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ANALYTIC GELFAND-SHILOV SMOOTHING EFFECT OF
THE SPATIALLY HOMOGENEOUS LANDAU EQUATION

HAO-GUANG LI AND CHAO-JIANG XU

ABSTRACT. In this work, we study the nonlinear spatially homogeneous Lan-
dau equation with hard potential in a close-to-equilibrium framework, we show
that the solution to the Cauchy problem with L? initial datum enjoys a ana-
lytic Gelfand-Shilov regularizing effect in the class S}(R3), meaning that the
solution of the Cauchy problem and its Fourier transformation are analytic
for any positive time, the evolution of analytic radius is similar to the heat
equation.

1. INTRODUCTION

In this work, we study the spatially homogeneous Landau equation

8tf = Q(f, f)v
{ fli=o0 = fo, (L.1)

where f = f(t,v) > 01is the density distribution function depending on the variables
v € R? and the time ¢ > 0. The Landau bilinear collision operator is given by

Q.10 =0 [ o= 60) )0 - (Tag)w)f @) ). (12)

where ¢(v) = (¢"(v))1< ;<3 stands for the non-negative symmetric matrix
¢(v) = (WL —v @ v)l]" € M3(R), 7> -3.
We shall study the fluctuation of the Landau equation (1.1) near the absolute
Maxwellian distribution
_3 _WP?
p(v) = (2m)"2e” 2.
Considering the perturbation of density distribution function
[t 0) = p(v) + u(v)g(t, v),

since Q(u, ) = 0, the Cauchy problem (1.1) is reduced to the Cauchy problem

dig + Lg=T(g,9), t>0,veER’

g|t:0 = do,

(1.3)

with go(v) = p~2 fo(v) — /I, where
T(g9.9) = 1 *Q(iig: V/iig), L9 =L1g+ Lag,
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and
£lg = _F(\//j7 g)a ‘CQQ = _F(gv \/ﬁ) (14)
We introduce the following Gelfand-Shilov spaces S¥(R3?), with u, v > 0, u+v >
1, which is the smooth functions f € CT°°(R3) satisfying:
IB >0, sup [070% f(v)| < BlIFBIFL (B, Va, f e N3
vER3

This Gelfand-Shilov space can be characterized as the subspace of Schwartz func-
tions f € % (R3) such that,

1 R 1
3C >0, ¢0>0, |f(v)] < Ceml’l” 4y e R and |f(€)] < Ce™lEl" | ¢ e R?,

where ¢ is called the Gelfand-Shilov radius. Si(R3) is called analytic Gelfand-
Shilov space.

The existence, uniqueness of the solution to Cauchy problem for the spatially
homogeneous Landau equation has already been treated in [1],[14] under rather
weak assumption on the initial datum. Moreover, in the hard potential case, they
prove the smoothness of the solution in C*(]0, +o0[; S(R?)). In [4], Chen-Li-Xu
improve this smoothing property and prove that the solution is in fact analytic for
any t > 0 (See [2, 3] for the Gevrey regularity). For the analytic smoothing effect,
we can also refer to [11] and [12].

In the Maxwellian molecules case, in [8], Lerner, Morimoto, Pravda-Starov and
Xu study the spatially homogeneous non-cutoff Boltzmann equation and Landau
equation in a close-to-equilibrium framework and show that the solution enjoys
the Gelfand-Shilov smoothing effect (see also [9], [10] and [13]). This implies that
the nonlinear spatial homogeneous Landau equation has the same smoothing effect
properties as the classic heat equation or harmonic oscillators heat equation. In
addition, starting from a L? initial datum at ¢ = 0, the solution of Cauchy problem is
spatial analytic for any ¢ > 0 and the analytic radius is cot2. In the non-Maxwellian
case, we can’t use the Fourier transformation and spectral decomposition as in
[8, 9, 10, 13].

Now we define the creation and annulation operators,

Ay = %k Fok, 1<k<3, (1.5)
and
AL = AT AT AT, AT = AT AT AT, ace N2,
Moreover, we define that the gradient of H as follows
Vi, =(A41,A42,AL3), Vy_ =(A_1,A_5 A _3) (1.6)

and then define the norm, for m > 1,

3
V5, ullfz@sy = D 1ALk Vi ullF e rey = > a||A+U||%2(R3)~ (1.7)

k=1 la|=m

Where for the multi-indices, we use the notation from the binomial expansion

P =(EF+E+E)" = D SETETE™
lo|=m
The main theorem of this paper is the following analytic Gelfand-Shilov smoothing
effect of a smooth solution of the Cauchy problem (1.3).
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Theorem 1.1. Let g be a smooth solution of the Cauchy problem (1.3) with v > 0,
and there exist a positive constant ey > 0 small enough, such that

191l o= ([0, +00; L2(R3)) < €0- (1.8)
Then, there exists C > 0 such that for any m € N, we have
182 V57, gll Lo (fo,+00f; L2®3)) < C™F'ml, (1.9)
where t = min(t, 1).

Remark 1.2. We will prove, in Appendix 6, that the estimates (1.9) implies g(t) €
S1(R3) for any t > 0, and the analytical Gelfand-Shilov radius is cot? for0<t<1.
So that we extend the results of [9], [10] and [13] to the hard potential case, and
show that the nonlinear Cauchy problem (1.3) enjoys the same smoothing effect as
the following Cauchy problem

[v]?

atf_<v>‘Y (A11_4>f207 t>07’U€R35
f|t:0:.f0a

with v > 0, we want to point out that this is a uniformly parabolic problem.

