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zhang2011handling combining naive bayes and em, li2015trip combining dependencies and web information, zhang2019learning combining KNN and Regression, song2020imputing combining KNN and likelihood maximization, chhabra2018missing combining k-means and association rules, aydilek2013hybrid combining fuzzy c-means, support vector regression and genetic algorithm, etc. There are also hybrid approaches which use techniques of the same category like latifi2012evaluation combining knn and random forest and wang2017cosset combining crowdsourcing and knowledge base, etc. Nowadays, it is difficult for companies and organisations without Business Intelligence (BI) experts to carry out data analyses. Existing automatic data warehouse design methods cannot treat with tabular data commonly defined without schema. Dimensions and hierarchies can still be deduced by detecting functional dependencies, but the detection of measures remains a challenge. To solve this issue, we propose a machine learning-based method to detect measures by defining three categories of features for numerical columns. The method is tested on real-world datasets and with various machine learning algorithms, concluding that random forest performs best for measure detection.

Introduction

Business Intelligence (BI) plays an important role in numerous companies and organizations to efficiently support decision making processes. In classical BI architectures, data from heterogeneous sources are integrated into a Data Warehouse (DW) usually modeled in a multidimensional way, allowing decision makers to analyze data by On-Line Analytical Processing (OLAP) [START_REF] Golfarelli | Data Warehouse Design: Modern Principles and Methodologies[END_REF]. A multidimensional DW organizes data according to analysis subjects (facts) associated with analysis axes (dimensions). Dimension attributes may be ordered according to their granularity (hierarchies) and each fact is composed of indicators (measures).

With the development of information systems and the availability of numerous open datasets, various data become much more accessible to enterprises, organizations and even individuals, who have data analysis needs to help them take decisions [START_REF] Abelló | Fusion cubes: Towards self-service business intelligence[END_REF]. However, the design of a DW is typically carried out manually, requires expert knowledge and BI experience [START_REF] Romero | A framework for multidimensional design of data warehouses from ontologies[END_REF], may be time-consuming and costly. Thence, automating the DW design process is desirable to allow businesses and organizations take advantage of BI.

There are different automatic or semi-automatic approaches for the design of multidimensional DW schemas [START_REF] Romero | A survey of multidimensional modeling methodologies[END_REF]. However most of these methods focus on data sources with explicit schema: relational data with Entity-Relationship (ER) schema, XML data with Document Type Definitions (DTDs), etc. Nevertheless, tabular data such as spreadsheet data and Comma Separated Value (CSV) files are very common in enterprises, and even more in the open data world. They may also be DW data sources, but whose schema is not available. Building dimensions and hierarchies for tabular data can be done by detecting functional dependencies [START_REF] Yang | Automatic Integration Issues of Tabular Data for On-Line Analysis Processing[END_REF]. In the existing methods for other sources, measures are defined manually by users or are detected with respect to data types (numerical values) and cardinalities, which is impractical for tabular data without schema. Yet, measures remain central elements in multidimensional models, as they are the indicators that assess the analyzed activities. Therefore, measure detection for automatic DW design from tabular data is an important task. To the best of our knowledge, there is no specific approach addressing this challenge.

Tabular data may bear quite simple or very complex structures [START_REF] Adelfio | Schema extraction for tabular data on the web[END_REF]. Simple structures consist of one header row followed by rows containing data values. Headers label the data rows below, while data rows contain tuples akin to relational database tuples. Most CSV files bear a simple structure, while spreadsheet files and HTML tables can be more complex, e.g., cross tables [START_REF] Lautert | Web table taxonomy and formalization[END_REF]. Such tables contain two or several dimensions, and may also contain several dimension levels. Moreover, there also exists other complex structures such as concise tables, nested tables, multivalued tables and split tables [START_REF] Lautert | Web table taxonomy and formalization[END_REF].

