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ANALYTIC GELFAND-SHILOV SMOOTHING EFFECT OF

THE SPATIALLY HOMOGENEOUS LANDAU EQUATION

HAO-GUANG LI AND CHAO-JIANG XU

Abstract. In this work, we study the nonlinear spatially homogeneous Lan-

dau equation with hard potential in a close-to-equilibrium framework, we show
that the solution to the Cauchy problem with L2 initial datum enjoys a ana-

lytic Gelfand-Shilov regularizing effect in the class S1
1(R3), meaning that the

solution of the Cauchy problem and its Fourier transformation are analytic
for any positive time, the evolution of analytic radius is similar to the heat

equation.

1. Introduction

In this work, we study the spatially homogeneous Landau equation{
∂tf = Q(f, f),
f |t=0 = f0,

(1.1)

where f = f(t, v) ≥ 0 is the density distribution function depending on the variables
v ∈ R3 and the time t ≥ 0. The Landau bilinear collision operator is given by

Q(g, f)(v) = Ov ·
(∫

R3

φ(v − v∗)
(
g(v∗)(Ovf)(v)− (Ovg)(v∗)f(v)

)
dv∗

)
, (1.2)

where φ(v) = (φij(v))1≤ i,j≤3 stands for the non-negative symmetric matrix

φ(v) = (|v|2I3 − v ⊗ v)|v|γ ∈ M3(R), γ ≥ −3.

We shall study the fluctuation of the Landau equation (1.1) near the absolute
Maxwellian distribution

µ(v) = (2π)−
3
2 e−

|v|2
2 .

Considering the perturbation of density distribution function

f(t, v) = µ(v) +
√
µ(v)g(t, v),

since Q(µ, µ) = 0, the Cauchy problem (1.1) is reduced to the Cauchy problem{
∂tg + Lg = Γ(g, g), t > 0, v ∈ R3,

g|t=0 = g0,
(1.3)

with g0(v) = µ−
1
2 f0(v)−√µ, where

Γ(g, g) = µ−
1
2Q(
√
µg,
√
µg), Lg = L1g + L2g,
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and
L1g = −Γ(

√
µ, g), L2g = −Γ(g,

√
µ) (1.4)

We introduce the following Gelfand-Shilov spaces Sµν (R3), with µ, ν > 0, µ+ν ≥
1, which is the smooth functions f ∈ C+∞(R3) satisfying:

∃B > 0, sup
v∈R3

|vβ∂αv f(v)| ≤ B|α|+|β|+1(α!)µ(β!)ν , ∀α, β ∈ N3.

This Gelfand-Shilov space can be characterized as the subspace of Schwartz func-
tions f ∈ S (R3) such that,

∃C > 0, c0 > 0, |f(v)| ≤ Ce−c0|v|
1
ν , v ∈ R3 and |f̂(ξ)| ≤ Ce−c0|ξ|

1
µ
, ξ ∈ R3,

where c0 is called the Gelfand-Shilov radius. S1
1(R3) is called analytic Gelfand-

Shilov space.

The existence, uniqueness of the solution to Cauchy problem for the spatially
homogeneous Landau equation has already been treated in [1],[14] under rather
weak assumption on the initial datum. Moreover, in the hard potential case, they
prove the smoothness of the solution in C∞(]0,+∞[;S(R3)). In [4], Chen-Li-Xu
improve this smoothing property and prove that the solution is in fact analytic for
any t > 0 (See [2, 3] for the Gevrey regularity). For the analytic smoothing effect,
we can also refer to [11] and [12].

In the Maxwellian molecules case, in [8], Lerner, Morimoto, Pravda-Starov and
Xu study the spatially homogeneous non-cutoff Boltzmann equation and Landau
equation in a close-to-equilibrium framework and show that the solution enjoys
the Gelfand-Shilov smoothing effect (see also [9], [10] and [13]). This implies that
the nonlinear spatial homogeneous Landau equation has the same smoothing effect
properties as the classic heat equation or harmonic oscillators heat equation. In
addition, starting from a L2 initial datum at t = 0, the solution of Cauchy problem is
spatial analytic for any t > 0 and the analytic radius is c0t

1
2 . In the non-Maxwellian

case, we can’t use the Fourier transformation and spectral decomposition as in
[8, 9, 10, 13].

Now we define the creation and annulation operators,

A±,k =
vk
2
∓ ∂k, 1 ≤ k ≤ 3, (1.5)

and
Aα+ = Aα1

+,1A
α2
+,2A

α3
+,3, Aα− = Aα1

−,1A
α2
−,2A

α3
−,3, α ∈ N3.

Moreover, we define that the gradient of H as follows

∇H+ = (A+,1, A+,2, A+,3), ∇H− = (A−,1, A−,2, A−,3) (1.6)

and then define the norm, for m ≥ 1,

‖∇mH+
u‖2L2(R3) =

3∑
k=1

‖A+,k∇m−1H+
u‖2L2(R3) =

∑
|α|=m

m!

α!
‖Aα+u‖2L2(R3). (1.7)

Where for the multi-indices, we use the notation from the binomial expansion

|ξ|2m = (ξ21 + ξ22 + ξ23)m =
∑
|α|=m

m!

α!
ξ2α1
1 ξ2α2

2 ξ2α3
3 .

The main theorem of this paper is the following analytic Gelfand-Shilov smoothing
effect of a smooth solution of the Cauchy problem (1.3).
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Theorem 1.1. Let g be a smooth solution of the Cauchy problem (1.3) with γ ≥ 0,
and there exist a positive constant ε0 > 0 small enough, such that

‖g‖L∞([0,+∞[;L2(R3)) ≤ ε0. (1.8)

Then, there exists C > 0 such that for any m ∈ N, we have

‖t̃m2 ∇mH+
g‖L∞([0,+∞[;L2(R3)) ≤ Cm+1m!, (1.9)

where t̃ = min(t, 1).

Remark 1.2. We will prove, in Appendix 6, that the estimates (1.9) implies g(t) ∈
S1
1(R3) for any t > 0, and the analytical Gelfand-Shilov radius is c0t

1
2 for 0 ≤ t ≤ 1.

So that we extend the results of [9], [10] and [13] to the hard potential case, and
show that the nonlinear Cauchy problem (1.3) enjoys the same smoothing effect as
the following Cauchy problem ∂tf − 〈v〉γ

(
4v −

|v|2

4

)
f = 0, t > 0, v ∈ R3,

f |t=0 = f0,

with γ ≥ 0, we want to point out that this is a uniformly parabolic problem.

This paper is arranged as follows: In Section 2, we introduce a new expansion of
the linear and nonlinear Landau operators. Then we give the spectral analysis on
the Landau operators and prove a fundamental trilinear estimate for the nonlinear
Landau operator. In Section 3, we present a new kind of Leibniz formula. By
using this formula, the trilinear estimate of the nonlinear Landau operators with
gradient of H+ will be given. In Section 4, we study the coercivity for the linear
Landau operator, which is crucial in the proof of Gelfand-Shilov smoothing effect
for the weak solution of the Cauchy problem (1.3). On the basis of the preparatory
estimate, the main theorem 1.1 of the Gelfand-Shilov smoothing effect will be proved
in Section 5. In the Appendix 6, we introduce the Hermite operator and Gelfand-
Shilov space. Moreover, we prove in the Appendix, the estimate (1.9) implies
that the solution g to the Cauchy problem (1.3) enjoys the Gelfand-Shilov S1

1(R3)
smoothing effect.