This paper is arranged as follows: In Section 2, we introduce a new expansion of
the linear and nonlinear Landau operators. Then we give the spectral analysis on
the Landau operators and prove a fundamental trilinear estimate for the nonlinear
Landau operator. In Section 3, we present a new kind of Leibniz formula. By
using this formula, the trilinear estimate of the nonlinear Landau operators with
gradient of H, will be given. In Section 4, we study the coercivity for the linear
Landau operator, which is crucial in the proof of Gelfand-Shilov smoothing effect
for the weak solution of the Cauchy problem (1.3). On the basis of the preparatory
estimate, the main theorem 1.1 of the Gelfand-Shilov smoothing effect will be proved
in Section 5. In the Appendix 6, we introduce the Hermite operator and Gelfand-
Shilov space. Moreover, we prove in the Appendix, the estimate (1.9) implies
that the solution g to the Cauchy problem (1.3) enjoys the Gelfand-Shilov S} (R?)
smoothing effect.

2. ANALYSIS OF THE LANDAU OPERATORS

In this section, we introduce the representations of linear Landau operator and
nonlinear Landau operator. Then we present the preparation Lemmas for the
estimate on Landau operators.

Similar to the computation of Lemma 1 in [7], we have the following Lemma.

Representations of Landau operators.



Lemma 2.1. We have the following representations for L1, Lo and T':

3
Lig=Y_ Ap{(¢7 A g},

i,7=1

3
Lof ==Y Arifva(@”  (VirA-; )},

l]l

(2.1)

ZAH{ ¢ % (ViLf) Ay 59} — ZAH{ ¢+ (ViAy ;f))g}

7,7=1 7,7=1

= Fl(fag) +F2(fag>

Proof. It is well known that Q(u,p) = 0. By expanding Q(u + /iuf, 1 + \/119)
around p, we have

Qu+ uf, p+ug) = Q\uf, 1) + Qi ng) + Q1 f, /1ng)
={—Lof —L1g+T(f 9)}
Notice that

0;(Viif) = Vi@ ~—ﬁ> f = —ViAL ], (2.2)
VIO F = (0; )(\F 'F)=—Ay (Vi 'F), (2.3)

and for any fixed i or j,
iwﬂ'(v — o) (vi = vf) = _Zggas“(v —)(v; —vj) = 0.
We obtain frOI;_(l.Q), (2.2) and (2.3) th;
Lof ==V ' QWaf )
= Z VI 0 v (6 x (Vif))} + Z VI 0 {67+ (VEA f))}

ij=1 ij=1
3 3
==Y A V6T (o5 /if) = Y VA 5 (VAL )}
ij=1 ij=1
3
- Z A {7« (VA— )}

For L1g, using (2.2) and (2.3), we have
Lig= Vi Qu vhg)

3 3
= 3 V0@« m)iAesg) + D Vi {07 * () Viig)

ij=1 ij=1
3 .. ..
== > A {(¢7 * p) Ay g — (87 % p)vsg}
ij=1
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3
= > Acd(67 5 A g).

ij=1
Finally, from (1.2), (2.2) and (2.3), we have
L(f,9) = Vi 'Q(/af, vig)

3
== >0 V067 (V) VA g}

ij=1
3 ..
+ 30 VT * (VaAL ) Vig)
Q=1
=Y AL{(07 * (VED) A9y = D A i{(87 * (VEAL )9}
i,j=1 i,j=1
= Fl(fa g) + FQ(f7g)
We end the calculation of Lemma 2.1. O

Remark 2.2. For v = 0,directly computation shows that
= [ (02 = w0+ (02 = w)? )t = of? = o 2
and for i # j,
09 == [ (= w)lo; = wy () = v

Then it follows that

> 3
Lig= 2( A+ 7) ~ Aszg,
19 + 4 B g s29
where
1 2
ASQ = 5 E (viﬁj — ’Uj@i) .
1<4,5<3

i#]
This is consistent with Proposition 2.1 in [8], we can also refer to [10].

The estimation of nonlinear Landau operators. For the matrix ¢ defined in
(1.2), we denote

3
0 =T xp, ot =367« (vn) (24)
j=1
and define, for g € S(R?),
3 - 1
|||g|||?, = Z /]RS (O’U&gangr Zo’”l}ﬂ}j_QQ)dU- (2.5)
i,j=1

For any vector-valued function G(v) = (G1, G2, G3), we define the projection to
the vector v = (v1,v2,v3) as

3
v
i=1
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Recall the definition (1.6), we have

Proposition 2.3. For the norm of (2.5), we have
1 a2
lgll2 = C1 (1) Tglage) + 1) gl zs) ), (2.6)
and
x a+2
all2 2 (1) Pyt gl + 100 (1~ Pt gl
>Ch[[(v)? Vg gl 72 (gs)-
Proof. Simple calculation shows that,
3
1 ii
lall =5 32 [ o (A-sg4- 50+ Avsods o) dv
ij=1
From formula (21) of Corollary 1 in [7], there exist C;7 > 0, such that
2 at2 at2
gl = C1 (110} PuVglZaces) + 10} F (1= Pu)Vglaasy + 10) % gl ey )-
Notice that Vf =P,V f+ (I—P,)Vf, we have then

