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Abstract15

We prove existence of a weak solution for a nonlinear, multi-physics, multi-scale16

problem of magnetorheological suspensions introduced in Nika & Vernescu (Z. Angew.17

Math. Phys., 71(1):1–19, ’20) in the three dimensional setting. The hybrid model18

couples the Stokes’ equation with the quasi-static Maxwell’s equations through the19

Lorentz force and the Maxwell stress tensor. The proof of existence is based on: i) the20

augmented variational formulation of Maxwell’s equations, ii) the definition of a new21

function space for the magnetic induction and the proof of a Poincaré type inequality,22

iii) the Altman-Shinbrot fixed point theorem when the magnetic Reynold’s number,23

Rm, is small.24
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1 Introduction28

The use of suspensions of rigid particles as smart materials is of great interest, as their29

rheological properties can be reversibly changed by the interaction with a magnetic or elec-30

tric field. The ability of magnetorheological fluids [PV00], [Ver02], [Rab48] to modify their31
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rheology from liquid to a semi-solid state under the presence of an external magnetic field32

in a matter of milliseconds make them desirable in many industries [LFS01, dVKHA11].33

The modelling of magnetorheological and electrorheological fluids has been mostly ex-34

plored from thermodynamically consistent, phenomenological point of view ([BD05, Ruz00,35

RR01]). While this approach is well founded, it does not allow for explicit control of the36

material properties. The theory of periodic homogenization, specifically designed to treat37

problems for multiscale heterogeneous materials, allows to derive the effective properties of38

the aforementioned heterogeneous materials based on the properties of the constituents at39

the microscale, allowing thus for the design of materials with specified properties [NC19],40

[ACN20].41

The derivation of effective models of magnetorheological and electrorheological fluids us-42

ing homogenization has been carried out in [L8́5, LH88, PV00, Ver02]. The microscale43

problems used to derive the effective models in these works were one-way coupled systems44

of Stokes or Navier-Stokes equations with quasi-static Maxwell’s equations. In [NV20] a45

fully coupled model between Stokes’ equations and the quasi-static Maxwell’s equations46

through the Lorentz force was used to derive a class of nonlinear magnetorheological com-47

posites. Numerical results, for this model, showed that particle-chain microstructures have48

a non-linear contribution to the magnetorheological effect. Furthermore, in [NV21] it was49

shown numerically that for particles of fixed volume fraction there is a decrease in the50

strength of the magnetorheological effect as the surface-to-volume ratio increases.51

In this work we prove existence of a weak solution to the model introduced in [NV20] in the52

three dimensional setting, describing the stationary flow of rigid, magnetizable particles53

in a non-conducting fluid, distributed periodically with period ε under the influence of54

a magnetic field. The proof of existence is based on the Altman-Shinbrot fixed point55

theorem [Alt57], [Shi64] and relies in the augmented variational formulation of Maxwell’s56

equations when the magnetic Reynold’s number, Rm, is small. The use of an augmented57

variational formulation is motivated by the fact that the magnetic induction does not58

possess a full weak derivative in L2, rather, due to the material properties, the derivatives59

are split into a divergence part and a skew-symmetric part that, respectively, belong in60

L2. Hence, traditional fixed point arguments, like Leray–Schauder which were employed61

by O. Ladyzhenskaya to show existence for the nonlinear stationary Navier-Stokes are not62

available to us since the magnetic induction does not possess full weak derivatives. In63

contrast, the Altman-Shinbrot fixed point theorem requires that the defined operator be64

continuous only in the weak topology of the underlying space. Thus, as a consequence,65

we introduce a new function space for the magnetic induction and prove a Poincare type66

inequality for this new space using the div–curl lemma.67

The article is organized as follows: In Section 2 we introduce the model describing the68

suspension in the two component domain. Section 3 introduces the function spaces for the69

variational framework of the problem and certain auxiliary results regarding embeddings70

and Poincaré’s inequality while in Section 4 we write down the augmentned variational71

formulation and prove its equivalence to the strong form a.e. in the domain Ω. This is72

done in Theorem 4.1. Moreover, we define the function space Yε, where the magnetic73

induction belongs and prove that it is a Hilbert space. Furthermore, we prove a Poincaré74

type inequality for Yε in Theorem 3.1 using the global div-curl lemma ([Tar79], [Mur78]).75
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Section 5 is dedicated to the existence proof. The proof relies on the Altman-Shinbrot76

fixed point theorem [Alt57], [Shi64] when Rm is small and the main result of this section is77

stated in Theorem 5.2. Finally, Section 6 is devoted to concluding remarks and comments.78

Notation79

Throughout the paper we will make use of the following notation:80

i In addition to the standard Sobolev space H1(Ω) we define the following spaces:

H1
Γ0

(Ω) =
{
w ∈ H1(Ω) | w

∣∣
Γ0

= 0 on Γ0

}
,

H(div; Ω) =
{
www ∈ L2(Ω) | divwww ∈ L2(Ω)

}
,

H(curl; Ω) =
{
www ∈ L2(Ω) | curlwww ∈ L2(Ω;Rd)

