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Convolution and square in abelian groups I

Introduction

We will deal with a finite abelian group G of odd order d, which, most of the time, will be the cyclic group G = Z/dZ, and with the functional equation

f * f (2t) = λ f 2 (t) for all t in G, (1.1) 
where the unknown is a non-zero function f : G → C and where λ ∈ C is a parameter. This equation expresses a proportionality condition between the "convolution square" of f and its "multiplication square". A non-zero solution f of this functional equation (1.1) will be called a "λ-critical function on G" or, in short, a "λ-critical function", and a value λ for which such a function f exists will be called a "critical value on G", or a "d-critical value" when G = Z/dZ. Note that Equation (1.1) has been chosen so that it is invariant by translation on the variable t. This equation (1.1) can be rewritten as

ℓ∈G f (k+ℓ) f (k-ℓ) = λ f (k) 2 for all k in G. (1.
2)

The aim of this text is to point out the interest of this functional equation by gathering unexpected results and questions based on numerical experiments and by relating this apparently naive functional equation to elliptic curves with complex multiplication. Indeed, our main result, Theorem 2.3, gives explicit d-critical values. Eventhough the statement of this theorem is very short and purely elementary, surprisingly, our construction relies on the Jacobi theta functions θ(z, τ ) for special values of the parameter τ , and the key point in the proof relies on modularity properties due to Hecke (Lemma 3.8) of these theta functions. I tried to keep this text as elementary and concrete as possible. In a second more technical paper [2], I will extend this construction of critical values to all finite abelian groups G by using the Riemann theta functions on higher dimensional abelian varieties, and their modularity properties as functions on the Siegel upper half-space -see Theorem 3.16. I thank Gérard Laumon, Samuel Lelièvre and Emmanuel Ullmo for enlighting discussions on this project.

Comments

⋆ Since d is odd, the value λ = 0 is not d-critical. Indeed the only function f for which f * f = 0 is f = 0.

⋆ By analogy, one might look at Equation (1.1) on locally compact abelian groups G. When the group is G = R or G = Z, the only L 2 -solutions that I know are gaussian functions f (t) = e at 2 +bt+c where a, b, c ∈ C, Re(a) < 0, together with, when G = Z, their restrictions to subgroups. When the group is G = R/Z, the only L 2 -solutions that I know are constant functions.

Special critical values

In this section, we list a few d-critical values that are easy to find. We call them special.

⋆ If we choose f (0) = 1 and f (k) = α to be constant for k in G {0}, we find four critical values: we find λ = 1 when α = 0, we find λ = d when α = 1, and we find λ = d-3+ε

√ D 2 when α = 1-d-ε √ D 2(d-1)
, with ε = ±1 and D = (d-1)(d-9). Note that these d-critical values are real as soon as d ≥ 9.

⋆ If we choose f to be a gaussian function f (k) := η -k 2 with η := -e iπ/d , we find the critical value λ = √ d when d ≡ 1 mod 4 and λ = i √ d when d ≡ 3 mod 4. Moreover, its opposite -λ is also often a critical value. This is the case when d is not a square. But this is not always the case, for instance, when d = 9, the value -3 is not d-critical.

Induced critical values

In this section we explain how to construct d-critical values when d is a composite number starting from critical values for the factors of d. The method works for any abelian groups.

⋆ Let G 1 ⊂ G be finite abelian groups and λ 1 be a critical value on

G 1 with λ 1 -critical function f 1 . Then λ 1 is also a critical value on G with λ-critical function f := f 1 1 G 1 .
⋆ Let G 1 ⊂ G be finite abelian groups, d 1 be the order of G 1 and λ 2 be a critical value on the quotient G/G 1 with λ 2 -critical functions f 2 . Then

λ := d 1 λ 2 is a critical value on G with λ-critical function f := f 2 • π where π : G → G/G 1 is the projection. ⋆ Let G = G 1 × G 2 be
the product of two finite abelian groups, let λ 1 be a critical value on G 1 with λ 1 -critical function f 1 and λ 2 be a critical value on G 2 with λ 2 -critical function f 2 . Then the product λ

:= λ 1 λ 2 is a critical value on G with λ-critical function f := f 1 ⊗ f 2 .
The most interesting critical values will be those that are not special and that are not obtained by these "induction" methods.

Numerical experiments

The following lists of d-critical values rely on numerical experiments using the Buchberger's algorithm for computing Groebner basis (see [START_REF] Cox | Ideals, varieties, and algorithms[END_REF]Chap. 2]).

We denote by b d the size of the list. 