2 yt2
gl > € (1) VgliZaqes) + 10 % gl3aas ).
Moreover, from the definition of P, one can find that

3
Vs
Pv(vig) = E (Ujg)vj |’U|12 =9,
Jj=1

which means that
(I=Py)(A+,i9) = F(I-P,)(dig).
Therefore, we can deduce that
o yt2
lIgl12 2Cu (110) ¥ PuFres gliEages) + 1) F (1= Po) Ve gl e
>C1[(v) 2 Vs gl 72 (goy
|

We can also refer to [5] and reference works for the spectral analysis. For sim-
plicity, we define in the following, for s € R,

[{v)*ullL2rs) = [|ull2,s,
and notice that

3
_ m!
”V%iu”;s = Z HAJr,kailuH%,s = Z J”Al:xtu 2
k=1 ’

2,89
la]=m
where we use the notation (v) = (1 + |v|?)1/2.
Lemma 2.4. For any s > —3, we have, for § >0,
/ v — w|*e 1" dw < (v)°. (2.8)
R3
The weighted of P,V g and (I —P,)Vy, g are different in the norm ||| - |||,

we need to study the trilinear estimate of nonlinear Landau operator.
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Proposition 2.5. For f,g,h € S(R?), v > 0, we have

[(TCf ), IS (L ez sy gl 1R ]o-
Proof. In fact, the integration

<F(fag)7 >:<F1(f7 )7 > <F2(fa )7 >
_Z//Rs 09— ) V() () A o (0) A b ()

zgl

- Z //RR ¢ (v — w)/p(w) Ay f(w)g(v)A_ ;h(v)dwdv.

7,7=1

For the first term (I'y (£, g), h), we decompose the integration region [v, w] € R3 xR3
into three parts:

{lol <1}, {2fw] = [ol,[v] 21}, and {2[w] < Jvf, Jv] > 1}.
For the first part {|v| < 1}, since
|6 (v)] < [0]F2,

we can deduce from the Cauchy—Schwartz’s inequality, Lemma 2.4 and (2.7) that

(T3 (frg) 1) < Z T / (0)7+2| A, jgA_ ;h|dv

7]1

< Z 1|22 @) l[(0)® Ay gl L2l (v) 2 A ih| 2
ij=1
S I llez@s) lllglllo l[1A1o-
For the second part {2|w| > |v|, |v| > 1}, we have

2 2 2
[w] _lwlt o]

e 4 <e B e 32,

Similar to the proof as the first part, one can verify that

_ w2
g S S 1) / (0)F2e 5 | A, g A hldv

,Jl

J J
N Z [fllz2 ) l[{v) 2 Ay jgllz2l(v) 2 A_ihll L2
ij=1
S I lz2@s) Mgl 171l -
Now we finally consider the third part {2|w| < |v|,|v| > 1}. Expanding ¢% (v — w)
to get

¢ (v—w) = ¢ (v +Z({9k¢” v)wg + = Z (/ O™ ( vsw)ds) wiwy. (2.9)

kll

The expansion (2.9) along with the fact that
3

3 3
Z v =0, Z Mnd (v)viv; = —22 M (v)v; =0
j=1

i=1 i,j=1



show immediately

Z//2 w)y/pu(w) f(w) Ay jg(v)A_ ;h(v)dwdv

ij=1 |lw|<]v], |1)|>1

-y 90/ S (0) (1~ P ) Ay (X~ PL)A-

G210 J2tel<pol, |v|>1

* Z Z / / 00" ()wi /() f(w){PuAy (= Py)A_h
k=11,5=1 2lw| <ol v|>1

+ (T —P)AL ;gP A ih+ (1 —P)A, jg(I—P,)A_;h}dwdy

t3 Z Z/ //2 (V)% 018" (v — sw)wyw;

k:l 14,5=1 lw|<|v], |'U‘>1

x v/ p(w) f(w w)A4 j9(v)A_ ;h(v)dwdvds.
Since 2|w| < |v|, Jv| > 1,0 < s < 1, for v > 0, we have
|0k10" (v — sw)| < Clv — sw|? < Cw)7. (2.10)
It follows from the inequality (2.10), the norm inequality (2.7) that
[(T1(f59), I S e @) 1(X = Po) Ve, glly 2g2 [PoVa_hll2 3
e = Po) Vi, gl 252 [T — Po) Vbl 20
1 2@ IV gll2, 2 1T =Po)Vay_hlly 252
+ 1 fllz2@e) Vo, gll2, 2 IV _Rll2 2
S ez lglllo MRl

For the second term (T'2(f, g), h), we use an integration by parts and an commutator
operation inside the convolution to get

¢ x (VA f) = =67« 8;(uf) = —0;0" * (Vuf),
which implies that
3

(Ta(f,9). h) = > {(0;0" + (VE)lgh, A ih).
i,j=1
Since |0;¢% (v)| < [v]7*1, by using (2.8), we have
10567 * (VI S @) fll ey
Then it follows from (2.6) and (2.7) that

3
(Ol 9] S 1o 3 [ (o) gllA- shlde
i=1

3
< 1l ey gl 252 3 1A= il 3

i=1
S fllzz@sylglllo Ao
We conclude that

(TS 9), W S (2@ lglllo 7]l
8



3. NEW LEIBNIZ FORMULA AND TRILINEAR ESTIMATE

In this section, we present a new Leibniz’s formula which is crucial to prove the
commutators estimate of linear and nonlinear Landau operators.