2. Analysis of the Landau operators

In this section, we introduce the representations of linear Landau operator and
nonlinear Landau operator. Then we present the preparation Lemmas for the
estimate on Landau operators.

Similar to the computation of Lemma 1 in [7], we have the following Lemma.

Representations of Landau operators.

3



Lemma 2.1. We have the following representations for L1, L2 and Γ:

L1g =

3∑
i,j=1

A+,i{(φij ∗ µ)A−,jg},

L2f = −
3∑

i,j=1

A+,i{
√
µ(φij ∗ (

√
µA−,jf))},

Γ(f, g) =

3∑
i,j=1

A+,i{(φij ∗ (
√
µf))A+,jg} −

3∑
i,j=1

A+,i{(φij ∗ (
√
µA+,jf))g}

= Γ1(f, g) + Γ2(f, g).

(2.1)

Proof. It is well known that Q(µ, µ) = 0. By expanding Q(µ +
√
µf, µ +

√
µg)

around µ, we have

Q(µ+
√
µf, µ+

√
µg) = Q(

√
µf, µ) +Q(µ,

√
µg) +Q(

√
µf,
√
µg)

=
√
µ{−L2f − L1g + Γ(f, g)}.

Notice that

∂j(
√
µf) =

√
µ(∂j −

vj
2

)f = −√µA+,jf, (2.2)

√
µ
−1
∂iF = (∂i −

vi
2

)(
√
µ
−1
F ) = −A+,i(

√
µ
−1
F ), (2.3)

and for any fixed i or j,

3∑
i=1

φij(v − v′)(vi − v′i) =

3∑
j=1

φij(v − v′)(vj − v′j) = 0.

We obtain from (1.2), (2.2) and (2.3) that

L2f = −√µ−1Q(
√
µf, µ)

=

3∑
i,j=1

√
µ
−1
∂i{vjµ(φij ∗ (

√
µf))}+

3∑
i,j=1

√
µ
−1
∂i{µ(φij ∗ (

√
µA+,jf))}

= −
3∑

i,j=1

A+,i{
√
µ(φij ∗ (vj

√
µf))−

3∑
i,j=1

√
µ(φij ∗ (

√
µA+,jf))}

= −
3∑

i,j=1

A+,i{
√
µ(φij ∗ (

√
µA−,jf))}.

For L1g, using (2.2) and (2.3), we have

L1g = −√µ−1Q(µ,
√
µg)

=

3∑
i,j=1

√
µ
−1
∂i{(φij ∗ µ)

√
µA+,jg}+

3∑
i,j=1

√
µ
−1
∂i{(φij ∗ (vjµ))

√
µg}

= −
3∑

i,j=1

A+,i{(φij ∗ µ)A+,jg − (φij ∗ µ)vjg}
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=

3∑
i,j=1

A+,i{(φij ∗ µ)A−,jg}.

Finally, from (1.2), (2.2) and (2.3), we have

Γ(f, g) =
√
µ
−1
Q(
√
µf,
√
µg)

= −
3∑

i,j=1

√
µ
−1
∂i{(φij ∗ (

√
µf))
√
µA+,jg}

+

3∑
i,j=1

√
µ
−1
∂i{(φij ∗ (

√
µA+,jf))

√
µg}

=

3∑
i,j=1

A+,i{(φij ∗ (
√
µf))A+,jg} −

3∑
i,j=1

A+,i{(φij ∗ (
√
µA+,jf))g}

= Γ1(f, g) + Γ2(f, g).

We end the calculation of Lemma 2.1. �

Remark 2.2. For γ = 0,directly computation shows that

φjj ∗ µ =

∫
R3

(
(v2 − w2)2 + (v3 − w3)2

)
µ(w)dw = |v|2 − |vj |2 − 2,

and for i 6= j,

φij ∗ µ = −
∫
R3

(vi − wi)(vj − wj)µ(w)dw = −vivj .

Then it follows that

L1g = 2
(
−∆ +

|v|2

4
− 3

2

)
g −∆S2g,

where

∆S2 =
1

2

∑
1≤i,j≤3
i6=j

(
vi∂j − vj∂i

)2
.

This is consistent with Proposition 2.1 in [8], we can also refer to [10].

The estimation of nonlinear Landau operators. For the matrix φ defined in
(1.2), we denote

σij = φij ∗ µ, σi =

3∑
j=1

φij ∗ (vjµ) (2.4)

and define, for g ∈ S(R3),

‖|g|‖2σ =

3∑
i,j=1

∫
R3

(
σij∂ig∂jg +

1

4
σijvivjg

2
)
dv. (2.5)

For any vector-valued function G(v) = (G1, G2, G3), we define the projection to
the vector v = (v1, v2, v3) as

PvG = {
3∑
j=1

Gjvj}
v

|v|2
.
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Recall the definition (1.6), we have

Proposition 2.3. For the norm of (2.5), we have

‖|g|‖2σ ≥ C1

(
‖〈v〉

γ
2∇g‖2L2(R3) + ‖〈v〉

γ+2
2 g‖2L2(R3)

)
, (2.6)

and

‖|g|‖2σ ≥C1

(
‖〈v〉

γ
2 Pv∇H±g‖2L2(R3) + ‖〈v〉

γ+2
2 (I−Pv)∇H±g‖2L2(R3)

)
≥C1‖〈v〉

γ
2∇H±g‖2L2(R3).

(2.7)

Proof. Simple calculation shows that,

‖|g|‖2σ =
1

2

3∑
i,j=1

∫
R3

σij (A−,igA−,jg +A+,igA+,jg) dv.

From formula (21) of Corollary 1 in [7], there exist C1 > 0, such that

‖|g|‖2σ ≥ C1

(
‖〈v〉

γ
2 Pv∇g‖2L2(R3) + ‖〈v〉

γ+2
2 (I−Pv)∇g‖2L2(R3) + ‖〈v〉

γ+2
2 g‖2L2(R3)

)
.

Notice that ∇f = Pv∇f + (I−Pv)∇f , we have then

‖|g|‖2σ ≥ C1

(
‖〈v〉

γ
2∇g‖2L2(R3) + ‖〈v〉

γ+2
2 g‖2L2(R3)

)
.

Moreover, from the definition of Pv, one can find that

Pv(vig) =

3∑
j=1

(vjg)vj
vi
|v|2

= vig,

which means that

(I−Pv)(A±,ig) = ∓(I−Pv)(∂ig).

Therefore, we can deduce that

‖|g|‖2σ ≥C1

(
‖〈v〉

γ
2 Pv∇H±g‖2L2(R3) + ‖〈v〉

γ+2
2 (I−Pv)∇H±g‖2L2(R3)

)
≥C1‖〈v〉

γ
2∇H±g‖2L2(R3).

�

We can also refer to [5] and reference works for the spectral analysis. For sim-
plicity, we define in the following, for s ∈ R,

‖〈v〉su‖L2(R3) = ‖u‖2,s,
and notice that

‖∇mH±u‖
2
2,s =

3∑
k=1

‖A+,k∇m−1H± u‖22,s =
∑
|α|=m

m!

α!
‖Aα±u‖22,s,

where we use the notation 〈v〉 = (1 + |v|2)1/2.

Lemma 2.4. For any s > −3, we have, for δ > 0,∫
R3

|v − w|se−δ|w|
2

dw . 〈v〉s. (2.8)

The weighted of Pv∇H±g and (I−Pv)∇H±g are different in the norm ‖| · |‖σ,
we need to study the trilinear estimate of nonlinear Landau operator.
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Proposition 2.5. For f, g, h ∈ S(R3), γ ≥ 0, we have

|〈Γ(f, g), h〉| . ‖f‖L2(R3)‖|g|‖σ‖|h|‖σ.

