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Occupational applications  20 

Since cobots (collaborative robots) are increasingly being introduced in 21 

industrial environments, being aware of their potential positive and negative 22 

impacts on human collaborators is essential. This study guides occupational health 23 

workers by identifying the potential gains (reduced perceived time demand, 24 

number of gestures and number of errors) and concerns (the cobot takes a long 25 

time to perceive its environment, which leads to an increased completion time) 26 

associated with working with cobots. In our study, the collaboration between 27 

human and cobot during an assembly task did not negatively impact perceived 28 

cognitive load, increased completion time (but decreased perceived time demand), 29 

and decreased the number of gestures performed by participants and the number of 30 

errors made. Thus, performing the task in collaboration with a cobot improved the 31 

user’s experience and performance, except for completion time, which increased. 32 

This study opens up avenues to investigate how to improve cobots to ensure the 33 

usability of the human-machine system at work. 34 



 

 

 35 

Technical Abstract 36 

Background: Industry 4.0 implements smart technologies to increase productivity 37 

and to decrease the associated risks. Using cobots is considered by industry as a 38 

potential means to reduce physical constraints and improve performance without 39 

having to replace the human factor. Research has yet to prove these benefits on 40 

humans.  41 

Purpose: The goal of this study was to determine if working with a cobot improved 42 

perceived cognitive load of an operator and the usability of the system.  43 

Methods: Participants replicated three construction models using Duplos. 44 

Approximatively half of our participants (n=32) accomplished the task alone and 45 

the other half accomplished the same task with a cobot (n=22). We then used the 46 

NASA TLX to measure workload and, through a sub-dimension, perceived 47 

cognitive load. Completion time (for each model), number of errors (placing and 48 

replacing a piece), and the number of gestures (movements of the upper limbs) 49 

were also measured.  50 

Results: Collaboration with a cobot led to significantly fewer gestures (51 vs. 74), 51 

fewer errors (2 vs. 8), and reduced perceived time demand, but increased 52 

completion time (136 vs. 55 s). Perceived cognitive load was not impacted by the 53 

cobot (36 vs. 37).  54 

Conclusion: We conclude that collaboration with a cobot adapting to human 55 

variability is possible, and that it could lead to better performance and could 56 

improve certain dimensions of system usability. 57 

 58 
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1. Introduction 62 

Collaborative robots (cobots) are increasingly popular in industrial 63 

workplaces because they are perceived as a means to enhance performance, 64 

particularly in future industrial workflows that routinely integrate new technologies 65 

into production chains (INRS, 2018). The term “cobot”, created by Colgate & 66 

collaborators (1996), refers to “a robotic device which manipulates objects in 67 

collaboration with a human operator” (p. 1). The development of artificial 68 

intelligence offers cobots adaptive qualities: adaptations to production dynamics, to 69 

technical variabilities (Swamidass, 2000), and to the operator. Yet the artificial 70 

algorithms remain at an experimental level and need to be improved and evaluated 71 

before implanting cobots with adaptive capabilities into industry. Human-cobot 72 

interactions can take on several forms. In this report, we will only discuss direct 73 

collaboration (working simultaneously on a task). To accept this collaboration, it is 74 

essential to study the impacts of the introduction of collaborative robots on 75 

operators before implementation (Kildal et al., 2018). 76 

In many studies, the human-robot interaction experience is referred to as 77 

“user experience” or “UX” (Hassenzahl, 2008). This experience can be studied 78 

through the concept of usability (Bevan, 2009; Davis, 1989; Dubey & Rana, 2010; 79 

INRS, 2018; Nielsen, 1994). Indeed, studying a system’s usability is a way of 80 

guiding its design (Chaniaud et al., 2020). According to ISO 9241-11, a standard 81 

reference defining human-machine interaction (Bevan et al., 2015), usability is 82 

defined as “the extent to which a product can be used by specified users to 83 

accomplish specific goals with effectiveness, efficiency and satisfaction in a 84 



 