Lemma 3.1. For any m € N, we have

Vi, T(f.9 ch Z A {07 * (ViVi, )ALV g}
k=0

W= (3.1)

m

—ZO’“ Z Ay (67 5 (VEAL VDIV ).

4,j=1
Proof. By using the representation I'(f, g) of (2.1) in Lemma 2.1, and the fact
A+,i Hy — ?—L+A+,ia
we have
9) =D AV A7 x (VEN) At 9 — (67 (VEAL ;1 1)g}
i,j=1

Now we intend to prove

Vi, (167 « (Vi) Arag) = Zc’“ T (Vi DIVETE AL g,

Vi, (16Y « (ViiA+; )lg) = Zc’f (6% % (VAVi, As i FIVF .

So that, we only need to prove the followmg formula
7, (07 + (VuF)G Z L (07 + (Vv F))ViRa. (32)

We prove this formula by induction. m = 0, the formula (3.2) is trivially true.
For m = 1. Using (2.2), directly calculation shows that

Vi, (67 + (ViF))G)

— (= (@7 + D1(VIF))G, (6" + Da(VIF))G, (6 + 5(ViF))G)
+ (6" % (VAF) Vi, G

—((6" % (VEA L1 ))G, (67 % (ViiA s 2F))G, (67 5 (Viid 1 5F))G)
+ (9 + (VEF) Vo, G

—(6 + (VAVH, F))G + (67  (ViIF)) T, G.

Now assume that, the equality (3.2) holds true for m > 1, we intend to prove that
it is right for m + 1.
It follows from the induction assumption and (3.3) that

Vi (@7 + (ViF))G)

9

(3.3)



— (Z (6" * (ViVh, ))V;’;;’fG)

k=

e 5

CE (67 % (VaVi )V FG

=
Il

0

Ms

507+ (VAVh, P3G
k=0

m+1
Z Cm-‘rl( (fvl;-brF))V%Il_ka
k=0

where we use the fact
Ol + Ch = e
We end the proof of Lemma 3.1. O

Remark 3.2. Using (2.3), we have the fact
O+ (ViVi Vi) = (=17 + Vi = (=1)"V'o",

which implies,

Vi, (07 G) ch F(VEe) VG (3.4)

In the following, we prepare to prove the trilinear estimates of the nonlinear
Landau operators.

Proposition 3.3. Let f,g,h € S(R?), for m € N, v > 0, there is a positive
constant Cy which is independent on m, such that

(V3 T(f.9), Vi, )| < Co||f||L2(Rs>||\V%QIIIUIIIV%hIIIa

+CoZC'“IIV e @) V5 glllo V5, Ao

k=1

Proof. One can verify that
(Vi F(f» 9), Vi, h) = (L(f, Vi, 9), Vi, h)

720’“ Z ({167« (ViViy, P A+ Vi g AV, h)

Jl

—ch Z (6" % (VAL Vi, DIV Fg AV, h)

1,7=1
:Fm,l + I‘m,2-

Firstly, we can deduce from Proposition 2.5 that
|0 52,90, V51| S 1 2w 11975 a1l 11975 Rl
For the term T',, 1, the derivative on the convolution to get,

¢ 5 (VuVh, ) = V67« (VaVi f).

10



We only need to consider the third part {2|w| < |v|,|v] > 1}. Taylor Expanding
V¢ ¢t (v — w) to get
3

Vo) = o) + 3 ([ 96— suids ) .
=1

This along with the fact that

3 3
Z 0pd" (v)vjvj = —22 " (v)v; =0, Vp=1,2,3
j=1

1,j=1

show immediately

> / / Ve (v —w)y/p(w) V5 F(w) Ay Vi Fg(0) A Vi b(v)dwdo

i,j=1
= 233 / / Ve (0) v/ n(w) V5 f(w) (T = P AL Vi g (0)PLA- V5 hdwdv
i,j:13
+ 2 // Ve (0) v/ u(w) V5 f(w) Ay Vi g(0) (T~ PL)A_ Vi hdwdv
R )
’ ;JZ_l/o //2w|<|v,|v|>1 OV v = swjury plw)

X V’{Lff(w)AJﬁjV”Htkg(v)A,’i 1, h(v)dwduds.
For v > 0, consider that
V67 ()] S [oP*1 < o)+,
and for 2|w| < |v|,|v] > 1,0 < s < 1, we have
|OVe (v — sw)| < Clv—sw|” < (v)?, Vp=1,2,3.
It follows from Cauchy-Schwartz’s inequality and Proposition 2.3 that

|Fm,1

S CE LI = POV gy 202 [PV V5, Bl g
k=1
+ V5 gz, 3 1T = Po) Ve V5 Bl 22

+ I3 gl 3 IV V5, Bl g PIVAE Flegesy

<2 ORIV fllz2 e V3 gl V3, Alllo-
k=1

For the second term I',, 2, we use an integration by parts and an commutator
operation inside the convolution to get

¢ 5 (VAL ; V5, f) = 0;V67 « (Vavh ' f),
it implies that
m 3
Lo ==Y Crk Y {[0;Ve7 « (Vv IV Fgy, A V5, h).
k=1 i,j=1
11