±2 ± i √ 3. ⋆ d = 9 b 9 = 15. λ = 1, 9, 3, ±i √ 3, ±3i √ 3, ±1 ± 2i √ 2, and ± √ 5 ± 2i.
For d = 11 and 13, the lists below of d-critical values are still probably complete. ⋆ d = 15 b 15 = 60. λ = product of a 3-critical and a 5-critical value, and

⋆ d = 11 b 11 = 20. λ = 1 , 11, 4 ± √ 5, ±i √ 11, 2 ± i √ 7, ±2 √ 2 ± i √ 3, and ±(1+ε √ 5) ± i 5-2ε √ 5 with ε = ±1. ⋆ d = 13 b 13 = 18. λ = 1 , 13, 5 ± 2 √ 3, ±i √ 13, ±1 ± 3i √ 2, ± √ 5 ± 2i √ 2,
λ = -3, -5, 6 ± √ 21, ±2 ± i √ 11, ±2 √ 2 ± i √ 7, ±2 √ 3 ± i √ 3, and ±2 2-ε √ 3 ± (2+ ε √ 3)i and 1+ε √ 5 ± i 9-2ε √ 5 with ε = ±1, and ±( √ 3 ± i √ 2)( √ 2 ± i). ⋆ d = 17 b 17 = 28. λ = 1 , 17, 7 ± 4 √ 2, ±i √ 17, ±1 ± 4i, ± √ 5 ± 2i √ 3, 3 ± 2i √ 2, ± √ 13 ± 2i, and ±(1 + 2ε √ 2) ± 2i 2 -ε √ 2 with ε = ±1.
For our numerical experiments we used SageMath and Maple softwares.

Critical values

One of the motivations of Proposition 2.1 and Theorem 2.3 below is to explain some of the intriguing patterns that occur in these experimental lists of critical values.

Properties of critical values

We first begin by a few properties of the critical values, that are valid on any finite abelian group. (ii) This follows from Cauchy-Schwarz inequality. Indeed, setting

f ∞ = max k∈G |f (k)| and f 2 = ( k |f (k)| 2 ) 1 2 , one has |λ| f 2 ∞ = f ⋆ f ∞ ≤ f 2 2 ≤ d f 2 ∞ .
Hence |λ| ≤ d. In case we have equality the function f must have constant modulus, and must satisfy f

(k +ℓ)f (k -ℓ) = f (k) 2
, for all k, ℓ. Hence f is proportional to a character and one has λ = d.

(iii) If f is a λ-critical function on G, then its Fourier transform f , which is given by, for every character χ :

G → C * , f (χ) = x∈G f (x)χ(x), is a d/λ-critical function on the dual group G which is isomorphic to G. (iv) Let G + be a subset of G of cardinality d-1
2 such that for each non-zero ℓ ∈ G either ℓ or -ℓ is in G + . The equations (1.2) can be rewritten as

λ-1 2 f (k) 2 = ℓ∈G + f (k+ℓ) f (k-ℓ) for all k in G (2.1)
Let K be the subfield of C generated by the coefficients f (k). To prove that λ ′ := λ-1 2 is an algebraic integer, it is enough to check that, for all nonarchimedean absolute value

|.| v on K, one has |λ ′ | v ≤ 1. We set f v := max ℓ∈G |f (ℓ)| v , we choose k such that f v = |f (k)| v ,

and we compute

|λ ′ | v f 2 v = |λ ′ f (k) 2 | v = | ℓ∈G + f (k+ℓ)f (k-ℓ)| v ≤ max ℓ∈G |f (k+ℓ)| v |f (k-ℓ)| v ≤ f 2 v .
This proves that |λ ′ | v ≤ 1 as required.

Construction of critical values

From now on, G will be the cyclic group Z/dZ. It is not clear from the definition that there does exist d-critical values that are non-induced and non-special. The following theorem tells us that this is always the case for d ≥ 5. 

A more concrete way to state Theorem 2.3 is:

For d ≡ 1 mod 4, the following values are d-critical: √ d , √ d-4+2i , √ d-8+2i √ 2 , √ d-12+2i √ 3 , ... For d ≡ 3 mod 4, the following values are d-critical: i √ d , 2+i √ d-4 , 2 √ 2+i √ d-8 , 2 √ 3 + i √ d-12 , .
.. More precisely, we will see that, surprisingly, for these values λ, the set of λ-critical functions has positive dimension. Indeed, we will construct a one-parameter family of λ-critical functions using a suitable Jacobi theta function.

Before that we discuss the above congruence condition on a. 

= √ a + i √ b. The number λ-1
2 is an algebraic integer if and only if a ≡ (d+1) 2 4 mod 4.

In particular, by Proposition 2.1.iv, when a ≡ (d+1) 2 4 mod 4, the complex number λ = √ a + i √ b can not be a d-critical value.

