
HAL Id: hal-03668489
https://hal.science/hal-03668489

Submitted on 15 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Efficient Big Data: Hadoop Data Placing and
Processing

Jihane Bahadi, Bouchra El Asri, Mélanie Courtine, Maryem Rhanoui,
Yannick Kergosien

To cite this version:
Jihane Bahadi, Bouchra El Asri, Mélanie Courtine, Maryem Rhanoui, Yannick Kergosien. Towards
Efficient Big Data: Hadoop Data Placing and Processing. International Conference on Smart Digital
Environment, 2018, Rabat, Morocco. �10.1145/3289100.3289108�. �hal-03668489�

https://hal.science/hal-03668489
https://hal.archives-ouvertes.fr

Towards Efficient Big Data: Hadoop Data Placing and
Processing

Jihane Bahadi
IMS Team, ADMIR Laboratory, Rabat

IT Center,ENSIAS
Mohammed V Souissi University

Rabat, Morocco
+212 7 71 51 96 32

Jihane.bahadi@gmail.com
Maryem Rhanoui

IMS Team, ADMIR Laboratory, Rabat
IT Center,ENSIAS

Mohammed V Souissi University
Rabat, Morocco

mrhanoui@gmail.com

Bouchra El Asri
IMS Team, ADMIR Laboratory, Rabat

IT Center,ENSIAS
Mohammed V Souissi University

Rabat, Morocco
+212 6 61 76 66 06

elasri@um5s.net.ma
Yannick Kergosien

Laboratoire d'Informatique Médicale et
d'Ingénierie des Connaissances en e-
Santé, Université Paris 13, Bobigny,

France
y.l.kergosien@gmail.com

Mélanie Courtine
Laboratoire d'Informatique Médicale et
d'Ingénierie des Connaissances en e-
Santé, Université Paris 13, Bobigny,

France
+33 6 19 95 20 57

melanie.courtine@univ-
paris13.fr

Therefore, new performing technologies are required to manage
process and analyze these data streams. In this regard, Hadoop has
been able to put big data as a synonym for scalability, high
availability, fault tolerance and low cost [1-2].

Hadoop [3] is a batch-based framework for analyzing large data
using a cluster of commodity servers. It provides a distributed file
system and a framework for the analysis and processing of data
sets using the MapReduce paradigm. The basic idea of Hadoop is
partitioning and parallel processing data across many hosts [2].

Hadoop is hiding the complexity of distributed application
development. In addition, it manages server failures by replicating
data immediately. It runs on commodity hardware and relies on
moving the code instead of moving the data set. Based on these
findings, the objective of our work is mainly enhancing the
performance of Hadoop at the level of data storage methods and
algorithms of exploration, analysis and synthesis. To achieve that,
we propose as a first step to discuss in this article Hadoop
capabilities and limitations in terms of data placement and
processing instead of being content with a presentation in terms of
functionalities, and deduct possible promising areas in which
contributions are needed. We present our proposal of
multidimensional data placement on the Hadoop File System and
intelligent data processing to enhance Big data performance and
pertinence.

The rest of this paper is organized as follows: In Section II we
give background knowledge on Big Data placing and processing.
We focus on slicing disk and jobs to enhance Hadoop
performance. Section III surveys the research efforts on Hadoop;
it presents an overview of the main contributions to improve
Hadoop capabilities, and discusses the most relevant
optimizations in order to conclude research opportunities aiming
to boost the execution time of MapReduce jobs and make data
access more efficient. Section IV discusses our contribution.
Finally, section V presents our future work and concludes the
paper.

ABSTRACT
Currently, the generated data flow is growing at a high rate
resulting to the problem of data obesity and abundance, but yet a
lack of pertinent information. To handle this Big Data, Hadoop is
a distributed framework that facilitates data storage and
processing. Although Hadoop is designed to deal with demands of
storage and analysis of ever-growing Data, its performance
characteristics are still to improve. In this regard, many
approaches have been proposed to enhance Hadoop capabilities.
Nevertheless, an overview of these approaches shows that several
aspects need to be improved in terms of performance and data
relevancy. The main challenge is how to extract efficiently value
from the big data sources. For this purpose, we propose in this
paper to discuss Hadoop architecture and intelligent data
discovery, and propose an effective on-demand Big Data
contribution enabling to process relevant data in efficient and
effective way according to the stakeholder’s needs, and aiming to
boost Data appointment by integrating multidimensional
approach.