Consider again that, for v >0,1=1,2,3
101367 (v)] < (v)7,
using the Cauchy-Schwarz inequality, Lemma 2.4 and definition (2.7), we find that

T2 S Z OanVI;{TfHL?(W) ||V2.Ek+19
1

k=
S ORI fllz s 1195 gl 1195, 2l
k=1

z,gHVH, ;7-[1+hH2,%

Substituting the estimates of Iy, ; and I';;, 2 into (3.1), we end the proof of Propo-
sition 3.3. [l

From the equality (1.4), we set g = /i in Proposition 3.3 to get

Corollary 3.4. Let f,h € S(R3), for m € N, there is a positive constant Cy which
is independent on m, such that, for v >0,

(V3L Laf, Vi, )| < CEHVml| fll 2 [ V3L, Bl

m

+ > Ck ey m = W)V Fll @) IIVE Bllo-
k=1

Proof. Since /i = 1o, one can verify that

ATV = Vali,.

Then
— m—k)!
oty = 3 a2
|a|=m—k ’
= > (m=kll;
|a|=m—k

< (m—k)(m— k)2 <O m — k).

We end the proof of Corollary 3.4 by substituting g = /g into the estimate of
Proposition 3.3. O

4. THE COERCIVITY OF LINEAR LANDAU OPERATOR

In this section, we show the coercivity of linear Landau operator. On the basis
of the predecessors Lemmas, the coercivity estimate for the linear Landau operator
L4 is as follows.

Proposition 4.1. Let g € S(R?), L1 was defined in (2.1), for any m € N, there
exist a positive constant Cy > 0 which is independent on m, such that,

(V5. £10.V5,9) . o) ZI1V3, 9112 — Coll1 V5, gl V5 glz.3
m

—Co > kCEVEIVE gl 195, glllo

k=1

m—1
= Co Y k(m = k)Cr VRV alllo V5, 9lllo-
k=1
12



Proof. Recalled the formula £ in (2.1) and 0™ in (2.4), since Vi, Ay i = A1 ; VY,
integrated by parts, we have

3
(VQ+£1g,Vﬂ+g)L2(R3) - .Zl /]Ra nﬁ* <0”A_’jg)A_’ivnHﬁb+gdv'
i,j=
Then by using the new Leibniz formula (3.4)
Vi, (074 59) = 3 Ch(-1)*VF eI VTR A g,
k=0
along with the facts on the operator commutation
[Ag iy Ayl = AvjAj = A AL = —1,
[A+,l7A—7j] =0 if l#ja
which means that, for m — k > 1
Vﬁ:kA_J = A_J»Vﬁzk - (m - k)V;IZ:k_l,
We can deduce that

m m

3
9l + 3 [ V00,55, gdo
=1
3

+3CE (1S [ VR AL VTR gAY gdu (4.1)
k=1 i,j=1 R3 +
m—1 3 -
k=1 i,j=1"R

=[5, glllz + Ro(g) + Ri(g) + Ra(g).

So that the proof of Proposition 4.1 is reduced to the estimations of Rg(g), R1(g)
and Rg(g), which will be showed in the following three Lemmas. O

Lemma 4.2. For g € S(R?), for any o € N3,
Ro(9)| S V3, gll2.2 11V, glllo-

Proof. For the term Ry(g), we integrate by parts to get

3
Rolg) = —Rolg) =3 | 9’|V, alde.
=1
By using the fact
3
306 (v) = —2fo] vy,
=1

it follows that
3

3

Z@iai =-2 Z [v]Yv; * (vjp).

i=1 j=1
13



One can deduce from Lemma 2.4 that
1050°] S (v)"
Then from (2.6), we have,
Rofo) < | (07 V5, ol
<|[Vi,9

7ol e SV 0lle3 11V ol

Now we estimate R1(g).

Lemma 4.3. We have

m

Ri(9)| < chk VRNV lllo 1195, glllo-
Proof. For the term Rq(g), by using the new Leibniz formula (3.4)

ZC’“ Z/ 6 5 (VEVE VA V5 FgA_ ;5 gdv

1,7=1
-3 ChIT (T Vi Vi), Th,9)
Setting f = V?—L+\/ﬁ in Proposition 2.5 to get

Ri(9)l S D Chll Vi, Vil e V3 9l 11V gl -
k=1

Since /p = 1y and

AL = \/Bs
where {14 }aens are the orthonormal basis in L?(R?), then from the definition (1.7),
we have

V3, VT2 sy = Z B'HA VAT sy

|B|=Fk
(k4 1)(k+2)k!
= Z 6,5||¢ﬁHL2(R3) = Z k! = %,
|Bl=Fk |B1=k

where the number of mult-indices of |38] = k is W It follows that

Ri(g \<Zk0k\FIHV *alla IV, glllo-

For the term Rs(g), we need the following estimate.

Lemma 4.4. For g€ S(]R?’), we have
R2(9)] < ch (m = K)WVEIV5 gl 15, 9l
k=1

14



Proof. In fact, the integration

/ VeIV T gAY gdo

/ [, 670 = ) i) Vi, Vi) VT g0) A 5, (0)dudo.
X
We decompose the integration region [v, w] € R? x R? into three parts:

{lol <1}, {2lw| = |v],[v] = 1}, and {2w| < |v|, v = 1}.

