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In this work, we study the linear Landau equation with soft potential and show that the solution to the Cauchy problem with initial datum in L 2 (R 3 ) enjoys an analytic regularizing effect, and the evolution of analytic radius is same as heat equations.

Introduction

In this work, we study the Cauchy problem of spatially homogeneous Landau equation :

∂ t F = Q(F, F ), F | t=0 = F 0 , (1.1) 
where F = F (t, v) ≥ 0 is the density distribution function depending on the velocity variables v ∈ R 3 and the time t ≥ 0. The Landau bilinear collision operator is given by

Q(G, F )(v) = 3 j,k=1 ∂ j R 3 a jk (v -v * ) G(v * )(∂ k F )(v) -(∂ k G)(v * )F (v) dv * ,
where

a jk (v) = (δ jk |v| 2 -v j v k )|v| γ , γ ≥ -3. (1.2) 
One calls hard potentials if γ > 0, Maxwellian molecules if γ = 0, soft potentials if γ ∈] -3, 0[ and Coulombian potential if γ = -3, We shall study the linearization of the Landau equation (1.1) near the absolute Maxwellian distribution

µ(v) = (2π) -3 2 e -|v| 2 2 .
Considering the fluctuation of density distribution function

F (t, v) = µ(v) + √ µ(v)f (t, v),
since Q(µ, µ) = 0, the Cauchy problem (1.1) is reduced to the Cauchy problem

∂ t f + L(f ) + K(f ) = Γ(f, f ), t > 0, v ∈ R 3 , f | t=0 = f 0 , (1.3) 
with F 0 (v) = µ + √ µf 0 (v), where

Γ(f, f ) = µ -1 2 Q ( √ µf, √ µf ),
and

Lf = -Γ( √ µ, f ), Kf = -Γ(f, √ µ). (1.4) 
In this work, we study Cauchy problem of the linear Landau equation, such as

∂ t f = Lf, f | t=0 = f 0 ∈ L 2 (R 3 ). (1.5)
Using the references [START_REF] Guo | The Landau Equation in a Periodic Box[END_REF] and [START_REF] Wang | Solving linearized Landau equation pointwisely[END_REF], we show that the diffusion part L is written as

follows Lf = -∇ v • [A(v)∇ v f ] + (A(v) v 2 • v 2 )f -∇ v • [A(v) v 2 ]f, (1.6) 
with A(v) = (ā ij ) 1≤i,j≤3 is a symmetric matrix where

āij = a ij * µ = R 3 (δ jk |v -v | 2 -(v j -v j )(v k -v k ))|v -v | γ µ(v )dv . (1.7)
For the hard potential case, the existence, uniqueness of the solution to Cauchy problem for the spatially homogeneous Landau equation has already been treated in [START_REF] Desvillettes | On the spatially homogeneous Landau equation for hard potentials. I. Existence, uniqueness and smoothness[END_REF], [START_REF] Villani | On the spatially homogeneous Landau equation for Maxwellian molecules[END_REF] under rather weak assumption on the initial datum. Moreover, they prove the smoothness of the solution in C ∞ (]0, +∞[; S(R 3 )). In [START_REF] Chen | Gevrey regularity for solution of the spatially homogeneous Landau equation[END_REF], Chen-Li-Xu improve this smoothing property and prove that the solution is in fact analytic for any t > 0 (See [START_REF] Chen | Analytic smoothness effect of solutions for spatially homogeneous Landau eqaution[END_REF][START_REF] Chen | Propagation of Gevrey regularity for solutions of Landau equations[END_REF] for the Gevrey regularity).

In the Maxwellian molecules case, in [START_REF] Lerner | Phase space analysis and functional calculus for the linearized Landau and Boltzmann operators[END_REF], Lerner, Morimoto, Pravda-Starov and Xu study the spatially homogeneous non-cutoff Boltzmann equation and Landau equation in a close-to-equilibrium framework and show that the solution enjoys the Gelfand-Shilov smoothing effect (see also [START_REF] Morimoto | A remark on the ultra-analytic smoothing properties of the spatially homogeneous Landau equation[END_REF], [START_REF] Li | Cauchy problem for the spatially homogeneous landau equation with shubin class initial datum and Gelfand-Shilov smoothing effect[END_REF] and [START_REF] Li | The Gelfand-Shilov smoothing effect for the radially symmetric homogeneous Landau equation with Shubin initial datum[END_REF]). This implies that the nonlinear spatial homogeneous Landau equation has the same smoothing effect properties as the classic heat equation or harmonic oscillators heat equation. In addition, starting from a L 2 initial datum at t = 0, the solution of Cauchy problem is spatial analytic for any t > 0 and the analytic radius is c 0 t 1 2 . In the non-Maxwellian case, we can't use the Fourier transformation and spectral decomposition as in [START_REF] Lerner | Phase space analysis and functional calculus for the linearized Landau and Boltzmann operators[END_REF][START_REF] Li | The Gelfand-Shilov smoothing effect for the radially symmetric homogeneous Landau equation with Shubin initial datum[END_REF][START_REF] Li | Cauchy problem for the spatially homogeneous landau equation with shubin class initial datum and Gelfand-Shilov smoothing effect[END_REF][START_REF] Morimoto | A remark on the ultra-analytic smoothing properties of the spatially homogeneous Landau equation[END_REF]. Recently, Li and Xu in [START_REF] Li | Analytic smoothing effect of the non-linear spatially homogeneous Landau equation with hard potentials[END_REF] proved the analytic smoothing effect of the solution to the nonlinear Landau equation with hard potentials and Maxwellian molecules case, that is γ ≥ 0.