 

particular context of use” (ISO, 2018). Effectiveness is the accuracy and degree of 85 

completion with which users will accomplish set goals (ISO, 2018) and is 86 

measured through the quality of the results, the quantity produced, and the 87 

percentage of goals accomplished. In this study, we use the number of errors to 88 

measure effectiveness. Indeed, this gives a behavioral measure of cognitive load, 89 

since Verhulst (2018) defined cognitive load as the amount of cognitive resources 90 

expended at a given time on a task.  91 

Moreover, there are various measures for measuring cognitive load: 92 

subjective and objective (Cain, 2007b; Kramer, 1990). Objective measures can be 93 

obtained by studying individual performance on the task (Paas et al., 2003): if a 94 

task is too onerous in cognitive resources, the individual performing this task will 95 

no longer be able to provide all the necessary resources and consequently their 96 

performance will decrease. Efficiency is the degree to which the user performs the 97 

task easily with a minimum of resources (ISO, 2018). We use task completion time 98 

and the number of gestures to measure efficiency in our study. Finally, satisfaction 99 

is defined as “the extent to which the user's physical, cognitive and emotional 100 

responses resulting from using a system meets the user's needs and expectations” 101 

(ISO, 2018). The perceived cognitive load, an indicator of the user’s cognitive 102 

response as a result of using a system, is used as a measure of the satisfaction 103 

dimension of usability. Subjective measures of cognitive load can be obtained 104 

through questionnaires where participants are asked questions directly. In this 105 

study, we use the NASA-TLX (Hart & Staveland, 1988), which measures 106 

workload as a whole but also more specifically cognitive load, physical load, 107 

temporal demands frustration, effort, and performance (Hart, 2006). Also, we 108 

consider that usability and cognitive load are two theoretical fields that could be 109 

linked to measure UX as a whole.  110 

We hypothesized that a human-robot collaboration will reduce the cognitive load 111 



 

 

required to perform a task, despite the potential increase of cognitive load from 112 

introducing collaboration into the task (Kildal et al., 2019). We assumed that 113 

collaboration will allow better performance:  increased effectiveness, efficiency, 114 

and satisfaction. Our operational hypotheses were: 115 

- H1 = perceived cognitive load will be lower for an assembly task in a condition 116 

of collaboration with the cobot than in a control condition. 117 

- H2 = completion time will be lower for an assembly task in a condition of 118 

collaboration with the cobot than in a control condition. 119 

- H3 = the number of errors will be lower for an assembly task in a condition of 120 

collaboration with the cobot than in a control condition. 121 

- H4 = the number of gestures will be lower for an assembly task in a condition 122 

of collaboration with the cobot than in a control condition. 123 

 124 

2. Material and methods 125 

54 participants (mean age = 21.4 years, SD = 3.9; 42 women and 12 men) 126 

consented to participate in the experiment at the University of Grenoble-Alpes. 127 

They did not receive any financial compensation for their participation; however, 128 

psychology students could request extra credits on a set of classes. They had no 129 

vision impairment (colorblindness, etc.). Our study took place during the Covid 130 

semi-lockdown and we obtained the approval of the director of the inter-university 131 

laboratory of psychology of Grenoble to run the experiment with human 132 

participants. Participants were given explanations on the experiment itself and how 133 

their data will be handled. After this introduction, they were given a consent form 134 

to sign in order to continue the study. We developed a two-condition between-135 

subject design. Participants were randomly assigned to a group. In the control 136 



 

 

condition, 32 participants performed the task alone, whereas in the experimental 137 

condition, 22 participants performed the task in collaboration with a cobot (Figure 138 

1). The cobot used for the task is a YuMi (short for You and Me) created by ABB 139 

Robotics enterprise (ASEA Brown Boveri). It was used for three reasons: first, it is 140 

an industrial cobot that is already implemented in many industrial factories, 141 

second, it is the most “collaborative” robot currently existing, and third, it has high 142 

safety included in the design (rubber padded joints, curved angles, etc.) to work 143 

"safely" in close proximity with human operators. Recruitment for the control 144 

condition took place in April because the cobot was not ready yet. Recruitment for 145 

the experimental condition took place in May, during the covid restriction. The two 146 

groups were uneven for this reason.  147 

 148 

 149 

Figure 1. The YuMi robot (ABB) used in the experimental condition. 150 

 151 

The cobot was programmed on different levels through a modular robotic 152 

architecture. First, the vision module perceives the environment and the presence 153 

of the participant's hand during the perception phase to ensure a true description of 154 

the environment that is not occluded by the participant's hand. This stage was 155 

performed using Python programming language, and the OpenCV computer vision 156 

library. Second, the environment description obtained from the perception module 157 

is used to infer the progress of the collaborative task carried out by the robot and 158 



 

