color (yellow and red correspond respectively to low and high weight).

with M−, especially in terms of global metrics. In fact, the differences in global
metrics between M− and M+ are relatively small but the differences in local
metrics are greater, indicating that the margins provide more flexibility to M+

that deals better with local label-switching. Another important point to be no-
ticed is that when the separability of the classes is very low, M+ seeks slightly
different clusters than M−, as can be seen in the local metrics of (σ+++, π0),
where class transitions do not come into play.

5.2 Experiments on real-world data

Ridership in the Bay Area Rapid Transit BART is a rapid transit public
transportation system serving the San Francisco Bay Area in California. This
dataset3 represents BART ridership by origin and destination pairs for each
of the N = 45 stations of the network, each hour from 7 a.m. to 1 a.m, from
January 5 to February 1, 2015, over T = 528 snapshots. The number of edges
in the multigraph varies over time, with increasing and decreasing interactions
everyday. We chose the number of clusters K = 7 using the elbow method on
the likelihood of the complete data. We first observe a strong periodicity in the
clusters sizes over time, with a special behavior during the week-end (Fig. 6),
and that most snapshots of the graph can be described by 2 or 3 non-empty
clusters. However, on Monday, January 19, we observe a different behavior
compared to other Mondays: there is no time period when all the stations
are in clusters {2, 3, 4} as during the peak times in the morning and in the
evening. In fact, this day corresponds to the Martin Luther King Jr. holiday.
Moreover, we observe 4 main settings over time: morning peak time (7 a.m.
to 11 a.m., with clusters 2, 3 and 4), daytime (11 a.m. to 3 p.m, with cluster

3 http://64.111.127.166/origin-destination/
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Fig. 5: Comparison of the clustering performances in terms of local and global
ARI of model M− and model M+, for increasing levels of class separability
and class transitions. The algorithms use temporal smoothing and the data
is sampled using M−, which makes the setup unfavorable for model M+. The
same experiment with data sampled from M+ always returns partitions with
local ARIs below 0.01 for model M−, while M+ correctly recovers the clusters.

1, 5 and 6), evening peak time (3 p.m. to 7 p.m., clusters 2, 3 and 4) and
night (7 p.m. to 12 p.m, with clusters 1 and 7). Note that the morning and the
evening peak time are composed of the same clusters. The obtained clusters
exhibited both assortative and disassortative connectivities (not shown here).
The periodicity of the cluster sizes over time can then be exploited to consider
the most frequent cluster assignment of the stations at a given period of the
day.

Transport for London cycle data The dataset4 is a record of all the trips on the
bike-sharing network of London between August 15 and August 28, 2019 over
N = 778 stations. We considered a dynamic network with one snapshot every
day (i.e. T = 14). As the sparsity of the graphs is important (95% on average),
a station can be classified based on a very small number of trips, which can
lead to very noisy partitions. Thus, we propose to set a threshold of 5 for the

4 https://cycling.data.tfl.gov.uk/
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Clusters
1
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4
5
6
7

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Fig. 6: Cluster sizes during the three last weeks of the dataset, from January 12
to February 1, 2015. Each sub-block corresponds to a day of operations, from 7
a.m. to 2 a.m, with January 19 (Martin Luther King Jr. holiday) marked with
a star. The size of each cluster at a given time is represented by its vertical
span, ranging from 0 (absent) to 45 stations (full height).