The data region can be extracted from a cross tables by some algorithms [5,[START_REF] Du | Tabularnet: A neural network architecture for understanding semantic structures of tabular data[END_REF][START_REF] Koci | A machine learning approach for layout inference in spreadsheets[END_REF][START_REF] Wang | Tuta: Tree-based transformers for generally structured table pre-training[END_REF] where measures are located. The other types of complex structures can be converted into simple structures [START_REF] Du | Tabularnet: A neural network architecture for understanding semantic structures of tabular data[END_REF]. However, for simple-structured tabular data, DW elements cannot be directly extracted either without a schema or metadata, as the data do not bear a particular layout. Measures are usually numerical data, but numerical columns are not necessarily measures, since there also exists descriptive numerical attributes. Thus, we intend to find the numerical columns that conform to the characteristics of measures. We hypothesize that there are differences in terms of features between numerical data that are potential measures and those that are not. Therefore, in this paper, we define specific features for numerical columns and propose a machine learning-based method to automatically detect measures.

The remainder of this paper is organized as follows. In Section 2, we review the related works about measure selection for automatic DW design. In Section 3, we detail and discuss the measure detection process and the features we propose. In Section 4, we present and interpret our experimental results. Finally, in Section 5, we conclude this paper and hint at future research.

Related Works

There are various methods dedicated to automatic or semi-automatic DW schema design, with different measure selection approaches. Since the selected measures should correspond to business requirements, in many methods [START_REF] Giorgini | Goal-oriented requirement analysis for data warehouse design[END_REF][START_REF] Golfarelli | Data warehouse design from xml sources[END_REF][START_REF] Jensen | Discovering multidimensional structure in relational data[END_REF][START_REF] Bimonte | Multidimensional model design using data mining: A rapid prototyping methodology[END_REF], they are assigned directly by the users.

In a semi-automatic method to model DW from E/R diagrams [START_REF] Song | Samstar: A semi-automated lexical method for generating star schemas from an entity-relationship diagram[END_REF], the fact table is selected by calculating the Connection Topology Value (CTV) of each entity, which is a composite function of the topology value of direct and indirect one-to-many relationships. Measures are still chosen manually by the user, but the scope of the choice is reduced. Moreover, another approach fully automates DW design from an E/R schema [START_REF] Phipps | Automating data warehouse conceptual schema design and evaluation[END_REF]. In contrast, some approaches aim at discovering measures, including 1) selecting many-to-many relationships containing numeric and additive non-key facts [START_REF] Kimball | A dimensional modeling manifesto[END_REF]; 2) analyzing business queries for data items indicating business performance [START_REF] Ballard | Data modeling techniques for data warehousing 5[END_REF]; 3) basing on most frequently updated entities [START_REF] Golfarelli | Conceptual design of data warehouses from e/r schemes[END_REF]; or 4) selecting the numerical data that can be aggregated [START_REF] Tryfona | starer: A conceptual model for data warehouse design[END_REF]. All these approaches work in the context of automatic DW design based on E/R schemas. However, the constraints and relationships mentioned in such methods cannot be directly applied on tabular data.

Another trend is using knowledge-based methods for automatic DW design [START_REF] Sanprasit | Intelligent approach to automated star-schema construction using a knowledge base[END_REF]. Key information on measures and dimensions are extracted through a Natural Language Processing (NLP) model based on sentences from the business requirements. Candidate measures are all numerical column and are then validated by some constraints in a predefined domain ontology and by checking whether they can be aggregated. However, the method needs business requirements to train the NLP model. Defining the domain ontology is also difficult.

In summary, there is no specific method to automatically detect measures from tabular data in the absence of schema and explicit business requirements. Thus, we propose a machine learning-based method for measure detection from tabular data.