Proof. In fact, the integration

〈Γ(f, g), h〉 =〈Γ1(f, g), h〉+ 〈Γ2(f, g), h〉

=

3∑
i,j=1

∫∫
R3×R3

φij(v − w)
√
µ(w)f(w)A+,jg(v)A−,ih(v)dwdv

−
3∑

i,j=1

∫∫
R3×R3

φij(v − w)
√
µ(w)A+,jf(w)g(v)A−,ih(v)dwdv.

For the first term 〈Γ1(f, g), h〉, we decompose the integration region [v, w] ∈ R3×R3

into three parts:

{|v| ≤ 1}, {2|w| ≥ |v|, |v| ≥ 1}, and {2|w| ≤ |v|, |v| ≥ 1}.
For the first part {|v| ≤ 1}, since

|φij(v)| . |v|γ+2,

we can deduce from the Cauchy-Schwartz’s inequality, Lemma 2.4 and (2.7) that

|〈Γ1(f, g), h〉| .
3∑

i,j=1

‖f‖L2(R3)

∫
R3

〈v〉γ+2|A+,jgA−,ih|dv

≤
3∑

i,j=1

‖f‖L2(R3)‖〈v〉
γ
2A+,jg‖L2‖〈v〉

γ
2A−,ih‖L2

. ‖f‖L2(R3)‖|g|‖σ‖|h|‖σ.

For the second part {2|w| ≥ |v|, |v| ≥ 1}, we have

e−
|w|2

4 ≤ e−
|w|2

8 e−
|v|2
32 .

Similar to the proof as the first part, one can verify that

|〈Γ1(f, g), h〉| .
3∑

i,j=1

‖f‖L2(R3)

∫
R3

〈v〉γ+2e−
|v|2
32 |A+,jgA−,ih|dv

.
3∑

i,j=1

‖f‖L2(R3)‖〈v〉
γ
2A+,jg‖L2‖〈v〉

γ
2A−,ih‖L2

. ‖f‖L2(R3)‖|g|‖σ‖|h|‖σ.

Now we finally consider the third part {2|w| ≤ |v|, |v| ≥ 1}. Expanding φij(v − w)
to get

φij(v−w) = φij(v)+

3∑
k=1

∂kφ
ij(v)wk+

1

2

3∑
k,l=1

(∫ 1

0

∂klφ
ij(v − sw)ds

)
wkwl. (2.9)

The expansion (2.9) along with the fact that

3∑
i=1

φijvi = 0,

3∑
i,j=1

∂kφ
ij(v)vivj = −2

3∑
j=1

φkj(v)vj = 0,
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show immediately

3∑
i,j=1

∫∫
2|w|≤|v|,|v|≥1

φij(v − w)
√
µ(w)f(w)A+,jg(v)A−,ih(v)dwdv

=

3∑
i,j=1

∫∫
2|w|≤|v|,|v|≥1

φij(v)
√
µ(w)f(w)(I−Pv)A+,jg(I−Pv)A−,ihdwdv

+

3∑
k=1

3∑
i,j=1

∫∫
2|w|≤|v|,|v|≥1

∂kφ
ij(v)wk

√
µ(w)f(w){PvA+,jg(I−Pv)A−,ih

+ (I−Pv)A±,jgPvA−,ih+ (I−Pv)A+,jg(I−Pv)A−,ih}dwdv

+
1

2

3∑
k,l=1

3∑
i,j=1

∫ 1

0

∫∫
2|w|≤|v|,|v|≥1

〈v〉2θ∂klφij(v − sw)wkwl

×
√
µ(w)f(w)A+,jg(v)A−,ih(v)dwdvds.

Since 2|w| ≤ |v|, |v| ≥ 1, 0 < s < 1, for γ ≥ 0, we have

|∂klφij(v − sw)| ≤ C|v − sw|γ ≤ C〈v〉γ . (2.10)

It follows from the inequality (2.10), the norm inequality (2.7) that

|〈Γ1(f, g), h〉| . ‖f‖L2(R3)‖(I−Pv)∇H+g‖2, γ+2
2
‖Pv∇H−h‖2, γ2

+ ‖f‖L2(R3)‖(I−Pv)∇H+g‖2, γ+2
2
‖(I−Pv)∇H−h‖2, γ+2

2

+ ‖f‖L2(R3)‖∇H+g‖2, γ2 ‖(I−Pv)∇H−h‖2, γ+2
2

+ ‖f‖L2(R3)‖∇H+g‖2, γ2 ‖∇H−h‖2, γ2
. ‖f‖L2(R3)‖|g|‖σ‖|h|‖σ.

For the second term 〈Γ2(f, g), h〉, we use an integration by parts and an commutator
operation inside the convolution to get

φij ∗ (
√
µA+,jf) = −φij ∗ ∂j(

√
µf) = −∂jφij ∗ (

√
µf),

which implies that

〈Γ2(f, g), h〉 =

3∑
i,j=1

〈{[∂jφij ∗ (
√
µf)]g}, A−,ih〉.

Since |∂jφij(v)| . |v|γ+1, by using (2.8), we have

|∂jφij ∗ (
√
µf)| . 〈v〉γ+1‖f‖L2(R3).

Then it follows from (2.6) and (2.7) that

|〈Γ2(f, g), h〉| . ‖f‖L2(R3)

3∑
i=1

∫
R3

〈v〉γ+1|g||A−,ih|dv

≤ ‖f‖L2(R3)‖g‖2, γ+2
2

3∑
i=1

‖A−,ih‖2, γ2

. ‖f‖L2(R3)‖|g|‖σ‖|h|‖σ.
We conclude that

|〈Γ(f, g), h〉| . ‖f‖L2(R3)‖|g|‖σ‖|h|‖σ.
8
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3. New Leibniz formula and Trilinear estimate

In this section, we present a new Leibniz’s formula which is crucial to prove the
commutators estimate of linear and nonlinear Landau operators.

Lemma 3.1. For any m ∈ N, we have

∇mH+
Γ(f, g) =

m∑
k=0

Ckm

3∑
i,j=1

A+,i{(φij ∗ (
√
µ∇kH+

f))A+,j∇m−kH+
g}

−
m∑
k=0

Ckm

3∑
i,j=1

A+,i{(φij ∗ (
√
µA+,j∇kH+

f))∇m−kH+
g}.

(3.1)

Proof. By using the representation Γ(f, g) of (2.1) in Lemma 2.1, and the fact

A+,i∇mH+
= ∇mH+

A+,i,

we have

∇mH+
Γ(f, g) =

3∑
i,j=1

A+,i∇mH+
{(φij ∗ (

√
µf))A+,jg − (φij ∗ (

√
µA+,jf))g}.

Now we intend to prove

∇mH+

(
[φij ∗ (

√
µf)]A+,jg

)
=

m∑
k=0

Ckm[φij ∗ (
√
µ∇kH+

f)]∇m−kH+
A+,jg,

∇mH+

(
[φij ∗ (

√
µA+,jf)]g

)
=

m∑
k=0

Ckm[φij ∗ (
√
µ∇kH+

A+,jf)]∇m−kH+
g.