In this work, we study the Cauchy problem of the linear Landau equation with soft potential -3 < γ < 0, we show the solution enjoys an analytic smoothing effect with the analytic radius c 0 t 1 2 . The main theorem is in the following.

Theorem 1.1. For soft potential -3 < γ < 0 and for any T > 0, the initial datum

f 0 ∈ L 2 (R 3 ), the Cauchy problem (1.5) admits a unique weak solution f ∈ L ∞ ([0, T ]; L 2 (R 3 )).
Moreover, for any α ∈ N 3 , t = min{t, 1}, we have,

t |α| 2 v γ|α| 2 ∂ α f (t) L 2 (R 3 ) ≤ C |α|+1 α!, t ∈ [0, T ].
Remark 1.2. Equivalently, for any m ∈ N, we have, for soft potential -3 < γ < 0,

t m 2 v γm 2 ∇ m f (t) 2 L 2 (R 3 ) = |α|=m (m!) 2 (α!) 2 t |α| 2 v γ|α| 2 ∂ α f (t) 2 L 2 (R 3 ) ≤ (3C) 2m+2 (m!) 2 , t ∈ [0, T ].
This paper is arranged as follows : We prove the ultra-analytic for the coefficient of the Landau operator in Section 2. In Section 3, we deal with estimation of the commutators and prove the coercivity property of the linear Landau operator. In Section 4, we study the Cauchy problem for linear Landau equation, and show that the existence and uniqueness properties of the weak solution. The analytic smoothing effect of the weak solution for the linear Landau equation with soft potential will be proved in Section 5. In the Appendix 6, we introduce the Hermite operator and related results.

ultra-analytic for the coefficient of Landau operator

For γ ∈ R, denote

v γ f L 2 (R 3 ) = f 2,γ , v γ f L ∞ (R 3 ) = f ∞,γ
where we use the notations v = (1 + |v| 2 ) 1/2 . In addition, for the matrix A defined in (1.7), we denote

u 2 A = 3 j,k=1 R 3 (ā jk ∂ j u∂ k u + 1 4 ājk v j v k u 2 )dv, (2.1) 
and weighted norm, for θ ∈ R,

u 2 A,θ = 3 j,k=1 R 3 v 2θ (ā jk ∂ j u∂ k u + 1 4 ājk v j v k u 2 )dv. (2.2) 
From formula (21) of Corollary 1 in [START_REF] Guo | The Landau Equation in a Periodic Box[END_REF], for any θ ∈ R, there exist C 1 > 0, such that

f 2 A,θ ≥ C 1 ( P v f 2 2, γ 2 +θ + (I -P v ) f 2 2,1+ γ 2 +θ + f 2 2,1+ γ 2 +θ ). (2.3)
where for any vector-valued function G(v) = (G 1 , G 2 , G 3 ), we define the projection to the vector v = (v 1 , v 2 , v 3 ) as

P v G i = 3 j=1 G j v j v i |v| 2 , 1 ≤ i ≤ 3.
Notice that ∇f = P v ∇f + (I -P v )∇f , we have

f A,θ ≥ C 1 ( ∇f 2, γ 2 +θ + f 2,1+ γ 2 +θ ). (2.4)
We can also refer to [START_REF] Degond | Dispersion Relations for the Linearized Fokker-Planck Equation[END_REF] and their references. Remark that the weighted of f and ∇f are different in the norm L 2 A , Firstly, for any γ > -3 and δ > 0, we have

R 3 |v -w| γ e -δ|w| 2 dw v γ . (2.5) Which imply |ā ij (v)| v γ+2 . (2.6)
In the following, we prove that the coefficients of linear Landau operator are ultra-analytic. Lemma 2.1. For any β ∈ N 3 with |β| ≥ 1 and āij was defined in (1.7) with -3 < γ < 0 , then we have,

|∂ β āij (v)| v γ+1 β!. (2.7)
Moreover, for any β ∈ N 3 ,

|∂ β ( 3 i,j=1 ∂ i a ij * (v j µ))| v γ+1 (|β| + 1) β!, |∂ β ( 3 i,j=1 āij v i v j )| v γ+1 (|β| + 1) β!.
(2.8)

Proof. For β ∈ N 3 with |β| ≥ 1, without loss of generality, we set

β 1 = max(β 1 , β 2 , β 3 ).
Notice that āij = a ij * µ, then

∂ β āij = ∂ β [a ij * µ] = ∂ 1 a ij * ∂ β-e1 µ
Direct calculation shows that, for any 1

≤ i ≤ 3, ∂ i ( √ µf ) = √ µ(∂ i - v i 2 )f = - √ µA +,i f. (2.9) 
For more details of the operators A ±,i , we can refer to the Appendix 6. By using the fact

|∂ 1 a ij (v)| |v| γ+1 ,
it follows from Cauchy-Schwartz's inequality and (2.5) that

|∂ β āij (v)| ≤ R 3 |∂ 1 a ij (v -w)( √ µA β1-1 +,1 A β2 +,2 A β3 +,3 √ µ)(w)|dw R 3 |v -w| 3 2 (γ+1) | √ µ(w)dw 2 3 A β1-1 +,1 A β2 +,2 A β3 +,3 √ µ L 3 (R 3 ) (1 + |v|) γ+1 A β1-1 +,1 A β2 +,2 A β3 +,3 √ µ L 3 (R 3 )
where we use the fact

