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Therefore, new performing technologies are required to manage 
process and analyze these data streams. In this regard, Hadoop has 
been able to put big data as a synonym for scalability, high 
availability, fault tolerance and low cost [1-2]. 

Hadoop [3] is a batch-based framework for analyzing large data 
using a cluster of commodity servers. It provides a distributed file 
system and a framework for the analysis and processing of data 
sets using the MapReduce paradigm. The basic idea of Hadoop is 
partitioning and parallel processing data across many hosts [2]. 

Hadoop is hiding the complexity of distributed application 
development. In addition, it manages server failures by replicating 
data immediately. It runs on commodity hardware and relies on 
moving the code instead of moving the data set. Based on these 
findings, the objective of our work is mainly enhancing the 
performance of Hadoop at the level of data storage methods and 
algorithms of exploration, analysis and synthesis. To achieve that, 
we propose as a first step to discuss in this article Hadoop 
capabilities and limitations in terms of data placement and 
processing instead of being content with a presentation in terms of 
functionalities, and deduct possible promising areas in which 
contributions are needed. We present our proposal of 
multidimensional data placement on the Hadoop File System and 
intelligent data processing to enhance Big data performance and 
pertinence. 

The rest of this paper is organized as follows: In Section II we 
give background knowledge on Big Data placing and processing. 
We focus on slicing disk and jobs to enhance Hadoop 
performance. Section III surveys the research efforts on Hadoop; 
it presents an overview of the main contributions to improve 
Hadoop capabilities, and discusses the most relevant 
optimizations in order to conclude research opportunities aiming 
to boost the execution time of MapReduce jobs and make data 
access more efficient. Section IV discusses our contribution. 
Finally, section V presents our future work and concludes the 
paper. 

ABSTRACT
Currently, the generated data flow is growing at a high rate 
resulting to the problem of data obesity and abundance, but yet a 
lack of pertinent information. To handle this Big Data, Hadoop is 
a distributed framework that facilitates data storage and 
processing. Although Hadoop is designed to deal with demands of 
storage and analysis of ever-growing Data, its performance 
characteristics are still to improve. In this regard, many 
approaches have been proposed to enhance Hadoop capabilities. 
Nevertheless, an overview of these approaches shows that several 
aspects need to be improved in terms of performance and data 
relevancy. The main challenge is how to extract efficiently value 
from the big data sources. For this purpose, we propose in this 
paper to discuss Hadoop architecture and intelligent data 
discovery, and propose an effective on-demand Big Data 
contribution enabling to process relevant data in efficient and 
effective way according to the stakeholder’s needs, and aiming to 
boost Data appointment by integrating multidimensional 
approach. 

Keywords
Big Data; Hadoop; MapReduce jobs; Multidimensional approach; 
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1. INTRODUCTION
Being in the age of big data [1], it has become one of the most 
important technology trends over the last few years. The 
continuous production of large data sets growing exponentially is 
at the origin of this concept. Today, dataset’s volume is in the 
order of petabytes or several terabytes. Not only has the volume 
increased, but also the speed at which the data is generated. 
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2. ON BIG DATA PLACEMENT AND 
PROCESSING 
In distributed environment, one of the largest issues that most of 
research works aim to deal with is providing an efficient and 
simple large-scale model. Due to the efficiency of work on 
massive data sets using commodity hardware, Hadoop Distributed 
file system is the most popular. MapReduce is a programming 
model that enables parallel processing of massive data sets in a 
distributed and fault tolerant fashion [2,4,5]. In this section, we 
explore Hadoop’s data placement strategy and the MapReduce 
data processing. 

2.1 HDFS System: Data Placement 
HDFS is a distributed file system developed by Apache. It is 
designed to store very large files, and broadcast data at high 
bandwidth [6]. In this context, 'very large' means files to terabyte. 
The HDFS concept is based on a master-slave architecture that 
requires a Namenode and Secondary Namenode as master nodes, 
and more than one Datanode as slave nodes [5]. The Namenode 
maintains the file system tree and metadata of all files and 
directories in the tree. However, the replica locations of the blocks 
are not persistent since they can change over time. In turn, 
Secondary Namenode does not act as a Namenode. If a Namenode 
fails, the copy of the updated image at the Secondary Namenode 
can be used to prevent data loss [1]. 