Fig. 7: Class transitions between August 15 and 28, 2019 represented by an al-
luvial diagram. Each cluster is characterized by a color, its size is proportional
to the number of nodes it contains. Time is represented from left to right, and
cluster transitions between consecutive time steps are represented by a colored
flow (grey for intra-cluster and black for inter-cluster transitions). The cluster
of absent nodes is represented in third position, starting from the bottom.

minimum degree of a node: below this threshold, the node is considered absent.
The number of cluster K = 7 is chosen as previously, and, unlike BART, the
obtained clusters are highly assortative (not shown here). The clusters size
and transitions are represented on Fig. 7. We observe relatively stable clusters
from the 16th to the 23th and many cluster transitions the 24th and 25th.
These transitions can probably be explained by the fact that the Notting
Hill Carnival (2.5 million attendees) took place on the 25th and 26th and
that the 25th is a bank holiday. The clusters on Sunday, August 18, 2019 are
presented on Fig. 8a and 8b. It can be seen on Fig. 8a that the clusters are
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Fig. 8: Clusters on Sunday, August 18, 2019 and kernel density estimates of
the stations degrees for each cluster. Left : model with margins, right : model
without margins

geographically correlated, which is coherent with bike trips since the obtained
cluster structure is assortative. However, some stations of the cluster 3 (red
points with white circle on) are surrounded by stations of other clusters. This
can be justified by the stations’ direct proximity to Hyde Park, which has
designated cycle routes, making trips across the park very likely. The clusters
are of comparable geographical sizes, with larger clusters on the periphery and
smaller ones in the city center, around touristic areas. When comparing the
partitions obtained with and without margins, we observe that M− provides
a partition which is less geographically coherent than M+. Moreover, Fig. 8c
and 8d shows that the degree distribution inside each cluster is homogeneous
in the case without margins: the degree of a nodes determines in part the
cluster it can belong to. In fact, for a model without margins, a node with a
degree of 180 is more likely to be in cluster 5 than in cluster 7, independently
of the node’s connectivity profile. In the case with margins (left), we observe
that the clusters have similar degree distributions. Thus, the margins allow our
model to be independent from the nodes’ degrees and to focus on the nodes
connection profiles.

6 Discussion and future work

In this paper, we introduced a Poisson dynamic Stochastic Block Model with
degree corrections that allowed us to model dynamic graphs with a high vari-
ability in the nodes’ degrees. We highlighted experimentally that these degree



20 Paul Riverain et al.

corrections allow us to deal with more complex cluster structures and that the
degree corrected model seems more adapted to some real-world data.

The degree corrections also allows to model growing or decreasing interac-
tions, which is not possible with a reasonable number of clusters in the models
of Yang et al. (2011); Matias and Miele (2017) or Rastelli et al. (2018). In
fact, even if the model of dynsbm has a time-dependent connectivity matrix,
the constraint γt

kk = γkk is set for identifiability reasons. Note that a weaker
constraint can also be set, but it requires a more complex a priori modeling of
the data (Matias and Miele, 2017), which makes the clustering of assortative
networks with growing interactions difficult. We also proposed a method to
estimate the time-dependent degree corrections by making use of their reg-
ularity, presented in detail an efficient VEM algorithm for this model called
pdc-dsbm and provided the proofs of the main results. We applied this al-
gorithm to real-world dynamic graphs and highlighted the coherence of the
results.

The introduction of the margins in our model is done at the expense of the
identifiability of the model. There is fact no normalization of the mixture dis-
tribution w.r.t. the margins. However, we argue that keeping the connectivity
matrix constant, in addition to facilitating the interpretation of the clusters,
strongly constrains the proposed model. As our experiments suggest, the model
proves useful for clustering and provides partitions with good stability in their
dynamics. Moreover, the smoothing of the margins acts as a regularizer that
favors continuous margins and thus constrains the parameter space. In future
work, the model can be eventually modified to assert the identifiability con-
straint of Karrer and Newman (2011) in an EM algorithm based on the work
of Razaee et al. (2019) for static Poisson SBM, and also use the normalization
of the time-varying parameters presented in Liu et al. (2014).