3(γ + 1) 2 > -3, ∀ -3 < γ < 0. Due to √ µ(v) = Ψ 0 (v), we can deduce from (6.3) that A β1-1 +,1 A β2 +,2 A β3 +,3 √ µ = (β 1 -1)!β 2 !β 3 !Ψ β-e1 , (2.10) 
where {Ψ α } α∈N 3 is the orthonormal basis in L 2 (R 3 ). The Hölder's inequality and Poincaré's inequality implies

f 2 L 3 (R 3 ) ≤ f L 2 (R 3 ) f L 6 (R 3 ) f L 2 (R 3 ) ∇f L 2 (R 3 ) ,
along with the equalities (6.2) and (6.3) shows that,

|∂ β āij (v)| v γ+1 ∇Ψ β-e1 1 2 L 2 (R 3 ) v γ+1 3 k=1 (β -e 1 + e k )! Consider that β 1 = max(β 1 , β 2 , β 3 ), we get that |∂ β āij (v)| v γ+1 β!.
For the estimate of the remaining inequalities (2.8), an integration by parts inside the convolution show that,

3 i,j=1 ∂ i a ij * (v j µ) = - 3 i,j=1 ∂ i a ij * ( √ µA +,j √ µ), 3 i,j=1 a ij * (v i v j µ) = 3 i,j=1 a ij * ( √ µ(A +,i A +,j √ µ -δ i,j A +,j √ µ)) = - 3 i,j=1 ∂ j a ij * ( √ µ(A +,i √ µ -δ i,j √ µ)).
By using the fact

|∂ i a ij (v)| |v| γ+1 , |∂ j a ij (v)| |v| γ+1 .
A calculation similar to that as above, it follows that

|∂ β ( 3 i,j=1 ∂ i a ij * (v j µ))| 3 j=1 R 3 |v -w| 3 2 (γ+1) e -|w| 2 2 dw 1 2 (β + e j )! Ψ β+ej L 3 (R 3 ) v γ+1 3 j=1 (β + e j )! Ψ β+ej L 3 (R 3 ) v γ+1 3 j=1 (β + e j )! ∇Ψ β+ej 1 2 L 2 (R 3 ) v γ+1 3 k,j=1 (β + e j + e k )! ≤ v γ+1 (|β| + 1) β!.
The same estimate holds true for the last term, such that

|∂ β ( 3 i,j=1 āij v i v j )| v γ+1 (|β| + 1) β!.
We end the proof of Lemma 2.1.

In order to prove the coercivity of the linear Landau operator, we need one more estimate to control the weighted āij . Lemma 2.2. For f, g ∈ S(R 3 ), for any β ∈ N 3 and θ ∈ R, we have

| 3 i,j=1 v 2θ ∂ β āij ∂ j f, ∂ i g | β! f A,θ g A,θ . (2.11) 
where āij was defined in (1.7) with -3 < γ < 0.

Proof. In fact, the inner product

v 2θ ∂ β āij ∂ j f, ∂ i g = R 3 ×R 3 v 2θ a ij (v -w)∂ β µ(w)∂ j f (v)∂ i g(v)dwdv.
We decompose the integration region [v, w] ∈ R 3 × R 3 into three parts:

{|v| ≤ 1}, {2|w| ≥ |v|, |v| ≥ 1}, and {2|w| ≤ |v|, |v| ≥ 1}.
For the first part {|v| ≤ 1}, by Lemma 2.1, we have

3 i,j=1 {|v|≤1}×R 3 v 2θ a ij (v -w)∂ β µ(w)∂ j f (v)∂ i g(v)dwdv 3 i,j=1 |v|≤1 v γ+2 β! v 2θ |∂ j f ∂ i g|dv ≤ β! v γ 2 ∇f 2,θ v γ 2 ∇g 2,θ β! f A,θ g A,θ .
For the second part {2|w| ≥ |v|, |v| ≥ 1}, we have

e -|w| 2 4 ≤ e -|w| 2 8 e -|v| 2 32 .
Similar to the proof as Lemma 2.1, one can verify that

3 i,j=1 {2|w|≥|v|,|v|≥1} v 2θ a ij (v -w) µ(w)Ψ β (w)∂ j f (v)∂ i g(v)dwdv 3 i,j=1 R 3 v γ+2 e -|v| 2 32 β! v 2θ |∂ j f ∂ i g|dv β! f A,θ g A,θ .
We finally consider the third part {2|w| ≤ |v|, |v| ≥ 1}. Expanding a ij (v -w) to get

a ij (v -w) = a ij (v) + 3 k=1 ∂ k a ij (v)w k + 1 2 3 k,l=1 1 0 ∂ kl a ij (v -sw)ds w k w l .
Along with the fact that

3 i=1 a ij v i = 0, 3 i,j=1 ∂ k a ij (v)v i v j = -2 3 j=1 a kj (v)v j = 0, show immediately 3 i,j=1 {2|w|≤|v|,|v|≥1} v 2θ a ij (v -w)∂ β µ(w)∂ j f (v)∂ i g(v)dwdv = 3 i,j=1 2|w|≤|v|,|v|≥1 v 2θ ∂ β µ(w)a ij (v)[(I -P v )∂ j f ][(I -P v )∂ i g]dwdv + 3 i,j=1 3 
k=1 2|w|≤|v|,|v|≥1 v 2θ w k ∂ β µ(w)∂ k a ij (v)[P v ∂ j f ][(I -P v )∂ i g]dwdv i,j=1 3 
k=1 2|w|≤|v|,|v|≥1 v 2θ w k ∂ β µ(w)∂ k a ij (v)[(I -P v )∂ j f ][∂ i g]dwdv + 1 2 3 k,l=1 3 i,j=1 1 0 2|w|≤|v|,|v|≥1 v 2θ w k w l ∂ β µ(w)∂ kl a ij (v -sw)∂ j f ∂ i gdwdvds. Since 2|w| ≤ |v|, |v| ≥ 1, 0 < s < 1, for -3 < γ < 0, we have |a ij (v)| |v| γ+2 v γ+2 ; |∂ k a ij (v)| v γ+1 ; |∂ kl a ij (v -sw)| ≤ C|v -sw| γ ≤ C4 -γ (1 + |v|) γ .
It follows from the inequality (2.10) and the norm equality (2.3) that