So that, we only need to prove the following formula

∇mH+

(
(φij ∗ (

√
µF ))G

)
=

m∑
k=0

Ckm(φij ∗ (
√
µ∇kH+

F ))∇m−kH+
G. (3.2)

We prove this formula by induction. m = 0, the formula (3.2) is trivially true.
For m = 1. Using (2.2), directly calculation shows that

∇H+

(
(φij ∗ (

√
µF ))G

)
=
(
− (φij ∗ ∂1(

√
µF ))G,−(φij ∗ ∂2(

√
µF ))G,−(φij ∗ ∂3(

√
µF ))G

)
+ (φij ∗ (

√
µF ))∇H+G

=
(

(φij ∗ (
√
µA+,1F ))G, (φij ∗ (

√
µA+,2F ))G, (φij ∗ (

√
µA+,3F ))G

)
+ (φij ∗ (

√
µF ))∇H+

G

=(φij ∗ (
√
µ∇H+

F ))G+ (φij ∗ (
√
µF ))∇H+

G.

(3.3)

Now assume that, the equality (3.2) holds true for m ≥ 1, we intend to prove that
it is right for m+ 1.

It follows from the induction assumption and (3.3) that

∇m+1
H+

(
(φij ∗ (

√
µF ))G

)
9



= ∇H+

(
m∑
k=0

Ckm(φij ∗ (
√
µ∇kH+

F ))∇m−kH+
G

)

=

m∑
k=0

Ckm(φij ∗ (
√
µ∇k+1
H+

F ))∇m−kH+
G

+

m∑
k=0

Ckm(φij ∗ (
√
µ∇kH+

F ))∇m−k=1
H+

G

=

m+1∑
k=0

Ckm+1(φij ∗ (
√
µ∇kH+

F ))∇m+1−k
H+

G,

where we use the fact

Ck−1m + Ckm = Ckm+1.

We end the proof of Lemma 3.1. �

Remark 3.2. Using (2.3), we have the fact

φij ∗ (
√
µ∇kH+

√
µ) = (−1)kφij ∗ ∇kµ = (−1)k∇kσij ,

which implies,

∇mH+

(
σijG

)
=

m∑
k=0

Ckm(−1)k(∇kσij)∇m−kH+
G. (3.4)

In the following, we prepare to prove the trilinear estimates of the nonlinear
Landau operators.

Proposition 3.3. Let f, g, h ∈ S(R3), for m ∈ N, γ ≥ 0, there is a positive
constant C0 which is independent on m, such that

|〈∇mH+
Γ(f, g),∇mH+

h〉| ≤ C0‖f‖L2(R3)‖|∇mH+
g|‖σ‖|∇mH+

h|‖σ

+ C0

m∑
k=1

Ckm‖∇k−1H+
f‖L2(R3)‖|∇m−kH+

g|‖σ‖|∇mH+
h|‖σ.

Proof. One can verify that

〈∇mH+
Γ(f, g),∇mH+

h〉 − 〈Γ(f,∇mH+
g),∇mH+

h〉

=

m∑
k=1

Ckm

3∑
i,j=1

〈{[φij ∗ (
√
µ∇kH+

f)]A+,j∇m−kH+
g}, A−,i∇mH+

h〉

−
m∑
k=1

Ckm

3∑
i,j=1

〈{[φij ∗ (
√
µA+,j∇kH+

f)]∇m−kH+
g}, A−,i∇mH+

h〉

=Γm,1 + Γm,2.

Firstly, we can deduce from Proposition 2.5 that∣∣∣〈Γ(f,∇mH+
g),∇mH+

h〉
∣∣∣ . ‖f‖L2(R3)‖|∇mH+

g|‖σ‖|∇mH+
h|‖σ.

For the term Γm,1, the derivative on the convolution to get,

φij ∗ (
√
µ∇kH+

f) = ∇φij ∗ (
√
µ∇k−1H+

f).
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We only need to consider the third part {2|w| ≤ |v|, |v| ≥ 1}. Taylor Expanding
∇φijφij(v − w) to get

∇φij(v − w) = ∇φij(v) +

3∑
l=1

(∫ 1

0

∂l∇φij(v − sw)ds

)
wl.

This along with the fact that

3∑
i,j=1

∂pφ
ij(v)vivj = −2

3∑
j=1

φpj(v)vj = 0, ∀p = 1, 2, 3

show immediately

3∑
i,j=1

∫∫
∇φij(v − w)

√
µ(w)∇k−1H+

f(w)A+,j∇m−kH+
g(v)A−,i∇mH+

h(v)dwdv

=

3∑
i,j=1

∫∫
∇φij(v)

√
µ(w)∇k−1H+

f(w)(I−Pv)A+,j∇m−kH+
g(v)PvA−,i∇mH+

hdwdv

+

3∑
i,j=1

∫∫
∇φij(v)

√
µ(w)∇k−1H+

f(w)A+,j∇m−kH+
g(v)(I−Pv)A−,i∇mH+

hdwdv

+

3∑
l=1

3∑
i,j=1

∫ 1

0

∫∫
2|w|≤|v|,|v|≥1

∂l∇φij(v − sw)wl
√
µ(w)

×∇k−1H+
f(w)A+,j∇m−kH+

g(v)A−,i∇mH+
h(v)dwdvds.

For γ ≥ 0, consider that

|∇φij(v)| . |v|γ+1 ≤ 〈v〉γ+1,

and for 2|w| ≤ |v|, |v| ≥ 1, 0 < s < 1, we have

|∂l∇φij(v − sw)| ≤ C|v − sw|γ . 〈v〉γ , ∀p = 1, 2, 3.

It follows from Cauchy-Schwartz’s inequality and Proposition 2.3 that

|Γm,1| .
m∑
k=1

Ckm

{
‖(I−Pv)∇m−k+1

H+
g‖2, γ+2

2
‖Pv∇H−∇mH+

h‖2, γ2

+ ‖∇m−k+1
H+

g‖2, γ2 ‖(I−Pv)∇H−∇mH+
h‖2, γ+2

2

+ ‖∇m−k+1
H+

g‖2, γ2 ‖∇H−∇
m
H+
h‖2, γ2

}
‖∇k−1H+

f‖L2(R3)

.
m∑
k=1

Ckm‖∇k−1H+
f‖L2(R3)‖|∇m−kH+

g|‖σ‖|∇mH+
h|‖σ.

For the second term Γm,2, we use an integration by parts and an commutator
operation inside the convolution to get

φij ∗ (
√
µA+,j∇kH+

f) = ∂j∇φij ∗ (
√
µ∇k−1H+

f),

it implies that

Γm,2 = −
m∑
k=1

Ckm

3∑
i,j=1

〈{[∂j∇φij ∗ (
√
µ∇k−1H+

f)]∇m−kH+
g}, A−,i∇mH+

h〉.
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Consider again that, for γ ≥ 0, l = 1, 2, 3

|∂ljφij(v)| . 〈v〉γ ,
using the Cauchy-Schwarz inequality, Lemma 2.4 and definition (2.7), we find that

|Γm,2| .
m∑
k=1

Ckm‖∇k−1H+
f‖L2(R3)‖∇m−k+1

H+
g‖2, γ2 ‖∇H−∇

m
H+
h‖2, γ2

.
m∑
k=1

Ckm‖∇k−1H+
f‖L2(R3)‖|∇m−kH+

g|‖σ‖|∇mH+
h|‖σ.

Substituting the estimates of Γm,1 and Γm,2 into (3.1), we end the proof of Propo-
sition 3.3. �

From the equality (1.4), we set g =
√
µ in Proposition 3.3 to get

Corollary 3.4. Let f, h ∈ S(R3), for m ∈ N, there is a positive constant C0 which
is independent on m, such that, for γ ≥ 0,

|〈∇mH+
L2f,∇mH+

h〉| ≤ Cm+1
0

√
m!‖f‖L2(R3)‖∇mH+

h‖σ

+

m∑
k=1

CkmC
m−k+1
0

√
(m− k)!‖∇k−1H+

f‖L2(R3)‖|∇mH+
h|‖σ.