}
,

where the div and curl operators are understood in the sense of distributions and w∣∣Γ0
81

is the usual trace operator. Naturally, the above spaces are Hilbert spaces when they82

are equipped with their corresponding graph norms. Moreover, we will make use of83

fractional Sobolev spaces defined e.g. in [LM72].84

ii χΩ(xxx) is the indicator function over some set Ω such that,85

χΩ(xxx) =

{
1 if xxx ∈ Ω,

0 otherwise .
(1.1)

iii Throughout the article we employ the Einstein summation notation of repeated indices86

while the expressions “mes” and “mesd−1” stand for the Lebesgue measure and for the87

d− 1 surface measure.88

iv We restrict ourselves to the three dimensional setting, d = 3. Most of the results89

presented remain valid for two spatial dimensions as well, however, in two spatial90

dimensions many of the challenges encountered, particularly regarding the variational91

formulation of Maxwell’s equations, simplify considerably.92

2 The model93

Assume Ω is an open, bounded, multiply connected subset of Rd lying in vacuum. Let94

Y = [−1/2, 1/2)d be the unit cube in Rd, and Zd be the set of all d–dimensional vectors95

with integer components. For every positive ε, let N(ε) be the set of all points ` ∈ Zd such96

that ε(` + Y ) is strictly included in Ω and denote by |N(ε)| their total number. Let Y197

be the closure of an open, connected set with sufficiently smooth boundary S, compactly98

included in Y and Y2 := Y \Y 1. For every ε > 0 and ` ∈ N(ε) we consider the set99

Y `
i ε ⊂⊂ ε(`+Y ), where Y `

i ε = ε(`+Yi) for i = 1, 2. The set Y `
1 ε represents one of the rigid100

particles suspended in the fluid, and Sε` = ε(`+ S) denotes its surface (see Fig. 1).101
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We now define the following subsets of Ω : Ω1ε =
⋃

`∈N(ε)

Y `
1 ε, Ω2ε = Ω\Ω1ε. Here, Ω1ε is102

the domain occupied by the rigid particles and Ω2ε the domain occupied by the ambient103

surrounding fluid of viscosity ν ≡ 1. We denote by Γ := ∂Ω the boundary of Ω. By Γ0104

we denote the exterior component of Γ and by Sε` , ` = 1, · · · , N(ε) the remaining finite105

number of components. The vectors nnn and nnnε indicate the unit normal on Γ0 and the unit106

normal to S`ε respectively with both unit normals pointing outwards. Moreover, by J·K107

we indicate the jump discontinuity between the fluid and the rigid part and by 〈· | ·〉 the108

duality product.109

Rd

Ω

Γ0

Γ0

ε

ε

ε

εY

Figure 1: Schematic of the periodic suspension of rigid magnetizable particles in a non-
conducting, non-magnetizable fluid. The periodic cell ε Y contains a potential geometric
realization of a magnetizible, spherical, rigid particles in a chain structure.

The magnetorheological problem considered in [NV20] after non-dimensionalizing and as-110

suming that the flow is at low Reynolds numbers was the following,111
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−div (σε) = 000 in Ω2ε,

σε = 2 e(vvvε)− pεI in Ω2ε,

div (vvvε) = 0 in Ω2ε,

e(vvvε) = 0 in Ω1ε,

(2.1)

div (BBBε) = 0 in Ω,

curl (µ̂εBBBε) = Rm vvv
ε × BBBεχΩ1ε in Ω.

(2.2)

with compatibility conditions,112

div (Rm vvv
ε×BBBε χΩ1ε) =0 in Ω, 〈Rm vvv

ε×BBBε ·nnnε | 1〉H1/2(Sε`),H
1/2(Sε`)

=0, (2.3)

and interface and exterior boundary conditions,113

JvvvεK = 000 on Sε` , vvv
ε = 000, BBBε ·nnn = ccc ·nnn on Γ0. (2.4)

When the MR fluid is submitted to a magnetic field, the rigid particles are subjected to a114

force that makes them behave like a dipole aligned in the direction of the magnetic field.115

This force can be written in the form,116

FFF ε:=− 1

2
|HHHε|2∇µε,

where | · | represents the standard Euclidean norm. The force can also be written in terms117

of the Maxwell stress,118

τ εij = µ̂εBε
i B

ε
j −

1

2
µ̂εBε

k B
ε
k δij , (2.5)

as FFF ε = div (τ ε)−BBBε×curl (µ̂εBBBε). Since the magnetic permeability is considered constant119

in each phase, it follows that the force is zero in each phase. Therefore, we deduce that120

div (τ ε) =

{
0 if xxx ∈ Ω2ε,

BBBε × curl (µ̂εBBBε) if xxx ∈ Ω1ε.
(2.6)

Lastly, we remark that unlike the viscous stress σε, the Maxwell stress is present in the121

entire domain Ω. Hence, we can write the balance of forces and torques in each particle122

as,123
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0 =

∫
Sε`

σεnnnε ds+α

∫
Sε`

Jτ εnnnεK ds−α
∫
T ε`

BBBε×curl (µ̂εBBBε) dxxx,

0 =

∫
Sε`

σεnnnε×(xxx− xxx`c) ds+α
∫
Sε`

Jτ εnnnεK×(xxx− xxx`c) ds

−α
∫
T ε`

(BBBε×curl (µ̂εBBBε))× (xxx− xxx`c) dxxx.