3 i,j=1 {2|w|≤|v|,|v|≥1} v 2θ a ij (v -w)∂ β µ(w)∂ j f (v)∂ i g(v)dwdv β! (I -P v )∇f 2, γ+2 2 +θ (I -P v )∇g 2, γ+2 2 +θ + β! (I -P v )∇f 2, γ+2 2 +θ P v ∇g 2, γ 2 +θ + β! (I -P v )∇f 2, γ+2 2 +θ ∇g 2, γ 2 +θ + β! ∇f 2, γ 2 +θ ∇g 2, γ 2 +θ β! f A,θ g A,θ .
This is the inequality (2.11). We end the proof of Lemma 2.2.

Estimations of commutators

Proposition 3.1. Let f ∈ S(R 3 ), L was defined in (1.5), for any α ∈ N 3 and θ ∈ R, there exist a positive constant C 0 > 0 which is independent on α and θ, such that,

v 2θ ∂ α Lf,∂ α f L 2 (R 3 ) ≤ -∂ α f 2 A,θ + C 0 θ ∂ α f A,θ ∂ α f 2, γ 2 +θ + C 0 |β|≥1 β≤α C β α β! ∂ α-β f A,θ ∂ α f A,θ + |θ| ∂ α f 2,θ+ γ 2 + C 0 |β|≥1 β≤α C β α |β| β! ∂ α-β f A,θ ∂ α f 2,θ+ γ 2 .
Remark 3.2. Remark that, we have

(1) For α = 0, θ = 0, we have

Lf, f L 2 (R 3 ) ≤ - 1 2 f 2 A + C 0 f 2 γ 2 . ( 3.1) 
(2) For |α| ≥ 1,

∂ α f 2, γ 2 +θ ∇∂ α-ej 0 f 2, γ 2 +θ ∂ α-ej 0 f A,θ , (3.2) 
where α j0 = max{α 1 , α 2 , α 3 }.

Proof. Recalled the formula Lf in (1.5), for the smooth function f , integrated by parts, we have

-v 2θ ∂ α Lf, ∂ α f L 2 (R 3 ) = 3 i,j=1 R 3 v 2θ {∂ α (ā ij ∂ j f )} ∂ α ∂ i f dv + 3 i,j=1 R 3 ∂ i v 2θ {∂ α (ā ij ∂ j f )} ∂ α f dv + 1 4 3 i,j=1 R 3 v 2θ {∂ α (ā ij v i v j f )} ∂ α f dv - 1 2 3 i,j=1 R 3 v 2θ {∂ α ∂ i ((ā ij v j )f )} ∂ α f dv.
Then, using (2.2), we have,

-v 2θ ∂ α Lf, ∂ α f L 2 (R 3 ) = ∂ α f 2 A,θ + R(f ), (3.3) 
with

R(f ) = 3 i,j=1 R 3 v 2θ {[∂ α , āij ]∂ j f )} ∂ α ∂ i f dv + 3 i,j=1 R 3 ∂ i v 2θ {∂ α (ā ij ∂ j f )} ∂ α f dv + 1 4 3 i,j=1 R 3 v 2θ {[∂ α , āij v i v j ]f )} ∂ α f dv - 1 2 3 i,j=1 R 3 v 2θ {∂ α ∂ i ((ā ij v j )f )} ∂ α f dv.
By using Leibniz formula,

∂ α (gh) = g∂ α h + |β|=1 β≤α C β α ∂ β g∂ α-β h + |β|≥2 β≤α C β α ∂ β g∂ α-β h, and āij = a ij * µ, j āij v j = j a ij * (v j µ), i,j āij v i v j = j a ij * (v i v j µ), it follows that R(f ) = R 0 (f ) + R 1 (f )
where

R 0 (f ) = 3 i,j=1 R 3 (∂ i v 2θ )(ā ij ∂ j ∂ α f )∂ α f dv - 1 2 3 i,j=1 R 3 v 2θ (∂ i a ij ) * (v j µ)|∂ α f | 2 dv = R 01 (f ) + R 02 (f ); R 1 (f ) = |β|≥1 β≤α C β α 3 i,j=1 R 3 v 2θ (∂ β āij )(∂ α-β ∂ j f )∂ α ∂ i f dv + |β|≥1 β≤α C β α 3 i,j=1 R 3 ∂ i v 2θ (∂ β āij ) ∂ j ∂ α-β f ∂ α f dv + 1 4 |β|≥1 β≤α C β α 3 i,j=1 R 3 v 2θ ∂ β (a ij * (v i v j µ)) ∂ α-β f ∂ α f dv - 1 2 |β|≥1 β≤α C β α 3 i,j=1 R 3 v 2θ (∂ i ∂ β a ij ) * (v j µ)∂ α-β f ∂ α f dv =R 11 + R 12 + R 13 + R 14 .
So that the proof of the Proposition 3.1 is reduced to the estimations of terms R 0 (f ) and R 1 (f ) , which will give by the following two lemmas.