3 Measure Detection

Overview

Figure 1 shows an overview of our measure detection process for tabular data. If tabular data bear a complex structure, we use table structure detection algorithms [5,[START_REF] Du | Tabularnet: A neural network architecture for understanding semantic structures of tabular data[END_REF][START_REF] Koci | A machine learning approach for layout inference in spreadsheets[END_REF][START_REF] Wang | Tuta: Tree-based transformers for generally structured table pre-training[END_REF] to verify whether data lie in a cross table. If so, measures are extracted from the data region, save aggregated values are excluded. Otherwise, data are converted by the algorithm proposed in [START_REF] Du | Tabularnet: A neural network architecture for understanding semantic structures of tabular data[END_REF] into a simple structure that is formally defined in Definition 2. Fig. 1: Measure detection for tabular data Definition 1. Measures are numerical and quantitative attributes of the analysis subject evaluating the activities of an organisation and that can be aggregated with respect to dimensions. They can be additive, semi-additive or nonadditive [START_REF] Horner | An analysis of additivity in olap systems[END_REF]. Definition 2. A tabular dataset of simple structure TS is defined as {C, R, A, V}, where:

-C = {C 1 , C 2 , ...C nc } is a set of columns, where n c is the number of columns in TS. For a given column C i ∈ C, index i corresponds to the column's position in TS. The number of non-null values in column C i is denoted as n t (C i ). The number of non-null distinct values is denoted as n u (C i ); -R = {R 1 , R 2 , ..., R nr } is a set of rows (excluding the first, header row),
where n r is the number of non-header rows in TS. For a given row R j ∈ R, j represents the index of the row corresponding to its position in TS; -A = {A C1 , A C2 , ..., A Cn c } is a set of attribute headers. For a given attribute header A Ci ∈ A, C i represents the column labeled by A Ci ; -V is a matrix of cell values whose dimension is n r × n c . For a given cell value V Rj ,Ci ∈ V, R j and C i are the row and the column where the cell is located, respectively.

In the following sections, we focus on measure detection for tabular data of simple structure. Since measures are numerical, we regard all numerical columns as candidates. Yet, preprocessing the dataset is necessary for the selection of numerical columns. Then, to distinguish between measure and non-measure numerical columns we extract features from numerical columns and use machine learning classifiers to estimate whether they are measures.

Preprocessing

As candidate measures are numerical columns, we must first identify numerical columns. If all values of a column are numerical, we easily identify numerical columns. However, there are sometimes columns containing numerical values with their unit, or columns containing both numerical and textual values used for replacing empty cells. Such mixed values must lead to numerical columns and require preprocessing.

Columns containing values with a unit are identified by verifying whether each cell obear the same structure, e.g., "text + number" or "number + text". We also verify whether the text of each column is the same or if it is categorical by using the algorithm proposed by [START_REF] Alobaid | Typology-based semantic labeling of numeric tabular data[END_REF]. Then, we extract numerical values via regular expressions and tag the column as numerical. Eventually, numerical columns containing empty values replaced by some text, e.g., "n/a", "null" or "unknown", are treated as numerical, with textual values being removed.

Feature Extraction

After the preprocessing phase, we extract the numerical columns' features. When defining features, we analyze both general information and some statistical characteristics of numerical columns. Since tabular data of simple structure are usually relational and may exhibit specific column positional habits, we also consider column inter-relationships. Features are thus subdivided into three categories: general features, statistical features and inter-column features. For a given numerical column C i , we define the following features.

General Features These features reflect basic information on numerical columns. Such general features may help check whether a numerical column is likely to be quantitative and help evaluate business activities. General features follow.

-Data type:

type = 1 if type(C i ) = integer 0 if type(C i ) = f loat , where type(C i ) is C i 's data type.
Intuitively, float data are more likely to be quantitative and to allow evaluating activities. For example, temperature, salary and sales amount are float data can be considered as measures in most cases.

-Positive/Negative/Zero value ratio:

rpos = n pos (C i ) n t (C i ) , rneg = n neg (C i ) n t (C i ) , rzero = n zero (C i ) n t (C i )
, where n pos (C i ), n neg (C i ) and n zero (C i ) are the number of positive, negative and zero values in C i , respectively, and

n t (C i ) is the number of non-null values in C i .
These features may help identifying both qualitative and quantitative columns. Qualitative data values, e.g., ID or zip code, are rarely negative or equal to zero. Thus, when there are many zero and negative values in a column, it is more likely to be a measure.