Remark 2.6. Note that, for any algebraic number λ, one has the equivalence:

ν := λ-1 2 is an algebraic integer ⇐⇒ ν ′ := λ 2 -1 4 is an algebraic integer. (2.3)
Indeed, theses two elements ν and ν ′ are related by the equation

ν 2 + ν = ν ′ . Proof of Lemma 2.5. The number ν ′ := λ 2 -1 4 is equal to ν ′ = a-b-1 4 + i √ ab 2 .
It is an algebraic integer if and only if a -b ≡ 1 mod 4 and ab ≡ 0 mod 4. As seen in (2.2), this condition is equivalent to a ≡ (d+1) 2 4 mod 4.

Corollary 2.7. Let p,q be positive integers with p odd and q even and let d := p 2 + q 2 . Then the complex number λ := p + iq is a d-critical value.

Proof. Condition (2.2) is true: p 2 -q 2 ≡ 1 mod 4 and p 2 q 2 ≡ 0 mod 4.

More numerical experiments

A reasonable aim in this topic would be to give, for each d the list of the d-critical values λ, and for each λ the description of the projective algebraic variety given by the λ-critical functions (number of connected components, their dimension,...).

Here are a few less ambitious questions supported by numerical experiments that suggest that some hidden structure has to be understood.

The first question deals with the properties of the λ-critical functions when λ belongs to a real or imaginary quadratic number field. Question 2.8. Let d be an odd integer and λ a d-critical value which is quadratic. Does there exist an even λ-critical function?

That is a λ-critical function f such that f (-k) = f (k) for all k. We checked, using numerical experiments, that this is true for d ≤ 11. Unfortunately this is not true when λ is not quadratic as 2

√ 2-1+2i 2+ √ 2.
The second question deals with the properties of the d-critical values.

Question 2.9. Let d be an odd prime and λ a d-critical value. Are λ and d/λ Galois conjugate, except for λ = 1 and λ = d?

More generally, when d is not prime, one might still expect a similar question to be true for non-induced d-critical values.

Note that we do not expect all the Galois conjugates in C of the non-real critical values λ to have absolute value equal to √ d. We computed, using numerical experiments, an example of d-critical value λ of degree 8 over Q with two real and six non-real Galois conjugates in C.

The third question deals with critical values that are real quadratic.

Question 2.10. Let d be an odd prime and λ a d-critical value which is a real quadratic number. Is such a λ special?

We recall that special means that λ = 1, d, ± √ d, or d-3± √ (d-1)(d-9) 2
. Note that the d-critical values which are quadratic over Q and non-real can be described up to sign thanks to Proposition 2.1 and Theorem 2.3. We checked, using numerical experiments, that this is true for d ≤ 11.

The last question deals with critical values that are quadratic over Q but are non real. More precisely it deals with the sign of Re(λ) in Theorem 2.3. Moreover, for each d ≡ 2 mod 3, one still expects the answer to this question to be true with at most one exception. Recall that the interesting case is when the critical value λ is quadratic over Q i.e. when the integer a is a square (see Remark 3.9). We checked, using numerical experiments, that -1 + 2i and -2 + i √ 7 are not critical values and that, for d ≤ 23, the only other possible exceptions are -3 + 2i √ 2 and -4 + i √ 7.

There is another similar question: let d = a 2 be the square of an odd integer a ≥ 3. We know that this integer a is a d-critical value. But when is its opposite -a also d-critical? I checked, using numerical experiments, that -3 is not 9-critical but that -5 is 25-critical.

Theta functions and elliptic curves

Our aim now is to prove Theorem 2.3.

Main result

We recall the definition of the Jacobi theta function:

θ τ (z) = θ(z, τ ) := m∈Z e iπτ m 2 e 2iπmz , for z ∈ C and τ ∈ H,
where H is the upper half plane H = {τ ∈ C | Im(τ ) > 0}. This function is 1-periodic: θ τ (z + 1) = θ τ (z). We can now explain our construction of λ-critical functions on Z/dZ. Definition 3.1. We will say that the function

θ τ is (λ, d)-critical if, for all z in C, the function f z,τ : ℓ → θ(z+ℓ/d, τ ) is λ-critical on Z/dZ.
This means that, for all z in C, ).

ℓ∈Z/dZ θ(z + ℓ/d, τ ) θ(z -ℓ/d, τ ) = λ θ(z, τ ) 2 .
τ 0 := 1 4d 2 (a -b -d 2 + 2i √ ab). (3.1) (a) The function θ τ 0 is (λ 0 , d)-critical. (b) Conversely, let τ ∈ H such that the function θ τ is (λ, d)-critical, then one has λ = ± √ a ± i √ b
Remember that the Jacobi symbol ( γ 0 δ 0 ) = ±1 is defined for two relatively prime integers γ 0 and δ 0 with δ 0 odd, and that, by convention, when δ 0 is negative, it is given by ( γ 0 δ 0

) = ( γ 0 -δ 0
). Note also that, in view of Point (b), the assumption λ = ±λ 0 in Point (c) is not restrictive since one has the equivalence:

