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ANALYTIC SMOOTHING EFFECT OF LINEAR LANDAU
EQUATION WITH SOFT POTENTIAL

HAO-GUANG LI AND CHAO-JIANG XU

ABSTRACT. In this work, we study the linear Landau equation with soft po-
tential and show that the solution to the Cauchy problem with initial datum
in L?(R3) enjoys an analytic regularizing effect, and the evolution of analytic
radius is same as heat equations.

1. INTRODUCTION

In this work, we study the Cauchy problem of spatially homogeneous Landau
equation :

8t-F = Q(F’ F)u
{ g (1.1)

where F' = F(t,v) > 0 is the density distribution function depending on the velocity
variables v € R3 and the time ¢ > 0. The Landau bilinear collision operator is given
by

3
QG.F)w) =Y 0, ( / a0 = v) [Go) (0F)(v) - <akG><v*>F<v>]dv*) ,

Gok=1
where
aju(v) = (Gjxlv]* —vyor) o], 7> 3. (1.2)
One calls hard potentials if v > 0, Maxwellian molecules if v = 0, soft potentials if

v €] — 3,0[ and Coulombian potential if v = —3, We shall study the linearization
of the Landau equation (1.1) near the absolute Maxwellian distribution

_3 _Iv?

plv) = (2m)~2e” 72,

Considering the fluctuation of density distribution function

F(t,v) = (o) + V() £(t,0),
since Q(u, ) = 0, the Cauchy problem (1.1) is reduced to the Cauchy problem

f+L(f)+K(f)=T(f,f), t>0,veR?
fli=o0 = fo,

with Fo(v) = p + /ifo(v), where
T(f.f) = n"2Q/af/Af),

(1.3)
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and

Lf=-T(Jaf), Kf=-T(fVh). (1.4)
In this work, we study Cauchy problem of the linear Landau equation, such as
atf = ‘Cf7
e 5

Using the references [9] and [19], we show that the diffusion part £ is written as
follows

Lf ==V [ARVufl + (AW)3 - 5)f = Vo [A@)3)S, (1.6)

with A(v) = (@ij)1<i,j<3 is a symmetric matrix where

Qij = Qij * 1 = /RS (Gjklv = V' = (v; = ) (vk — vp)) o — V[T’ )dv’.  (1.7)

For the hard potential case, the existence, uniqueness of the solution to Cauchy
problem for the spatially homogeneous Landau equation has already been treated
in [6],[18] under rather weak assumption on the initial datum. Moreover, they prove
the smoothness of the solution in C'°°(]0, +oo[; S(R?)). In [4], Chen-Li-Xu improve
this smoothing property and prove that the solution is in fact analytic for any ¢t > 0
(See [2, 3] for the Gevrey regularity).

In the Maxwellian molecules case, in [10], Lerner, Morimoto, Pravda-Starov and
Xu study the spatially homogeneous non-cutoff Boltzmann equation and Landau
equation in a close-to-equilibrium framework and show that the solution enjoys the
Gelfand-Shilov smoothing effect (see also [15], [12] and [11]). This implies that
the nonlinear spatial homogeneous Landau equation has the same smoothing effect
properties as the classic heat equation or harmonic oscillators heat equation. In
addition, starting from a L? initial datum at ¢ = 0, the solution of Cauchy problem is
spatial analytic for any ¢ > 0 and the analytic radius is cot%. In the non-Maxwellian
case, we can’t use the Fourier transformation and spectral decomposition as in
[10, 11, 12, 15]. Recently, Li and Xu in [13] proved the analytic smoothing effect of
the solution to the nonlinear Landau equation with hard potentials and Maxwellian
molecules case, that is v > 0.

In this work, we study the Cauchy problem of the linear Landau equation with
soft potential —3 < v < 0, we show the solution enjoys an analytic smoothing effect
with the analytic radius cot?. The main theorem is in the following.