-Unique value ratio:

runique = n u (C i ) n t (C i ) .
The unique value ratio can reveal some typological information about a column. For example, in a descriptive dataset, IDs are always unique, so the unique value ratio is always 1. In a dataset containing fact table data, keys and descriptive data may be repetitive, but equal measures should be quite scarce.

-Same digital number:

sdn =    1 if ∀i ∈ [1, n t (C i ) -1], nd Rj ,Ci = nd Rj+1,Ci ∧ type(C i ) = integer 0 if (∃i ∈ [1, n t (C i ) -1], nd Rj ,Ci ̸ = nd Rj+1,Ci ∧ type(C i ) = integer) ∨(type(C i ) = f loat) where nd Rj ,Ci is the number of digits in cell value V Rj ,Ci , which is calculated as nd Rj ,Ci = f loor(log V R j ,C i 10 ) + 1.
This feature tells whether all the values of an integer column have the same number of digits. If it is the case, the column is likely to be a nominal number [START_REF] Alobaid | Typology-based semantic labeling of numeric tabular data[END_REF] representing the name or identifier of an element that cannot be a measure. For example, the French social security number always contains 15 digits. We consider these basic statistical metrics as features. In some specific columns, their values always vary in a certain range. Using these features can thus be helpful for capturing such statistical behaviours.

Statistical Features

-Coefficient of variation:

coevar =    standdev(C i ) if avg(C i ) = 0 standdev(C i ) avg(C i ) if avg(C i ) ̸ = 0 where standdev(C i ) is C i 's standard deviation.
The standard deviation can depict the amount of dispersion of a column values. Measures or descriptive attributes may have different degrees of dispersion, but by using the coefficient of variation, which is the ratio of the standard deviation by the average, we achieve a standardized degree of dispersion. For example, given two attributes "price of phone" and "temperature of city", the average price is much higher than that of temperature. A price variation of 10 is relatively much lower than that of tempera. Since the coefficient of variation is a ratio, when the average is equal to 0, it does not exist. Here, we define that when the average is 0, the feature is equal to the standard deviation of the column.

-Range ratio: rrange = max -min n u (C i ) .

The range ratio calculates the range of values with respect to the number of distinct values. It is useful to identify some ordinal data, even if they occur repetitively. For example, if we have student numbers ranging from 1000 to 2000 in a tabular dataset, but also courses and grades, a student number may occur many times while the range ratio is always 1 no matter the number of occurrences.

Inter-Column Features Measures are aggregatable and are normally accompanied with attributes by which they are aggregated, as per the "group by" SQL clause. Typically, attributes linked to aggregations are located before measures in the source file. Therefore, we consider inter-column features that take inter-column relationships into account in the whole dataset.

-Location ratio:

rloc = i -1 n c -1 .
In many tables, the identifier and some other basic information usually lie at the beginning positions, while measures are usually in the latter positions. Thus, we also take column location into account. However, different datasets have different number of columns, so we must normalize the location feature as a ratio ranging between 0 and 1.

-Numerical column ratio: rnum = n num n c , where n num is the number of numerical columns in the whole dataset.

The ratio of numerical column number by total column number is a table feature. While there are tabular data that only contain descriptive information, others include numerical columns that may be measures.

-Multiple functional dependencies:

severalf ds = 1 if ∃f d ∈ f dset, (f d.rhs = A Ci ) ∧ (size(f d.lhs) > 1)
0 else where f dset is the functional dependency set of the dataset, f d.rhs is the right hand side attribute of functional dependency f d and size(f d.lhs) is the number of attributes in the left hand side of f d.

In existing methods that exploit data sources with schemas, many-to-many relationships are usually employed for measure detection. In a DW, we usually analyze a fact with respect to different dimensions and measure values depend on dimensions' primary keys. Thus, we consider whether there is a functional dependency with A Ci depending on several attributes as a feature.