θ τ is (λ, d)-critical ⇐⇒ θ -τ is (λ, d)-critical.
Remark 3.3. The parameter τ 0 will be called the fundamental parameter and the parameters τ k,p := (k + τ 0 )/p the associated parameters. These parameters τ k,p and the integers N k can also be given by the simple formulas with m 0 := a-b-d 2

4

and N 0 := (d+1) 2 -4a 16 :

τ k,p = 1 d 2 p (d 2 k + m 0 + i ab/4) where p | N k := d 2 k 2 + 2m 0 k + N 0 .
Example 3.4. To be very concrete, we give below the list of all values τ = τ k,p for which θ τ is (±λ 0 , d)-critical with k in Z and p divisor of N k , when d ≤ 9.

⋆ d = 5, λ 0 = 1 + 2i : τ k,p = 1 25p (25k -7 + i) where p | 25k 2 -14k+2. ⋆ d = 7, λ 0 = 2 + i √ 3: τ k,p = 1 49p (49k-12 + i √ 3) where p | 49k 2 -24k+3. ⋆ d = 9, λ 0 = 1+2i √ 2: τ k,p = 1 81p (81k-22 + i √ 2) where p | 81k 2 -44k+6. ⋆ d = 9, λ 0 = √ 5 + 2i: τ k,p = 1 81p (81k-20 + i √ 5) where p | 81k 2 -40k+5.
Given d and λ 0 , we have seen that it is always possible to choose k and p such that λ = ελ 0 with sign ε = ( p 4k-1

) equal to +1: we just choose p = 1. On the other hand, given d and λ 0 , it is sometimes possible to choose k and p such that λ = ελ 0 with sign ε = ( p 4k-1

) equal to -1. For instance, ⋆ when λ = -2 -i √ 3 with τ = 1 98 (37 + i √ 3), or ⋆ when λ = - √ 5 -2i with τ = 1 162 (61 + i √ 5 
). We mention the following corollary that tells us exactly when this is possible. Concretely, here are a few special cases of our criteria for such a function θ τ to exist, in which a is a square in Z and b is either 4ℓ or 4ℓ -1 with ℓ a positive integer:

⋆ When λ = -1 -2i √ ℓ : never. ⋆ When λ = -3 -2i √ ℓ : ℓ ≡ 1 mod 3. ⋆ When λ = -5 -2i √ ℓ : ℓ ≡ 2 or 3 mod 5. ⋆ When λ = -2 -i √ 4ℓ -1: ℓ ≡ 1 mod 2. ⋆ When λ = -4 -i √ 4ℓ -1: ℓ ≡ 1 mod 2. ⋆ When λ = -6 -i √ 4ℓ -1: ℓ ≡ 1, 2, 3
or 5 mod 6. The proof of this corollary that relies on quadratic reciprocity is left to the reader. We will not use it below. The rest of the paper is devoted to the proof of Proposition 3.2.

Preliminary formulas

The proof of Proposition 3.2.(a) relies on three classical formulas for the theta functions, the "addition formula", the "isogeny formula", the "transformation formula". We will only need special cases of these formulas that we state below.

We need to introduce the theta functions 1

θ [0] (z) = θ [0] (z, τ ) := m even e iπ τ 2 m 2 e 2iπmz θ [1] (z) = θ [1] (z, τ ) := m odd e iπ τ 2 m 2 e 2iπmz .
Note that one has the equalities:

θ [0] (z, τ ) = θ(2z, 2τ ) and θ [0] (z, τ ) + θ [1] (z, τ ) = θ(z, τ /2). (3.2)
Here is the first formula that we need.

Lemma 3.6. Addition formula For all z, w in C, τ ∈ H, one has

θ(z + w, τ )θ(z -w, τ ) = θ [0] (w, τ )θ [0] (z, τ ) + θ [1] (w, τ )θ [1] (z, τ ). (3.3)
Proof. Just write the left-hand side as a double sum over m, n in Z and split this double sum according to the parity of m-n.

Here is the second formula which is simple but useful.

1 With other "classical" notations for theta functions as in [START_REF] Birkenhake | Complex abelian varieties[END_REF], one has the equalities, 

θ [0] (z, τ ) = θ 0,0 (2z, 2τ ) = θ 0 0 (2z, 2τ ) and θ [1] (z, τ ) = θ 1,0 (2z, 2τ ) = θ 1/2 0 (2z, 2τ ).
θ(0, στ ) = i δ-1 2 ( γ δ ) (γτ + δ) 1 2 θ(0, τ ). (3.4)
In this formula, the SL(2, Z) action on the upper half plane H is the standard action στ = ατ +β γτ +δ , the number z 1 2 is the square root of a complex number z ∈ H whose real part is non negative, and the symbol ( γ δ ) = ±1 is still the Jacobi symbol.