Theorem 1.1. For soft potential —3 < v < 0 and for any T > 0, the initial datum
fo € L3(R3), the Cauchy problem (1.5) admits a unique weak solution

f € L*([0,T]; L*(R?)).
Moreover, for any o € N3, t = min{t, 1}, we have,

[ e

£ ()72 0% f(t) || r2(re) < CH e, t [0, 7).

Remark 1.2. FEquivalently, for any m € N, we have, for soft potential —3 < v < 0,

~m

1E% (0) % V™ F (O] 2 g

mh2 el 4la
=2 ((a!'))Q 155 () 5 0% £ (1) 122 sy < (BC)P™2(ml)2, € (0,7,

|aj=m



This paper is arranged as follows : We prove the ultra-analytic for the coefficient
of the Landau operator in Section 2. In Section 3, we deal with estimation of the
commutators and prove the coercivity property of the linear Landau operator. In
Section 4, we study the Cauchy problem for linear Landau equation, and show
that the existence and uniqueness properties of the weak solution. The analytic
smoothing effect of the weak solution for the linear Landau equation with soft
potential will be proved in Section 5. In the Appendix 6, we introduce the Hermite
operator and related results.

2. ULTRA-ANALYTIC FOR THE COEFFICIENT OF LANDAU OPERATOR
For v € R, denote
1) fllz2s) = || f

where we use the notations (v) = (1 + |v]?)
In addition, for the matrix A defined in (1.7), we denote

2,7 ||<U>Wf||L°°(R3) = ||f||oov

1/2.

3
1
i = - [ @pogudint Jaswosoayao, (2.)
Ji.k=1

and weighted norm, for 6 € R,
> 1
lullg = > /]R ] ()% (@, 0judpu + ZdjkvjkaQ)dv. (2.2)
Gk=1

From formula (21) of Corollary 1 in [9], for any 6 € R, there exist Cy > 0, such
that

110 = CLUBTIIB 5o+ 10T = POVF Brgio HIF B gao)-  (23)

where for any vector-valued function G(v) = (G1, G2, G3), we define the projection
to the vector v = (v1, ve,v3) as

Vg

3
PUGi = ZGJ'UJ‘W, 1 < 7 < 3.
j=1

Notice that Vf = P,Vf + (I — P,)Vf, we have
1 £lla6 = Cr(IV fll2,z 40 + [ fll2143 +0)- (2.4)

We can also refer to [5] and their references. Remark that the weighted of f and
Vf are different in the norm L?,
Firstly, for any v > —3 and 6 > 0, we have

/R3 lv — w\'ye_‘”“"zdw < (v)7. (2.5)

Which imply
jai; ()] < (0)7F2. (2.6)

In the following, we prove that the coefficients of linear Landau operator are
ultra-analytic.



Lemma 2.1. For any 8 € N3 with |3| > 1 and a;; was defined in (1.7) with
—3 < v <0, then we have,

1075 (0)| S (0)H/BL. (2.7)

Moreover, for any 3 € N3,

3
070 Biagy * (o) S ()16 + 1) V/BL

ij=1
3
020 agvw;)| S )18+ 1)V/BL.
ij=1
Proof. For 3 € N3 with |3| > 1, without loss of generality, we set
pr1 = max(ﬁl»ﬁ2753)~
Notice that @;; = a;; * 1, then
8%” = 8B [aij * [L} = 81aij * 8ﬁ*el,u
Direct calculation shows that, for any 1 < i < 3,
v;
i(vuf) = /u0; — E)f = —VHuALif. (2.9)

For more details of the operators A ;, we can refer to the Appendix 6. By using
the fact
|O1aij(v)] S o],

it follows from Cauchy-Schwartz’s inequality and (2.5) that

0% 0) < [ 1010150 = w) (VAL A%, A% i) w)

2
3 3 _
S ([ o= wl O ) AT A% A% e

S (L o) AR AR, AR 1 e
where we use the fact
3(y+1)
2
Due to \/zi(v) = ¥o(v), we can deduce from (6.3) that

AP T AR AR = /(B — 1)1B2! B3, (2.10)

where {¥,},ens is the orthonormal basis in L?(R?). The Hélder’s inequality and
Poincaré’s inequality implies

>-3, V-3<~v<0.