Proof. Since
√
µ = ψ0, one can verify that

Aα+
√
µ =
√
α!ψα.

Then

‖|∇m−kH+

√
µ|‖2σ =

∑
|α|=m−k

(m− k)!

α!
‖|Aα+

√
µ|‖2σ

=
∑

|α|=m−k

(m− k)!‖|ψα|‖2σ

. (m− k)!(m− k)
γ
2 +4 ≤ Cm−k0 (m− k)!.

We end the proof of Corollary 3.4 by substituting g =
√
µ into the estimate of

Proposition 3.3. �

4. The coercivity of linear Landau operator

In this section, we show the coercivity of linear Landau operator. On the basis
of the predecessors Lemmas, the coercivity estimate for the linear Landau operator
L1 is as follows.

Proposition 4.1. Let g ∈ S(R3), L1 was defined in (2.1), for any m ∈ N, there
exist a positive constant C0 > 0 which is independent on m, such that,(
∇mH+

L1g,∇mH+
g
)
L2(R3)

≥‖|∇mH+
g|‖2σ − C0‖|∇mH+

g|‖σ‖∇mH+
g‖2, γ2

− C0

m∑
k=1

kCkm
√
k!‖|∇m−kH+

g|‖σ‖|∇mH+
g|‖σ

− C0

m−1∑
k=1

k(m− k)Ckm
√
k!‖|∇m−k−1H+

g|‖σ‖|∇mH+
g|‖σ.
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Proof. Recalled the formula L1g in (2.1) and σij in (2.4), since∇mH+
A+,i = A+,i∇mH+

,

integrated by parts, we have(
∇mH+

L1g,∇mH+
g
)
L2(R3)

=

3∑
i,j=1

∫
R3

∇mH+

(
σijA−,jg

)
A−,i∇mH+

gdv.

Then by using the new Leibniz formula (3.4)

∇mH+

(
σijA−,jg

)
=

m∑
k=0

Ckm(−1)k∇kσij∇m−kH+
A−,jg,

along with the facts on the operator commutation

[A+,j , A−,j ] = A+,jA−,j −A−,jA+,j = −1,

[A+,l, A−,j ] = 0 if l 6= j,

which means that, for m− k ≥ 1

∇m−kH+
A−,j = A−,j∇m−kH+

− (m− k)∇m−k−1H+
,

We can deduce that(
∇mH+

L1g,∇mH+
g
)
L2(R3)

=‖|∇mH+
g|‖2σ +

3∑
i=1

∫
R3

σi∇mH+
g∂i∇mH+

gdv

+

m∑
k=1

Ckm(−1)k
3∑

i,j=1

∫
R3

∇kσijA−,j∇m−kH+
gA−,i∇mH+

gdv

−
m−1∑
k=1

Ckm(−1)k(m− k)

3∑
i,j=1

∫
R3

∇kσij∇m−k−1H+
gA−,i∇mH+

gdv

=‖|∇mH+
g|‖2σ + R0(g) + R1(g) + R2(g).

(4.1)

So that the proof of Proposition 4.1 is reduced to the estimations of R0(g),R1(g)
and R2(g), which will be showed in the following three Lemmas. �

Lemma 4.2. For g ∈ S(R3), for any α ∈ N3,

|R0(g)| . ‖∇mH+
g‖2, γ2 ‖|∇

m
H+
g|‖σ.

Proof. For the term R0(g), we integrate by parts to get

R0(g) = −R0(g)−
3∑
i=1

∫
R3

∂iσ
i|∇mH+

g|2dv.

By using the fact
3∑
i=1

∂iφ
ij(v) = −2|v|γvj ,

it follows that
3∑
i=1

∂iσ
i = −2

3∑
j=1

|v|γvj ∗ (vjµ).
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One can deduce from Lemma 2.4 that

|∂iσi| . 〈v〉γ+1.

Then from (2.6), we have,

|R0(g)| .
∫
R3

〈v〉γ+1|∇mH+
g|2dv

≤ ‖∇mH+
g‖2, γ2 ‖∇

m
H+
g‖2, γ+2

2
. ‖∇mH+

g‖2, γ2 ‖|∇
m
H+
g|‖σ.

�

Now we estimate R1(g).

Lemma 4.3. We have

|R1(g)| .
m∑
k=1

kCkm
√
k!‖|∇m−kH+

g|‖σ‖|∇mH+
g|‖σ.

Proof. For the term R1(g), by using the new Leibniz formula (3.4)

R1(g) =

m∑
k=1

Ckm

3∑
i,j=1

∫
R3

φ ∗ (
√
µ∇kH+

√
µ)A−,j∇m−kH+

gA−,i∇mH+
gdv

=

m∑
k=1

Ckm〈Γ(∇kH+

√
µ,∇m−kH+

g),∇mH+
g〉.

Setting f = ∇kH+

√
µ in Proposition 2.5 to get

|R1(g)| .
m∑
k=1

Ckm‖∇kH+

√
µ‖L2(R3)‖|∇m−kH+

g|‖σ‖|∇mH+
g|‖σ.

Since
√
µ = ψ0 and

Aβ+
√
µ =

√
β!ψβ

where {ψα}α∈N3 are the orthonormal basis in L2(R3), then from the definition (1.7),
we have

‖∇kH+

√
µ‖2L2(R3) =

∑
|β|=k

k!

β!
‖Aβ+
√
µ‖2L2(R3)

=
∑
|β|=k

k!

β!
β!‖ψβ‖2L2(R3) =

∑
|β|=k

k! =
(k + 1)(k + 2)k!

2
,

where the number of mult-indices of |β| = k is (k+1)(k+2)
2 . It follows that

|R1(g)| .
m∑
k=1

kCkm
√
k!‖|∇m−kH+

g|‖σ‖|∇mH+
g|‖σ.

�

For the term R2(g), we need the following estimate.

Lemma 4.4. For g ∈ S(R3), we have

|R2(g)| .
m−1∑
k=1

Ckmk(m− k)
√
k!‖|∇m−k−1H+

g|‖σ‖|∇mH+
g|‖σ.
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Proof. In fact, the integration

(−1)k
∫
R3

∇kσij∇m−k−1H+
gA−,i∇mH+

gdv

=

∫∫
R3×R3

φij(v − w)
√
µ(w)∇kH+

√
µ(w)∇m−k−1H+

g(v)A−,i∇mH+
(v)dwdv.

We decompose the integration region [v, w] ∈ R3 × R3 into three parts:

{|v| ≤ 1}, {2|w| ≥ |v|, |v| ≥ 1}, and {2|w| ≤ |v|, |v| ≥ 1}.

For the first part {|v| ≤ 1} and the second part {2|w| ≥ |v|, |v| ≥ 1}, similar as the
estimate in Lemma 2.5, one can verify that

|
∫∫

R3×R3

φij(v − w)
√
µ(w)∇kH+

√
µ(w)∇m−k−1H+

g(v)A−,i∇mH+
(v)dwdv|

. k
√
k!

∫
R3

〈v〉γ+1|∇m−k−1H+
gA−,i∇mH+

g|dv

≤ k
√
k!‖〈v〉

γ+2
2 ∇m−k−1H+

g‖L2‖〈v〉
γ
2A−,i∇m−k−1H+

g‖L2

. k
√
k!‖|∇m−k−1H+

g|‖σ‖|∇mH+
g|‖σ.