Keywords
Big Data; Hadoop; MapReduce jobs; Multidimensional approach;
Data placing; Intelligent processing.

1. INTRODUCTION
Being in the age of big data [1], it has become one of the most
important technology trends over the last few years. The
continuous production of large data sets growing exponentially is
at the origin of this concept. Today, dataset’s volume is in the
order of petabytes or several terabytes. Not only has the volume
increased, but also the speed at which the data is generated.

mailto:y.l.kergosien@gmail.com
mailto:melanie.courtine@univ-paris13.fr
mailto:melanie.courtine@univ-paris13.fr
https://doi.org/to_be_forwarded_after_signining_copyright
https://doi.org/to_be_forwarded_after_signining_copyright

2. ON BIG DATA PLACEMENT AND
PROCESSING
In distributed environment, one of the largest issues that most of
research works aim to deal with is providing an efficient and
simple large-scale model. Due to the efficiency of work on
massive data sets using commodity hardware, Hadoop Distributed
file system is the most popular. MapReduce is a programming
model that enables parallel processing of massive data sets in a
distributed and fault tolerant fashion [2,4,5]. In this section, we
explore Hadoop’s data placement strategy and the MapReduce
data processing.

2.1 HDFS System: Data Placement
HDFS is a distributed file system developed by Apache. It is
designed to store very large files, and broadcast data at high
bandwidth [6]. In this context, 'very large' means files to terabyte.
The HDFS concept is based on a master-slave architecture that
requires a Namenode and Secondary Namenode as master nodes,
and more than one Datanode as slave nodes [5]. The Namenode
maintains the file system tree and metadata of all files and
directories in the tree. However, the replica locations of the blocks
are not persistent since they can change over time. In turn,
Secondary Namenode does not act as a Namenode. If a Namenode
fails, the copy of the updated image at the Secondary Namenode
can be used to prevent data loss [1].

As primary storage elements, Datanodes store data blocks, and
process read / write requests on files stored on HDFS. Also, they
are responsible of reporting the list of stored blocks to the
Namenode [2,5]. To select Datanodes that store the blocks and
replicas, a data placement strategy is used. Following this policy,
the first copy of a new block is placed on the local Datanode
(where the block is created). For the second copy, HDFS attempt
to select a Datanode in the same rack, and in a different rack for
the third copy [7].

As the probability of a rack failure is less than that of a node
failure, HDFS data placement policy reduces inter-rack and inter-
node write traffic, which improves write performance. However,
placing blocks randomly to balance load without considering data
characteristics is a critical issue [7]. In fact, datasets may be re-
partitioned in the map phase, and migrated to perform reduce step.
This can be avoided if related data are stored in the same node [8].

To boost performance of Hadoop, we aim to minimize data
movement by focusing on data placement strategy where files are
partitioned and distributed according to business subject. This
strategy ensures that applications requiring the processing of
subject-related data can execute without needing to migrate data
during the execution of the job.

2.2 MapReduce: Data Processing
MapReduce is a programming model used in Hadoop to process
and analyze large datasets. Tasks are divided in a scalable and
fault-tolerant manner into parallel jobs on large clusters of
commodity hardware [2,9].

A MapReduce cluster is based on master-slave architecture. The
master node is called Job Tracker, and the slave node is called
Task Tracker. Job Tracker schedules processing to the different
Task Trackers, manages the Task Tracker, and re-executes the
task in the case of task failure. Task Tracker executes the tasks
assigned by the Job Tracker, and sends a signal to the Job Tracker
once the assignment has been completed [2,4].

The process of execution of a MapReduce Job is as follows. Two
important functions in MapReduce are Map and Reduce [10],
written by the user. Input data assigned by the master are
processed by map function, and intermediate <key, value> pairs
are produced. The pairs generated by map function with the same
key are grouped by the MapReduce library, and are passed to the
reduction function for aggregation. Finally, the collection of<key,
value> intermediate pairs are merged, and the values having the
same key are aggregated by reduce function [4].