For the first part {|v| < 1} and the second part {2|w| > |v|, |v| > 1}, similar as the
estimate in Lemma 2.5, one can verify that

[, 870 = w)Viw) Vs VR VE ) AV, (0)duds
X
SV [ I - Tl
< kVRI|(0) 2 V5 gl e | () AV TR g e
S k\ﬁH|V$Ik_lg|\\o\||vﬁ+9|||g-
Now we consider the third part {2|w| < |v], |v| > 1}. Expanding ¢¥ (v — w) to get

st —w) =+ 3 ( | (0 - su)ds ) .

=1

Since
3
Z (ZSUUZ — 0’
i=1
we have
3 ..
i=1
3
= Z // % (v VH+ \/ﬁ(w)vg:k_lg(v)((l — PU)A_7iv;’;+g(v))dde
3
+ZZ/ // w0° p(w) D™ (v — sw)V%k 1 (U)A_J-V?_Lg(v)dwdvds
k=1 1=1

where T = {2|w| < |v|,|v| > 1}. It follows from the inequality (2.10), the norm
inequalities (2.6) and (2.7) that

m—1
R2(9)| S D Chk(m — k)VENIVE " gll6 1l V3, gl
k=1
We end the proof of Lemma 4.4. O

Substituting the estimates of Rg, Ry and Ry into the decomposition (4.1), we
end the proof of Proposition 4.1.
15



5. GELFAND-SHILOV SMOOTHING EFFECT FOR LANDAU EQUATION

Now we prepare to prove Theorem 1.1 by induction.
Let g be the solution of Cauchy problem (1.3), that is,

09 =—Lg+T(g9,9), 9gli=o = g0

By using the estimate in Proposition 4.1, Corollary 3.4 and Proposition 2.5 with
a =0, we have

d
£||9||i2(w) =2(%9,9)2(r3)
= —2(L19,9)12r3) — 2(L29,9)12rs) + 2(T(9,9), 9) 12(»%)
< =2|lglllZ + 2Co(||9||2,g + ||g||L2(R3)> lgllle + 2Collgll L2 llgll12-

For ¢y small enough, using (1.8),

l9ll2 sy < €0 < 80y’ (5.1)
then it follows that
d 7
L9 agss) + 22 < 2C0 (lgll 3 + gz ) Nolll
For v > 0, by using Holder’s inequality and the inequality (2.6), we have
42
||9||§,g < Cysllglie +611(w) % gllZ2ms)
< Gy 6llgllZ: + dlllglll3 (5.2)
Set ¢ small, such that
d
@Ilglliz(m) +l1gll < (4G5 +2CoC5) llgl 2z ge)-
By using the Gronwall inequality, for any 7' > 0 and 0 < t < T, we have
t
2
lo(aey + [ Mao)2ar < 120 gy .
So that (1.9) hold true for a = 0 with
02 > 16542000 | go |12, s (5.3)

Moreover, we can find that
d, 1 9
12V, gllLees)
=2V, 009, tV . g) + ||V7-L+9H%2(1R3)

= 2V, (L9 +T(9,9)), 1V, 9) + [V, 9ll72 g2

and recalled the definition (1.7), we can deduce from Proposition 4.1, Proposition
3.3 and Corollary 3.4 that

d ., 1 1
%””V?—ug”%m@) < =2[|[t2Va glll5 + 4Cot g0 11V, glllo + 1V, 91172 (roy

+ 2Cot||gll 2wy || Ve, 91117 + 2Cot gl 222 gl 1 V2, 9l
+2C0t||gll L2 &) Il Ve, 9lllo + 2C0t||gll L2 w3y [V, 9lllo-
16



Since for v > 0,
«a I fa 1
Vgl = 3 14300 < 3 ) E ASalitagen) < - 110l
|a]=1 |a]=1

by using the assumption (5.1), we can deduce from the Cauchy-Schwarz’s inequality
that

d 1 4 14 1
%thA—i-gH%P(R«*) + [l[t= A glll5 < 100C3tlIgll1Z + alllgllli +tlllglll2.
For 0 < t <1, one can verify that
1 t 1
168V, 9Oy + [ 15t V(o) 2
0
1 t
< (100cg + & +1) [ o lizas
Cl 0
2, 1 (4C3+2CoCy) 2
< | 100Cy + +1])e ||90||L2(R3)'

Cq
Set

1
C? > 1000 max {e(‘lcg”c‘)c”) 90117 (rs)> 100CG + - + 1} >1000,  (54)
1

we have, for 0 <t <1,
t
1 1
1690, 90) e + | 15t Vo, a(o)l1ds < €2,

Proposition 5.1. Let g be the smooth solution of the Cauchy problem (1.3) with the
assumption (5.1), then there exists C > 0 such that for anyn € Ny and 0 <t <1,

t
1t2 V5, 9122 (zs) +/0 172 V5, g(Dllzdr < C**((n—=1))%. (5.5)

Proof. In fact, we have proved that the assumption (5.5) holds for n = 1. Now take
take m > 2, and assume that the assumption (5.5) holds true for n < m — 1, we
need to prove that the validity of (5.5) for n = m. Using the equation (1.3), and
g € C>(]0, +oo[, S(R?)) is a smooth solution of the Cauchy problem (1.3), we have

m

d -5 m m m m m— m
&||t2VH+g||2L2(R3) =2t™(V3;, 019, Vi, g) +mt™ |V, gl 72 msy
= —2t"(Vy;, L19, V3, 9) — 2t" (V3 L29, V7 g)
+ 26" (V5. T(9,9), Vi, g) + mt™ Y[V}, gll72gs)-