Now we consider the third part {2|w| ≤ |v|, |v| ≥ 1}. Expanding φij(v − w) to get

φij(v − w) = φij(v) +

3∑
l=1

(∫ 1

0

∂lφ
ij(v − sw)ds

)
wl.

Since
3∑
i=1

φijvi = 0,

we have

(−1)k
3∑
i=1

∫∫
I
∇kσij∇m−k−1H+

gA−,i∇mH+
gdv

=

3∑
i=1

∫∫
I
φij(v)

√
µ(w)∇kH+

√
µ(w)∇m−k−1H+

g(v)
(

(I−Pv)A−,i∇mH+
g(v)

)
dwdv

+

3∑
k=1

3∑
i=1

∫ 1

0

∫∫
I
wl∂

βµ(w)∂lφ
ij(v − sw)∇m−k−1H+

g(v)A−,i∇mH+
g(v)dwdvds

where I = {2|w| ≤ |v|, |v| ≥ 1}. It follows from the inequality (2.10), the norm
inequalities (2.6) and (2.7) that

|R2(g)| .
m−1∑
k=1

Ckmk(m− k)
√
k!‖|∇m−k−1H+

g|‖σ‖|∇mH+
g|‖σ.

We end the proof of Lemma 4.4. �

Substituting the estimates of R0,R1 and R2 into the decomposition (4.1), we
end the proof of Proposition 4.1.
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5. Gelfand-Shilov smoothing effect for Landau equation

Now we prepare to prove Theorem 1.1 by induction.
Let g be the solution of Cauchy problem (1.3), that is,

∂tg = −Lg + Γ(g, g), g|t=0 = g0.

By using the estimate in Proposition 4.1, Corollary 3.4 and Proposition 2.5 with
α = 0, we have

d

dt
‖g‖2L2(R3) = 2(∂tg, g)L2(R3)

= −2(L1g, g)L2(R3) − 2(L2g, g)L2(R3) + 2(Γ(g, g), g)L2(R3)

≤ −2‖|g|‖2σ + 2C0

(
‖g‖2, γ2 + ‖g‖L2(R3)

)
‖|g|‖σ + 2C0‖g‖L2(R3)‖|g|‖2σ.

For ε0 small enough, using (1.8),

‖g‖L2(R3) ≤ ε0 ≤
1

8C0
, (5.1)

then it follows that

d

dt
‖g‖2L2(R3) +

7

4
‖|g|‖2σ ≤ 2C0

(
‖g‖2, γ2 + ‖g‖L2(R3)

)
‖|g|‖σ.

For γ ≥ 0, by using Hölder’s inequality and the inequality (2.6), we have

‖g‖22, γ2 ≤ Cγ,δ‖g‖
2
L2 + δ‖〈v〉

γ+2
2 g‖2L2(R3)

≤ Cγ,δ‖g‖2L2 + δ‖|g|‖2σ, (5.2)

Set δ small, such that

d

dt
‖g‖2L2(R3) + ‖|g|‖2σ ≤

(
4C2

0 + 2C0Cγ
)
‖g‖2L2(R3).

By using the Gronwall inequality, for any T > 0 and 0 < t < T , we have

‖g(t)‖2L2(R3) +

∫ t

0

‖|g(τ)|‖2σdτ ≤ e(4C
2
0+2C0Cγ)t‖g0‖2L2(R3).

So that (1.9) hold true for α = 0 with

C2 ≥ e(4C
2
0+2C0Cγ)‖g0‖2L2(R3). (5.3)

Moreover, we can find that

d

dt
‖t 1

2∇H+g‖2L2(R3)

= 2〈∇H+∂tg, t∇H+g〉+ ‖∇H+g‖2L2(R3)

= 2〈∇H+(−Lg + Γ(g, g)), t∇H+g〉+ ‖∇H+g‖2L2(R3),

and recalled the definition (1.7), we can deduce from Proposition 4.1, Proposition
3.3 and Corollary 3.4 that

d

dt
‖t 1

2∇H+g‖2L2(R3) ≤ −2‖|t 1
2∇H+g|‖2σ + 4C0t‖|g|‖σ‖|∇H+g|‖σ + ‖∇H+g‖2L2(R3)

+ 2C0t‖g‖L2(R3)‖|∇H+g|‖2σ + 2C0t‖g‖L2(R3)‖|g|‖σ‖|∇H+g|‖σ
+ 2C0t‖g‖L2(R3)‖|∇H+

g|‖σ + 2C0t‖g‖L2(R3)‖|∇H+
g|‖σ.
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Since for γ ≥ 0,

‖∇H+g‖2L2(R3) =
∑
|α|=1

‖Aα+g‖2L2(R3) ≤
∑
|α|=1

‖〈v〉
γ
2Aα+g‖2L2(R3) ≤

1

C1
‖|g|‖2σ,

by using the assumption (5.1), we can deduce from the Cauchy-Schwarz’s inequality
that

d

dt
‖t 1

2Aα+g‖2L2(R3) + ‖|t 1
2Aα+g|‖2σ ≤ 100C2

0 t‖|g|‖2σ +
1

C1
‖|g|‖2σ + t‖|g|‖2σ.

For 0 < t ≤ 1, one can verify that

‖t 1
2∇H+

g(t)‖2L2(R3) +

∫ t

0

‖|s 1
2∇H+

g(s)|‖2σds

≤
(

100C2
0 +

1

C1
+ 1

)∫ t

0

‖|g(s)|‖2σds

≤
(

100C2
0 +

1

C1
+ 1

)
e(4C

2
0+2C0Cγ)‖g0‖2L2(R3).

Set

C2 ≥ 1000 max

{
e(4C

2
0+2C0Cγ)‖g0‖2L2(R3), 100C2

0 +
1

C1
+ 1

}
� 1000, (5.4)

we have, for 0 < t ≤ 1,

‖t 1
2∇H+

g(t)‖2L2(R3) +

∫ t

0

‖|s 1
2∇H+

g(s)|‖2σds ≤ C2.

Proposition 5.1. Let g be the smooth solution of the Cauchy problem (1.3) with the
assumption (5.1), then there exists C > 0 such that for any n ∈ N+ and 0 < t ≤ 1,

‖tn2∇nH+
g(t)‖2L2(R3) +

∫ t

0

‖|τ n2∇nH+
g(τ)|‖2σdτ ≤ C2n((n− 1)!)2. (5.5)

Proof. In fact, we have proved that the assumption (5.5) holds for n = 1. Now take
take m ≥ 2, and assume that the assumption (5.5) holds true for n ≤ m − 1, we
need to prove that the validity of (5.5) for n = m. Using the equation (1.3), and
g ∈ C∞(]0,+∞[,S(R3)) is a smooth solution of the Cauchy problem (1.3), we have

d

dt
‖tm2 ∇mH+

g‖2L2(R3) =2tm〈∇mH+
∂tg,∇mH+

g〉+mtm−1‖∇mH+
g‖2L2(R3)

=− 2tm〈∇mH+
L1g,∇mH+

g〉 − 2tm〈∇mH+
L2g,∇mH+

g〉
+ 2tm〈∇mH+

Γ(g, g),∇mH+
g〉+mtm−1‖∇mH+

g‖2L2(R3).