To schedule a job, Hadoop uses different types of algorithms.
FIFO scheduler was used in early versions of Hadoop by default.
Then, the fair scheduler and the capacity scheduler came as a
result of Facebook and yahoo efforts [1].

The MapReduce framework has many advantages. First, it
reduces network communication cost using data locality [2]. In
addition, it supports scalability, is fault-tolerant and able to run in
heterogeneous environments. As it is storage independent, it can
analyze data stored in different storage system [11].

However, MapReduce has some performance limitations. It can’t
read directly records from the storage engine as it is storage
independent [12]. Also, MapReduce can have a problem of
synchronization. In fact, reduce process will be start after the end
of Map Process. As a result, a single node can slow down the
whole process, causing the other nodes to wait until it is finished,
which degrade MapReduce performance [13].

In addition, evaluating aggregate operations and processing data
over large datasets is a performance issue, because MapReduce
keys are generated in an incremental way, and don’t contain any
information making processing more effective.

3. OVERVIEW ON HADOOP’S
IMPROVEMENTS
Currently, evolution of new features of Hadoop is rapidly
growing. Numerous contributions are proposed to improve the
framework while maintaining its scalability, fault tolerance, and
the ability to perform parallel and distributed computations. This
section presents the papers related to these Hadoop characteristics
[14]. According to our literature, contributions to Apache Hadoop
can be classified into two major categories: data placement and
storage that includes studies comprising HDFS and indexation,
MapReduce that involves data processing and scheduling
concepts.

3.1 Data Placement and Storage
Storage is an important aspect of distributed systems. Indeed,
Hadoop suffers from a number of storage bottlenecks, which
motivated several recent works to propose different techniques to
improve Hadoop’s performance.

HadoopDB is a hybrid system that combines parallel database and
MapReduce [15]. The aim of HadoopBD is to achieve fault
tolerance in heterogeneous environments, and attain the parallel
database performance. For this reason, HadoopDB uses Hadoop
as a network communication layer and task coordinator [16] to
connect database system nodes, and execute the data processing
queries inside the database engine [16]. Nevertheless, HadoopDB
loses the simplicity of Hadoop programming model by changing
its interface.

To overcome this limitation, Jens et al. go beyond saving the
underlying Hadoop framework. They propose Hadoop++, a
system that improves the query runtime of HadoopDB using two

techniques named the Trojan Index and the Trojan Join.
According to [15], Trojan indexes integrate record level indexing
capability such that only the relevant records for a specific job are
accessed [17]. Torjan join aims to avoid reduce phase since the
data were already pre-partitioned. The limitation of Hadoop++ is
the static manner to co-locate data.

To enable co-location in a simple and flexible manner,
Mohammed et al. propose Co-Hadoop, an extension of Hadoop
that provide co-location at the system level, by modifying the data
placement policy of HDFS without losing the benefits of Hadoop.
Co-Hadoop is able to support queries flexibly, and can co-locate
an important number of files. In fact, Co-Hadoop allows
applications to control data placement at the file system level. It
proposes a new file property called locator, which gives
information where file to be stored. The default data placement
strategy is adopted to place files with no locator value, whereas
files that have the same locator value are placed in the same data
node [7,15].

3.2 Scheduling and Data Processing
Scheduling in the MapReduce environment is a recent
development. Hadoop proposes three schedulers by default: FIFO,
Fair, and Capacity schedulers [14]. However, a large number of
studies propose different new approaches to improve data
processing [13].

Nguyen et al. [18] propose a Hybrid Scheduler algorithm based on
dynamic priority. Reducing the delay for concurrent jobs with
variable length, and maintaining data locality are the principal
goals of the authors. As the algorithm is designed for data
intensive workloads, relaxing the strict proportional fairness is an
effective manner to improve response time. For this reason, the
algorithm uses an exponential policy model [14].