(2.7)

Here vvvε represents the fluid velocity field, pε the pressure, e(vvvε) the strain rate, nnnε the124

unit normal to Sε` , nnn is the unit normal to Γ0, BBBε is the magnetic induction and it is125

related to the magnetic field HHHε by BBBε = µεHHHε, where 0 < µε is the magnetic permeability126

of the material and µ̂ε = (µε)−1, xxx`c is the center of mass of the rigid particle T ε` , α127

is the Alfven number, and Rm is the magnetic Reynolds number. Moreover, ccc · nnn is a128

transmission condition on the outer boundary indicating that a magnetic field ccc exterior129

to the domain Ω is present. Finally, we remark that condition e(vvvε) = 0 in Ω1ε means that130

vvvε = VVV `,ε + ωωω`,ε × (xxx − xxx`c) in Ω1ε where VVV `,ε is a constant translational velocity and ωωωε,`131

is a constant rotational velocity for each particle.132

3 Function spaces and auxiliary results133

We begin with a small extension of a result in [DL72] regarding a non-homogeneous domain134

containing sub-domains of different piece-wise constant electric permittivity, say, ηi, i =135

1, . . . , κ, where κ is the number of subdomains. These domains occur naturally in problems136

of electromagnetism (see [DL72]).137

Proposition 3.1. Let O ⊂ Rd be any open, bounded, multiply connected set with boundary138

Γ := ∂O of class C2. The exterior boundary will be denoted by Γ0 and by Γj , j =139

1, . . . , κ− 1, the other components of Γ.140

Define Y to be the Hilbert space of vector fields,141

Y:=
{
vvv ∈ L2(O;Rd) | divvvv ∈ L2(O), curl(µ̂ vvv) ∈ L2(O;Rd),

vvv ·nnn ∈ H1/2(Γ0)
}
,

(3.1)

for the norm,142

‖vvv‖Y := ‖vvv‖L2(O;Rd) + ‖divvvv‖L2(O) + ‖curl(µ̂ vvv)‖L2(O;Rd) + ‖vvv ·nnn‖H1/2(Γ0) , (3.2)

then for all vvv ∈ Y we have, vvv∣∣Oi ∈ H1(Oi;Rd) for i = 1, . . . , κ where vvv∣∣Oi is the restriction143

of vvv to Oi, 0 < µ = µ̂−1 is constant in Oi and144
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O
3

Γ
0

O
1

Γ
1

O
2

Γ
2

Figure 2: A schematic of a finite, multiply connected region O containing two sub-regions.
The open set O is defined as O := O1 ∪ O2 ∪ O3 ∪ Γ1 ∪ Γ2.

∥∥∥∥vvv∣∣Oi
∥∥∥∥
H1(Oi;Rd)

≤ COi ‖vvv‖Y . (3.3)

Proof. Let vvv ∈ Y and define π ∈ H1(O) as the solution to the following Neumann problem,145

div(η∇π) = divvvv in O,
Jη ∂nπK = 0 on Γj , j = 1, . . . , κ− 1,

η ∂nπ = vvv ·nnn on Γ0.

(3.4)

Take uuu = vvv − η∇π and note that divuuu = 0 in O, curl (η̂ uuu) = curl (η̂ vvv) ∈ L2(O;Rd), and146

uuu ·nnn = 0 on Γ0. Then uuu∣∣Oi ∈ H1(Oi;Rd) by [DL72, Theorem 6.2, page 355].147

It remains to prove that π∣∣Oi ∈ H2(Oi) and inequality (3.3). This is the result of [LU68,148

Chap. 3, Sec. 16, Eq. 16.12, pg. 212]. For our case, we include a sketch of the proof for149

the higher regularity up to the interphase boundary for completion. Set f := divuuu and150

g := uuu ·nnn. Define a smooth function ξ such that ξ ≡ 0 in Oi, ξ ≡ 1 in a neighbourhood of151

Γ0, and ξ ∈ [0, 1]. Since g ∈ H1/2(Γ0) there exists a Φ ∈ H2(O) such that ∂nΦ = g on Γ0.152

Set q := π − ξΦ. From the variational formulation of (3.4) we have,153 ∫
O
η∇q · ∇q dxxx =

∫
O
f q dxxx+

∫
O

div (η∇(ξΦ)) q dxxx ∀q ∈ H1(O). (3.5)

Fix V ⊂⊂ O and choose W such that V ⊂⊂ W ⊂⊂ O. Select a function χ ≡ 1 in V ,154
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χ ≡ 0 in Rd\W , and χ ∈ [0, 1]. Set q := Dk
−h(χ2Dk

h q) where Dk
h is the usual difference155

quotient. Using properties of difference quotients we can obtain for (3.5),156

∫
V
|Dk

h∇q|2 dxxx ≤
∫
O
χ2|Dk

h∇q|2 dxxx

≤c
(∫
O

(|f |2 + |∇q|2) dxxx+ ‖Φ‖2H2(O)

) (3.6)

for k = 1, . . . , d − 1. Passing to the limit as h → 0 we obtain ∂2
xi xjq ∈ L

2(V ) provided157

that i and j are not both equal to d with the global bound in (3.6). For points belonging158

on the interphase Γi we can use local charts to straighten and rotate Γi so that locally it159

looks like a hyperplane. In doing so, since the difference quotient operator is a tangential160

operator, Dk
h will always remain on one side of the interphase where no jump occurs on161

η. Therefore, since ηi ∆q = f + div(η∇(ξΦ)) in Oi and by assumption ηi > 0 we have162

∂2
xd xd

q ≤ c(f + div(η∇(ξΦ)) −
∑d−1

i=1 ∂
2
xi xiq). Thus, we have control over all the second163

derivatives of q and moreover we have the global bound,164

‖q‖H2(V ∩Oi) ≤ c
(
‖f‖L2(O) + ‖∇ q‖L2(O;Rd) + ‖Φ‖H2(O)