1 1Zs ey < I fllz2 @) I Fllosy S NF 2@y IVl 2@s),
along with the equalities (6.2) and (6.3) shows that,

10%a,;(v)| < (W) Vs, 172 (R

3
STy V(B —er+ep)
k=1
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Consider that 81 = max(81, f2, 83), we get that

|07 ai;(v)] < ()7 FH/BL

For the estimate of the remaining inequalities (2.8), an integration by parts inside
the convolution show that,

Z@a” (Vi) Zaa” (VAL v/,

i,j=1 i,j=1
3
Z aij * (vivip) = Z aij * (VI(At i Ay iy — 0 j Ay V1)
7,5=1 1,7=1
:_Zaau V(AL i/l = 6ijv/1)-
i,j=1

By using the fact
|G (V)| < [0, 19505 ()] S Jo]

A calculation similar to that as above, it follows that

107 ( Zaa” (vjm)]

4,g=1
3 )2 3
3 w
SZ < |U7w|§(7+1)67 2 dw) \/(ﬂ+ej)!||\IIB+ej”L3(]R3)
j=1 R

3
V)TN A B+ e W pe, |l Lo es)
j=1
3 1
S U>’Y+1 Z \/ (B+ ej)!HV\I'ﬁ-i-ej ||12,2(R3)
'Y-‘rl Z / B+e] +ek:

k.j=1

< ()7*1(18] + 1) /BT

The same estimate holds true for the last term, such that

3
07D asvivg)| < W) (18] + 1)V/BL

ij=1
We end the proof of Lemma 2.1. O

In order to prove the coercivity of the linear Landau operator, we need one more
estimate to control the weighted a;;.

Lemma 2.2. For f,g € S(R3), for any B € N3 and 6 € R, we have

3
| ((0)*°0°a;0,f,0i9)| S
ij=1
where G;; was defined in (1.7) with —3 <y < 0.

(2.11)
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Proof. In fact, the inner product
(@0 a,0,5.00) = [[ 0" as(0 = )0 uw)d; )0 (0)dude
R3xR3

We decompose the integration region [v, w] € R? x R? into three parts:
{lol <1}, {2lw| = |v],[v] = 1}, and {2w| < |v|, [v] = 1}.
For the first part {|v| <1}, by Lemma 2.1, we have

2 a5 (v — w)dP u(w)d; f(v)9;g(v)dwdv
Z// |<1}st i (v = )" 1u(w)0; f (v)drg (v)dwd

7,7=1
< Z/ o) B0 fOrgld
ij=1 |v|<1

< VB!I(v)? () Valzo S VB llaolgllae.

For the second part {2|w| > |v|, |v| > 1}, we have

Jw|? w2 vl

e 1 <e 8 e 32,

Similar to the proof as Lemma 2.1, one can verify that

3

Z // (0)*ai; (v — w)y/u(w) ¥s(w v)0,;g(v)dwdv
ij=1" 7 {2lw|=|v],lv[>1}
S Z / = /B0) 10y S Drg o
ij=1"&
SVBIIfllaellg llae -

We finally consider the third part {2|w| < |v|,|v| > 1}. Expanding a;;(v —w) to get

ai;(v — = a;; (v +28kam v)wg + = Z (/ Or1ai;(v — sw)d )wkwl.