Lemma 3.3. We have, for α ∈ N 3 ,

|R 0 (f )| θ | ∂ α f A,θ ∂ α f 2, γ 2 +θ . (3.4) 
Proof. By using (2.5), we get

|(∂ i a ij ) * (v j µ)| v γ+1 , |(a ij ) * (v j µ)| v γ+2
then (2.4) imply

|R 02 (f )| = 3 i,j=1 R 3 v 2θ (∂ i a ij ) * (v j µ)|∂ α f | 2 dv R 3 v γ+1+2θ |∂ α f | 2 dv ∂ α f 2, γ 2 +θ ∂ α f 2, γ 2 +1+θ ∂ α f 2, γ 2 +θ ∂ α f A,θ . For the term R 01 , we use ∂ i v 2θ = 2θ v 2θ-2 v i , then, R 01 (f ) = 3 i,j=1 R 3 (∂ i v 2θ )(ā ij ∂ j ∂ α f )∂ α f dv = 2θ 3 i,j=1 R 3 v 2θ-2 (ā ij v i ∂ j ∂ α f )∂ α f dv = 2θ 3 i,j=1 R 3 v 2θ-2 (a ij * (v i µ)∂ j ∂ α f )∂ α f dv. It follows that |R 01 (f )| ≤2|θ| 3 j=1 R 3 v 2θ+γ |∂ j ∂ α f ||∂ α f |dv |θ| 3 j=1 ∂ j ∂ α f 2, γ 2 +θ ∂ α f 2, γ 2 +θ |θ| ∂ α f A,θ ∂ α f 2, γ 2 +θ . Which give the estimate of R 0 (f ). Lemma 3.4. We have, for α ∈ N 3 , |α| ≥ 1, |R 1 (f )| |β|=1 β≤α C β α ∂ α-β f A,θ ∂ α f A,θ + |θ| ∂ α f 2,θ+ γ 2 . (3.5) 
Proof. Now we estimate R 1 . For the term R 11 (f ), by using the inequality (2.11) in Lemma 2.2 directly, we obtain that

|R 11 (f )| = |β|≥1 β≤α C β α 3 i,j=1 R 3 v 2θ (∂ β āij )(∂ α-β ∂ j f )∂ α ∂ i f dv |β|≥1 β≤α C β α β! ∂ α-β f A,θ ∂ α f A,θ .
For the two terms R 13 (f ), R 14 (f ), we can deduce from the inequality (2.8) in Lemma 2.1 and (2.4) that

|R 13 (f )| + |R 14 (f )| = 1 4 |β|≥1 β≤α C β α 3 i,j=1 R 3 v 2θ ∂ β (a ij * (v i v j µ)) ∂ α-β f ∂ α f dv + 1 2 |β|≥1 β≤α C β α 3 i,j=1 R 3 v 2θ (∂ i ∂ β a ij ) * (v j µ)∂ α-β f ∂ α f dv |β|≥1 β≤α C β α R 3 v 2θ+γ+1 |β| β!|∂ α-β f ||∂ α f |dv |β|≥1 β≤α C β α |β| β! ∂ α-β f 2,θ+ γ+2 2 ∂ α f 2,θ+ γ 2 |β|≥1 β≤α C β α |β| β! ∂ α-β f A,θ ∂ α f 2,θ+ γ 2 .
For the term R 12 (f ), for |β| ≥ 1, it follows from (2.7) in Lemma 2.1 that

|∂ i v 2θ ∂ β āij | |θ| v 2θ-1 v γ+1 β! ≤ |θ| v 2θ+γ β!.
Then we have

|R 12 (f )| = |β|≥1 β≤α C β α 3 i,j=1 R 3 ∂ i v 2θ (∂ β āij ) ∂ j ∂ α-β f ∂ α f dv |θ| |β|≥1 β≤α C β α β! 3 j=1 ∂ α-β ∂ j f 2, γ 2 +θ ∂ α f 2, γ 2 +θ |θ| |β|≥1 β≤α C β α β! ∂ α-β f A,θ ∂ α f 2, γ 2 +θ .
We conclude that

|R 1 (f )| |β|≥1 β≤α C β α β! ∂ α-β f A,θ ∂ α f A,θ + |θ| |β|≥1 β≤α C β α β! ∂ α-β f A,θ ∂ α f 2,θ+ γ 2 + |β|≥1 β≤α C β α |β| β! ∂ α-β f A,θ ∂ α f 2,θ+ γ 2 .
Substituting the estimates of R 0 (f ), R 1 (f ) into the decomposition (3.3), we can end the proof of Proposition 3.1.

Existence and uniqueness of linear Landau equation.

Proposition 4.1. For -3 < γ < 0, T > 0, f 0 ∈ L 2 (R 3 ), the Cauchy problem (1.5) admits a unique weak solution

f ∈ L ∞ ([0, T ]; L 2 (R 3 )) satisfying f (t) L 2 (R 3 ) ≤ 2e 2C0T f 0 L 2 (R 3 )
where C 0 was defined in Proposition 3.1.