)
, (3.7)

for i = 1, . . . , k.165

One can extend (3.7) up to the boundary Γ0, since it is of class C2, using standard elliptic166

regularity theory and therefore obtain167

‖q‖H2(Oi) ≤ c
(
‖f‖L2(O) + ‖∇ q‖L2(O;Rd) + ‖Φ‖H2(O)

)
for i = 1, . . . , k. (3.8)

Using (3.9) we can obtain a bound on π for i = 1, . . . , κ,168

‖π‖H2(Oi) ≤ ‖q‖H2(Oi) + ‖ξΦ‖H2(Oi)

≤ c
(
‖f‖L2(O) + ‖∇ q‖L2(O;Rd) + ‖Φ‖H2(O)

)
≤ c

(
‖f‖L2(O) + ‖g‖H1/2(Γ0)

) (3.9)

where the last inequality is a result of standard estimates of q in H1(O) resulting from169

(3.5) and the trace theorem (see [Gal11, Thm. II.4.4, pg. 68]). Hence, inequality (3.3)170

follows.171

Lemma 3.1. Let vvv ∈ {www ∈ H(div, O) | div vvv = 0 in O} and define YΓ0 =
{
www ∈ Y |172

vvv · nnn = 0 on Γ0

}
, Y0

Γ0
=
{
www ∈ YΓ0 | div vvv = 0 in O

}
. There exists a vector potential173

www ∈ Y0
Γ0

such that174

curl(µ̂www) = vvv, ‖ µ̂www‖Y0
Γ0

≤ c ‖vvv‖L2(O;Rd) , (3.10)
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where c := c(O). Moreover, there exists ξ ∈ (3, 6] such that175

µ̂www ∈ Lξ(O;Rd) and ‖µ̂www‖Lξ(O;Rd) ≤ c ‖vvv‖L2(O;Rd) . (3.11)

Proof. This is [Dru, Prop. 2.2].176

Proposition 3.2. The space Y is embedded into Lq(O,Rd) for q ∈ [1, 6] with the embed-177

ding being continuous.178

Proof. Assume zzz ∈ Y and define ggg := curl(η̂ zzz). Then div ggg = 0 in the sense of distributions179

in O and by Lemma 3.1 there exists a www ∈ Y0
Γ0

such that curl(η̂ www) = ggg. Hence, we have180

η̂zzz − η̂www = ∇π where π is the solution to the following problem:181

Find π ∈ H1(O) such that182 ∫
O
η∇π · ∇φdxxx = F (φ) ∀φ ∈ H1(O) (3.12)

where F (φ) :=
∫
O(div zzz)φdxxx+

∫
Γ0

(zzz ·nnn)φds. Evidently, F ∈ H−1(O). Hence, by [ERS07],183

there exists ξ ∈ (3, 6] such that π ∈ W 1,ξ(O). Combining this result with Lemma 3.1 the184

result follows. Additionally, one obtains the bound185

‖π‖W 1,ξ(O) ≤ c
(
‖div zzz‖L2(O) + ‖zzz ·nnn‖H1/2(Γ0)

)
. (3.13)

Recalling that η̂zzz − η̂www = ∇π and using (3.13) and then (3.11) we obtain,186

‖zzz‖Lξ(O,Rd) ≤ ‖∇π‖Lξ(O;Rd) + ‖η̂www‖Lξ(O;Rd)

≤ c
(
‖div zzz‖L2(O) + ‖zzz ·nnn‖H1/2(Γ0) + ‖curl(η̂zzz)‖L2(O;Rd)

)
≤ c ‖zzz‖Y .

(3.14)

It is possible to pick ξ = 6 as an exponent due to the fact that we have assumed Γ0 has C2
187

regularity. For more details the reader can consult the works in [Dru, Prop. 2.6 (2)].188

Proposition 3.3. Define a new norm on Y by189

[vvv]Y := ‖divvvv‖L2(O) + ‖curl (µ̂ vvv)‖L2(O;Rd) + ‖vvv ·nnn‖H1/2(Γ0) , (3.15)

then Y is also a Hilbert space with norm [·]Y .190

Proof. It is evident that if vvv = 000 then [vvv]Y = 0. For the other direction we have, [vvv]Y = 0191

implies that curl (µ̂ vvv) = 000 in Ω. Hence, vvv can be written as, vvv = −µ∇θ. Thus, we get192

that θ satisfies the following elliptic problem,193
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−div (µ∇θ) = 0 in O,
µ∇θ ·nnn = 0 on Γ0.

(3.16)

The above problem has a unique solution, θ = 0 (if we fix constants) and the result194

follows. We remark that Y is complete which follows by similar arguments used to show195

the completeness of the classical H(div;O) or H(curl;O) spaces (see [Tem84]).196

Theorem 3.1 (Poincaré type inequality for (Y, [·]Y)). There exists a constant, c := c(O),197

such that198

‖www‖L2(O;Rd) ≤ c [www]Y , (3.17)

for all www ∈ Y.199

Proof. We proceed by contradiction. If (3.17) is false then there exists a sequence wwwn ∈ Y,200

such that201

‖wwwn‖L2(O;Rd) > n [wwwn]Y for all n ∈ N. (3.18)

We can suppose that ‖wwwn‖L2(O;Rd) = 1. Then as n → ∞ and up to a, non-relabeled,202

subsequence we have:203

wwwn ⇀www in H(div;O), µ̂wwwn ⇀ µ̂www in H(curl;O), (3.19)

divwwwn → 0 in L2(O),

curl (µ̂wwwn)→ 0 in L2(O;Rd),

wwwn ·nnn→ 0 in H1/2(Γ0).