-Numerical neighbor:

numn =            1 if (i = 1 ∧ type(C i+1 ) ∈ num) ∨ (i = n c ∧ type(C i-1 ) ∈ num) ∨(i ̸ = 1 ∧ i ̸ = n c ∧ type(C i+1 ) ∈ num ∧ type(C i-1 ) ∈ num) 0.5 if (i ̸ = 1 ∧ i ̸ = n c ∧ type(C i+1 ) ∈ num ∧ type(C i-1 ) ̸ ∈ num) ∨(i ̸ = 1 ∧ i ̸ = n c ∧ type(C i+1 ) ̸ ∈ num ∧ type(C i-1 ) ∈ num) 0 else where num = {integer, f loat}.
In a tabular dataset, the columns describing similar information are often clustered together. Measures are also likely to be located close together, meaning that there are numerical columns in neighboring positions. Thus, we define this feature to see if neighbors of a column are also numerical. If so, the column is likely to be a measure.

Experimental Validation and Discussion

Experimental Conditions

Our experiments are conducted on an Intel(R) Core(TM) i5-10210U 1.60 GHz CPU with a 16 GB RAM. We use 9 datasets in our experiments, from the governmental open data sites of France (FR), Canada (CA), UK (UK) and US (US), the French Development Agency (AFD), the New Zealand's official data agency (NZ), the American Center for Disease Control and Prevention (CDC), the World Bank (WB) and Kaggle (KG). Each dataset contains numerous tables with numerical columns on which features are extracted to feed the algorithms. Moreover, they are classified into five domains (Table 3) including Economy (ECO), Health (HLT), Government (GOV), Environment (ENV) and Society (SOC). Complete information about these datasets are provided in Appendix.

We apply the following widely used Machine Learning (ML) classification algorithms [START_REF] Sen | Supervised classification algorithms in machine learning: A survey and review[END_REF] (available in Python 3.7): 1) an SVM classifier with an RBF kernel (SVM), 2) a decision tree classifier based on the CART algorithm (DT), 3) a random forest classifier (RF) and 4) a k-nearest neighbors classifier (KNN). Deep learning models are not employed because they are more suitable for interpreting images, sounds and texts [START_REF] Lecun | Deep learning[END_REF], while we analyze numerical columns.

We define the ground truth by analyzing each dataset context according to its website's description, header semantics and metadata. We also uphold the criteria from Definition 1. Thence, for each dataset, we compute all our proposed features (Section 3.3) for each numerical column, and label them to build training and test sets. Empty values in columns are ignored and not counted.

Baseline Methods

Numerical Typology-Based Method (TP) In a previous work, we proposed to select measures with respect to the type of numerical attributes [START_REF] Yang | Automatic Integration Issues of Tabular Data for On-Line Analysis Processing[END_REF]. Numerical data may be classified into nominal data, ordinal data, intervals and ratios [START_REF] Alobaid | Typology-based semantic labeling of numeric tabular data[END_REF]. Algorithms can detect the different numerical types [START_REF] Alobaid | Typology-based semantic labeling of numeric tabular data[END_REF]. We identified the columns of interval and ratio types as DW measures.

Functional Dependency-Based Method (FDB) As we already mentioned, in existing methods aimed at data with schemas, measures are selected in tables exhibiting many-to-many relationships; in other words, columns that are functionally dependent on dimension primary keys. With this idea in mind, we detect functional dependencies (FDs) in tabular data and select as measures the numerical columns that are functionally determined by several, other attributes. The FD detection algorithm that we use is HyFD [START_REF] Papenbrock | A hybrid approach to functional dependency discovery[END_REF]. HyFD indeed achieves the best performance against the seven most cited and important algorithms that are tested in [START_REF] Papenbrock | Functional dependency discovery: An experimental evaluation of seven algorithms[END_REF].

We employ the Metanome Web-based toolbox [START_REF] Papenbrock | Data profiling with metanome[END_REF], which is developed by the HyFD designers, to implement HyFD. Moreover, we use the Python library selenium 4 to feed input files in Metanom and get the FDs automatically. The extracted FDs are also used for generating the values of feature severalfds.