By using Proposition 4.1 and the inequality (2.7), we have(
∇mH+

L1g,∇mH+
g
)
L2(R3)

≥‖|∇mH+
g|‖2σ − C0

(
1 +

1

C1

) m∑
k=1

kCkm
√
k!‖|∇m−kH+

g|‖σ‖|∇mH+
g|‖σ

− C0

m−1∑
k=1

k(m− k)Ckm
√
k!‖|∇m−k−1H+

g|‖σ‖|∇mH+
g|‖σ.
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Using Corollary 3.4 for the estimate of 〈∇mH+
L2g,∇mH+

g〉, and Proposition 3.3 for

the terms 〈∇mH+
Γ(g, g),∇mH+

g〉, we get

d

dt
‖tm2 ∇mH+

g‖2L2(R3) + 2‖|tm2 ∇mH+
g|‖2σ

≤ mtm−1‖∇mH+
g‖2L2(R3)

+ 2C0

(
1 +

1

C1

)
tm

m∑
k=1

kCkm
√
k!‖|∇m−kH+

g|‖σ‖|∇mH+
g|‖σ

+ 2C0t
m
m−1∑
k=1

k(m− k)Ckm
√
k!‖|∇m−k−1H+

g|‖σ‖|∇mH+
g|‖σ

+ 2tmCm+1
0

√
m!‖g‖L2(R3)‖∇mH+

g‖σ

+ 2tm
m∑
k=1

CkmC
m−k+1
0

√
(m− k)!‖∇k−1H+

g‖L2(R3)‖|∇mH+
g|‖σ

+ 2C0t
m‖g‖L2(R3)‖|∇mH+

g|‖2σ

+ 2C0t
m

m∑
k=1

Ckm‖∇k−1H+
g‖L2(R3)‖|∇m−kH+

g|‖σ‖|∇mH+
g|‖σ,

we have then, for all 0 < t ≤ 1,m ≥ 2,

‖tm2 ∇mH+
g‖2L2(R3) + 2

∫ t

0

‖|τ m2 ∇mH+
g(τ)|‖2σdτ ≤

7∑
j=1

Mj . (5.6)

For the term M1, since γ ≥ 0, it follows from the inequality (2.7) that,

M1 =m

∫ t

0

τm−1‖∇mH+
g(τ)‖2L2(R3)dτ

≤ m
∫ t

0

τm−1‖〈v〉
γ
2∇mH+

g(τ)‖2L2(R3)dτ

≤ m

C1

∫ t

0

τm−1‖|∇m−1H+
g(τ)|‖2σdτ.

Using the induction hypothesis (5.5) for m− 1, we have

M1 ≤
mC2m−2

C1
((m− 2)!)2 ≤ 2

C1
C2m−2((m− 1)!)2. (5.7)

For the term M2, we have

M2 =2C0

(
1 +

1

C1

) m∑
k=1

kCkm
√
k!

∫ t

0

τm‖|∇m−kH+
g|‖σ(τ)‖|∇mH+

g(τ)|‖σdτ

≤ 2C0

(
1 +

1

C1

) m∑
k=1

kCkm
√
k!

(∫ t

0

‖|τ
|m−k|

2 ∇m−kH+
g(τ)|‖2σdτ

)1/2

×
(∫ t

0

‖|τ m2 ∇mH+
g(τ)|‖2σdτ

)1/2

≤ 2C0

(
1 +

1

C1

) m∑
k=1

kCkm
√
k!
(
Cm−k(m− k − 1)!

)
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×
(∫ t

0

‖|τ m2 ∇mH+
g(τ)|‖2σdτ

)1/2

≤

(
8C0

(
1 +

1

C1

) m∑
k=1

kCkm
√
k!Cm−k(m− k − 1)!

)2

+
1

8

∫ t

0

‖|τ m2 ∇mH+
g(τ)|‖2σdτ

Since
m∑
k=1

C−k+1m√
k!(m− k)

≤ 4,

So that

M2 ≤ (32C0)2
(

1 +
1

C1

)2

C2m−2((m− 1)!)2 +
1

8

∫ t

0

‖|τ m2 ∇mH+
g(τ)|‖2σdτ. (5.8)

For the term M3, we have

M3 =2C0

m−1∑
k=1

k(m− k)Ckm
√
k!

∫ t

0

τm‖|∇m−k−1H+
g|‖σ‖|∇mH+

g|‖σdτ

≤
(

8C0

m−1∑
k=1

k(m− k)Ckm
√
k!Cm−k−1(m− k − 2)!

)
+

1

8

∫ t

0

‖|τ m2 ∇mH+
g(τ)|‖2σdτ.

Since
m−1∑
k=1

C−kkm√
k!(m− k)

≤ 8,

So that

M3 ≤ (64C0)2C2m−2((m− 1)!)2 +
1

8

∫ t

0

‖|τ m2 ∇mH+
g(τ)|‖2σdτ. (5.9)

For the term M4, we have

M4 =2

∫ t

0

τmCm+1
0

√
m!‖g‖L2(R3)‖|∇mH+

g|‖σdτ

≤
(

4Cm+1
0

√
m!‖g‖L∞([0,1],L2(R3))

)2
+

1

8

∫ t

0

τm‖|∇mH+
g|‖2σdτ.

By using the assumption (5.1), it follows that

M4 ≤ C2m
0 m! +

1

8

∫ t

0

τm‖|∇mH+
g|‖2σdτ. (5.10)

For the term M5, we have

M5 =2

∫ t

0

τm
m∑
k=1

CkmC
m−k+1
0

√
(m− k)!‖∇k−1H+

g(τ)‖L2(R3)‖|∇mH+
g(τ)|‖σdτ,
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then

M5 ≤

(
8

m∑
k=1

CkmC
m−k+1
0

√
(m− k)!Ck−1(k − 2)!

)2

+
1

8

∫ t

0

τm‖|∇mH+
g|‖2σdτ.

since
m∑
k=1

m√
(m− k)!k2

≤ 4,

we have

M5 ≤ (32C0)2C2m−2((m− 1)!)2 +
1

8

∫ t

0

τm‖|∇mH+
g|‖2σdτ. (5.11)

For the term M6, using (5.1), we have

M6 = 2C0

∫ t

0

τm‖g‖L2(R3)‖|∇mH+
g|‖2σdτ ≤

1

4

∫ t

0

τm‖|∇mH+
g|‖2σdτ (5.12)

For the term M7, we have

M7 = 2C0

m∑
k=1

Ckm

∫ t

0

τm‖∇k−1H+
g‖L2(R3)‖|∇m−kH+

g|‖σ‖|∇mH+
g|‖σdτ

≤2C0

m∑
k=1

Ckm‖τ
k−1
2 ∇k−1H+

g‖L∞([0,1],L2(R3))

×
(∫ t

0

τ |m−k|‖|∇m−kH+
g|‖2σdτ

)1/2(∫ t

0

τm‖|∇mH+
g|‖σdτ

)1/2

≤2C0

m∑
k=1

Ckm
(
Cm−1(k − 2)!(m− k − 1)!

)(∫ t

0

τ |α|‖|∇mH+
g|‖σdτ

)1/2

≤

(
16C0

(
1 +

m−1∑
k=1

m

(m− k)k2

))2

C2m−2((m− 1)!)2 +
1

8

∫ t

0

τ |α|‖|∇mH+
g|‖σdτ.

Since
m−1∑
k=1

m

(m− k)k2
≤ 8,

so that

M7 ≤ (144C0)
2
C2m−2((m− 1)!)2 +

1

8

∫ t

0

τm‖|∇mH+
g|‖2σdτ. (5.13)

then combine (5.6)-(5.13), we get then, for 0 < t ≤ 1,m ≥ 2,

‖tm2 ∇mH+
g‖2L2(R3) +

∫ t

0

‖|τ m2 ∇mH+
g(τ)|‖2σdτ

≤ 8

(
1 +

1

C1

)2

(144C0)2C2m−2((m− 1)!)2.