k 1=1
Along with the fact that

3 3
Zaijvi = O, Z akaij(v)vivj = QZak] UJ = 0
i=1

ij=1

show immediately

Z //2 I<lol,| \>1} (0)* a5 (v = w)0” p(w); f (v)Dig(v)dwdv
:.Z / /2 cpapor O P )ass T = PO I = P)digldwde
+ Z Z// (v) wkaﬂﬂ(w)akaij(v)[Pvajf][(I — P,)0;g|dwdv
ig=1k=1" 2lw|<|v]|v]21
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+§jzf/ () w30 () Ohcas (W~ P,)0, f)Digldudo

i=1k=1 2|w|<|v|,|v|>1
+ - Z Z / // (v) Zewkwlaﬁu(w)aklaij(v — sw)0; fO;gdwduds.
kl 14,7=1 2|w|<|v],|v[>1
Since 2|w| < |v|, |v] > 1,0 < s < 1, for =3 < v < 0, we have
laij ()| < [0 S @) 0kai(v)] S (0)F
|Okiai; (v — sw)| < Clv—sw|? < C477(1+ |v])”.
It follows from the inequality (2.10) and the norm equality (2.3) that
> (05 (0~ )07 )0, £ 09 )
ij=1" 7/ {2lw|<|v ||v\>1}
S VAU - Pv)vf‘|2,77”+0”(1 - Pv)v.g”g‘fT”Jra
+ VB = Po)V fllg 22 40 PoVall2, 540
+ /BT - Pv)fozﬂT“w”Vg”z%w + VBUV fll2. 246l Vll2,240

This is the inequality (2.11). We end the proof of Lemma 2.2. O

3. ESTIMATIONS OF COMMUTATORS

Proposition 3.1. Let f € S(R?), £ was defined in (1.5), for any o € N3 and
0 € R, there exist a positive constant Cy > 0 which is independent on o and 0, such
that,

(W>oecravs) o < 10T+ Col@)|0" flla0ll0°
+Co Y CEVBIO™ Fllag (107 Fllae +
|g\<21

+Co Y CRIBIVBUO P Fllao0” fllzors-

[B8]=1
BLa

1)

Remark 3.2. Remark that, we have
(1) For aa=0,0 =0, we have

(£6.1) oy < ~5 M5+ G153 (3.1)
(2) For|a| > 1,

10% fll2,3+0 S VO™ flla, 340 S 0% flla0, (3.2)

where o, = max{ai, ag, az}.



Proof. Recalled the formula £f in (1.5), for the smooth function f, integrated by
parts, we have

L)y = 3 [ 0 0@t ) 00,

’le

Z {0:(v)**} {0%(ai;0, f)} 0 fdv

7,7=1
3
- 12 / ) {0 @i )} 0° S
- = )20 {0%0i((a; 0% fdv.
Z/ (0°04((@sje) )} 0° S
Then, using (2.2), we have,
- (<’U>2980‘Cfa aaf)Lz(]Rs) = ||8af||?4,9 + R(f)a (33)

with

Z/RS )2 {0, ai)0)} 9°0, fdv

1,7=1

+ Z/ {8:(0)?0) {0%(@i;0, f)} 9° fdv

1,7=1

1 Z/ {[0%, aijvivg] )} 0% fdv

1]1

S>3 L@ ooy or an

2]1

By using Leibniz formula,

0%(gh) = g0°h + > _ CR9°g0*Ph+ Y CLo%go*~Ph,

|B]=1 |B1>2
BLa B<La

and
J = Q5 * E aijv; = E a;j * (vjp), g iUV = E a;j * (vivjp),

it follows that
R(f) =Ro(f) + Ru(f)

3
Ro(f) =Y /R (8 (v)?%)(@s;0;0% )0 fdv

1 3
3 2 [ @) (050010 o = Rar (1) + Real )

8



=y Z / (0P, £)9°0; fdv

BIZ1 =1
B<La

+Y s Z/ {8;(0)2) (8%a;5) {0;,0°7P £} 0% fdu

|B]>1 i,j=1
B<La

T3 Z o Z / )20 {0 (as; * (vivjp)) } 0% P fO° fdv

\6\>1 i,j=1
BLla

- Z s Z / V20(3:0%as;) * (v;p)0°P fO* fdv

\ﬁ\>1 i,j=1
B<a

=R +Ri2 + Riz + Ry

So that the proof of the Proposition 3.1 is reduced to the estimations of terms

Ro(f) and Ry (f) , which will give by the following two lemmas. O
Lemma 3.3. We have, for o € N3,
[Ro (/) S (O)10% fll40110% fll2, 3 +0- (3.4)