During our experiments, we tried to select the number of clusters and the
appropriate model (with or without margins) using the ICL criterion (see Ap-
pendix D), as proposed in previous works (Daudin et al., 2008; Matias and
Miele, 2017; Rastelli et al., 2018). However, we observed that the penalty that
the criterion applies to the log-likelihood of the complete data appeared often
negligible when compared to the latter in the context of Poisson distributions.
This is reminiscent of the works of Salah and Nadif (2019) for von-Mises Fisher
distributions, where ICL also showed strong limitations. We thus suggest fur-
ther investigations on the model selection criteria in dynamic SBM for Poisson
distributions.

Acknowledgements We thank the three anonymous reviewers for their detailed comments
that have helped us a lot to improve this manuscript.

Competing Interests

The authors declare that they have no conflict of interest.



Poisson degree corrected dynamic Stochastic Block Model 21

A Derivation of the objective criterion (6)

We derive the criterion (6) in the case of a constant number of nodes (∀t, V t = V ), the
other case easily follows. Let Q be a probability over the space of complete data Z, i.e. the
set of all possible latent trajectories for N nodes, over K possible states and T time steps.
From Neal and Hinton (1998), we have:

ℓ(θ) ≥ F (q, θ) = ℓ(θ)−KL(Q||P (.|X, θ))

= EQ(logP (X,Z; θ)) + H(Q)

= EQ(logP (X,Z; θ)− logQ(Z; q)).

Let Q factorize as N independent inhomogeneous Markov models:

Q(Z; q) =
∏
i

Q(Z1
i ; q)

∏
t≥2

Q(Zt
i |Z

t−1
i ; q)

=
∏
ik

q(i, k)Z
1
ik

∏
t≥2

∏
ℓ

q(t, i, k, ℓ)Z
t−1
ik

Zt
iℓ

where Q is parameterized by q =

((
q(i, k)

)
ik
,
(
q(t, i, k, ℓ)

)
tikl

)
, with q(i, k) = Q(Z1

ik = 1),

q(t, i, k, ℓ) = Q(Zt
iℓ = 1|Zt−1

ik = 1).
First, from the variational distributions, we have:

EQ(logQ(Z; q)) =
∑
ik

EQ(Z1
ik) log q(i, k) (14)

+
∑
t≥2

∑
ikℓ

EQ(Zt−1
ik Zt

iℓ) log q(t, i, k, ℓ).

Secondly, from the model, we have:

EQ(logP (X,Z; θ)) =
∑
ik

EQ(Z1
ik) logαk +

∑
t≥2

∑
ikℓ

EQ(Zt−1
ik Zt

iℓ) log πkℓ

+
∑
t

∑
i ̸=j

∑
kℓ

EQ(Zt
ikZ

t
jℓ) log ϕ(X

t
ij ;µ

t
iν

t
jγkℓ). (15)

To develop F (q, θ) we rely on the following Lemma.

Lemma 1 We have the following equalities:

EQ(Z1
ik) = q(i, k), (16a)

EQ(Zt−1
ik Zt

iℓ) = q(t− 1, i, k)q(t, i, k, ℓ), (16b)

∀i ̸= j, EQ(Zt
ikZ

t
jℓ) = q(t, i, k)q(t, j, ℓ). (16c)

Thereby, from the expressions of (14, 15) and Lemma 1, the variational lower-bound of the
log-likelihood of the model is given by:

F (q, θ) = EQ(logP (X,Z; θ)− logQ(Z; q))

=
∑
ik

q(i, k) logαk +
∑
t≥2

∑
ikℓ

q(t− 1, i, k)q(t, i, k, ℓ) log πkℓ

+
∑
t

∑
i̸=j

∑
kℓ

q(t, i, k)q(t, j, ℓ) log ϕ(Xt
ij ;µ

t
iν

t
jγkℓ)

−
∑
ik

q(i, k) log q(i, k)−
∑
t≥2

∑
ikℓ

q(t− 1, i, k)q(t, i, k, ℓ) log q(t, i, k, ℓ).
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Proof (of Lemma 1)
As the Markov chains Zi and Zj are independent for the distribution Q, we have to

prove that EQ(Zt
ik) = q(t, i, k). The proof for (16a) and (16b) are analogous.