 

the participant. This information is used to drive a cognitive conceptual model, 159 

which in turn makes use of Automated Planning techniques to generate adaptive 160 

intelligent behavior that corresponds to the variability of the assembly task. The 161 

intelligent behavior is a plan: a sequence of actions that composes the pick/place 162 

task (opening the gripper, moving the robot arm from one place to another, closing 163 

the gripper, etc.). Third, the sequence of actions generated to accommodate task 164 

variability in an intelligent manner is executed on YuMi using the low-level 165 

assembly language RAPID provided by ABB (the manufacturer of the robot). 166 

Finally, the plan (intelligent behavior composed of a sequence of actions) and the 167 

robot motion are projected on a screen through Graphical User Interface (GUI) to 168 

explain the intelligent behavior to the participant by making them aware of what 169 

will happen next. 170 

Our aim was to develop a type of task that could be performed both in 171 

collaboration with a cobot or alone, and that would support study of cognitive load 172 

while considering the technical constraints of the cobot. We chose to simulate a 173 

typical task in the industrial environment: an assembly of components. In our 174 

exploratory study, the task was carried out using Duplos (Lego). Each participant 175 

was required to replicate three models (Figure 2). 176 

 177 

 178 

Figure 2. The three models that participants were required to replicate. 179 

 180 

The order of presentation of the models was randomized. Each participant had a 181 

stock of Duplos located on their left (Area 1 in Figure 3). They had to replicate the 182 

model in the “construction zone” (Area 2 in Figure 3). In the experimental 183 



 

 

condition, the cobot's stock was placed on the participant's right (Area 3 in Figure 184 

3). 185 

 186 

 187 

Figure 3. Location of the construction zone (2), the participant’s stock (1), and the 188 

cobot’s stock (3). 189 

 190 

In the experimental condition, the cobot collaborated with the human by placing 191 

pieces on the construction area at the same time as the participant, by indicating if 192 

an error had been made using the communication interface and by providing 193 

additional stock to the participant (between the green Duplos left of Area 2). The 194 

cobot alternated between actions (Table 1) and perception phases (during which it 195 

would stop and analyze the Duplos placement). Its instructions were the same as 196 

the human’s: it had to complete the model. During most of the experiment, the 197 

pace was set by the participant and the cobot had to adapt. However, due to 198 

technical constraints, the participants could not act when the cobot was in 199 

perception phase. They had to wait and regain control of the pace once the 200 

perception phase ended.  201 

 202 

Table 1. An example of a human-machine process chart in the experimental 203 

condition. 204 

Time (in 
seconds) 

Participant Cobot 



 

 

0-5 Looks at the model Warns the participant of 
its next move on its 
screen 

5-10 Looks at the screen to 
learn where the cobot will 
pick its piece 

Initiates the movement to 
pick a piece 

10-15 Picks a piece Picks a piece 
15-20 Places a piece and looks 

at the model 
Initiates the movement to 
place the piece 

20-25 Picks and places two 
other pieces 

Places a piece 

25-30 Picks and places another 
piece  

Warns the participant of 
its perception phase on its 
screen 

30-40 Waits and looks at the 
screen 

Takes a picture of the 
construction 

40-45 Looks at the model and 
the screen 

Warns the participant of 
its next move on its 
screen 

45-50 Picks and places another 
piece 

Initiates the movement to 
pick a piece to make up 
for a mistake made by the 
participant 

50-55 Picks and places two 
other pieces 

Picks a piece 

55-60 Looks at the model Initiates the movement to 
place the piece in the 
correct space 

60-65 Picks and places the last 
piece 

Places the piece in the 
correct space 

65-70 Looks at the model and 
the construction 

Warns the participant of 
its perception phase on its 
screen 

70-75 Waits and looks at the 
screen 

Takes a picture of the 
construction 

75-80 Waits and looks at the 
screen and the model 

Warns the participant of 
the success of the 
construction 

80-85 Looks at the experimenter 
for instructions 

Goes into standby mode 

 205 

In the control condition, participants had a three-minute training session with 206 

a demonstration on how to complete a model. The experiment took place in a 207 

ventilated room with adequate lighting. In the experimental condition, participants 208 

had five minutes of training on how to complete a model and how to interact with 209 



 

 

the cobot. No participant demonstrated substantial mental or physical fatigue. They 210 

were given special instructions to consult the screen of the cobot to know where it 211 

was going to place its next piece and when it was going into the perception phase. 212 