Proof. By using (2.5), we get

[(Biaiz) * ()| S () [(ag) * (v;p)] S (0)7F?
then (2.4) imply

[Roa(f

-y [ 0 @) wsn)ior s
]R3

7,7=1
= / (o)1 f o
R3
S 10° 73400l 3 110 S 107l 31010 F Lo

For the term R, we use

D (v)? = 20(v)*0 2y,
then,
3
Rorf) = 3 [ @) (ay0,0° nor sao

ij—l

=20 Z / V20=2(a@;50;0;0% £)0° fdv

1,7=1
=20 Z / (Y2972 (az; % (vip)0;0% £)O° fdv.
It follows that

3
Rar(£)] <208) Y [ ©)210,0° 1l flao
j=1"%

9



3
SO 110;0° flla, 3 +0110% fll2,3 40

j=1
SIO1110% fll a6l10% fll2, 3 +o-
Which give the estimate of Ro(f). O

Lemma 3.4. We have, for a € N3 |a| > 1,

Ri(N)I S D CEI0 Fllao (107 Fllao + 161107

[Bl=1
BLa

5) . (3.5)

Proof. Now we estimate R;. For the term Ry (f), by using the inequality (2.11)
in Lemma 2.2 directly, we obtain that

Ru(f)=|> 4 Z / (%P9, )08, fdv

|B1>1 i,7=1
BLla

S OB fllasllo® fllae.

1B1=1
Ba

For the two terms Ris(f),Ri4(f), we can deduce from the inequality (2.8) in
Lemma 2.1 and (2.4) that

|R13( )| + ‘R14 Z C’B Z / 26 {Bﬁ(aij * (’Uﬂ)j/i))} 80‘_ﬂf80‘fdv
\g|<21 i,j=1

Yy @0 00%ay) < o= gor i

\B|>1 i,j=1
B<La

S X ci [ wrrral Ao plee flae

[B]>1
B<La

< Z Cﬁ\ﬂlx/@\\a"“ﬁfllz,ﬂ%w||8“f||2,e+g

[B]=1
B<a

S D CRIBIVBUIO T fllael 0 fllaes ;-

[B8]>1
BLa

For the term Rya(f), for || > 1, it follows from (2.7) in Lemma 2.1 that
10i(0)*08%a5] < 101(0)*'~ (o) /Bl < |6](0)*"*7 /B,

Then we have

Ru(f) =] > ¢ Z/ {8;(0)*} (0Pa;) {0;0°7P £} 0° fdv
|g|<>1 4,j=1

10



3
101> CE/BYS 110%700; fll2,3 4610

2,3+0
[B1>1 j=1
BLla
<101 CEVBUO T Fllaollo fll2,z+o-
181>1
BLla

We conclude that
Ri(N)I S D CEVBUYO P fllasllo®Fllae

|B1=1
Bla

+16] Y CEV/BUO T fllao0” fllaory
18121
B<a

+ Y CRIBIVBUO* P fll 4010 fll2043-

[B1>1
B«

O

Substituting the estimates of Ro(f), R1(f) into the decomposition (3.3), we can
end the proof of Proposition 3.1.

4. EXISTENCE AND UNIQUENESS OF LINEAR LANDAU EQUATION.

Proposition 4.1. For -3 <~y <0, T >0, fo € L?>(R3), the Cauchy problem (1.5)
admits a unique weak solution
f e L=([0,T); L*(R%))
satisfying
1)l rs)y < 2677 | foll L2 ms)
where Cy was defined in Proposition 3.1.
Proof. The existence of the weak solution is similar to that in [1, 14, 9]. We consider
the operator
P=—-0:+L.
For any ¢ € C°°([0,T]; S(R3)) with ¢(T) = 0, it follows from (3.1) that

(o), P o(t)) L2m3) = (00, @) L2(r3) + (L, @) L2(R3)

1d
< s lelan = el + Colloll 5.