Choose the C satisfies (5.3), (5.4) and

C2 ≥ 8

(
1 +

1

C1

)2

(144C0)2,

we end the proof of Proposition 5.1. �
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From the result of Proposition 5.1, we end the proof of Theorem 1.1 for 0 < t ≤ 1.
Once we get the analytical Gelfand-Shilov of g at t = 1, then under the global
smallness assumption (1.8), the proof of the propagation of analytical Gelfand-
Shilov to times interval [1, 2] is exactly same as the proof of Proposition 5.1 without
the initial datum cut-off factor tm, the same argument to prove the analytical
Gelfand-Shilov smooth of g on [k, k + 1] for any k ∈ N.

6. Appendix

Hermite functions. The standard Hermite functions (ϕn)n∈N are defined for v ∈
R,

ϕn(v) =
(−1)n√
2nn!
√
π
e
v2

2
dn

dvn
(e−

v2

2 ) = − 1√
2nn!
√
π

(v − d

dv
)n(e−

v2

2 ) =
an+ϕ0√
n!
,

where a+ is the creation operator

a+ =
1√
2

(
v − d

dv

)
.

The family (ϕn)n∈N is an orthonormal basis of L2(R). we set for n ≥ 0, α =
(α1, α2, α3) ∈ N3, x ∈ R,v ∈ R3,

φn(x) = 2−1/4ϕn(2−1/2x), φn =
1√
n!

(
x

2
− d

dx

)n
φ0,

ψα(v) =

3∏
j=1

φαj (vj), Ek = Span(ψα)α∈N3,|α|=k,

with |α| = α1 + α2 + α3. The family (ψα)α∈N3 is an orthonormal basis of L2(R3)
composed by the eigenfunctions of the 3-dimensional harmonic oscillator

H = −∆v +
|v2|
4

=
∑
k≥0

(k +
3

2
)Pk, Id =

∑
k≥0

Pk,

where Pk stands for the orthogonal projection

Pkf =
∑
|α|=k

(f, ψα)L2(Rv)ψα.

In particular,

ψ0(v) =
1

(2π)
3
4

e−
|v|2
4 = µ1/2(v),

where µ(v) is the Maxwellian distribution. Setting

A±,j =
vj
2
∓ ∂j , 1 ≤ j ≤ 3, (6.1)

we have

ψα =
1√

α1!α2!α3!
Aα1

+,1A
α2
+,2A

α3
+,3ψ0, α = (α1, α2, α3) ∈ N3,

and

A+,jψα =
√
αj + 1ψα+ej , A−,jψα =

√
αjψα−ej (= 0 if αj = 0), (6.2)

where (e1, e2, e3) stands for the canonical basis of R3. For more details of the
Hermite functions, we can refer to [13] and the reference theorem.
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Gelfand-Shilov space. The symmetric Gelfand-Shilov space Sνν (R3) can be char-
acterized through the decomposition into the Hermite basis {ψα}α∈N3 and the har-

monic oscillator H = −4+ |v|2
4 . For more details, see Theorem 2.1 in [6]

f ∈ Sνν (R3)⇔ f ∈ C∞(R3),∃ τ > 0, ‖eτH
1
2ν f‖L2 < +∞;

⇔ f ∈ L2(R3),∃ ε0 > 0,
∥∥∥(eε0|α| 1

2ν (f, ψα)L2

)
α∈N3

∥∥∥
l2
< +∞;

⇔ ∃C > 0, A > 0, ‖(−4+
|v|2

4
)
k
2 f‖L2(R3) ≤ ACk(k!)ν , k ∈ N

where

ψα(v) = φα1
(v1)φα2

(v2)φα3
(v3), α ∈ N3,

and for x ∈ R,

φn(x) =
(−1)n√
2nn!π

e
x2

2
dn

dxn
(e−x

2

) =
1√

2nn!π

(
x− d

dx

)n
(e−

x2

2 ).

For the harmonic oscillator H = −4+ |v|2
4 of 3-dimension and s > 0, we have

H k
2ψα = (λα)

k
2ψα, λα =

3∑
j=1

(αj +
1

2
), k ∈ N, α ∈ N3. (6.3)

In the following, we prove first a fundamental result in the L2(R3), which will
be used to prove that the estimate (1.9) implies g(t) ∈ S1

1(R3) for any t > 0.

Lemma 6.1. Let u ∈ S(R3), we have

‖A−,ju‖2L2(R3) ≤ ‖A+,ju‖2L2(R3).

Proof. The family (ψα)α∈N3 is an orthonormal basis of L2(R3), we identify u ∈
S(R3) with

u =
∑
α∈N3

(u, ψα)L2(R3)ψα.

Denote uα = (u, ψα)L2(R3), we have

A−,ju =
∑
α∈N3

uα
√
αjψα−ej ,

A+,ju =
∑
α∈N3

uα
√
αj + 1ψα+ej .

By using orthogonal of the basis ψα, one can verify that

‖A−,ju‖2L2(R3) =
∑
α∈N3

|uα|2αj

≤
∑
α∈N3

|uα|2
(
αj + 1

)
= ‖A+,ju‖2L2(R3).

We end the proof of Lemma 6.1. �

On the basis of Lemma 6.1, we prove the following proposition.

Proposition 6.2. For g ∈ S(R3) , we have

‖Hm
2 g‖2L2(R3) ≤ ‖∇

m
H+
g‖2L2(R3).
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Proof. In fact, by using (1.5), one can find that,

H = −∆ +
|v|2

4
=

1

2

3∑
j=1

(A+,jA−,j +A−,jA+,j) .

Then we have

‖H 1
2 g‖2L2(R3) =

1

2

3∑
j=1

(
‖A+,jg‖2L2(R3) + ‖A−,jg‖2L2(R3)

)

≤
3∑
j=1

‖A+,jg‖2L2(R3) = ‖∇H+
g‖2L2(R3)

where we use the fact ‖A−,jg‖L2(R3) ≤ ‖A+,jg‖L2(R3) in Lemma 6.1. For ∀m ∈ N+

with m ≥ 2, we can deduce by induction that

‖∇mH+
g‖2L2(R3) =

3∑
j=1

‖A+,j∇m−1H+
g‖2L2(R3)

=

3∑
j=1

‖∇m−1H+
A+,jg‖2L2(R3) ≥

3∑
j=1

‖H
m−1

2 A+,jg‖2L2(R3).

(6.4)

By using the identity g =
∑
α∈N3 gαψα, where gα = (g, ψα)L2(R3) and (6.2)-(6.3),

we have

H
m−1

2 A+,jg =
∑
α∈N3

gα

(
|α|+ 5

2

)m−1
2 √

αj + 1ψα+ej .

It implies that,

3∑
j=1

‖H
m−1

2 A+,jg‖2L2(R3)

=

3∑
j=1

∑
α∈N3

|gα|2
(
|α|+ 5

2

)m−1
(αj + 1)

≥
∑
α∈N3

|gα|2
(
|α|+ 3

2

)m
= ‖Hm

2 g‖2L2(R3).

(6.5)

Substituting the result (6.5) into (6.4), we conclude that

‖Hm
2 g‖2L2(R3) ≤ ‖∇

m
H+
g‖2L2(R3).

�

Then the result of Theorem 1.1 implies that the solution g to the Cauchy problem
(1.3) enjoys the Gelfand-Shilov S1

1(R3) smoothing effect, in fact, we have proved,
there exists c0 > 0, such that

ec0 t̃
1
2H

1
2 g(t) ∈ L∞([0,+∞[;L2(R3)).
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