As primary storage elements, Datanodes store data blocks, and 
process read / write requests on files stored on HDFS. Also, they 
are responsible of reporting the list of stored blocks to the 
Namenode [2,5]. To select Datanodes that store the blocks and 
replicas, a data placement strategy is used. Following this policy, 
the first copy of a new block is placed on the local Datanode 
(where the block is created). For the second copy, HDFS attempt 
to select a Datanode in the same rack, and in a different rack for 
the third copy [7]. 

As the probability of a rack failure is less than that of a node 
failure, HDFS data placement policy reduces inter-rack and inter-
node write traffic, which improves write performance. However, 
placing blocks randomly to balance load without considering data 
characteristics is a critical issue [7]. In fact, datasets may be re-
partitioned in the map phase, and migrated to perform reduce step. 
This can be avoided if related data are stored in the same node [8]. 

To boost performance of Hadoop, we aim to minimize data 
movement by focusing on data placement strategy where files are 
partitioned and distributed according to business subject. This 
strategy ensures that applications requiring the processing of 
subject-related data can execute without needing to migrate data 
during the execution of the job. 

2.2 MapReduce: Data Processing 
MapReduce is a programming model used in Hadoop to process 
and analyze large datasets. Tasks are divided in a scalable and 
fault-tolerant manner into parallel jobs on large clusters of 
commodity hardware [2,9]. 

A MapReduce cluster is based on master-slave architecture. The 
master node is called Job Tracker, and the slave node is called 
Task Tracker. Job Tracker schedules processing to the different 
Task Trackers, manages the Task Tracker, and re-executes the 
task in the case of task failure. Task Tracker executes the tasks 
assigned by the Job Tracker, and sends a signal to the Job Tracker 
once the assignment has been completed [2,4]. 

The process of execution of a MapReduce Job is as follows. Two 
important functions in MapReduce are Map and Reduce [10], 
written by the user. Input data assigned by the master are 
processed by map function, and intermediate <key, value> pairs 
are produced. The pairs generated by map function with the same 
key are grouped by the MapReduce library, and are passed to the 
reduction function for aggregation. Finally, the collection of<key, 
value> intermediate pairs are merged, and the values having the 
same key are aggregated by reduce function [4]. 

To schedule a job, Hadoop uses different types of algorithms. 
FIFO scheduler was used in early versions of Hadoop by default. 
Then, the fair scheduler and the capacity scheduler came as a 
result of Facebook and yahoo efforts [1]. 

The MapReduce framework has many advantages. First, it 
reduces network communication cost using data locality [2]. In 
addition, it supports scalability, is fault-tolerant and able to run in 
heterogeneous environments. As it is storage independent, it can 
analyze data stored in different storage system [11]. 

However, MapReduce has some performance limitations. It can’t 
read directly records from the storage engine as it is storage 
independent [12]. Also, MapReduce can have a problem of 
synchronization. In fact, reduce process will be start after the end 
of Map Process. As a result, a single node can slow down the 
whole process, causing the other nodes to wait until it is finished, 
which degrade MapReduce performance [13]. 

In addition, evaluating aggregate operations and processing data 
over large datasets is a performance issue, because MapReduce 
keys are generated in an incremental way, and don’t contain any 
information making processing more effective. 

3. OVERVIEW ON HADOOP’S 
IMPROVEMENTS 
Currently, evolution of new features of Hadoop is rapidly 
growing. Numerous contributions are proposed to improve the 
framework while maintaining its scalability, fault tolerance, and 
the ability to perform parallel and distributed computations. This 
section presents the papers related to these Hadoop characteristics 
[14]. According to our literature, contributions to Apache Hadoop 
can be classified into two major categories: data placement and 
storage that includes studies comprising HDFS and indexation, 
MapReduce that involves data processing and scheduling 
concepts. 