Proof. The existence of the weak solution is similar to that in [START_REF] Alexandre | Uncertainty principle and kinetic equations[END_REF][START_REF] Morimoto | Ultra-analytic effect of Cauchy problem for a class of kinetic equations[END_REF][START_REF] Guo | The Landau Equation in a Periodic Box[END_REF]. We consider the operator

P = -∂ t + L. For any ϕ ∈ C ∞ ([0, T ]; S(R 3 )) with ϕ(T ) = 0, it follows from (3.1) that (ϕ(t), P * ϕ(t)) L 2 (R 3 ) = (∂ t ϕ, ϕ) L 2 (R 3 ) + (Lϕ, ϕ) L 2 (R 3 ) ≤ 1 2 d dt ϕ 2 L 2 (R 3 ) -ϕ 2 A + C 0 ϕ 2 2, γ 2 .
Since γ < 0, we have

- 1 2 d dt ϕ 2 L 2 (R 3 ) + ϕ 2 A ≤ (ϕ(t), P * ϕ(t)) L 2 (R 3 ) + C 0 ϕ 2 L 2 (R 3 ) . Which implies that - d dt e 2C0t ϕ 2 L 2 (R 3 ) + e 2C0t ϕ 2 A ≤ 2e 2C0t ϕ L 2 (R 3 ) P * ϕ(t) L 2 (R 3 ) , Then one can verify that sup 0≤t≤T ϕ(t) 2 L 2 (R 3 ) ≤ 2e 2C0T T 0 P * ϕ(s) L 2 (R 3 ) ds. (4.1)
In the following, we set the vector subspace,

U = u = Pϕ : ϕ ∈ C ∞ ([0, T ], S(R 6 x,v )), ϕ(T ) = 0 ⊂ L 1 ([0, T ], L 2 (R 3 ))). Since f 0 ∈ L 2 (R 3
), we define the linear functional

G : U → R h = P * ϕ → (f 0 , ϕ(0)) L 2 (R 3 ) ,
where ϕ ∈ C ∞ ([0, T ], S(R 3 )) with ϕ(T ) = 0. From (4.1), the operator P * is injective. Therefore the linear functional G is well-defined and moreover, we obtain

|G(h)| ≤ f 0 L 2 ϕ(0) L 2 (R 3 ) ≤ f 0 L 2 ϕ L ∞ ([0,T ];L 2 (R 3 )) ≤ 2e 2C0T f 0 L 2 P * ϕ L 1 ([0,T ],L 2 (R 3 )) = 2e 2C0T f 0 L 2 h L 1 ([0,T ];L 2 (R 3 )) .
This shows that G is a continuous linear form on (U, • L 1 ([0,T ],L 2 (R 3 )) ). By using the Hahn-Banach theorem, G can be extended as a continuous linear form on L 1 ([0, T ]; L 2 (R 3 )) with a norm smaller than 2e 2C0T f 0 L 2 (R 3 ) . It follows the Riesz representation theorem that there exists a unique

f ∈ L ∞ ([0, T ]; L 2 (R 3 )) satisfying f L ∞ ([0,T ];L 2 (R 3 )) ≤ 2e 2C0T f 0 L 2 (R 3 ) , such that ∀h ∈ L 1 ([0, T ]; L 2 (R 3 )), G(h) = T 0 (f (t), h(t)) L 2 (R 3 ) dt.
Which implies that for all ϕ ∈ C ∞ 0 ((0, T ), S(R 3 )),

G(P * ϕ) = T 0 (f (t), P * ϕ(t)) L 2 (R 3 ) dt = (f 0 , ϕ(0)) L 2 (R 3 ) . Therefore, f ∈ L ∞ ([0, T ]; L 2 (R 3 )) is a weak solution of the Cauchy problem (1.5). Let f ∈ L ∞ ([0, T ]; L 2 (R 3 
)) be another weak solution of the Cauchy problem (1.5)

satisfying f L ∞ ([0,T ];L 2 (R 3 )) ≤ 2e 2C0T f 0 L 2 (R 3 ) , Set w(t) = f (t) -f (t), we have that for all ϕ ∈ C ∞ 0 ((0, T ), S(R 3 )), T 0 (w(t), P * ϕ(t)) L 2 (R 3 ) dt = 0. Which shows that w(t) = 0 in L ∞ ([0, T ]; L 2 (R 3 
)). The proof of Proposition 4.1 is completed.

Analytic smoothing effect for linear Landau equation

Let f be the solution of Cauchy problem (1.5), that is,

∂ t f = Lf, f | t=0 = f 0 ,
then similar to the estimate of R 0 in Proposition 3.1 with θ = 0, we have

d dt f 2 L 2 (R 3 ) = 2(∂ t f, f ) L 2 (R 3 ) = 2(Lf, f ) L 2 (R 3 ) ≤ -2 f 2 A + 2C 0 f 2 2, γ 2 .
This implies that (since γ < 0),

d dt f 2 L 2 (R 3 ) + 2 f 2 A ≤ 2C 0 f 2 L 2 (R 3 )
. By using the Gronwall inequality, for any T > 0 and 0 < t < T , we have

f (t) 2 L 2 (R 3 ) + t 0 f (s) 2 A ds ≤ e 2C0T f 0 2 L 2 (R 3 ) . (5.1) 
Let |α| = 1, it follows from Proposition 3.1 with θ = γ that d dt t

1 2 v γ 2 ∂ α f 2 L 2 (R 3 ) = 2 v γ ∂ α ∂ t f, t∂ α f + v γ 2 ∂ α f 2 L 2 (R 3 ) = 2 v γ ∂ α Lf, t∂ α f L 2 (R 3 ) + v γ 2 ∂ α f 2 L 2 (R 3 ) ≤ -2 t 1 2 ∂ α f 2 A, γ 2 + 2C 0 t f A, γ 2 ∂ α f A, γ 2 + v γ 2 ∂ α f 2 L 2 (R 3 ) . (5.2) 
By using the inequality (2.4), one can verify that, for any 0 < t < T and γ < 0,

f A, γ 2 ≤ f A , v γ 2 ∂ α f 2 L 2 (R 3 ) ≤ 1 C 1 f 2 A .
Substituting back to the estimate (5.2), we have

d dt t 1 2 ∂ α f 2 2, γ 2 + t 1 2 ∂ α f 2 A, γ 2 ≤ C 2 0 t + 1 C 1 f 2 A .
Integral on [0, t], and using (5.1), one can verify that, for |α| = 1,

t 1 2 ∂ α f 2 2, γ 2 + t 0 τ 1 2 ∂ α u 2 A dτ ≤ C 2 0 T + 1 C 1 e 2C0T f 0 2 L 2 (R 3 ) ≤ C 4 . (5.3) 
Proposition 5.1. For any m ∈ N and α ∈ N 3 , |α| = m, we have, for 0 < t ≤ 1,

t |α| 2 ∂ α f 2 2, γ|α| 2 
+ t 0 τ |α| 2 ∂ α f 2 A, γ|α| 2 dτ ≤ C 2|α|+2 (α!) 2 . (5.4)
where C is independent on α.