All participants replicated the three models while being filmed. Video 213 

recordings were analyzed using The Observer software (version 15.0.1200, 2019). 214 

We observed the completion time, number of errors (when a piece is placed, 215 

removed, and replaced), and number of gestures, the latter defined as movements 216 

of an upper limb (placing, removing a piece, managing the stock, thinking, 217 

verification, waiting, robot interaction, and prevented gestures).  218 

Finally, participants completed a translated version (Cegarra & Morgado, 219 

2009) of the NASA-TLX (Hart & Staveland, 1988) to assess the cognitive load 220 

they experienced (see Table 2). This test measures the experienced mental load 221 

through six subscales: mental demand, physical demand, time demand, frustration, 222 

effort. and performance. It is conducted in two stages (Hart & Staveland, 1988). 223 

First, we asked participants to rate each subscale on a scale from 0 to 100. Second, 224 

we asked them to rank the different subscales according to the impact of each one 225 

on their overall feeling. This ranking ranges from 1 to 6, with 1 representing the 226 

subscale with the lowest impact on the overall feeling and 6 representing the 227 

subscale with the highest impact on the feeling of the mental load. All of this 228 

information allowed us to obtain the weighted score of the cognitive load perceived 229 

by each participant (each subscale is multiplied by the number of participants). 230 

 231 

Table 2. French version of the NASA-TLX used in the experiment. 232 

Mental 
demand 

Quelle quantité d’activité mentale et perceptive a été 
nécessaire pour réaliser la tâche (par ex. réfléchir, décider, 
chercher, etc.) ? La tâche vous a-t-elle paru simple, 
nécessitant peu d’attention, ou complexe, nécessitant 
beaucoup d’attention ? 



 

 

 233 

The questionnaire was implemented using the QUALTRICS software (Qualtrics, 234 

2005). Internal consistency of the questionnaire was confirmed: no item was 235 

correlated more than 0.70 with another, the KMO index was greater than 0.50 236 

(0.659), and the Bartlett Test was significant (K=46.590(15), p<0.01). Study results 237 

were calculated using RStudio, version 1.4.1106 (RStudio Team, 2021). The 238 

results presented below are from a dataset available on GitHub (Datacobot2021a), 239 

and the specific open source code was applied (RcodeDatacobot2021a). Unpaired t 240 

tests were used to test the study hypotheses, with p < 0.05 considered statistically 241 

significant. Assumptions of normal distributions of equality of variances were 242 

tested, and the Wilcoxon test was used as relevant. 243 

 244 

 245 

3. Results 246 

3.1 Hypothesis 1: the effect of collaboration with a cobot on perceived cognitive 247 

load 248 

In the control condition, participants rated their cognitive load with mean of 37.5 249 

out of 100 (SD=12.9, min=15.2, max=59.1, N=32) and in the experimental 250 

Physical 
demand 

Quelle quantité d’activité physique a été nécessaire pour 
réaliser la tâche (par ex. pousser, déplacer, tourner, 
manipuler, etc.) ? La tâche vous a-t-elle paru facile, peu 
fatigante, calme ou pénible, fatigante, active ? 

Temporal 
demand 

Quelle pression temporelle avez-vous ressentie durant 
l’exécution de la tâche ? Fallait-il gérer la réalisation de la 
tâche de manière lente ou de manière rapide ? 

Performance Comment estimez-vous votre performance en ce qui 
concerne la réalisation de la tâche ? (Quel est votre niveau de 
satisfaction concernant votre performance ?) 

Effort Quel effort (mental et physique) avez-vous dû fournir 
pour atteindre votre niveau de performance ? 

Frustration Vous êtes-vous senti satisfait, content, relaxé ou plutôt 
ennuyé, irrité, stressé pendant la réalisation de la tâche ? 