In the paper, the latent processes are defined over the index set {1, . . . , T}. In the
following, we consider a virtual source cluster ks at virtual time step t = 0 from which every

node starts. Let Z(t,t′)
i (k) be all the possible latent trajectories for node i over t′ − t time

steps, starting at cluster k at time t:

Z(t,t′)
i (k) = {Zi ∈ {0, 1}(t

′−t+1)K |Zi = (Zt
i , . . . ,Z

t′
i )⊺, Zt

ik = 1 ∧ ∀τ,
∑
k

Zτ
ik = 1}.

For t′ ≤ t and k′ ∈ {1, . . . ,K}, we define Z(t,t′)
i (k, τ, k′), the set of all paths of Z(t,t′)

i (k),
that pass through cluster k′ at time step τ :

Z(t,t′)
i (k, τ, k′) = {Zi ∈ Z(t,t′)

i (k)|Zτ
ik′ = 1}.

Let Qi be the distribution for node i. As the N chains are independent:

EQ(Zt
ik) = EQi (Zt

ik) = Qi(Zt
ik = 1) =

∑
Z∈Z(0,T )

i (ks,t,k)

Qi(Z).

As Z(0,T )
i (ks, t, k) decomposes as Z(0,t−1)

i (ks)×Z(t,T )
i (k). In the following, we identify the

elements of the sets with their index ((k
(c)
0 , . . . , k

(c)
T ) is the cth element of Z(0,T )

i (k)). For
consistency with the notations, we define q(1, i, ks, k′) = q(i, k′) the transition probability
from virtual cluster ks at t = 0. We can then write:

EQ(Zt
ik) =

∑
Z∈Z(T )

i (s,t,k)

Qi(Z)

=
∑

c∈Z(T )
i (s,t,k)

q(1, i, k
(c)
0 , k

(c)
1 )q(2, i, k

(c)
1 , k

(c)
2 ) . . . q(T, i, k

(c)
T−1, k

(c)
T )

=
∑

c′∈Z(0,t−1)
i (ks)

∑
c′′∈Z(t,T )

i (k)

(
q(1, i, k

(c′)
0 , k

(c′)
1 ) . . . q(t, i, k

(c′)
t−1, k)

× q(t+ 1, i, k, k
(c′′)
1 ) . . . q(T, i, k

(c′′)
T−t−1, k

(c′′)
T−t)

)
=

( ∑
c′∈Z(0,t−1)

i (ks)

q(1, i, k
(c′)
0 , k

(c′)
1 ) . . . q(t, i, k

(c′)
t−1, k)

)

×
( ∑

c′′∈Z(t,T )
i (k)

q(t+ 1, i, k, k
(c′′)
1 ) . . . q(T, i, k

(c′′)
T−t−1, k

(c′′)
T−t)

)
.

The second sum in the last equation corresponds to summing over all possible paths in a
chain of length T − t starting at cluster k, so it equals one. Now, recall that:

q(t, i, k) =
∑
k′

q(t− 1, i, k′)q(t, i, k′, k)

=
∑

k1,...,kt−1

q(i, k1)q(2, i, k1, k2) . . . q(t, i, kt−1, k)

=
∑

c′∈Z(0,t−1)
i (ks)

q(1, i, k
(c′)
0 , k

(c′)
1 )q(2, i, k

(c′)
1 , k

(c′)
2 ) . . . q(t, i, k

(c′)
t−1, k).

This concludes the proof.
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B Derivation of the Expectation step

Here, we present a way to derive the proposed formulae in E-step for a fixed set of nodes
(i.e. ∀t, V t = V ). The results when considering a variable number of nodes easily follows.

As proposed in Bartolucci and Pandolfi (2020), the true VE step can be realized but is
computationally heavy. In fact, in order to optimize F (q, θ) w.r.t. q(t, i, k, ℓ), we notice that
every q(t′, i, k′) with t′ ≥ t depends on q(t, i, k, ℓ). Here, we instead propose a VE step that
increases F (q, θ) w.r.t. the variational parameters q.