Other concern regarding schedulers is the heterogeneity of the
hardware within clusters. In this sense, Zaharia et al. Propose
LATE (Longest Approximate Time to End), a scheduler that
improves performance by reducing overhead of speculation
execution tasks. In fact, it detects the real slow task, and insures
that the number of restarted slowest speculative tasks is
minimized, which improves the data processing performance of
the heterogeneous cluster [18]. In the same direction, Chen et al.
[19] propose SAMR (Self-Adaptive MapReduce), a scheduler that
improves MapReduce by saving execution time and system
resources in heterogeneous clusters, and allows selecting the node
that can execute the task faster. Compared with Hadoop’s
scheduler, the execution time is decreased up to 25%, and 14%
compared with LATE scheduler.

A different approach to environment’s heterogeneity is presented
by Rasooli and Down [9]. By considering heterogeneity at
application and cluster levels, they propose a new scheduling
system called COSHH.

The advantage of this system is the performing queuing process
used to store arrival jobs, and the setting up of a routing process to
manage free resources, which improves data processing
performance [20].

3.3 Discussion
In this section, we present a comparative assessment based on the
analysis of advantages and limitations of different approaches
raised in the previous sections as depicted in Table.1.

Table 1. Comparison of Contribution
Contribution Advantages Limitations

 HadoopDB Performs like
parallel database,
fault tolerant

Forces utilization of
DBMS, and
changes interface to
SQL

Hadoop++ Doesn’t modify
MapReduce
interface, and runs
faster than
HadoopDB and
Hadoop.

Reorganization of
Trojan index and
Trojan join due to
any change

Co-Hadoop Flexible, more
performing.

Lacks of Indexing
aspect, details
knowledge of input
data are required.

Hybrid scheduler
algorithm based on
dynamic priority

Fast, flexible data
processing,
improves response
time in
heterogeneous
environment

LATE Robustness to node
heterogeneity.

Static manner in
computing the
progress of the
tasks.

SAMR Decreases the
execution time of
map reduce job,
and runs in
heterogeneous
environment

Does not consider
the data locality
management.

COSHH Addresses the
fairness and the
minimum share
requirements

Data processing and data placement have major roles on Hadoop
performance. In fact, all the papers in these categories are
concerned with performance improvements in HDFS and
MapReduce applications.

On one hand, most of proposals included in storage and data
placement category are related to achieving high storage
throughput without losing fault tolerance and scalability.
HadoopDB uses indexes and execute query processing in database
engine, but breaks the programming model of MapReduce [7],
unlike Hadoop++ that improves Hadoop performance without
changing it. Nevertheless, it suffers from being static. In fact, any
change forces it to reorganize the entire data set [7].

On the other hand, works enhancing data processing and
scheduling techniques are present. Late proposes an alternative
system that decides where to speculate tasks taking into account
node heterogeneity and approximated task’s completion time, but
the probably mistaken time anticipated makes Late static and
reduces its data processing performance.

This comparative assessment shows that most of these
contributions discussed in this paper address one or more
problems. Therefore, there is a lack of effective support for
multidimensional data storage, since all these contributions are
based on the (key, value) store.

Others support multidimensional cubes, but are not suitable for
big data. For example, Pig [21] translates a high-level data flow

language into MapReduce jobs. HBase [22], similar to BigTable
[23], provides random read and write access to a huge distributed
(key, value) store. Hive [24], a framework for data warehousing,
gives the possibility to run queries on huge volumes of data stored
in HDFS [25]. It supports queries expressed in a SQL-like
declarative language called HiveQL, and compiled into
MapReduce jobs [24].

4. DISCUSSION OF FUTURE
CONTRIBUTION
Currently, traditional warehousing solutions are expensive, due to
the growing size data sets in industry for business intelligence
[24]. As a result, traditional parallel SQL data warehouses and
OLAP engines are replaced by new massively parallel data
architectures. One type of such systems is MPP relational data
warehouses over commodity hardware [25-26]. However, these
systems have performance problems when they scale to thousands
of nodes due to hardware failure. Also, they are not able to
process non-relational data.

Hadoop is a scalable and fault-tolerant framework, and used to
process very large data sets on commodity hardware [26].
Recently, the convergence of these two types of systems seems to
be essential.