 

 

condition at 35.5 out of 100 (SD=15.3, min=11.3, max=62.5, N=22). There was not 251 

significant effect of collaboration with the robot on evaluation of cognitive load 252 

(t=0.51(52), p=0.61). 253 

3.2 Hypothesis 2: the effect of collaboration with a cobot on task completion time 254 

The participants took an average of 54.8 seconds (SD=18.5, min=19.4, max=146.4, 255 

N=32) to reproduce a model in the control condition and 136.4 seconds (SD=30.9, 256 

min=80.9 max=213.7, N=22) in the experimental condition. There was a 257 

significant effect of collaboration with the robot on the completion time (t=-258 

12.756(52), p=2,2*10-12). Oddly, the NASA TLX answers indicate that the 259 

participants perceived less temporal demand in the collaboration condition 260 

(t=4.6(43.5), p=3,668*10-5). 261 

3.3 Hypothesis 3: the effect of collaboration with a cobot on the number of errors 262 

Participants made an average of eight errors (SD=5.8, min=0, max=20, N=32) in 263 

the control condition and two errors (SD=1.8, min=0, max=6, N=22) in the 264 

experimental condition. There was a significant effect of collaboration with the 265 

robot on the number of errors (w=618.5, p=2,556*10-6).  266 

3.4 Hypothesis 4: the effect of collaboration with a cobot on the number of 267 

gestures performed 268 

The participants performed an average of 74 gestures (SD=20, min=41, max=124, 269 

N=32) in the control condition and 51 (SD=9.8, min=34, max=72, N=22) in the 270 

experimental condition. There was a significant effect of collaboration with the 271 

robot on the number of gestures (t=4.9547(52), p=8,068*10-6).  272 

We tested the effect of the collaboration on all sub-sections of the NASA 273 

TLX test. T-tests revealed no differences on those sub-sections (including 274 



 

 

perceived frustration and effort), with the exception of a positive significant effect 275 

of the collaboration on the perceived time demand. 276 

 277 

4. Discussion 278 

The current results concerning the reduction of the number of errors and 279 

the number of gestures in    the collaboration condition are in line with our initial 280 

hypothesis (H3 and H4). In our study, the human/robot collaboration reduced the 281 

number of errors and the number of gestures performed. This outcome could imply 282 

that in an non-experimental industrial work task, collaboration with a cobot could 283 

improve operator efficiency and the quality of their work. Similar results have been 284 

reported earlier. Indeed, Salunkhe et al. (2019) recently found that cobots could, in 285 

theory, identify problematic gestures, thus protecting human workers, while 286 

improving the quality of the work.  287 

Since introducing the cobot increased the number of instructions 288 

(participants had to understand the task, and understand how the cobot works and 289 

how to interact with it), we feared that those additional instructions would 290 

adversely impact perceived cognitive load. However, this was not the case, since 291 

the perceived mental loads did not differ in the two conditions and H1 was not 292 

supported, though collaboration with the cobot had no negative effect on perceived 293 

cognitive load. Kildal et al. (2019) found that the complexity of the task is not 294 

increased due to the introduction of a collaboration between human and cobot, 295 

even when the operator is cognitively impaired. Future studies need to measure the 296 

impact of collaborating with a cobot on cognitive load, as it is representative of the 297 

operator’s wellbeing in their work (Fruggiero et al., 2020).  298 

Finally, the results concerning completion time (H2) were against our 299 

expectations. Indeed, we found that completion time significantly increased in the 300 

condition of co-activity. This increase was due to the introduction of waiting time 301 



 

 

and technical problems that occurred during the experiment. In fact, another 302 

study, realized in an industrial context, showed no increase in completion time 303 

between collaboration with a cobot and no collaboration (Fager et al., 2019). 304 

Nonetheless, the perceived time demand was significantly lower here in the 305 

experimental condition. Thus, even though collaboration with the cobot lasted 306 

longer, this was not reflected in the perceptions of the participants. This outcome 307 

could be a clue that perceived pleasure with a cobot is higher that the perceived 308 

pleasure of working alone (El Makrini et al., 2018). Overall, we concluded that 309 

collaboration improved the user experience on the following criteria: errors, 310 

gestures and perceived time demand (Table 3). 311 

Table 3. Summary of the results of collaborating with a cobot for each independent 312 

variable. 313 

Outcome Collaboration with cobot 

Perceived cognitive load Equal to the control condition 

Completion time Higher than in the control condition 

Number of errors  Lower than in the control condition 

Number of gestures Lower than in the control condition 

Perceived time demand Lower than in the control condition 

 314 

This study provides several contributions regarding human-machine 315 

systems design. Indeed, we noticed that there are variabilities in human behavior 316 

during the realization of a laboratory-simulated assembly task. These variabilities 317 

emerged from organizational design (presence or absence of a cobot), technical 318 

variability (issues linked to the cobot on certain experimental runs), and inter-319 

individual variabilities (e.g. wide range of the number of gestures performed by 320 

participants).  321 



 

 