We consider the variational parameters q(i) =
((

q(i, k)
)
k
,
(
q(t, i, k, ℓ)

)
tkl

)
as well as

auxiliary variables qtm(i) =
(
q(t, i, k)

)
ik

for the marginal probabilities, where q(t, i, k) =

Q(Zt
ik = 1).
We first note that F can be decomposed over each node and cluster thanks to the varia-

tional approximation: F (q, θ) =
∑

iℓ Fiℓ(q(i), qm(−i), θ) where qm(−i) =
(
q1m(j), . . . , qTm(j)

)
j ̸=i

and

Fiℓ(q(i), qm(−i), θ) = q(i, ℓ) log
αℓ

q(i, ℓ)

+
∑
t≥2

∑
k

q(t− 1, i, k)q(t, i, k, ℓ) log
πkℓ

q(t, i, k, ℓ)

+
∑
t

(
q(t, i, ℓ)

∑
j ̸=i

∑
k

q(t, j, k) log ϕt
ijℓk + q(t, i, ℓ)

∑
j ̸=i

∑
k

q(t, j, k) log ϕt
jikℓ

)
= q(i, ℓ) log

αℓ

q(i, ℓ)

+
∑
t≥2

∑
k

q(t− 1, i, k)q(t, i, k, ℓ) log
πkℓ

q(t, i, k, ℓ)

+
∑
t

q(t, i, ℓ)
∑
j ̸=i

∑
k

q(t, j, k) logΦt
ijℓk

where we note Φt
ijkℓ = ϕt

ijkℓϕ
t
jiℓk.

For constant marginal probabilities qm(−i), we optimize

Fiℓ((q
1(i), q1m(i)) . . . , (qTm(i), qT (i))|qtm(−i), θ)

by applying a single step of coordinate ascent on each coordinate (qt(i), qtm(i)). When
applying this procedure, the other coordinates ((q−t(i), q−t

m (i))) are considered constant. We
apply this procedure sequentially, for t in {1, . . . , T}, and update the marginal probabilities
q(t, i, k) with the obtained transition probabilities q(t, i, k, ℓ) at each time step.

The formula for E-step can be obtained as follows. Since q(t, i, k) =
∑

k′ q(t−1, i, k′)q(t, i, k′, k),
(qt(i), qtm(i)) only depends on qt(i). For t ≥ 2, we can write:

Fiℓ

(
q(t, i, 1, ℓ), . . . , q(t, i,K, ℓ)|q−t(i), q−t

m (i), qm(−i), θ
)

=
∑
k

q(t− 1, i, k)q(t, i, k, ℓ) log
πkℓ

q(t, i, k, ℓ)

+
∑
k

q(t, i, k)q(t+ 1, i, k, ℓ) log
πkℓ

q(t+ 1, i, k, ℓ)

+ q(t, i, ℓ)
∑
j ̸=i

∑
k

q(t, j, k) logΦt
ijℓk.

Let L(qt(i), λ) be the Lagrangian of the constrained optimization problem:

L(q(t, i, 1, ℓ), . . . , q(t, i,K, ℓ), λ)

= Fiℓ

(
q(t, i, 1, ℓ), . . . , q(t, i,K, ℓ)|q−t(i), q−t

m (i), qm(−i), θ
)
+ λ

(
1−

∑
ℓ′

q(t, i, k, ℓ′)
)
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For (q(t′, i, k))k∈{1,...,K},t′ ̸=t constant and s ∈ {1, . . . , T}, we have:

∂q(s, i, k′)

∂q(t, i, k, ℓ)
= 1(s = t)

∂

∂q(t, i, k, ℓ)

∑
ℓ′

q(t− 1, i, ℓ′)q(t, i, ℓ′, k′)