(3.20)

Decompose µ̂wwwn using Helmholtz decomposition as µ̂wwwn = ∇ pn + curlfffn. Denote by204

gggn := curlfffn, then gggn ∈ L2(O;Rd), divgggn = 0, curlgggn ∈ L2(O;Rd), and gggn · nnn = 0 on Γ0205

in the sense of distributions. By theorem, [FT78, Prop. 1.4, pg. 41] or [DL72, Thm 6.1,206

pg. 354] gggn ∈ H1(O;Rd) and is bounded uniformly. By the compact embedding of H1
207

into L2, gggn → ggg in L2(O;Rd) or curlfffn → curlfff in L2(O;Rd). Hence, if µ̂0 := mini µ̂i208

denotes the the smallest of the µ̂i, we have209

0 < µ̂0 ≤
∫
O
µ̂wwwn ·wwwn dxxx

=

∫
O
∇ pn ·wwwn dxxx+

∫
O

curlfffn ·wwwn dxxx

=

∫
Γ0

pnwwwn ·nnnds−
∫
O
pn · divwwwn dxxx+

∫
O

curlfffn ·wwwn dxxx.

(3.21)
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Since pn remains bounded in H1(O), curlfffn → curlfff in L2(O;Rd), and using (3.19) and210

(3.20) we can pass to the limit as n→∞. Noting further from (3.20) that the curl fff = 000211

in O we obtain that 0 < µ̂0 = 0, which is a contradiction.212

Sometimes this is referred to as the global div-curl lemma (see [Sch18]).213

Corollary 3.1. The norms ‖·‖Y and [·]Y are equivalent norms on Y214

Proof. It is a consequence of Theorem 3.1.215

4 Augmented variational formulation216

4.1 Assumptions217

We frame the magnetorheological model (2.1)–(2.2) under the following general Assump-218

tions (A).219

• We assume Ω is a bounded, multiply connected domain such that mesd−1(Γ) > 0220

and mesd−1(Sε`) > 0 for ` = 1, . . . , N(ε).221

• Γ0 and Sε` are surfaces of class C2, Sεp∩Sεq = ∅ for p, q = 1, . . . , N(ε) with p 6= q, and222

Γ0 ∩ Sε` = ∅ for every ` = 1, . . . , N(ε).223

• The magnetic permeability of the magnetorheological fluid, µε, is assumed be a piece-224

wise constant function with values µε(xxx) = µ1 if xxx ∈ Ω1ε and µε(xxx) = µ2 if xxx ∈ Ω2ε225

with 0 < µ2 < µ1 < +∞.226

4.2 Variational formulation227

To properly establish a weak solution to the system of equations (2.1), (2.2), (2.3), (2.4),228

and (2.7) we need appropriate variational formulations and function spaces. We begin by229

defining the following function spaces,230

Vε =
{
vvv ∈ H1

Γ0
(Ω;Rd) | div (vvv) = 0 in Ω, e(vvv) = 0 ∈ Ω1ε

}
. (4.1)

It is clear that Vε is a closed subspace of H1
Γ0

(Ω;Rd) and thus a Hilbert space with the231

induced H1
Γ0

(Ω;Rd) inner product which by Korn’s inequality is equivalent to232

(vvv | φφφ)Vε =

∫
Ω2ε

2 e(vvv):e(φφφ) dxxx. (4.2)

The corresponding norm will be denoted by ‖·‖Vε . Furthermore, we define the function233

space,234
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Yε =
{
www ∈ L2(Ω;Rd) | divwww ∈ L2(Ω), curl(µ̂εwww) ∈ L2(Ω;Rd),

www ·nnn ∈ H1/2(Γ0)
}
,

(4.3)

equipped with the inner product,235

(hhh | ψψψ)Yε =

∫
Ω

div (hhh) div (ψψψ) dxxx+

∫
Ω

curl (µ̂εhhh) · curl (µ̂εψψψ) dxxx

+

∫
Γ0

(hhh ·nnn)(ψψψ ·nnn)ds,
(4.4)

while the corresponding norm will be denoted by [·]Yε . It is evident that (Yε, [·]Yε) is a236

Hilbert space from Proposition 3.3, since Yε is the Hilbert space Y with µ̂ := µ̂ε and O is237

now the domain Ω.238

The variational formulation of (2.1), (2.2), (2.3), (2.4) and (2.7) is written in two steps.239

First, we write down the variational formulation of the Stokes’ equations and the Maxwell240

equations separately and then add the resulting variational problems. The variational241

formulation of the Stokes’ equation reads: Find uuuε ∈ Vε such that,242

(uuuε | φφφ)Vε + α

∫
Ω2ε

τ ε:e(φφφ) dxxx = 000 for all φφφ ∈ Vε. (4.5)

For the quasi-static Maxwell’s equations, we consider an augmented variational formula-243

tion in Yε [Jr05]. Find BBBε ∈ Yε such that244

α

Rm
(BBBε | ψψψ)Yε = α

∫
Ω1ε

uuuε ×BBBε · curl (µ̂εψψψ) dxxx+
α

Rm

∫
Γ0

(ccc ·nnn)(ψψψ ·nnn) ds, (4.6)

for all ψψψ ∈ Yε.245

Hence, the variational formulation of (2.1), (2.2), (2.3), (2.4) and (2.7) reads: Find246