Since v < 0, we have
1d \
—5 g 1elIZems) + lelh < (o(t), P*o(8)) r2es) + Coll ol T2 es)-

Which implies that
d *
— = (P elagn) ) + €2 el < 262 gy 1P 08 o),
Then one can verify that

T
sup [l(t)[172msy < 2620°T/ P ()] L2 (rs)ds. (4.1)
0<t<T 0

11



In the following, we set the vector subspace,
U= {u=Py:peC™(0,T],S®E,)), o(T) = 0} < L}([0, T, *(R?)).
Since fo € L*(R?), we define the linear functional
G:U—R
h=P*0 = (fo,¢(0))L2(r3),

where ¢ € C*([0,7],S(R?)) with ¢(T) = 0. From (4.1), the operator P* is
injective. Therefore the linear functional G is well-defined and moreover, we obtain

G| < [[follz2l(O) z2®s) < [[follz2 1@l Loe 0,71 12 (m2))
<2627 foll L2 | P* @l Lr o, 77,2y = 26277 (| foll L2 1Pl L 0,732 (Ro)) -

This shows that G is a continuous linear form on (U, | - || £1(jo,77,22(rs))). By us-
ing the Hahn-Banach theorem, G can be extended as a continuous linear form on
LY([0,T]; L*(R?)) with a norm smaller than 27| fo||p2(rs). It follows the Riesz

representation theorem that there exists a unique f € L>([0,T]; L?(R?)) satisfying

2G| £y

Il oo 0,772 (R3)) < 26 |22 (®s),

such that
T
Vh e LY([0, T); L*(R%)), g(h):/o (f(£), (1)) p2(gs) dt.

Which implies that for all ¢ € C5°((0,T), S(R?)),

T
GP*e) = [ (0Pl sy = (oo 00z,

Therefore, f € L*([0,T]; L*(R?)) is a weak solution of the Cauchy problem (1.5).
Let f € L*([0,T]; L?(R3)) be another weak solution of the Cauchy problem (1.5)
satisfying

£l fo.1:L2 @)y < 26T foll L2 @),

Set w(t) = f(t) — f(t), we have that for all ¢ € C$°((0,T), S(R?)),

T
/0 (w(t), P*o(t)) 2 ey dt = 0.

Which shows that w(t) = 0 in L*>°([0, T]; L?(R?)). The proof of Proposition 4.1 is
completed.
(]

5. ANALYTIC SMOOTHING EFFECT FOR LINEAR LANDAU EQUATION
Let f be the solution of Cauchy problem (1.5), that is,
of=Lf, fli=o=fo,
then similar to the estimate of Ry in Proposition 3.1 with § = 0, we have
%Hf”QLQ(RS‘) = 2(0:f, f)L?(R3) =2(Lf, f)L?(RS)
< 2| fII% +2Coll F113 3

12



This implies that (since v < 0),

d
a”f”%?(]l@) + 2|l f1% < 2Coll f1172rs)-

By using the Gronwall inequality, for any 7> 0 and 0 < t < T, we have

t
1F ()12 ms) +/O 1£(s)ds < €| foll 72 gs)- (5.1)

Let |a| = 1, it follows from Proposition 3.1 with § =+ that
d,1 e fe% e 1 qa
187 (0020 fllZa sy = 2(v) 0701 f, 80 f) + [|(v) 2 0% f 172 )
= 2((0) 0" LF,10° ) 2oy + 1(0) 0% e (5:2)
< =20t20%f[% 3 + 2Cot [ flla 3107 Fllaz + (0)2 0% fll72(zay-

By using the inequality (2.4), one can verify that, for any 0 <t < T and v < 0,
1 e 1
Iflaz <UIfllas 1) 20%Flegey < = I1fI1%-
Gy

Substituting back to the estimate (5.2), we have
d1oa 2 g0 g2 2 1 2
2 0% fllo g +11t20% flla 5 <  Cot + oA [1f1-
Integral on [0, t], and using (5.1), one can verify that, for |a| =1,
1
Ch

Proposition 5.1. For any m € N and a € N3, |a| = m, we have, for 0 <t <1,

PN ¢ 1 a
o5 + [ Irtoruliar < (BT + &) 9Tl < O 63

t
|a] ||
[E2 0 f112 e + / I772 0% I, sy dr < O (a), (5.4)
y T o 0 L)
where C 1is independent on o.