This Proposition imply Theorem 1.1.

Proof. In fact, we have proved that the assumption (5.4) holds true for m = 0, 1 by (5.1) and (5.3). Now assume that the assumption (5.4) holds true for |α| ≤ m -1, that means, for any |α| ≤ m -1, for 0 < t ≤ 1,

t |α| 2 ∂ α f 2 2, γ|α| 2 + t 0 τ |α| 2 ∂ α f 2 A, γ|α| 2 dτ ≤ C 2|α|+2 (α!) 2 .
(5.5)

We intend to prove the validity of (5.4) for m. Firstly

d dt t |α| 2 v γ|α| 2 ∂ α f 2 L 2 (R 3 ) = 2t |α| v γ|α| ∂ α ∂ t f, ∂ α f L 2 (R 3 ) + |α|t |α|-1 v γ|α| 2 ∂ α f 2 L 2 (R 3 ) = 2t |α| v γ|α| ∂ α Lf, ∂ α f L 2 (R 3 ) + |α|t |α|-1 v γ|α| 2 ∂ α f 2 L 2 (R 3 ) Let θ = γ|α| 2 in Proposition 3.1, it follows that, d dt t |α| 2 v γ|α| 2 ∂ α f 2 L 2 (R 3 ) ≤ -2 t |α| 2 ∂ α f 2 A, γ|α| 2 + B(f ),
and

|α|=m t |α| 2 v γ|α| 2 ∂ α f 2 L 2 (R 3 ) + 2 |α|=m t 0 τ |α| 2 ∂ α f 2 A, γ|α| 2 dτ ≤ t 0 B(f )dτ, ( 5.6) 
with

B(f ) = |α|t |α|-1 v γ|α| 2 ∂ α f 2 L 2 (R 3 ) + 2C 0 |β|≥1 β≤α C β α β!t |α| ∂ α-β f A, γ|α| 2 ∂ α f A, γ|α| 2 + 2C 0 |β|≥2 β≤α C β α |β| β!t |α| ∂ α-β f A, γ|α| 2 ∂ α f 2, γ|α| 2 + γ 2 + C 0 |γ||α| β≤α C β α β!t |α| ∂ α-β f A, γ|α| 2 ∂ α f γ|α| 2 + γ 2 = B 1 (f ) + B 2 (f ) + B 3 (f ) + B 4 (f ).
It follows from the inequality (2.4) again,

B 1 (f ) = |α|t |α|-1 v γ|α| 2 ∂ α f 2 L 2 (R 3 ) ≤ |α|t |α-e k 0 | v γ|α-e k 0 | 2 ∂ α-e k 0 ∇f 2 L 2 (R 3 ) ≤ 1 C 1 |α| t |α-e k 0 | 2 v γ(|α-e k 0 |) 2 ∂ α-e k 0 f 2 A ,
where k 0 is choose with α k0 = max{α 1 , α 2 , α 3 }. So that, by induction assumption (5.5) for |α -e k0 | = m -

1 t 0 B 1 (f )dτ ≤ 1 C 1 |α| t 0 τ |α-e k 0 | 2 v γ(|α-e k 0 |) 2 ∂ α-e k 0 f 2 A dτ ≤ |α| C 1 C 2|α-e k 0 |+2 (α -e k !) 2 ≤ |α| C 1 (α k ) 2 C 2|α| (α!) 2 . We get then t 0 B 1 (f )dτ ≤ 3 C 1 C 2|α| (α!) 2 (5.7)
For the term B 2 (f ), using the fact, for any β ≤ α, γ < 0,

∂ α-β f A, γ|α| 2 ≤ ∂ α-β f A, γ|α-β| 2 
, by using induction assumption (5.5

) for |α -β| ≤ m -1, for 0 < t ≤ 1, t 0 B 2 (f )dτ ≤ 2C 0 T m |β|≥1 β≤α C β α β! t 0 τ |α-β| 2 ∂ α-β f A, γ|α-β| 2 τ |α| 2 ∂ α f A, γ|α| 2 dτ ≤ 2C 0 |β|≥1 β≤α C β α β! t 0 τ |α-β| 2 ∂ α-β f 2 A, γ|α-β| 2 dτ 1/2 t 0 τ |α| 2 ∂ α f 2 A, γ|α| 2 dτ 1/2 ≤ 4   2C 0 |β|≥1,β≤α C β α β!C |α-β|+1 (α -β)!   2 + 1 2 t 0 τ |α| 2 ∂ α f 2 A, γ|α| 2 
dτ.