(uuuε,BBBε) ∈ Vε × Yε such that247

(uuuε | φφφ)Vε +
α

Rm
(BBBε | ψψψ)Yε = −α

∫
Ω2ε

τ ε:e(φφφ) dxxx

+α

∫
Ω1ε

uuuε ×BBBε · curl (µ̂εψψψ) dxxx

+
α

Rm

∫
Γ0

(ccc ·nnn)(ψψψ ·nnn) ds,

(4.7)

for all (φφφ,ψψψ) ∈ Vε × Yε.248
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Theorem 4.1. The pair (vvvε,BBBε) satisfies (2.1), (2.2), (2.3), (2.4) and (2.7) if and only249

if it is a weak solution to (4.7).250

Proof. It is clear that if (vvvε,BBBε) satisfies (2.1), (2.2), (2.3), (2.4) and (2.7) then it is a251

solution to (4.7). To see this, multiply the Stokes’ equations by a test function in φφφ ∈ Vε252

and carry out the varational formulation as in [Tem84], [GMV14], [NV16, Appendix].253

For Maxwell’s equations multiply the divergence part by α
Rm

divψψψ, the rotational part by254

α
Rm

curlψψψ, and the exterior boundary condition by α
Rm

ψψψ ·nnn, respectively.255

For the other direction we have: Take (φφφ,000) as a test function in (4.7) and obtain the vari-256

ational formulation of Stokes’ equation (4.5) from which we can recover Stokes’ equation,257

boundary conditions, and balance of forces and torques in the distributional sense as usual258

(see [Tem84], [GMV14]). On the other hand if we take (000,ψψψ) as a test function in (4.7)259

we obtain (4.6). In order to recover Maxwell’s equations we need to introduce appropriate260

test functions on each domain Ω1ε and Ω2ε. To this end if we let ζδ : Rd → [0, 1] be a261

smooth cut-off function defined by262

ζδ(xxx) =

{
1 if d(xxx,Γ0) < δ,

0 if d(xxx,Γ0) > 2 δ,
(4.8)

where δ is chosen in a way that the inner most neighbourhood does not intersect the263

rigid particles. Following [Lad14], define θθθ(xxx) := (c2x3, c3x1, c1x2) where the vector field264

ccc = (c1, c2, c3) is the constant vector field from the outer transmission condition on the265

boundary Γ0. Set aaaδ(xxx) := curl
(
ζδ(xxx)θθθ(xxx)

)
then aaaδ(xxx) is a divergence free vector field that266

is zero in the domain Ωδ := {xxx ∈ Ω | d(xxx,Γ0) < 2δ} and equals ccc in the δ neighbourhood267

of Γ0.268

Moreover, by Proposition 3.1 we have that BBBε ∈ H1(Ωiε), i = 1, 2 and by the classical269

Sobolev embedding of H1 into Lq for 1 ≤ q < 6 we have thatBBBε ∈ L4(Ω;Rd). Likewise, for270

vvvε, namely, vvvε ∈ L4(Ω;Rd). Thus, Rmvvv
ε ×BBBεχΩ1ε ∈ L2(Ω;Rd) by the Cauchy–Schwartz271

inequality. Using (2.3) we also have that div(Rmvvv
ε × BBBεχΩ1ε) = 0 in Ω. Therefore,272

Rmvvv
ε ×BBBεχΩ1ε ∈ {vvv ∈ H(div,Ω) | divvvv = 0 in Ω}. By Lemma 3.1 there exists a www ∈ Y0

Γ0
273

such that,274

curl(µ̂εwww) = Rmvvv
ε ×BBBεχΩ1ε . (4.9)

Setting ψψψ := BBBε −www − aaaδ ∈ Yε we reduce (4.6) to the following,275

∫
Ω

divBBBε div(BBBε −www − aaaδ) dxxx

+

∫
Ω

(curl (µ̂εBBBε)− Rmvvv
ε×BBBεχΩ1ε)·curl (µ̂ε (BBBε −www − aaaδ)) dxxx

+

∫
Γ0

((BBBε − ccc) ·nnn)((BBBε −www − aaaδ) ·nnn)ds = 0

(4.10)

Using the properties of the vector fields www and aaaδ we obtain:276
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∫
Ω
|divBBBε|2 dxxx+

∫
Ω
|curl (µ̂εBBBε)− Rmvvv

ε×BBBεχΩ1ε |
2 dxxx

+

∫
Γ0

|(BBBε − ccc) ·nnn|2 ds = 0
(4.11)

Since the expression above is a sum of squares that is equal to zero, each integral must be277

equal to zero and the claim follows.278

5 Existence of a weak solution via the Altman-Shinbrot279

fixed point theorem280

5.1 M. Shinbrot’s fixed point argument281

To prove existence we employ the fixed point argument of Altman-Shinbrot [Shi64], [Alt57].282

For the readers convenience, we recall the main theorem and corollaries as formulated by283

M. Shinbrot and whose proofs can be found in [Shi64].284

In what follows, H denotes a real or complex Hilbert space, and Sr and Br will denote the285

sphere and the closed unit ball of radius r centered at zero:286

Sr = {x ∈ H | ‖x‖H = r} , Br = {x ∈ H | ‖x‖H ≤ r} .