As underlying data storage and access methods are implemented
by the user, MapReduce is considered as an execution model that
lacks a declarative query interface. As a result, many effort and
technical skills are required to access the data [26]. In addition,
Hadoop key/value pairs representation does not give the user the
benefit of efficiently evaluating aggregate operations over large
datasets. Being generated in an incremental way, Hadoop keys
don’t contain any information simplifying the aggregation, and
making computation faster and effective. The nature of these keys
can lead to unnecessary calculations that cost the performance of
the framework.

4.1 Our Proposal
Several performance aspects of distributed system are
significantly impacted by the way to assign data items to nodes.
Placing data near the clients can reduce the number of remote
accesses, the latency of operations, and avoid network congestion
[25]. Other strategies aim to minimize data movement between
slow and fast nodes by storing data according to the capacity of
nodes and the workload characterization [10].

Some studies develop a Dynamic Data Placement (DDP) strategy
that is presented according to the types of jobs for adjusting the
distribution of data blocks [27]. Others propose to place data in a
way that maximizes the availability of nodes. In most of these
cases, each application must prioritize how to optimize placement.
Also, these strategies are developed as new independent systems
on top of Hadoop.

Our work is an integrated mechanism in Hadoop, an improvement
of HDFS and MapReduce in terms of performance. To boost the
performance of Hadoop, our contribution focuses on integrating
“multidimensional data placing” as a mechanism based on
semantic data studies in order to partition data by business
subject, by proposing a new data placement strategy. In addition,
an intelligent data processing system is proposed to facilitate
aggregation, according to the new data placement strategy.

To improve these strategies, more effectively use data and
optimize performance, our proposal is about:

• Multidimensional split and clustering of HDFS: to
provide a new strategy able to efficiently subdivide files
into parallels slave’s nodes.

• Multidimensional querying: to define Xmart, an MDX
like language for processing on top of MapReduce.

• Valuable retrieving: to allow Big Data analytics and
mining.

These challenges motivate us to build o new flexible and scalable
system, called Xmart.

The system is based on the concept of “multidimensional data
placing”, and on the integration of this concept with the HDFS
system, by implementing subject sensitive to the nature of data.
This sensitivity is intended to facilitate the computation of
aggregates, differentiating the fact keys and dimension keys,
which improve the performance of the system, avoiding
unnecessary calculations. The setting up of such a mechanism is
based on ontological and semantic data studies. This smart slicing
at HDFS speeds up data processing by the MapReduce
Tasktracker. In this sense, the Map and Reduce functions need to
be improved.

4.1.1 Split Dimensionally
Business users find the concept of dimensions and Facts to be
natural and obvious. By splitting dimensionally, we mean dividing
data into dimensions and facts. No matter what the format of the
data is, entities can always be assimilated to facts or dimensions.

Multidimensional data clustering is a technique being used to
enhance data quality [28] in large scale Data visualization. Palmas
et al. [29] creates meta-link between aggregates by using one-
dimensional clustering technique. Kosara et al. [30] propose
induction of natural groups on dimensions in order to deal with
nominal data issue. Weber et al [31] propose a strategy to deal
with multivariate Large Data.

Multidimensional indexing allows scalable construction of
multidimensional database. For scalable and distributed data, new
structures are defined in Alerter Approach [32] and Semi-
Automatic Index Tuning [33].

Our proposal is about integrating these methods by using
multidimensional data clustering and multidimensional indexing
techniques in Hadoop system to improve its performance, using
efficient partitioning schemes that allow parallel IO and parallel
processing. The aim of our work is to:

• Partition data by business subject
• Deploy summary structures (e.g. derived dimension,

facts and PKI)
• Build like OLAP indexes and materialized view

4.1.2 Query Dimensionally
The introduction of this new paradigm allows defining a Map that
adapts to the nature of the data. For the collection and processing
of slices at the output of Map, algorithms adaptable to the context
of data are injected to improve the operation of the Reduce step.

To query this new data warehouse, Xmart provides an MDX like
language for multidimensional processing on top of MapReduce
as mentioned in Figure.1.