3.1 Data Placement and Storage 
Storage is an important aspect of distributed systems. Indeed, 
Hadoop suffers from a number of storage bottlenecks, which 
motivated several recent works to propose different techniques to 
improve Hadoop’s performance. 

HadoopDB is a hybrid system that combines parallel database and 
MapReduce [15]. The aim of HadoopBD is to achieve fault 
tolerance in heterogeneous environments, and attain the parallel 
database performance. For this reason, HadoopDB uses Hadoop 
as a network communication layer and task coordinator [16] to 
connect database system nodes, and execute the data processing 
queries inside the database engine [16]. Nevertheless, HadoopDB 
loses the simplicity of Hadoop programming model by changing 
its interface. 

To overcome this limitation, Jens et al. go beyond saving the 
underlying Hadoop framework. They propose Hadoop++, a 
system that improves the query runtime of HadoopDB using two 



techniques named the Trojan Index and the Trojan Join. 
According to [15], Trojan indexes integrate record level indexing 
capability such that only the relevant records for a specific job are 
accessed [17]. Torjan join aims to avoid reduce phase since the 
data were already pre-partitioned. The limitation of Hadoop++ is 
the static manner to co-locate data. 

To enable co-location in a simple and flexible manner, 
Mohammed et al. propose Co-Hadoop, an extension of Hadoop 
that provide co-location at the system level, by modifying the data 
placement policy of HDFS without losing the benefits of Hadoop. 
Co-Hadoop is able to support queries flexibly, and can co-locate 
an important number of files. In fact, Co-Hadoop allows 
applications to control data placement at the file system level. It 
proposes a new file property called locator, which gives 
information where file to be stored. The default data placement 
strategy is adopted to place files with no locator value, whereas 
files that have the same locator value are placed in the same data 
node [7,15]. 

3.2 Scheduling and Data Processing 
Scheduling in the MapReduce environment is a recent 
development. Hadoop proposes three schedulers by default: FIFO, 
Fair, and Capacity schedulers [14]. However, a large number of 
studies propose different new approaches to improve data 
processing [13]. 

Nguyen et al. [18] propose a Hybrid Scheduler algorithm based on 
dynamic priority. Reducing the delay for concurrent jobs with 
variable length, and maintaining data locality are the principal 
goals of the authors. As the algorithm is designed for data 
intensive workloads, relaxing the strict proportional fairness is an 
effective manner to improve response time. For this reason, the 
algorithm uses an exponential policy model [14]. 

Other concern regarding schedulers is the heterogeneity of the 
hardware within clusters. In this sense, Zaharia et al. Propose 
LATE (Longest Approximate Time to End), a scheduler that 
improves performance by reducing overhead of speculation 
execution tasks. In fact, it detects the real slow task, and insures 
that the number of restarted slowest speculative tasks is 
minimized, which improves the data processing performance of 
the heterogeneous cluster [18]. In the same direction, Chen et al. 
[19] propose SAMR (Self-Adaptive MapReduce), a scheduler that 
improves MapReduce by saving execution time and system 
resources in heterogeneous clusters, and allows selecting the node 
that can execute the task faster. Compared with Hadoop’s 
scheduler, the execution time is decreased up to 25%, and 14% 
compared with LATE scheduler. 

A different approach to environment’s heterogeneity is presented 
by Rasooli and Down [9]. By considering heterogeneity at 
application and cluster levels, they propose a new scheduling 
system called COSHH. 

The advantage of this system is the performing queuing process 
used to store arrival jobs, and the setting up of a routing process to 
manage free resources, which improves data processing 
performance [20]. 

3.3 Discussion 
In this section, we present a comparative assessment based on the 
analysis of advantages and limitations of different approaches 
raised in the previous sections as depicted in Table.1. 

Table 1. Comparison of Contribution 
Contribution Advantages Limitations 

 HadoopDB Performs like 
parallel database, 
fault tolerant 

Forces utilization of 
DBMS, and 
changes interface to 
SQL 

Hadoop++ Doesn’t modify 
MapReduce 
interface, and runs 
faster than 
HadoopDB and 
Hadoop. 