Theorem 5.1. Let H be an operator on the separable Hilbert space H, continuous in the287

weak topology on H. If there is a positive constant r such that288

<(Hx, x) ≤ ‖x‖2H for all x ∈ Br,

then H has a fixed point in Br.289

Corollary 5.1. Let G be an operator on the separable Hilbert space H, continuous in the290

weak topology on H. Let y be an element of H. Let y be an element of H. If there exists291

a positive r such that either,292

<(Gx− y, x) ≥ 0 for all x ∈ Sr,

or293

<(Gx− y, x) ≤ 0 for all x ∈ Sr,

then y is in the range of G.294

Corollary 5.2. Let G be an operator on the separable Hilbert space H, continuous in the295

weak topology on H. Then, zero is in the range of G if (Gx, x) is of one sign on some296

sphere Sr.297
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5.2 Existence298

For all uuuε,BBBε,φφφ,ψψψ we define the following expression Q by,299

Q[(uuuε,BBBε); (φφφ,ψψψ)]:=− α
∫

Ω2ε

µ̂2BBB
ε⊗BBBε:e(φφφ) dxxx

+α

∫
Ω1ε

uuuε×BBBε·curl (µ̂1ψψψ) dxxx.

(5.1)

We can immediately see that by combining the results of Proposition 3.1 and Theorem 3.1300

with classical Sobolev embedding theorems of H1 into Lq, q ∈ [1, 2d/(d− 2)) we obtain,301

|Q[(uuuε,BBBε); (φφφ,ψψψ)]| ≤ c |||(uuuε,BBBε)|||2 |||(φφφ,ψψψ)||| , (5.2)

where |||(−, ·)||| := ‖−‖Vε + α
Rm

[·]Wε and c is a generic constant depending on Ωiε, α, µ̂i for302

i = 1, 2.303

Thus, we can write (4.7) as: Find (uuuε,BBBε) ∈ Vε × Yε such that,304

(uuuε | φφφ)Vε +
α

Rm
(BBBε | ψψψ)Yε −Q[(uuuε,BBBε); (φφφ,ψψψ)]=

α

Rm

∫
Γ0

(ccc ·nnn)(φφφ ·nnn) ds, (5.3)

for all (φφφ,ψψψ) ∈ Vε×Yε.305

The Cauchy-Schwartz inequality and the definition of the norm α
Rm

[·]Yε make the right306

hand side of equation (5.3) a bounded linear functional of (φφφ,ψψψ) ∈ Vε×Yε. Using Riesz’s307

theorem, we can express the right hand side of (5.3) as the scalar product of a well308

determined element (fff,ggg) ∈ Vε×Yε by (φφφ,ψψψ).309

Likewise, if we fix (uuuε,BBBε) ∈ Vε×Yε and take into account the estimate (5.2), we can write310

the left hand side as a product of an element in Vε×Yε, denoted by F(uuuε,BBBε) that depends311

nonlinearly on (uuuε,BBBε), by (φφφ,ψψψ).312

Therefore, we can re-write (5.3) using the operator F as,313

(F(uuuε,BBBε); (φφφ,ψψψ))=((fff,ggg); (φφφ,ψψψ)), (5.4)

for all (φφφ,ψψψ) ∈ Vε × Yε where,314

(F(uuuε,BBBε); (φφφ,ψψψ)):= (uuuε | φφφ) +
α

Rm
(BBBε | ψψψ)−Q[(uuuε,BBBε); (φφφ,ψψψ)], (5.5)

and315

((fff,ggg); (φφφ,ψψψ)):=
α

Rm

∫
Γ0

(ccc ·nnn)(φφφ ·nnn) ds. (5.6)

Hence, searching for a solution to (4.7) reduces to showing that at least one solution exists316

to the above nonlinear operator equation.317
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Lemma 5.1. The nonlinear operator F : (uuuε,BBBε) 7→ F(uuuε,BBBε) is continuous in the weak318

topology of the product space Vε×Yε.319

Proof. Assume that (uuuεκ,BBB
ε
κ) is a weakly convergent sequence in Vε×Yε to (uuuε,BBBε) as320

κ→ +∞ then,321

|(F(uuuεκ − uuuε,BBBε
κ −BBBε); (ψψψ,ψψψ))|

=

∣∣∣∣(uuuεκ − uuuε | φφφ) +
α

Rm
(BBBε

κ −BBBε | ψψψ)−Q[(uuuεκ − uuu,BBBε
κ −BBB); (φφφ,ψψψ)]

∣∣∣∣ . (5.7)

By Hölder’s inequality and the embedding of H1(Ωiε;Rd) into Lq(Ωiε;Rd), i = 1, 2 with322

1 ≤ q < 6 we have,323

|Q[(uuuεκ − uuu,BBBε
κ −BBB); (φφφ,ψψψ)]|

≤ c ‖BBBε
κ −BBBε‖2L4(Ω1ε;Rd) ‖e(φφφ)‖L2(Ω2ε;Rd×d)

≤ c ‖uuuεκ − uuuε‖L4(Ω1ε;Rd) ‖BBB
ε
κ −BBBε‖L4(Ω1ε;Rd) ‖curl(µ̂1ψψψ)‖L2(Ω2ε;Rd) ,

(5.8)

for generic constant c := c(Ωiε, a,Rm, µ̂i), i = 1, 2. Moreover, since the above embedding of324

H1(Ωiε;Rd) into Lq(Ωiε;Rd) is compact we can extract strongly κ convergent subsequences325

(not relabelled) in L4(Ωiε;Rd) of uuuεκ and BBBε
κ to uuuε and BBBε, respectively.326

Passing to the limit as κ→ +∞ in (5.7) we have,327

lim
κ→+∞

(F(uuuεκ − uuuε,BBBε
κ −BBBε); (ψψψ,ψψψ)) = 0. (5.9)