By using Proposition 4.1 and the inequality (2.7), we have

(V%Qg’v%g) L?(R3)

m

m 1 m— m
21V, 9112 = o (14 & ) S RCAVRIIVE “all 95, sl
k=1

m—1
—Co > k(m = k)CR VRV glllo1IVF, 9lllo-
k=1
17



Using Corollary 3.4 for the estimate of (V3] L2g, VY g), and Proposition 3.3 for
the terms (V3;, I'(g,9), V3, g), we get

d m
It tz vﬂ+g”L2(R3)+2H

m

> Vi allls

<mt"™ Y|V, gll7e gsy

1 m
120 (1+Cl)t chkf V=gl IV ol

m—1

+2Cot™ Y k(m = k)Cr VRV alllo N1V, gllls

k=1
+26" G Vml|lgl e ey [ V5 gl

+2t™ Y O G M (m = )V gl e ey 115 g0

+2Cot™ g/l 2 V3L, 9ll1%

m

+205t™ S OB IVE gl e 11V gl 1195 gl
k=1

we have then, for all 0 <t < 1,m > 2,
7

1%V g2 s, +2 / 7% g(r)l|2dr < Z (5.6)

For the term M, since v > 0, it follows from the inequality ( .7) that,
t
My=m [ e OR o) e

t
<m [T U VR, o)y dr
0
t
m m— -1
< 2 [omivg iz
Using the induction hypothesis (5.5) for m — 1, we have

M < mcc%((m —2))% < C%C”””((m - H% (5.7)

For the term Ms, we have

MQ_zco(H)zkckf [ IV ol (18, g o
<26, (1+)Zk0’“f(/ 1= g () |||2dr)1/2

(/ -2 v >|||2d7)1/2

< 2Co (1 )chk (™ *(m—k—1)))

18



¢ 1/2
. ( / |||T2vz’z+g<f>|||§dr)

2
1 - k m—k
< (800 (1 + Cl) " kCEVRIC™ F(m — k - 1)!)

/ IIr%
Since
m —k+1
Z | - 4,
o Vk — k)
So that
2
Mo < @200 (14 ) ¢ m -+ g [ e
1

For the term M3, we have

My 2cozkm K)CE VAT / Vg V5, glllodr

m—1

(rlllzdr

(Mll5dr.

< (800 Z k(m — k)CF VEIC™F = (m — & — 2)!)

/mﬂ n g(r)|2dr,

Since
" CFkm 8
= VU )~
So that
Mj < (64C0)*C>™((m — / %

For the term My, we have

t
M, =2 / PO gl e o ||V, gl dr
0

< (s Vgl on o) +g [ TV, oll2dr
0

8
By using the assumption (5.1), it follows that

1 t
M < G+ [ VR, ol
0

For the term M5, we have

My :2/ ch Cy =1/ (m = BV () e 952,

19

g(m)ll5dr.

(5.8)

(5.9)

(5.10)

9(m)llodr,



then

2
My < (820,’;00 k41— RiCk 1(k2)!> +3 [ IRl
k=1

since

kar ’

we have .
1
My < (32600 H(m - + 5 [ IV gllZdr. (5a1)
0

For the term Mg, using (5.1), we have

t 1 t
My =2Cy [ 7lgliage| IV, ol < [ 7P IVEgllZer (512)
0 0

For the term M7, we have

m

t
M7=200207’2/ TV gl e e 11V P alllo 11V, glllodr
k=1 0

- [
SQCOZC:ZHT 2 V%+1g||Loe([0,1],L2(R3))
k=1

1/2 ‘ 1/2
(/ | - g|||2d7) (/ T’"nw:glnm)

m t 1/2
<26y 3 Ch (€ k=2t — k- 1) ([ 7N, gllodr
0

k=1
m—1 m 2 1 t
< e 2m—2 _ ! 2 - |ex| m :
< (1600(1 + kzﬂ e k)k2)> C*m2((m—1))* + 8/0 7V, glllodr
Since
m—1 m
<8,
— (m — k)k?
so that
2 ~2m—2 2 1 K m m 2
M7 < (144Cp)” C ((m -1+ A T ||\VH+g|||UdT. (5.13)
0
then combine (5.6)-(5.13), we get then, for 0 <t <1,m > 2,
165 V5, 91132 ey / 11755, g(r)lI2dr

<8 (1 + C{1> (144C0)*C*™ 2 ((m — 1)!)?.

Choose the C satisfies (5.3), (5.4) and
1\2
c?>38 <1 + ) (144Cy)?,
Ch

we end the proof of Proposition 5.1. (]
20



From the result of Proposition 5.1, we end the proof of Theorem 1.1 for 0 < ¢ < 1.
Once we get the analytical Gelfand-Shilov of g at ¢ = 1, then under the global
smallness assumption (1.8), the proof of the propagation of analytical Gelfand-
Shilov to times interval [1, 2] is exactly same as the proof of Proposition 5.1 without
the initial datum cut-off factor ¢, the same argument to prove the analytical
Gelfand-Shilov smooth of ¢ on [k, k + 1] for any & € N.