These variabilities were managed within the collaboration, as was the case 322 

in other recent studies (Chacón et al., 2020; Fager et al., 2019). The cobot and its 323 

AI allowed the experimental task to be constrained in terms of how the assembly 324 

was done (what piece to put, the order of piece, etc.) only by the human participant 325 

and not by “the machine”. Our work shows that it is possible to have an intelligent 326 

machine that regulates its actions to help the human, whatever strategy he adopts, 327 

which is an advantage for industry work (Pauliková et al., 2021). Furthermore, the 328 

current work showed that this new type of collaboration could be beneficial in 329 

terms of performance and usability. Further studies in an industrial setting, though, 330 

are needed to confirm such benefits. Those studies need to address the impacts 331 

(negative and positive) that cobots have on the operators (well-being, health, 332 

satisfaction at work) and on the industry (performance, security), the protocol of 333 

implementation used to change the organization of work, how operators are trained 334 

and recruited to work with cobots, and the ethics behind those changes. There 335 

needs to be an emphasis on the study of social aspects of the human/cobot 336 

collaboration.  337 

We have also verified that it is possible (in the context of a laboratory task) 338 

to measure cognitive load through different behavioral measures and to use these 339 

same indicators to obtain information on usability criteria according to the ISO 340 

9241-11. Investigating cognitive load needed to adapt cobots to the human is a 341 

new, challenging, and necessary field of research (Fruggiero et al., 2020). It is, 342 

therefore, an original contribution to bring together these two concepts belonging 343 

to different disciplinary fields and by experimenting in a different domain of UX. 344 

We offer an original experimental protocol that can be transposed to other types of 345 

tasks. 346 

The cobot had technical problems that impacted some experimental runs. 347 

By working on improving of the cobot’s technical capacities, we will be able to 348 

reduce task completion time and thus improve the overall UX. Furthermore, it 349 



 

 

would be interesting to replicate this study in an industrial environment, which is 350 

more complex than laboratory-controlled situations. The task here was quite 351 

simple, thus limiting the generalizability of the study. However, this simplicity was 352 

necessary to improve the AI of the cobot, a first step to ensure that AI was able to 353 

adapt to the variabilities of the human.  354 

Our work indicates that the adaptation of a robotic system to a human is 355 

possible and should receive priority consideration owing to its benefits: it requires 356 

very little training (since the human does not adapt to the cobot) and it is flexible to 357 

human variabilities. Also, no analysis was made regarding potential differences 358 

related to gender, as there were more women than men in our study (statistical 359 

analysis would have been biased). Future studies should address gender (Perez, 360 

2019) as a potential source of interindividual variability as it is relevant to improve 361 

science and design (Tannenbaum et al., 2019). 362 

An experiment with a within-subjects design, by randomizing the order of 363 

the two conditions, would allow us to assess the perception of difference between 364 

the two conditions. Indeed, participant behaviors were different across 365 

experimental conditions. For example, the participants were much more static in 366 

the experimental condition than in the control condition. This difference in 367 

behavior could be the result of a different conceptualization of the task.  368 

Future research needs to be developed to evaluate the impact of the cobot 369 

collaboration on workload. For now, our study is in line with earlier literature, and 370 

it seems that using a cobot to collaborate with an operator could decrease perceived 371 

cognitive load. As Perre et al. (2018) suggested in their article, the cobot could 372 

“diminish an operator’s workload and improve the working conditions” (p. 5). To 373 

analyze this impact, researchers can use self-reported scales such as the NASA-374 

TLX and behavioral measurements such as the number of errors and the 375 

completion time. 376 



 

 

In summary, we found that performing an assembly task in collaboration 377 

with a cobot increased effectiveness, maintained the level of satisfaction, and 378 

improved certain criteria of efficiency (number of errors, number of gestures) if the 379 

robot is programmed to adapt its decisions to the human’s. In this laboratory 380 

context, the human/cobot collaboration facilitated better task performance and an 381 

overall improved UX. We also developed an experimental protocol linking the 382 

concepts of usability and cognitive load in a multidisciplinary experimental task, 383 

combining the technical constraints of programmers and the constraints of human 384 

behavior measurements. This protocol can be used in future studies to identify key 385 

points to consider when designing a cobot (perception of the cobot, infrastructure 386 

of the AI, etc.), thus facilitating broader and more effective implementation of 387 

cobots in Industry 4.0.  388 
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