Note that Formula (3.4) can be equivalently rewritten as

θ(0, στ ) = ε δ ( 2γ δ ) (γτ + δ) 1 2 θ(0, τ ),
where ε δ = 1 when δ ≡ 1 mod 4, and ε δ = -i when δ ≡ 3 mod 4.

Proof. Up to sign, Formula (3.4) follows from the following two formulas

θ(0, τ + 2) = θ(0, τ ), θ(0, -1/τ ) = (-iτ ) 1 2 θ(0, τ ).
and from the fact that the map (σ, τ ) → στ + δ is a cocycle on SL(2, Z) × H. The precise determination of the sign is a classical issue due to Hecke. It can be found for instance in [8, p.181] in [6, p.148] or in [7, p.32].

Remark 3.9. This precise determination of the sign is important for us because it will allow us to decide whether the critical value we will find is λ = √ a + i √ b or its opposite. This is particularly important when a is a square, because in this case λ and -λ are not Galois conjugate and one can not apply Proposition 2.1.i.

The following corollary of Lemma 3.8 will be very useful.

Corollary 3.10. If σ ≡ ±1 mod 4, then, for all τ in H, one has

θ [0] (0, στ ) θ [0] (0, τ ) = θ [1] (0, στ ) θ [1] (0, τ ) . (3.5) 
Proof. Let

σ ′ = α β ′ γ ′ δ and σ ′′ = α β ′′ γ ′′ δ , with β ′ = 2β, γ ′ = γ/2 and β ′′ = β/2, γ ′′ = 2γ, so that σ ′ (2τ ) = 2στ and σ ′′ (τ /2) = 1 2 στ .
Since the matrix σ is equal to ±1 mod 4, the two matrices σ ′ and σ ′′ are equal to 1 mod 2. Therefore we can apply the transformation formula in Lemma 3.8 to both pairs (σ ′ , 2τ ) and (σ ′′ , τ /2). Using the multiplicativity properties of the Jacobi symbol, we see that the following two ratios are given by the same formula θ(0, 2στ )

θ(0, 2τ ) = θ(0, 1 2 στ ) θ(0, 1 2 τ ) 
.

We now conclude thanks to Equalities (3.2).

The condition on theta contants

The first step in the proof of Proposition 3.2 is the following criterion on λ, τ which ensures that the functions f z,τ are λ-critical. This criterion is a relation between "theta constants", i.e. theta functions evaluated at z = 0.

Lemma 3.11. Let τ ∈ H and λ ∈ C. The function θ τ is (λ, d)-critical if and only if one has the equalities

λ = d θ [0] (0, d 2 τ ) θ [0] (0, τ ) = d θ [1] (0, d 2 τ ) θ [1] (0, τ ) . (T λ,τ )
Proof. For w in C we introduce the function

z → F w (z) = F w (z, τ ) := θ(z + w, τ ) θ(z -w, τ ).
We want to know when the two functions ℓ F ℓ/d and F 0 = θ 2 are proportional. The key point of the proof is that all these functions F w live in the same two-dimensional vector space and that this vector space has a very convenient basis: (θ [0] , θ [START_REF] Beauville | Theta functions, old and new[END_REF] ). We only have to express that the coefficients of our two functions in this basis are proportional. These coefficients are given by the following calculation in which we apply successively the addition formula and the isogeny formula,

ℓ F ℓ/d (z, τ ) = ℓ θ [0] (ℓ/d, τ ) θ [0] (z, τ ) + ℓ θ [1] (ℓ/d, τ ) θ [1] (z, τ ) = d θ [0] (0, d 2 τ ) θ [0] (z, τ ) + d θ [1] (0, d 2 τ ) θ [1] (z, τ ) and θ(z, τ ) 2 = θ [0] (0, τ ) θ [0] (z, τ ) + θ [1] (0, τ ) θ [1] (z, τ ).
These two functions are proportional with proportionality factor λ if and only if one has

λ = d θ [0] (0, d 2 τ ) θ [0] (0, τ ) = d θ [1] (0, d 2 τ ) θ [1] (0, τ ) .
This is the criterion (T λ,τ ).

The modular curve X(4)

In order to interpret the condition (T λ,τ ), the following classical description of the modular curve X(4) will be very useful. Note that the element -1 ∈ SL(2, Z) acts trivially on H. It is classical that X(m) is a Riemann surface with finitely many cusps whose genus can be calculated thanks to Hurwitz formula. In this elementary paper we will only deal with m = 4. In this case, X(4) has genus zero and six cusps. The following lemma gives a nice interpretation of this fact. We introduce the meromorphic function Φ on H given by, for all τ in H,

Φ(τ ) := θ [1] (0, τ ) θ [0] (0, τ ) .
Lemma 3.12. The map Φ induces a biholomorphism ϕ : X(4) -→ P 1 C {0, ∞, ±1, ±i}.