This Proposition imply Theorem 1.1.

Proof. In fact, we have proved that the assumption (5.4) holds true for m = 0,1
by (5.1) and (5.3).

Now assume that the assumption (5.4) holds true for |a| < m — 1, that means,
for any |a| <m —1,for 0 <t <1,

t
lal lod .o, N
182 0% FI1% e +/ I 0% F|% s dr < CAe2 ()2, (5.5)
) 0 » T3

We intend to prove the validity of (5.4) for m. Firstly

d Lol alal [} 2
a”t 2 (0)"7 0% fllT2(rs
_ e .
=21 ((W)110°D, £,0% ) L2 sy + 1]t (0) 72 0% f 172 gy
e

= 26 ((0) 11O LF, 0% ) sy + [t [ (0) 72 0% f1F 2 s

Let 0 = % in Proposition 3.1, it follows that,

vle

d  lof
— ||t 2 2
ZlE% ()

Q la] Q
0 fB gy < —20tF 0 fI2 o +BUS),
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and

S ) F 0 ey +2 S / 75 o fHAWd«/ B(f)dr, (5.0)

lee|=m lee|=

with

al— v\a\ o
B(f) = ot () " 0% fl| 72 as)
+2Co Y COVBHO P Fl 4 o1 0% 1] 1o

[81>1
Bl
+2Co ) CRIBIVBUMNO P F] 4 a1t 0% F 11y 21a 5

|8]>2
Ba

+ Cobllal Y2 CEVBUN0™ 2 F1|y oot 10 e

Bl
= B1(f) + Ba(f) + Bs(f) + Ba(f).
It follows from the inequality (2.4) again,

"r\al

Bi(f) = lalt*I=!|[(v) 2 3“f||Lz (R?)

< Jafteero (o)

3%% V1172 sy

la—eggl y(la—egy D

1 ° x—e
< lalll T @) T S,
1

where kg is choose with ag, = max{aj, as,as}. So that, by induction assumption
(5.5) for o —eg, | =m — 1

¢ 1 b lazegyl  va—er ) 9
/ By (f)dr < —al / [ ) T g |3 dr
0 Cy 0

|af 2la—eg, |+2 2 |ov| 2|l 2
< ——C*1% %k a—epl) < ————=C(al)”.
<o (a—ep!)® < Crlon) (al)

We get then

t
3
/ B (f)dr < —-C?el(al)? (5.7)
0 i
For the term Ba(f), using the fact, for any 8 < a, v < 0,
1092 11 st < 1021y o

by using induction assumption (5.5) for o — 5| <m —1, for 0 < ¢t < 1,

t
/Bg(f)d7§2Con Cﬁ\/ /||T
0

51 pore lal
0P fll g 21aat |77 0 fl 4 et dr

[B1>1
B<a
la—p| &
<20, 3 OO/ (/ 7270 f12, o d) (/ ||723“f|AwdT>
|ﬂ|>1
BLla
<af2c, Y CEVEICIATI (- / 7% 0% I, sy
[8]1>1,8<5c
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We get then, for 0 <t <1,

t
/ By (f)dr < C2C?l(a))? / |75 80‘f||A ater A7 (5.8)
0
with
~ 1 1-18
Gy >4Cy Y —=C 1o, (5.9)
[8]>1 '

For the term B3(f), by using induction assumption (5.5) for o — 8] <m — 2, |a —
ekl =m — 1,