We get then, for 0 < t ≤ 1,

t 0 B 2 (f )dτ ≤ C2 1 C 2|α| (α!) 2 + 1 2 t 0 τ |α| 2 ∂ α f 2 A, γ|α| 2 dτ (5.8) with C1 ≥ 4C 0 |β|≥1 1 √ β! C 1-|β| .
(5.9)

For the term B 3 (f ), by using induction assumption (5.5

) for |α -β| ≤ m -2, |α - e k0 | = m -1, t 0 B 3 (f )dτ ≤ 2C 0 |β|≥2 β≤α C β α |β| β! t 0 τ |α| ∂ α-β f A, γ|α| 2 ∂ α f 2, γ|α| 2 + γ 2 dτ ≤ 2C 0 |β|≥2 β≤α C β α |β| β! t 0 τ |α-β| 2 ∂ α-β f 2 A, γ|α-β| 2 dτ 1/2 × t 0 τ |α|-1 2 ∂ α-e k 0 ∇f 2 2, γ|α|-1 2 + γ 2 dτ 1/2 ≤ 2C 0 |β|≥2 β≤α C β α |β| β! t 0 τ |α-β| 2 ∂ α-β f 2 A, γ|α-β| 2 dτ 1/2 × t 0 τ |α|-1 2 ∂ α-e k 0 f 2 A, γ|α|-1 2 dτ 1/2 ≤ 2C 0 |β|≥2 β≤α C β α |β| β!C |α-β|+1 (α -β)! C |α| (α -e k0 )!,
we get then

t 0 B 3 (f )dτ ≤ C2 2 C 2|α| (α!) 2 (5.10) with C2 2 ≥ 6C 0 |β|≥2,β≤α 1 √ β! C 1-|β| ≥ 2C 0 |β|≥2,β≤α |β| √ β!α k0 C 1-|β| . (5.11)
Finally for the term B 4 (f ), by using induction assumption (5.5) for |α-e k0 | = m-1, Taking the constant C satisfying (5.3), and

t 0 B 4 (f )dτ ≤ C 0 |γ||α| 0≤β≤α C β α β! t 0 τ |α-β| 2 ∂ α-β f A, γ|α| 2 × τ |α-e k 0 | 2 ∂ α-e k 0 ∇f γ|α-e k 0 | 2 + γ 2 dτ ≤ C 0 |γ||α| 0≤β≤α C β α β! t 0 τ |α-β| 2 ∂ α-β f 2 A, γ|α-β| 2 dτ 1/2 × t 0 τ |α-e k 0 | 2 ∂ α-e k 0 f A, γ|α-e k 0 | 2 dτ 1/2 ≤ C 0 |γ||α| t 0 τ |α| 2 ∂ α f 2 A,
C 2 ≥ 3 C 1 + C2 1 + C2 2 + C2 3 ,
where the constants are defined by (5.9), (5.11) and (5.13). Combine (5.6), (5.7), (5.8), (5.10) and (5.12), we ends the proof of Proposition 5.1.

Appendix

The standard Hermite functions (ϕ n ) n∈N are defined for v ∈ R,

ϕ n (v) = (-1) n 2 n n! √ π e v 2 2 d n dv n (e -v 2 2 ) = - 1 2 n n! √ π (v - d dv ) n (e -v 2 2 ) = a n + ϕ 0 √ n! ,
where a + is the creation operator

a + = 1 √ 2 v - d dv .
The family (ϕ n ) n∈N is an orthonormal basis of L 2 (R). we set for n ≥ 0, α = (α 1 , α 2 , α 3 ) ∈ N 3 , x ∈ R,v ∈ R 3 , where P k stands for the orthogonal projection

ψ n (x) = 2 -1/4 ϕ n (2 -1/2 x), ψ n = 1 √ n! x 2 - d dx n ψ 0 , Ψ α (v) =
P k f = |α|=k (f, Ψ α ) L 2 (Rv) Ψ α .
In particular, Ψ 0 (v) = 1 (2π) where µ(v) is the Maxwellian distribution. Setting

A ±,j = v j 2 ∓ ∂ j , 1 ≤ j ≤ 3, (6.2) 
we have

Ψ α = 1 √ α 1 !α 2 !α 3 ! A α1 +,1 A α2 +,2 A α3 +,3 Ψ 0 , α = (α 1 , α 2 , α 3 ) ∈ N 3 ,

and

A +,j Ψ α = α j + 1Ψ α+ej , A -,j Ψ α = √ α j Ψ α-e j (= 0 if α j = 0), (6.3) where (e 1 , e 2 , e 3 ) stands for the canonical basis of R 3 . For more details of the Hermite functions, we can refer to [START_REF] Morimoto | A remark on the ultra-analytic smoothing properties of the spatially homogeneous Landau equation[END_REF] and the reference theorem.

γ|α| 2 dτ 1 / 2 C 2 ∂ α f 2 A, γ|α| 2 dτ + 4C 2 0 |γ| 2 |α| 2 C 2 + 0 B 4

 2122222204 |α-e k 0 |+1 (α -e k0 )!+ C 0 |γ||α| 0<β≤α C β α β!C |α-β|+1 (α -β)!C |α-e k 0 |+1 (α -e k0 )!, 2|α| ((α -e k0 )!) |α-β|+1 (α -β)!C |α-e k 0 |+1 (α -e k0 )!, We get then, for 0 < t ≤ 1, t (f )dτ ≤ C2 3 C 2|α| (α!)

3 j=1ψ

 3 αj (v j ), E k = Span(Ψ α ) α∈N 3 ,|α|=k , with |α| = α 1 + α 2 + α 3 . The family (Ψ α ) α∈N 3 is an orthonormal basis of L 2 (R 3 )composed by the eigenfunctions of the 3-dimensional harmonic oscillatorH = -∆ v + |v 2

3 4 e -|v| 2 4 = µ 1 / 2
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