This lemma tells us that, as an hyperbolic surface, X(4) is the "regular ideal octahedron".

The statement of this lemma is equivalent to the following four facts on the meromorphic map Φ. (a) For all σ in Γ( 4) and all τ in H one has Φ(στ ) = Φ(τ ). (b) For all τ in H, one has Φ(τ ) = 0, ∞, ±1, ±i. (c) If Φ(τ ) = Φ(τ ′ ), there exists σ in Γ(4) such that τ ′ = στ . (d) For all z = 0, ∞, ±1, ±i, there exists τ in H with Φ(τ ) = z.

Note that the first fact (a) is the most important one for us in order to prove Theorem 2.3 and that it is just a restatement of Corollary 3.10.

Proof of Lemma 3.12. This lemma is classical for the experts. We will just relate it to the existing litterature. We will deduce these four facts from a very similar statement in Mumford's book [START_REF] Mumford | Tata lectures on theta. I. PM 28[END_REF]. In this book, Mumford uses the four Jacobi theta-functions θ a,b with a, b equal to 0 or 1, given by

θ a,b (z, τ ) = m∈Z e iπτ (m+ a 2 ) 2 e 2iπ(m+ a 2 )(z+ b 2 )
It is proven in [7, Theorem 10.1 p.51] that the map Ψ given in homogeneous coordinates by Ψ : τ → [θ 2 0,0 (0, τ ), θ 2 0,1 (0, τ ), θ 2 1,0 (0, τ )] induces an biholomophism ψ between the curve X(4) and the curve

C := {[x 0 , x 1 , x 2 ] ∈ P 2 C | x 2 0 = x 2 1 + x 2
2 and all x i = 0} which is a conic with six points removed. By the addition formula (3.3), these theta-constants θ a,b are related to the theta-constants θ [0] and θ [START_REF] Beauville | Theta functions, old and new[END_REF] :

θ 2 0,0 (0, τ ) = θ 2 [0] (0, τ ) + θ 2 [1] (0, τ ), θ 2 0,1 (0, τ ) = θ 2 [0] (0, τ ) -θ 2 [1] (0, τ ), θ 2 
1,0 (0, τ ) = 2 θ [0] (0, τ ) θ [START_REF] Beauville | Theta functions, old and new[END_REF] (0, τ ). Hence one can express in a simple way the map Ψ thanks to the function Φ:

Ψ(τ ) = [1+Φ 2 (τ ) , 1-Φ 2 (τ ) , 2Φ(τ )],
for all τ in H. Remark 3.13. Note that this identification of X( 4) is equivariant. More precisely, the finite group G := PGL(2, Z/4Z) has cardinality 48 and acts by biholomorphisms or biantiholomorphisms on X(4). The biholomorphism ϕ identifies this group G with the group of isometries of the octahedron. This follows from the identities Φ(-τ ) = Φ(τ ) , Φ(τ + 1) = Φ(τ ) and Φ(-1/τ ) = -Φ(τ ) + 1 Φ(τ + 1 .

Elliptic curves with complex multiplication

We can now go on the proof of Proposition 3.2, by explaining how we will check that a pair (λ, τ ) satisfies Condition (T λ,τ ).

For τ in H, we introduce the lattice Λ τ = Zτ ⊕ Z1 of C so that the quotient E τ := C/Λ τ is the elliptic curve associated to τ . We will see that the values of λ and τ = τ k,p in Theorem 2.3 have been chosen so that the elliptic curve E τ has complex multiplication by µ := λ 2 . See [START_REF] Schertz | Complex multiplication[END_REF] for more classical applications of complex multiplication. More precisely, they have been chosen so that µΛ τ = Λ d 2 τ . This means that

d 2 τ = µ (ατ + β), (3.6 
) 1 = µ (γτ + δ), (3.7) 
for a matrix σ = α β γ δ ∈ SL(2, Z). We will be able to impose on σ the extra condition γ > 0 and σ ≡ ±1 mod 4.

We explain why such a choice is relevant in the following lemma. .

Proof. We first notice that, in this lemma, we can always add the extra conditions γ > 0 and σ ≡ 1 mod 4. Indeed, if needed, we can always replace the matrix σ by -σ without changing the point τ . We can also replace σ by the matrix

α -β -γ δ
, the point τ is then replaced by -τ .

(a) We set µ := (γτ+δ) -1 . Since the matrix σ = α β γ δ has determinant 1, the equations (3.6) and (3.7) can be rewritten as (b) and (c) We assume now that τ = τ k,p as above and we want to construct the matrix σ. We follow the same computation as in (a) in opposite order. We set µ := a -b -2i √ ab and t 0 := 2(a -b) so that Equation (3.12) is satisfied. We choose δ := 1 -4k and α := t 0 -d 2 δ. We first note that αδ ≡ 1 mod 16.