Figure 1. Integration of multidimensional data placing and

intelligent data processing in Hadoop

5. CONCLUSION AND FUTURE WORKS
Ability to make Hadoop more efficient and improve its
performance is still an open issue that is gaining significant
attention from the researchers’ community.

In this paper, we discussed Hadoop capabilities and limitations in
terms of Data placement and data processing. We surveyed
different contributions aiming to improve Hadoop performance,
and analyzed advantages and limitations of these proposed
techniques to conclude our proposal of multidimensional Data
Placing on the Hadoop File System and intelligent data processing
to enhance Big Data performance and pertinence.

Works in progress aims at describing the detailed architecture of
our artifact, and performing a complete analysis to build our
system, and construct a data model for the new MDX like
language. Moreover, we plan to present our experimental results
to validate our system.

6. REFERENCES
[1] Tom, W. 2015. Hadoop: the definitive guide, Beijing:

OReilly.
[2] Kamalpreet, S. and Ravinder, K. 2014. Hadoop: Addressing

challenges of Big Data. 2014 IEEE International Advance
Computing Conference (IACC) (2014).

[3] Jeffrey, D. and Sanjay, G. 2008.
MapReduce. Communications of the ACM 51, 1 (January
2008), 107.

[4] Can, U., Tolga, E., and Yusuf, K. 2015. Hadoop Ecosystem
and Its Analysis on Tweets. Procedia - Social and
Behavioral Sciences195 (2015), 1890–1897.

[5] Mohd, R. G. and Durgaprasad, G. 2015. Hadoop,
MapReduce and HDFS: A Developers Perspective. Procedia
Computer Science48 (2015), 45–50.

[6] Konstantin, S., Hairong, K., Sanjay, R., and Robert, C. 2010.
The Hadoop Distributed File System. 2010 IEEE 26th
Symposium on Mass Storage Systems and Technologies
(MSST)(2010).

[7] Mohamed Y. E., Yuanyuan, T., Fatma, Ö., Rainer, G.,
Aljoscha, K., and John, M. 2011. CoHadoop. Proceedings of
the VLDB Endowment4, 9 (January 2011), 575–585.

[8] Manuel, G. F. 2012. Replication and Data Placement in
Distributed Key-Value Stores.

[9] Aysan, R. and Douglas G. D. 2014. COSHH: A classification
and optimization based scheduler for heterogeneous Hadoop
systems. Future Generation Computer Systems36 (2014), 1–
15.

[10] Jiong, X et al.2010. Improving MapReduce performance
through data placement in heterogeneous Hadoop
clusters. 2010 IEEE International Symposium on Parallel &
Distributed Processing, Workshops and Phd Forum
(IPDPSW)(2010).

[11] Abdelrahman, E., Osama, I., and Mohamed E. E. 2014.
MapReduce: State-of-the-Art and Research
Directions. International Journal of Computer and Electrical
Engineering(2014), 34–39.

[12] Dawei. J., Beng, C. O., Lei, S., and Sai, W. 2010. The
performance of MapReduce. Proceedings of the VLDB
Endowment(2010), 472–483.

[13] Seyed, R. P. 2014. A Comprehensive View of Hadoop
MapReduce Scheduling Algorithms. International Journal of
Computer Networks and Communications Security(2014),
308-317.

[14] Ivanilton, P., Reginaldo, R., Alfredo, G., and Fabio, K. 2014.
A comprehensive view of Hadoop research—A systematic
literature review. Journal of Network and Computer
Applications46 (2014), 1–25.

[15] Sayali, A. S. 2014. Speed-up Extension to Hadoop
System. International Journal of Engineering Trends and
Technology12, 2 (2014), 105–108.

[16] Azza, A., Kamil, B. P., Daniel, A., Avi, S., and Alexander,
R. 2009. HadoopDB. Proceedings of the VLDB Endowment2,
1 (January 2009), 922–933.

[17] Jens, D, Jorge-Arnulfo, Q. R., Alekh, J., Yagiz, K., Vinay, S.,
and Jörg, S. 2010. Hadoop++. Proceedings of the VLDB
Endowment3, 1-2 (January 2010), 515–529.