= 1(s = t)1(k′ = ℓ)q(t− 1, i, k)

and

∂

∂q(t, i, k, ℓ)

∑
k

q(t, i, k)q(t+ 1, i, k, ℓ) log
πkℓ

q(t+ 1, i, k, ℓ)

= −q(t− 1, i, k)
∑
ℓ′

q(t+ 1, i, ℓ, ℓ′)
(
log q(t+ 1, i, ℓ, ℓ′)− log(πℓℓ′ )

= −q(t− 1, i, k)DKL(q(t+ 1, i, ℓ, :)||πℓ,:)

where q(t+ 1, i, ℓ, :) = (q(t+ 1, i, ℓ, 1), . . . , q(t+ 1, i, ℓ,K))⊺ and πℓ,: =
(
π1ℓ, . . . , πKℓ

)⊺
. Let

dtik = DKL(q(t, i, k, :)||πk,:). We then have:

∂

∂q(t, i, k, ℓ)
Fiℓ

(
q(t, i, 1, ℓ), . . . , q(t, i,K, ℓ)|q−t(i), q−t

m (i), qm(−i), θ
)

= q(t− 1, i, k)
(
log πkℓ − dt+1

iℓ − 1− log q(t, i, k, ℓ)
)

+
∂

∂q(t, i, k, ℓ)

∑
s

q(s, i, ℓ)
∑
j ̸=i

∑
ℓ′

q(s, j, ℓ′) logΦs
ijℓℓ′

= q(t− 1, i, k)
(
log πkℓ − dt+1

iℓ − 1− log q(t, i, k, ℓ) +
∑
j ̸=i

∑
ℓ′

q(t, j, ℓ′) logΦt
ijℓℓ′

)
.

Setting the derivative of the Lagrangian to zero, we have:

log q(t, i, k, ℓ) = −
λ

q(t− 1, i, k)
− 1 + log πkℓ − dt+1

iℓ +
∑
j ̸=i

∑
ℓ′

q(t, j, ℓ′) logΦt
ijℓℓ′ .

Thus, q(t, i, k, ℓ) ∝ πkℓ exp(−dt+1
iℓ )

∏
j ̸=i

∏
ℓ′ Φ

t
ijℓℓ′

q(t,j,ℓ′)
. This justifies the proposed for-

mula. We can note that contrary to Matias and Miele (2017), this formula includes a penalty
term exp(−dt+1

iℓ ) to the mixture proportions. In Matias and Miele (2017), the formula for
E-step seems to be an approximation of this formula. In our experiments, we observed that
our formula gives better clustering results when the data has many cluster transitions (π
has low trace) without smoothing the margins, but comparable results when smoothing the
margins.

C Derivation of the M-step

To update the parameters in the maximization step, we increase F (q, θ) w.r.t. θ by max-
imizing F for each parameter, conditionally on the others. We first update the mixture
proportions α and π, since they only depend on q. Next, we update γ, then µ and finally ν.
The updates (8a, 8b) with respect to α and π are direct. Concerning µ, ν and γ, the
lower-bound on the log-likelihood of the model is:

F (q, θ) =
∑
t

∑
ij
i ̸=j

∑
kℓ

q(t, i, k)q(t, j, ℓ) log ϕt
ijkℓ + const (17)

=
∑
t

∑
ij
i ̸=j

∑
kℓ

q(t, i, k)q(t, j, ℓ)
(
µt
iν

t
jγkℓ −Xt

ij log ϕ(X
t
ij ;µ

t
iν

t
jγkℓ)

)
+ const.