γ -1 (µ -1 -δ) = τ, (3.11) µ 2 -t 0 µ + d 2 = 0, (3.12 
(3.14)

To check (3.14), just remember that one has t 0 ≡ 1 + d 2 mod 16, and hence αδ -1 ≡ (δ -1)(1 -δd 2 ) ≡ 4 2 ≡ 0 mod 16.

Then the same computation as above gives the equality (1 -αδ)/16 = N k . Hence if we choose γ := 4p and β := -4N k /p, the matrix σ is in Γ(4). By construction these coefficients satisfy also Equality (3.11). Hence the matrix σ satisfies Equalities (3.6) and (3.7).

Proof of Proposition 3.2. This proposition is now just a straightforward consequence of Lemmas 3.14 and 3.15 combined with Formula (3.13).

Conclusion and Perspective

The aim of this paper was to explain why the algebraic integers √ a + i √ b that occur in the lists of section 1. However, in the lists of section 1.5, there are still remaining intriguing d-critical values. In a more technical forthcoming paper [2], we will see that these d-critical values belong to a wide class of critical values on finite abelian groups that can be explained by an extension of the construction of Proposition 3.2. This will be a nice application of the abelian varieties and their theta funtions, relying on works of Siegel, Stark, Igusa and of Taniyama-Shimura. See [START_REF] Beauville | Theta functions, old and new[END_REF] for a recent paper surveying previous applications of these tools. Indeed we will prove in [2]. Theorem 3.16. Let A = C g /Λ be a principally polarized abelian variety and ν be a unitary Q-endomorphism of A preserving a theta structure of level 2. Let T ν be its tangent map, G ν the group Λ/(Λ ∩ T ν Λ) and d ν the order of G ν . Then there is a critical value λ ν = κ ν d and that one can compute the fourth root of unity κ ν .

For 3 ≤

 3 d ≤ 9 the complete lists of d-critical values are: ⋆ d = 3 b 3 = 4. λ = 1, 3, and ±i √ 3. ⋆ d = 5 b 5 = 6. λ = 1, 5, ± √ 5, and 1 ± 2i. ⋆ d = 7 b 7 = 8. λ = 1, 7, ±i √ 7, and

Theorem 2 . 3 . 2 4 mod 4 .

 2324 Let a,b be positive integers with a+b = d and a ≡ (d+1) Then the complex number λ := √ a + i √ b is a d-critical value. Remark 2.4. The congruence assumption in Theorem 2.3 is equivalent to a -b ≡ 1 mod 4 and ab ≡ 0 mod 4.

Lemma 2 . 5 .

 25 Let a,b be positive integers with a+b = d and let λ :

Question 2 .

 2 11. Let d be an odd integer and a,b be positive integers with a-b ≡ d 2 +1 2 mod 8 and a+b = d. If d ≡ 2 mod 3, is the number λ := -√ a+i √ b a d-critical value?

Theorem 2 .

 2 3 is a special case of the following Proposition 3.2.(a). The whole Proposition 3.2 tells us more. It tells us exactly for which parameters d, λ, τ , the function θ τ is (λ, d)-critical. Proposition 3.2. Let a,b be positive integers with a ≡ (d+1) 2 4 mod 4 and a+b = d. Set λ 0 := √ a + i √ b and

  with a, b as above. (c) The function θ τ is (λ, d)-critical for λ = ±λ 0 if and only if τ = (k + τ 0 )/p with τ 0 as above, k ∈ Z and p > 0 a divisor of the integer N k := d 2 |k+τ 0 | 2 . (d) The above sign ε = ± is given by the Jacobi symbol ε = ( p 4k-1

Corollary 3 . 5 . 4 mod 4

 3544 Let a,b be positive integers with a ≡ (d+1) 2 and a+b = d.Set λ := -√ a -i √ b.There exists τ in H whose function θ τ is (λ, d)-critical if and only if either a is not a square in Z or -b is not a square in Z/2aZ.

Lemma 3 . 7 .

 37 Isogeny formula For τ ∈ H, d odd positive integer, one hasℓ∈Z/dZ θ [0] (ℓ/d, τ ) = d θ [0] (0, d 2 τ ) and ℓ∈Z/dZ θ [1] (ℓ/d, τ ) = d θ [1] (0, d 2 τ ).Proof. Just write the left-hand sides as a double sum over m in Z and ℓ in Z/dZ and notice that ℓ∈Z/dZ e 2iπℓm/d is equal to d when d divides m and is equal to 0 otherwise. The last formula deals with an element σ = α β γ δ ∈ SL(2, Z). Lemma 3.8. Transformation formula If σ ≡ 1 mod 2, and γ > 0, then

For m ≥ 1 ,

 1 we introduce the principal congruence subgroup of level m Γ(m) := {σ ∈ SL(2, Z) | σ ≡ ±1 mod m} and the modular curve of level m X(m) := Γ(m)\H.