/Bg(f)d7<2Co > C%lf/ 1D B 4 a1t 10%F Nl st b

|8]1>2
BLla
¢ | Bl 1/2
<26, Y- C2VA( [ e aaf’fﬁ,w_mdr)
181>2 0 ’
BLa

1/2
o0 %Vf”g ETEES e T)

([

B 1/2
aafﬁfHA alesl d7'>

1/2
(/ 750 F, s )

<2Cy Y CHIBI/BICI Pt (o — B)! Cll (o — ey,)!,
[B]>2
BLla

<20, Y cﬁwf(/ I3

|B81=2
BLa

we get then

t
/Bg(f)dTgc§c2\al(a1)2 (5.10)
0
with

S P Bl -

C3>6C, Y ——=C'"VPl>2c, Y ———cV (5.11)
| |

81>2,8<a V7 pi5mpa VOIOK

Finally for the term By4(f), by using induction assumption (5.5) for |a—ey,| = m—1,

/ B4 dT<Co|’7HOZ| Z Cﬂ\/>/ ”T ”aa Bf”A 7“"'

0<B8<Lx

|a*€k0| _
X T2 0 0V f | ey )dT
—= Tz

1/2
< cubrllal Y cav/a( [ e : 07

0<B<a
t la—ep
X / lm—=
0
15

| 1/2
0 —
aa EkOfHA,’Ylﬂ_;kOldT)



1/2
< Colyllal ( / 15 10212 s d) Clomerol#1(q — o)1

+Colyllal Y CE\/BICI AT (a — g1 eRlH (a — ¢y, ),

0<B<La

so that
t 1t e .
| Batniar < 5 [ 1011, spsr + 4GP0 (0 = e, )
0 ’ 2

+Colllal Yo COVBICIT I a = g)iCleT ot @ — e, ),

0<B<La
We get then, for 0 <t <1,
¢
/ By(f)dr < C20?1°l(a / I 5 o £ a7 (5.12)
0
with
G2 > 402y |‘O‘| + 3 Cobllel pa-js, (5.13)
RCINNITS VBlas,
Taking the constant C' satisfying (5.3), and
3 - - -
c? > a+0%+0§+0§,
where the constants are defined by (5.9), (5.11) and (5.13). Combine (5.6), (5.7),
(5.8), (5.10) and (5.12), we ends the proof of Proposition 5.1. O

6. APPENDIX
The standard Hermite functions (¢, ),en are defined for v € R,
(=)™ 2 d" v 1 d w2, a’y oo

on(v) = \/TT\fe dun ——(e77) = _W(U -0

where a is the creation operator

M

PR
MG dv/’
The family (¢,)nen is an orthonormal basis of L2(R). we set for n > 0, o =
(a1, a9, a3) € N3, 2 € Ryv € R3,

_ 914y, (9 _ L (z_ 4\
Un(@) =27 pn (271 22), wn—m(z dm) vo,

3
= H waj (Uj)7 & = Span(qja)ozeNS,IM:k»

with |a| = a1 + a2 + a3. The family (¥, ),ens is an orthonormal basis of L?(R?)
composed by the eigenfunctions of the 3-dimensional harmonic oscillator
[v?] _ 3 _
H=—By+10 =Y (k+ )P, 1A= Py, (6.1)
k>0 k>0
16



where P stands for the orthogonal projection

Prpf = Z (f,¥a)r2w,) Ya-

|| =k
In particular,
1 [v|?
Uo(v) = ——e 1 = p/?(v),
O( ) (271_)% w ( )
where p(v) is the Maxwellian distribution. Setting
Apy=2 %09, 1<5<3 (6.2)
we have
1 : 3
\Ila = m il,l 12’2141?3@0, o = (al,az,ag) S N s
and
A+,j\Ija = Qi + 1\I/a+ej7 A_J'\I/a = ‘/Oéj\I/a_ej (: Olf Qj = 0), (63)

where (e1,ea,e3) stands for the canonical basis of R3. For more details of the
Hermite functions, we can refer to [15] and the reference theorem.
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