Reorganization of 
Trojan index and 
Trojan join due to 
any change 

Co-Hadoop Flexible, more 
performing. 

Lacks of Indexing 
aspect, details 
knowledge of input 
data are required. 

Hybrid scheduler 
algorithm based on 
dynamic priority 

Fast, flexible data 
processing, 
improves response 
time in 
heterogeneous 
environment 

 

LATE Robustness to node 
heterogeneity. 

Static manner in 
computing the 
progress of the 
tasks. 

SAMR Decreases the 
execution time of 
map reduce job, 
and runs in 
heterogeneous 
environment 

Does not consider 
the data locality 
management. 

COSHH Addresses the 
fairness and the 
minimum share 
requirements 

 

Data processing and data placement have major roles on Hadoop 
performance. In fact, all the papers in these categories are 
concerned with performance improvements in HDFS and 
MapReduce applications. 

On one hand, most of proposals included in storage and data 
placement category are related to achieving high storage 
throughput without losing fault tolerance and scalability. 
HadoopDB uses indexes and execute query processing in database 
engine, but breaks the programming model of MapReduce [7], 
unlike Hadoop++ that improves Hadoop performance without 
changing it. Nevertheless, it suffers from being static. In fact, any 
change forces it to reorganize the entire data set [7]. 

On the other hand, works enhancing data processing and 
scheduling techniques are present. Late proposes an alternative 
system that decides where to speculate tasks taking into account 
node heterogeneity and approximated task’s completion time, but 
the probably mistaken time anticipated makes Late static and 
reduces its data processing performance. 

This comparative assessment shows that most of these 
contributions discussed in this paper address one or more 
problems. Therefore, there is a lack of effective support for 
multidimensional data storage, since all these contributions are 
based on the (key, value) store. 

Others support multidimensional cubes, but are not suitable for 
big data. For example, Pig [21] translates a high-level data flow 



language into MapReduce jobs. HBase [22], similar to BigTable 
[23], provides random read and write access to a huge distributed 
(key, value) store. Hive [24], a framework for data warehousing, 
gives the possibility to run queries on huge volumes of data stored 
in HDFS [25]. It supports queries expressed in a SQL-like 
declarative language called HiveQL, and compiled into 
MapReduce jobs [24]. 

4. DISCUSSION OF FUTURE 
CONTRIBUTION 
Currently, traditional warehousing solutions are expensive, due to 
the growing size data sets in industry for business intelligence 
[24]. As a result, traditional parallel SQL data warehouses and 
OLAP engines are replaced by new massively parallel data 
architectures. One type of such systems is MPP relational data 
warehouses over commodity hardware [25-26]. However, these 
systems have performance problems when they scale to thousands 
of nodes due to hardware failure. Also, they are not able to 
process non-relational data. 

Hadoop is a scalable and fault-tolerant framework, and used to 
process very large data sets on commodity hardware [26]. 
Recently, the convergence of these two types of systems seems to 
be essential. 

As underlying data storage and access methods are implemented 
by the user, MapReduce is considered as an execution model that 
lacks a declarative query interface. As a result, many effort and 
technical skills are required to access the data [26]. In addition, 
Hadoop key/value pairs representation does not give the user the 
benefit of efficiently evaluating aggregate operations over large 
datasets. Being generated in an incremental way, Hadoop keys 
don’t contain any information simplifying the aggregation, and 
making computation faster and effective. The nature of these keys 
can lead to unnecessary calculations that cost the performance of 
the framework. 

4.1 Our Proposal 
Several performance aspects of distributed system are 
significantly impacted by the way to assign data items to nodes. 
Placing data near the clients can reduce the number of remote 
accesses, the latency of operations, and avoid network congestion 
[25]. Other strategies aim to minimize data movement between 
slow and fast nodes by storing data according to the capacity of 
nodes and the workload characterization [10]. 

Some studies develop a Dynamic Data Placement (DDP) strategy 
that is presented according to the types of jobs for adjusting the 
distribution of data blocks [27]. Others propose to place data in a 
way that maximizes the availability of nodes. In most of these 
cases, each application must prioritize how to optimize placement. 
Also, these strategies are developed as new independent systems 
on top of Hadoop. 