328

Lemma 5.2. If the magnetic Reynolds number, Rm, is small then329

(F(uuuε,BBBε); (uuuε,BBBε)) ≥ 1

2
|||(uuuε,BBBε)|||2 , (5.10)

for all (uuuε,BBBε) ∈ Vε×Yε.330

Proof. We prove the lemma in two steps. In step 1 we obtain an estimate of the magnetic331

induction in terms of Rm using Proposition 3.2. In step 2. we obtain an estimate for Q.332

Combining both steps gives bounds on Rm for the existence of solutions.333

Step 1: We begin with a bound onBBBε in Lq(Ω;Rd) for q ∈ (1, 2d/(d−2)]. By Proposition 3.2334

we have that335
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‖BBBε‖Lq(Ω;Rd) ≤ c[BBB
ε]Yε

= c(‖curl(µ̂εBBBε)‖L2(Ω;Rd) + ‖BBBε ·nnn‖H1/2(Γ0))

≤ c(‖Rmuuu
ε ×BBBε‖L2(Ω1ε;Rd) + |ccc|mesd−1(Γ0)).

(5.11)

On the rigid particles the velocity takes the form uuuε = VVV `,ε+ωωω`,ε×(xxx−xxx`c), ` = 1, . . . , N(ε)336

with the translational and rotational velocity VVV `,ε and ωωω`,ε, respectively, being constant.337

Additionally, the term |xxx− xxx`c| is such that |xxx− xxx`c| < diam(T ε` ) < ε� 1. Hence,338

c ‖Rmuuu
ε ×BBBε‖L2(Ω1ε;Rd) ≤cεRm ‖BBBε‖L2(Ω1ε;Rd)

≤cεRm ‖BBBε‖Lq(Ω;Rd) ,
(5.12)

for q ∈ [2, 2d/(d− 2)].339

Combining (5.11) and (5.12) we obtain the following Lq, q ∈ [2, 2d/(d− 2)], bound for BBBε,340

‖BBBε‖Lq(Ω;Rd) ≤
c|ccc|mesd−1(Γ0)

1− cεRm
, (5.13)

if Rm < 1/cε.341

Step 2: By Korn’s inequality, Hölder’s inequality, and (5.13) we can bound Q by,342

|Q [(uuuε,BBBε); (uuuε,BBBε)]| ≤ c ‖BBBε‖L4(Ω2ε;Rd) ‖BBB
ε‖L4(Ω2ε;Rd) ‖e(uuu

ε)‖L2(Ω2ε;Rd×d)

+ c ‖uuuε‖L4(Ω1ε;Rd) ‖BBB
ε‖L4(Ω1ε;Rd) ‖curl(µ̂εuuuε)‖L2(Ω1ε;Rd)

≤ c|ccc|mesd−1(Γ0)

1− cεRm
|||(uuuε,BBBε)|||2 .

(5.14)

Hence we obtain,343

(F(uuuε,BBBε); (uuuε,BBBε)) = |||(uuuε,BBBε)|||2 − c|ccc|mesd−1(Γ0)

1− cεRm
|||(uuuε,BBBε)|||2 , (5.15)

if Rm > (1− 2 c |ccc|mesd−1(Γ0))/cε the result follows.344

Theorem 5.2. Given the assumptions in Subsection 4.1, if the magnetic Reynolds num-345

ber, Rm, is small then problem (5.4) admits at least one weak solution.346

Proof. According to [Shi64, Corollary 2] (see also [Fin65], [SP68]) if we can show that347

there exists a number r such that348

(F(uuuε,BBBε)− (fff,ggg); (uuuε,BBBε)) ≥ 0 for all (uuuε,BBBε) with |||(uuuε,BBBε)||| = r (5.16)
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then equation (5.4) has at least one solution. Hence, by Lemma 5.2 we have,349

(F(uuuε,BBBε)− (fff,ggg); (uuuε,BBBε)) = (F(uuuε,BBBε); (uuuε,BBBε))− ((fff,ggg); (uuuε,BBBε))

≥ 1

2
|||(uuuε,BBBε)|||2 − |||(fff,ggg)||| |||(uuuε,BBBε)|||

≥ 0,

(5.17)

if we select r = 2 |||(fff,ggg)|||.350

6 Conclusions351

We proved existence of a weak solution in three spatial dimensions to a coupled sys-352

tem of Stokes’ equations and quasi-static Maxwell’s equations under moderate magnetic353

field strength using the Altman–Shinbrot fixed point theorem and the augmented vari-354

ational formulation of Maxwell’s equations when the magnetic Reynold’s number, Rm,355

is small. The novelty of our approach lies in the fact that the magnetic induction that356

does not possess full weak derivatives in L2 due to material inhomogeneities. Classical357

fixed point arguments, like Leray-Schauder, require that the defined operator be com-358

pletely continuous which is a consequence of the Sobolev embedding of H1 into L2 for359

three dimensions. In contrast, the Altman–Shinbrot fixed point argument requires that360

the operator constructed need only be continuous in the weak topology of the underlying361

function space (and not completely continuous as is required by the fixed point theorem362

of Leray-Schauder). Moreover, in order to apply the Altman–Shinbrot theory, we prove363

higher regularity of the non-linear term present due to the Lorentz force and define a new364

function space for the magnetic induction. Additionally, we prove using the celebrated365

div–curl lemma that this new space is compactly embedded into L2.366

By and large, the existence result holds true when the magnetic Reynold’s number, Rm367

is small. The case of Rm ≡ 0 can be thought off as a limit case of the above model.368

When Rm ≡ 0 the system becomes weakly coupled and, existence and uniqueness follow369

by invoking the Lax-Milgram lemma once higher integrability of the magnetic induction370

is established.371
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