[18] Phuong, N., Tyler, S., Milton, H., David, C., and Quang, L.
2012. A Hybrid Scheduling Algorithm for Data Intensive
Workloads in a MapReduce Environment. 2012 IEEE Fifth
International Conference on Utility and Cloud
Computing(2012).

[19] Quan, C., Daqiang, Z., Minyi, G., Qianni, D., and Song, G.
2010. SAMR: A Self-adaptive MapReduce Scheduling
Algorithm in Heterogeneous Environment. 2010 10th IEEE
International Conference on Computer and Information
Technology(2010).

[20] B. T. Rao, and L. S. S. Reddy. 2011. Survey on Improved
Scheduling in Hadoop MapReduce in Cloud Environments.
International Journal of Computer Applications(2011).

[21] Christopher, O., Benjamin, R., Utkarsh, S., Ravi, K., and
Andrew, T. 2008. Pig latin. Proceedings of the 2008 ACM
SIGMOD international conference on Management of data -
SIGMOD 08(2008).

[22] Anon. Apache HBase – Apache HBase™ Home. Retrieved
August 29, 2018 from https://hbase.apache.org/

[23] Fay, C. et al.2008. Bigtable. ACM Transactions on Computer
Systems26, 2 (January 2008), 1–26.

[24] Ashish, T. et al.2009. Hive. Proceedings of the VLDB
Endowment2, 2 (January 2009), 1626–1629.

https://hbase.apache.org/

[25] João, P. and Luís, R. 2015. On Data Placement in Distributed
Systems. ACM SIGOPS Operating Systems Review49, 1
(2015), 126–130.

[26] Songting, C. 2010. Cheetah. Proceedings of the VLDB
Endowment3, 1-2 (January 2010), 1459–1468.

[27] Chia-Wei, L., Kuang-Yu, H., Sun-Yuan, H., and Hung-
Chang, H. 2014. A Dynamic Data Placement Strategy for
Hadoop in Heterogeneous Environments. Big Data
Research1 (2014), 14–22.

[28] A. Lex, M. Streit, C. Partl, Karl Kashofer, and Dieter
Schmalstieg. 2010. Comparative Analysis of
Multidimensional, Quantitative Data. IEEE Transactions on
Visualization and Computer Graphics16, 6 (2010), 1027–
1035.

[29] Gregorio, P., Myroslav, B., Antti, O., Hans, P. S., and Tino,
W. 2014. An Edge-Bundling Layout for Interactive Parallel
Coordinates. 2014 IEEE Pacific Visualization
Symposium(2014).

[30] R. Kosara, F. Bendix, and H. Hauser. 2006. Parallel Sets:
interactive exploration and visual analysis of categorical
data. IEEE Transactions on Visualization and Computer
Graphics12, 4 (2006), 558–568.

[31] Oliver, R. et al.2008. High performance multivariate visual
data exploration for extremely large data. 2008 SC -
International Conference for High Performance Computing,
Networking, Storage and Analysis(2008).

[32] Katja, H., Daniel, K., Matthias, M., and Kai-Uwe, S. 2008.
When is it time to rethink the aggregate configuration of your
OLAP server? Proceedings of the VLDB Endowment1, 2
(January 2008), 1492–1495.

[33] Karl, S. and Neoklis, P. 2012. Semi-automatic index
tuning. Proceedings of the VLDB Endowment5, 5 (January
2012), 478–489.

View publication statsView publication stats

https://www.researchgate.net/publication/328955904

	1. INTRODUCTION
	2. ON BIG DATA PLACEMENT AND PROCESSING
	2.1 HDFS System: Data Placement
	2.2 MapReduce: Data Processing

	3. OVERVIEW ON HADOOP’S IMPROVEMENTS
	3.1 Data Placement and Storage
	3.2 Scheduling and Data Processing
	3.3 Discussion

	4. DISCUSSION OF FUTURE CONTRIBUTION
	4.1 Our Proposal
	4.1.1 Split Dimensionally
	4.1.2 Query Dimensionally

	5. CONCLUSION AND FUTURE WORKS
	6. REFERENCES