Our work is an integrated mechanism in Hadoop, an improvement 
of HDFS and MapReduce in terms of performance. To boost the 
performance of Hadoop, our contribution focuses on integrating 
“multidimensional data placing” as a mechanism based on 
semantic data studies in order to partition data by business 
subject, by proposing a new data placement strategy. In addition, 
an intelligent data processing system is proposed to facilitate 
aggregation, according to the new data placement strategy. 

To improve these strategies, more effectively use data and 
optimize performance, our proposal is about: 

• Multidimensional split and clustering of HDFS: to 
provide a new strategy able to efficiently subdivide files 
into parallels slave’s nodes. 

• Multidimensional querying: to define Xmart, an MDX 
like language for processing on top of MapReduce. 

• Valuable retrieving: to allow Big Data analytics and 
mining. 

These challenges motivate us to build o new flexible and scalable 
system, called Xmart. 

The system is based on the concept of “multidimensional data 
placing”, and on the integration of this concept with the HDFS 
system, by implementing subject sensitive to the nature of data. 
This sensitivity is intended to facilitate the computation of 
aggregates, differentiating the fact keys and dimension keys, 
which improve the performance of the system, avoiding 
unnecessary calculations. The setting up of such a mechanism is 
based on ontological and semantic data studies. This smart slicing 
at HDFS speeds up data processing by the MapReduce 
Tasktracker. In this sense, the Map and Reduce functions need to 
be improved. 

4.1.1 Split Dimensionally 
Business users find the concept of dimensions and Facts to be 
natural and obvious. By splitting dimensionally, we mean dividing 
data into dimensions and facts. No matter what the format of the 
data is, entities can always be assimilated to facts or dimensions. 

Multidimensional data clustering is a technique being used to 
enhance data quality [28] in large scale Data visualization. Palmas 
et al. [29] creates meta-link between aggregates by using one-
dimensional clustering technique. Kosara et al. [30] propose 
induction of natural groups on dimensions in order to deal with 
nominal data issue. Weber et al [31] propose a strategy to deal 
with multivariate Large Data. 

Multidimensional indexing allows scalable construction of 
multidimensional database. For scalable and distributed data, new 
structures are defined in Alerter Approach [32] and Semi-
Automatic Index Tuning [33]. 

Our proposal is about integrating these methods by using 
multidimensional data clustering and multidimensional indexing 
techniques in Hadoop system to improve its performance, using 
efficient partitioning schemes that allow parallel IO and parallel 
processing. The aim of our work is to: 

• Partition data by business subject 
• Deploy summary structures (e.g. derived dimension, 

facts and PKI) 
• Build like OLAP indexes and materialized view 

4.1.2 Query Dimensionally 
The introduction of this new paradigm allows defining a Map that 
adapts to the nature of the data. For the collection and processing 
of slices at the output of Map, algorithms adaptable to the context 
of data are injected to improve the operation of the Reduce step. 

To query this new data warehouse, Xmart provides an MDX like 
language for multidimensional processing on top of MapReduce 
as mentioned in Figure.1. 



 
Figure 1. Integration of multidimensional data placing and 

intelligent data processing in Hadoop 

5. CONCLUSION AND FUTURE WORKS 
Ability to make Hadoop more efficient and improve its 
performance is still an open issue that is gaining significant 
attention from the researchers’ community. 

In this paper, we discussed Hadoop capabilities and limitations in 
terms of Data placement and data processing. We surveyed 
different contributions aiming to improve Hadoop performance, 
and analyzed advantages and limitations of these proposed 
techniques to conclude our proposal of multidimensional Data 
Placing on the Hadoop File System and intelligent data processing 
to enhance Big Data performance and pertinence. 

Works in progress aims at describing the detailed architecture of 
our artifact, and performing a complete analysis to build our 
system, and construct a data model for the new MDX like 
language. Moreover, we plan to present our experimental results 
to validate our system. 
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