Experimental Results

Algorithm Effectiveness We run the two baseline methods from Section 4.2 and train models with our proposed features by four ML algorithms (Section 4.1) on all datasets (Section 4.1). The ML algorithms are run by pycaret5 AutoML Python library where the hyperparameters are tuned automatically. For the model generality and feauture importance experiments, we run ML algorithms from the sklearn 6 Python library.

We use three performance metrics: Recall (R), Precision (P) and F-Measure (F), as follows. Let N mm and N mn be the number of measures predicted as measures and non-measures, respectively; and N nm and N nn the number of non-measure predicted as non-measures and measures, respectively.

Then, R = N mm N mm + N mn , P = N mm N mm + N nm and F = 2 × P recision × Recall P recision + Recall .

Table 1 shows the resulting values of R, P and F where the results of ML algorithms are obtained through a 10-fold cross validation by merging all datasets and randomly split them into 10 folds. The distribution of the cross validation results is depicted in Figure 2.

We observe that RF exhibits the best F-measure (94.82%) and the result is not more dispersed than that of the other algorithms. Thus, RF shows the best performance on the measure detection problem. We also observe that TP and FDB do not have a good effectiveness when predicting measures, but FDB performs better than TP. TP's bad performance is due to: 1) interval and ratio numerical columns are not all measures, e.g., longitude and latitude; 2) numerical typology detection algorithm are not flexible enough to cope with real-world data, because they are based on fixed rules. Regarding FDB, a numerical column that is functionally determined by several other columns may not always be a measure, either. For example, let us consider a table describing sale facts with Fig. 2: Cross validation distribution respect to customers and products, where sales' amount is indeed a measure. The customer ID is the customer dimension's primary key, but the customer's name and email may uniquely identify a customer, and thus may functionally determine the age of the customer, a numerical column that is not a measure.

Our ML-based measure detection method takes different types of features (Section 3.3) into account and can thus better handle the above exceptions and get better results.

Feature Category Effectiveness To verify the effectiveness of each feature category we propose, we test different combinations of feature categories with our RF-based method. We first test single feature categories, combinations of two categories and then we compare the effectiveness of all categories. The result is shown in Table 2, where GE represents GEneral features, ST represents STatistical features and IC represents Inter-Column features. ST exhibits the best individual contribution. Yet, we can clearly see that combining feature categories achieves better performance in terms of recall, precision and F-measure, than using single feature categories. Ultimately, combining all feature categories yields the best performance. The results of applying other ML algorithms can be found in our github. 

Model Generality

To verify that the trained model achieved with our RFbased method is generic, we train data by excluding the datasets of one sources and test on them. We also carry out the same test by domain, i.e., economy (ECO), health (HLT), government (GOV), environment (ENV) and society (SOC). The results are shown in Figure 3, where the charts above and below depict the results by source and domain, respectively. By comparing with former results, the difference of F-measure ranges from -5.02% to 4.23% for the test with respect to the source and from -3.17% to 3.36% for the test with respect to the domain. The trained model with the defined features is thus generic regardless of the source and the domain of data. The results of applying other ML algorithms can be found in our github 7 .

Feature Importance To analyze our different features, we compute the permutation importance (decrease in prediction accuracy when a feature is permuted [START_REF] Fisher | All models are wrong, but many are useful: Learning a variable's importance by studying an entire class of prediction models simultaneously[END_REF]) of each feature for all ML algorithms. Figure 4 shows that the importance of a feature varies with respect to the algorithm. For example, with SVM and KNN, some statistical features are more important than others, while with RF and DT, the features bearing the highest importance values are more equally distributed in each feature category. There are also features that bears negative importance values with algorithms, but not every time, while they always have positive importance values with other algorithms. There is no feature that always bears zero or negative importance values with one given algorithm, which means that all our features have a contribution to the ML classifiers. With RF, which bears the best performance, the most important feature is the location ratio. By checking the CSV files, we observe that most of the measures are situated at the last part of the file, while most of the columns in the front part are descriptive, which probably explains the importance of the location ratio. In this paper, we propose a machine learning-based method for detecting OLAP measures from tabular data. Our method is mainly dedicated to tabular data of simple structure, since the case of complex structures has been addressed in the literature. Some complex structures can also be converted to simple structures.