Lemma 3 .) µ 1/ 2 . ( 3 . 9 )

 3239 14. Let τ ∈ H and d an odd integer. (a) The function θ τ is (λ, d)-critical for some λ in C if and only if there exists σ = α β γ δ ∈ SL(2, Z) satisfying (3.8) such that gτ = d 2 τ . (b) In this case, the critical value is given by, setting µ = (γτ + δ) -1 , λ = ε δ ( γ δ Recall that ε δ = 1 when δ ≡ 1 mod 4, and ε δ = -i when δ ≡ 3 mod 4. Lemma 3.15. (a) Let τ in H such that there exists σ in Γ(4) for which στ = d 2 τ , then there exists k, p as above such that τ = τ k,p or τ = -τ k,p . (b) Conversely, for every τ = τ k,p as above, there exists σ in Γ(4) such that στ = d 2 τ . (c) This matrix σ can be chosen to be σ = 2(a-b)-d 2 (1-4k) -4N k /p 4p 1 -4k

) with t 0 2 mod 8 , 2 4 mod 4 .

 02824 := α + d 2 δ. We introduce a, b such that t 0 = 2(a -b) and d = a + b. ⋆ Since α ≡ δ ≡ 1 mod 4 and d 2 ≡ 1 mod 4, both numbers a and b are integers. ⋆ Since µ is not a real number, one has |t 0 | < 2d and the integers a and b are positive.⋆ Since σ ≡ 1 mod 4, one has αδ ≡ 1 mod 16, and these integers satisfy a -b ≡ 1+d 2 and hence a ≡ (d+1) ⋆ Since Im(µ) < 0, solving Equation (3.12), one gets the equalityµ := ( √ a -i √ b) 2 = a -b -2i √ ab (3.13)⋆ We write δ = 1 -4k with k ∈ Z, and one computesN k = d 2 |k + τ 0 | 2 = 1 16d 2 [((a -b) -(1 -4k)d 2 ) 2 + 4ab] = 1 16 [1 -2(a -b)(1 -4k) + d 2 (1 -4k) 2 ] = (1 -αδ)/16 = -βγ/16.⋆ We write γ = 4p so that this integer p is a divisor of the integer N k . ⋆ Plugging these informations in(3.11) gives τ = (k + τ 0 )/p.

4 mod 4 .

 44 5 are indeed d-critical values when a, b are positive integers with a + b = d and a ≡ (d+1) 2 To keep this paper as elementary as possible, we have only discussed here these d-critical values.

1 / 2 ν

 12 det C (T ν ) 1/2 on G ν with κ 4 ν = 1. Note that |λ ν | = d 1/2 ν

  and ±3 ± 2i.

	For d = 15 and 17, here are just a few d-critical values. These values were
	obtained by the guess and check method. Looking at the critical values for
	d ≤ 13 one can guess a few critical value for d = 15 and 17. The key point of the method is that the Buchberger's algorithm is much faster when checking
	if a given λ is d-critical than when finding all the d-critical values.

√ b 2 -4ac 2a 1-i b- √ b 2 -4ac2a.

Proof of Lemma 3.14. (a) According to Lemma 3.11, the function θ τ is (λ, d)critical for some λ in C if and only if one has the equalities Φ(τ ) = Φ(d 2 τ ).

According to Lemma 3.12, this equality is equivalent to the existence of an element σ in Γ(4) such that στ = d 2 τ . Note that this forces the lower-left coefficient γ to be non zero. Replacing σ by -σ if necessary, we can also assume that γ > 0.

(b) To compute the critical value λ, we use again Lemma 3.11 combined with Formulas (3.2). We obtain

the matrix σ equals ±1 mod 4, the matrix σ ′ is equal to 1 mod 2. Hence we can apply the transformation formula in Lemma 3.8 to σ ′ and τ ′ . We get

By assumption, the number µ := (γτ + δ) -1 is a complex multiplication for the lattice Λ τ , more precisely, one has µΛ τ = Λ d 2 τ . This gives the equality µµ = d 2 , and Equation (3.7) can be rewritten as

Choosing the elliptic curve

In order to end the proof of Proposition 3.2, it only remains to characterize those points τ in H that satisfy the condition στ = d 2 τ for some σ in Γ(4) and to express the d-critical value λ given in Lemma 3.14 without using σ.

We begin by recalling the notation of Proposition 3.2. Let a, b be positive integers with a ≡ (d+1) 2 4 mod 4 and a+b = d. We introduced the "fundamental parameter" τ

For k in Z, we introduced the integer N k := d 2 |k + τ 0 | 2 . For p ∈ N dividing N k , we also introduced the "associated parameters" τ k,p := (k + τ 0 )/p ∈ H.