By computing the derivative of (17) w.r.t. µt
i, ν

t
j and γkℓ and setting it to zero we obtain

the maximization step in (8d, 8e, 8c).
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D Model selection with the ICL criterion

In order to choose the appropriate number of clusters K we considered the Integrated
Classification Likelihood Biernacki et al. (2000), as proposed in Daudin et al. (2008) for the
static SBM and in Corneli et al. (2016); Matias and Miele (2017); Rastelli et al. (2018) for
dynamic models based on the SBM. The ICL criterion for a model MK with K clusters is
defined as:

ICL(MK) = logP (X,Z|MK) =

∫
Θ
P (X,Z|θ,MK)g(θ|MK) dθ, (18)

where θ = (α,π,µ, ν, γ) ∈ Θ, Θ = AK × AK
K × R+TN × R+TN × R+TK2

, AK is the
K-dimensional simplex and g is the density of the prior distribution on Θ.

Let gπk (πk|MK) = 1
B(δ,...,δ)

∏
k′ π

δ−1
kk′ be a prior on πk, the kth row of π.

logP (Z|MK) = log

∫
AK

1

B(δ, . . . , δ)
α
Z1

.1+δ−1
1 . . . α

Z.K+δ−1
K dα

+ log

∫
AK

K

∏
k

1

B(δ, . . . , δ)
π
nk1+δ−1
k1 . . . π

nkK+δ−1
kK dπ

=Iα + Iπ

Where nz
kk′ =

∑
t≥2

∑
i Z

t−1
ik Zt

ik′ and Iα is computed as in Daudin et al. (2008).

Iπ = log

∫
A

g
g

∏
k

1

B(δ, . . . , δ)
π
nz
k1+δ−1

k1 . . . π
nz
kg+δ−1

kg dπ

= log
∏
k

1

B(δ, . . . , δ)

∫
AK

π
nz
k1+δ−1

k1 . . . π
nz
kK+δ−1

kg dπk

=
∑
k

log
(B(nz

k1 + δ, . . . , nz
kK + δ)

B(δ, . . . , δ)

)
= g logΓ (δg)− g2 logΓ (δ)−

∑
k

logΓ (nz
k. +Kδ) +

∑
kk′

logΓ (nz
kk′ + δ)

We use Stirling’s formula logΓ (x) ≈ (x− 1
2
) log(x−1)−(x−1)+ 1

2
log π, which is even valid

for small values of x. Thus, Stirling’s formula for logΓ (nz
kk′ + δ) remains valid with small

values of nz
kk′ . Following Biernacki et al. (2000), it can be shown that, assuming K = o(N)

and removing terms in O(1) (since the error term of the BIC is O(1)):

logP (Z|MK) =−
K − 1

2
logN +

∑
k

Z1
.k log

Z1
.k

N

−
K − 1

2

∑
k

lognz
k. +

∑
kk′

nz
kk′ log

nz
kk′

nz
k.

,

where nz
k. =

∑
k′ nz

kk′ and Z1
.k =

∑
i Z

1
ik. Using the hypothesis nz

k. =
N(T−1)

K
, we have∑

k lognz
k. = K logN(T −1)+ o(N). Replacing Z by Ẑ, the estimated partition, we obtain:

ICL(K) ≈max
θ

logP (X, Ẑ|θ,MK)

−
K − 1

2
logN −

K(K − 1)

2
logN(T − 1)−

K2 + 2TN

2
log(TN(N − 1)).

The term K−1
2

logN is due to the estimated parameter α. In Matias and Miele (2017), the
parameter α is not estimated and is considered to be equal to the stationary distribution
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of π. Omitting the term due to α in the proposed ICL results in the same ICL as proposed
in Matias and Miele (2017).

We note that we have no guarantee that the assumption of Dirichlet priors for each row
of π with Jeffrey’s uninformative priors is a good choice. In fact, with this dynamic model,
we are interested in partitions that are relatively stable through time, which implies that π
should be diagonally dominant. Thus, contrary to mixture proportions in mixture models,
some dimensions of the simplex should be preferred by the prior for the rows of π, such that
πk, the kth row of π, could have a prior in the form Dir(δk), with δkℓ = δ0 if k ̸= ℓ and
δkk = δdiag, where δdiag > δ0.
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