To fuel machine learning algorithms, we define three categories of features for numerical columns in tabular data. We experiment with several real-world CSV datasets and test four machine learning algorithms, among which Random Forest performs the best. We also analyze how the features we build contribute to the results.

In the future, we aim at considering not only numerical measures, but also textual measures [START_REF] Ravat | Top keyword: An aggregation function for textual document olap[END_REF]. Moreover, we only use CSV data in our experiments. Com-plementing them with other types of tabular data, including complex-structured data that are found in data lakes [START_REF] Ravat | Data lakes: Trends and perspectives[END_REF], could be relevant. sources: AFD8 , CDC9 , CA10 , FR11 , KG12 , NZ13 , UK14 , US15 , WB 16 . files from AFD and FR are in French while the others are in English. Table 4 shows information about each data source and all data sources (Total), including the number of files (N f ), the number of numerical columns (N c ), the number of measures (N m ) and the ratio of number of measures by the number of numerical columns (R m ). Figures in brackets are the minimums and maximums. The original datasets and even more information about them can be found in our github. Finally, the datasets that we choose contain at least one numerical column and can be used for DW creation. There were files that are used for other specific purpose, e.g., machine learning, which are not suitable to DW creation. They were thus discarded. There were also files with very poor data quality or completely lacking the information to understand the semantic meaning of columns, which made difficult to tell whether a column could be a measure. Such files were also discarded.

  Since candidate columns are numerical, statistical features must be considered. They can indeed reflect the distribution of column values. Statistical features follow. -Average/Minimum/Maximum/Median/Upper quartile/Lower quartile values: avg = avg(C i ), min = min(C i ), max = max(C i ), median = median(C i ), upquar = upquar(C i ) and lowquar = lowquar(C i ) represent the average, minimum, maximum, median, upper quartile and lower quartile of C i , respectively.
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Table 1 :

 1 Global results

		1		
		0.9		
	TP FDB RF SVM DT KNN	0.8		
	R(%) 80.05 75.43 96.64 94.77 94.08 90.16			
	P(%) 73.57 77.50 90.89 78.44 88.44 87.61			
	F(%) 76.67 76.45 93.65 85.76 91.12 88.78			
		0.7	Recall Precision F-measure
			RF	SVM	DT	KNN

Table 2 :

 2 Performance of feature categories and combinations with RF

	GE	ST	IC GE+ST GE+IC ST+IC ALL
	R(%) 88.10 94.27 92.68	95.30	93.67	91.93	96.64
	P(%) 83.59 86.28 80.91	88.21	86.13	91.14	90.89
	F(%) 85.69 90.01 86.37	91.57	89.67	91.50	93.65

Table 3 :

 3 Number of files by domains

	Economy Health Government Environment Society
	143	57	80	28	38

Table 4 :

 4 Data source characteristics

		AFD	CDC	CA	FR	KG
	N f	7	28	23	30	106
	Nc (min-max) 15 (1-4) 100 (1-4) 156 (2-28) 123 (1-38) 394 (1-17)
	Nm (min-max) 8 (0-3)	70 (1-6) 113 (0-28) 39 (0-7)	271 (0-10)
	Rm(%)	53.33	70.00	72.44	31.71	68.78
		NZ	UK	US	WB	Total
	N f	22	42	71	17	346
	Nc (min-max) 62 (1-13) 137 (1-9) 311 (1-20) 84 (1-18) 1382 (1-38)
	Nm (min-max) 8 (0-3)	99 (0-8) 194 (0-18) 63 (0-13) 900 (0-28)
	Rm(%)	69.35	72.26	62.38	75.00	65.12
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Appendix: Dataset Information

In this appendix, we detail the information about the datasets we use in our experiments. As mentioned in Section 4.1, these datasets come from different