6. APPENDIX

Hermite functions. The standard Hermite functions (¢, )nen are defined for v €

on(v) = &e§ d (e—ﬁ) — —é(v 4 2y _ altyo
" V2raly/mo du? \2rnly/T dv

where a is the creation operator

(%)
ay = —\(UV— — ).
] dv
The family (p,)nen is an orthonormal basis of L?(R). we set for n > 0, a =
(a1, 00,a3) € N3, € Rv € R3,

_ _ 1 [z d\"
¢n($> =2 1/4%%(2 1/237)7 On = ﬁ (2 - dx) %o,

3
¢Q(U) = H ¢D£j (vj)’ & = Span(wa)a6N3,\a|:k7
j=1

with |a| = a1 + ag + a3. The family (¢4 )aens is an orthonormal basis of L?(R?)
composed by the eigenfunctions of the 3-dimensional harmonic oscillator
[v?] 3
H:—AU+T:Z(k+§)Pk, Id:ZPk,

k>0 k>0

where P, stands for the orthogonal projection

Prf = Z (f,%a) L2 ®,)Ya-

la|=k
In particular,
1 _ ‘”‘2 1/2
v) = se & = v),
71)0( ) (27‘()% 12 ( )
where p(v) is the Maxwellian distribution. Setting
Apy=2 709, 1<5<3, (6.1)
we have
1 a a « 3
Yo = \/WA+{1A+%2A+%3¢O; a = (ai,az,a3) € N?,
and

At jPa = Vaj +1ate;,  A-jtha = ajp, . (= 0if a; =0), (6.2)

where (e, ez, e3) stands for the canonical basis of R3. For more details of the
Hermite functions, we can refer to [13] and the reference theorem.
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Gelfand-Shilov space. The symmetric Gelfand-Shilov space S%(R?) can be char-
acterized through the decomposition into the Hermite basis {14 }aens and the har-

monic oscillator H = —A + %. For more details, see Theorem 2.1 in [6]
1
feESYRY) & feC®MR3),I7>0,|e™ fll2 < +oo;

o fe I2(R%),3¢ > 0, H(efola\*(f, bai2)

< 4005

aeN3 1172

2
& 3050, 4> 0, (=4 + 200 fllaee) < ACHH), kN
where
1/}(1(’[)) = ¢041 (v1)¢a2 (02)¢a3(1}3)7 [ORS NSa

and for z € R,

I A

onle) = Voln da (€)= V2riln (x dx) (e7=).

For the harmonic oscillator H = —A + % of 3-dimension and s > 0, we have

i ; > 1

H2 o = (Ma)2¥a, Aa :Z(aj+§), keN, aeN. (6.3)
j=1

In the following, we prove first a fundamental result in the L?(R3), which will
be used to prove that the estimate (1.9) implies g(t) € St(R?) for any ¢ > 0.

Lemma 6.1. Let u € S(R?), we have
A jull2msy < A4 jullZ2gs)-

Proof. The family (¢4 )aens is an orthonormal basis of L?(R3), we identify u €
S(R?) with

U= Z (uvwa)LQ(R3)¢a-
aeN3
Denote uq = (u,¥q)r2(r3), we have

A_J-u = Z Ug\/@¢a—6ﬁ

aeN3
A+,ju = Z Ua/ O + 1wo¢+ej~
a€N3

By using orthogonal of the basis 1, one can verify that

1A= julfe@sy = Y lual’ay

a€eN3

< Y Jual? (o5 +1) = A+ jula e

aeN3
We end the proof of Lemma 6.1. O

On the basis of Lemma 6.1, we prove the following proposition.
Proposition 6.2. For g € S(R?) , we have

1% 91172 ms) < IV, 91172 (Rs)-
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Proof. In fact, by using (1.5), one can find that,

v|? 1 3
H=-A+ % =3 DAL GA T A AL,
j=1
Then we have
3
1 1
||H29H2L2(R3) D) Z (||A+,j9||2L2(R3) + ||A7,j9||%2(R3))
j=1

3
< Z 1A+ 591172 @s) = Vo, 972 @s)
=1

where we use the fact ||A_ ;gllr2rs) < ||A+,;9] 22(r3) in Lemma 6.1. For ¥m € N*
with m > 2, we can deduce by induction that
3
195, 0l2eqes) = D 1A+ V5 ol2aces)
j=1

. . (6.4)
m— m—1
= Z V3 As il 22 ey > Z IH™7 Ay j9l172ms)-
j=1 j=1

By using the identity g = > cns ga¥a, Where go = (g, %a)r2(rs) and (6.2)-(6.3),
we have

m—1

m—1 5 2
H 2 A+,j9: Z o (|Oé| +2> \/0&j+1wa+ej.

a€eN3

It implies that,

3
m—1

SOIH™T Ay gl e @

P

3 m—1
=3 Y bl (lal+5) (@) (6.5)

Jj=1 aeN?
3\ m
> 5 laal (ol + 3) " = 19 F gl
aeN3
Substituting the result (6.5) into (6.4), we conclude that

1% gl 72 ms) < 1V, 91172 Rs)-
[l

Then the result of Theorem 1.1 implies that the solution g to the Cauchy problem
(1.3) enjoys the Gelfand-Shilov S}(R?) smoothing effect, in fact, we have proved,
there exists ¢y > 0, such that

eCOE%%%g(t) € L>([0, +o0[; L*(R?)).
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