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Convolution and square in abelian groups I

Yves Benoist

Abstract

We prove that the functional equation f⋆f(2 t) = λf(t)2, for t in Z/dZ
with d odd, admits a non-zero solution f if λ =

√
a+ i

√
b with a, b

positive integers such that a+b=d and a≡ (d+1)2

4 mod 4. The proof
involves theta functions on elliptic curves with complex multiplication.

1 The functional equation

It is well known that elliptic curves, theta functions and modular forms are
very useful tools both in Algebraic Geometry and in Number Theory -see [5].
In this paper, we focus on an elementary open problem raised by numerical
experiments. The main surprise in this text is that the intriguing output of
these numerical experiments cannot be understood without these tools.

1.1 Introduction

We will deal with a finite abelian group G of odd order d, which, most of the
time, will be the cyclic group G = Z/dZ, and with the functional equation

f ∗ f (2t) = λ f 2(t) for all t in G, (1.1)

where the unknown is a non-zero function f : G → C and where λ ∈ C is
a parameter. This equation expresses a proportionality condition between
the “convolution square” of f and its “multiplication square”. A non-zero
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solution f of this functional equation (1.1) will be called a “λ-critical function
on G” or, in short, a “λ-critical function”, and a value λ for which such
a function f exists will be called a “critical value on G”, or a “d-critical
value” when G = Z/dZ. Note that Equation (1.1) has been chosen so that
it is invariant by translation on the variable t. This equation (1.1) can be
rewritten as

∑
ℓ∈G

f(k+ℓ) f(k−ℓ) = λ f(k)2 for all k in G. (1.2)

The aim of this text is to point out the interest of this functional equation
by gathering unexpected results and questions based on numerical experi-
ments and by relating this apparently naive functional equation to elliptic
curves with complex multiplication.

Indeed, our main result, Theorem 2.3, gives explicit d-critical values.
Eventhough the statement of this theorem is very short and purely elemen-
tary, surprisingly, our construction relies on the Jacobi theta functions θ(z, τ)
for special values of the parameter τ , and the key point in the proof relies on
modularity properties due to Hecke (Lemma 3.8) of these theta functions.

I tried to keep this text as elementary and concrete as possible. In a
second more technical paper [2], I will extend this construction of critical
values to all finite abelian groups G by using the Riemann theta functions
on higher dimensional abelian varieties, and their modularity properties as
functions on the Siegel upper half-space – see Theorem 3.16.

I thank Gérard Laumon, Samuel Lelièvre and Emmanuel Ullmo for en-
lighting discussions on this project.

1.2 Comments

⋆ Since d is odd, the value λ = 0 is not d-critical. Indeed the only function
f for which f ∗ f = 0 is f = 0.

⋆ By analogy, one might look at Equation (1.1) on locally compact abelian
groups G. When the group is G = R or G = Z, the only L2-solutions that
I know are gaussian functions f(t) = eat

2+bt+c where a, b, c ∈ C, Re(a) < 0,
together with, when G = Z, their restrictions to subgroups. When the group
is G = R/Z, the only L2-solutions that I know are constant functions.
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1.3 Special critical values

In this section, we list a few d-critical values that are easy to find. We
call them special.

⋆ If we choose f(0) = 1 and f(k) = α to be constant for k in G r {0},
we find four critical values: we find λ = 1 when α = 0, we find λ = d when

α = 1, and we find λ = d−3+ε
√
D

2
when α = 1−d−ε

√
D

2(d−1)
, with ε = ±1 and

D = (d−1)(d−9). Note that these d-critical values are real as soon as d ≥ 9.
⋆ If we choose f to be a gaussian function f(k) := η−k2 with η := −eiπ/d,

we find the critical value λ =
√
d when d ≡ 1mod 4 and λ = i

√
d when d ≡ 3

mod 4. Moreover, its opposite −λ is also often a critical value. This is the
case when d is not a square. But this is not always the case, for instance,
when d = 9, the value −3 is not d-critical.

1.4 Induced critical values

In this section we explain how to construct d-critical values when d is
a composite number starting from critical values for the factors of d. The
method works for any abelian groups.

⋆ Let G1 ⊂ G be finite abelian groups and λ1 be a critical value on
G1 with λ1-critical function f1. Then λ1 is also a critical value on G with
λ-critical function f := f11G1

.
⋆ Let G1 ⊂ G be finite abelian groups, d1 be the order of G1 and λ2

be a critical value on the quotient G/G1 with λ2-critical functions f2. Then
λ := d1λ2 is a critical value on G with λ-critical function f := f2 ◦ π where
π : G→ G/G1 is the projection.

⋆ Let G = G1 ×G2 be the product of two finite abelian groups, let λ1 be
a critical value on G1 with λ1-critical function f1 and λ2 be a critical value
on G2 with λ2-critical function f2. Then the product λ := λ1λ2 is a critical
value on G with λ-critical function f := f1 ⊗ f2.

The most interesting critical values will be those that are not special and
that are not obtained by these “induction” methods.

1.5 Numerical experiments

The following lists of d-critical values rely on numerical experiments using
the Buchberger’s algorithm for computing Groebner basis (see [4, Chap. 2]).
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We denote by bd the size of the list.

For 3 ≤ d ≤ 9 the complete lists of d-critical values are:

⋆ d = 3 b3 = 4. λ = 1, 3, and ±i
√
3.

⋆ d = 5 b5 = 6. λ = 1, 5, ±
√
5, and 1± 2i.

⋆ d = 7 b7 = 8. λ = 1, 7, ±i
√
7, and ±2± i

√
3.

⋆ d = 9 b9=15. λ = 1, 9, 3, ±i
√
3, ±3i

√
3, ±1 ± 2i

√
2, and ±

√
5± 2i.

For d = 11 and 13, the lists below of d-critical values are still probably
complete.

⋆ d = 11 b11=20. λ = 1 , 11, 4±
√
5, ±i

√
11,

2± i
√
7, ±2

√
2± i

√
3, and ±(1+ε

√
5)± i

√
5−2ε

√
5 with ε = ±1.

⋆ d = 13 b13=18. λ = 1 , 13, 5± 2
√
3, ±i

√
13,

±1± 3i
√
2, ±

√
5± 2i

√
2, and ±3± 2i.

For d = 15 and 17, here are just a few d-critical values. These values were
obtained by the guess and check method. Looking at the critical values for
d ≤ 13 one can guess a few critical value for d = 15 and 17. The key point of
the method is that the Buchberger’s algorithm is much faster when checking
if a given λ is d-critical than when finding all the d-critical values.

⋆ d = 15 b15=60. λ = product of a 3-critical and a 5-critical value, and
λ = −3, −5, 6±

√
21, ±2 ± i

√
11, ±2

√
2± i

√
7, ±2

√
3± i

√
3, and

±2
√

2−ε
√
3± (2+ ε

√
3)i and 1+ε

√
5± i

√
9−2ε

√
5 with ε = ±1, and

±(
√
3± i

√
2)(

√
2± i).

⋆ d = 17 b17=28. λ = 1 , 17, 7± 4
√
2, ±i

√
17,

±1± 4i, ±
√
5± 2i

√
3, 3± 2i

√
2, ±

√
13± 2i, and

±(1 + 2ε
√
2)± 2i

√
2− ε

√
2 with ε = ±1.

For our numerical experiments we used SageMath and Maple softwares.
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2 Critical values

One of the motivations of Proposition 2.1 and Theorem 2.3 below is to ex-
plain some of the intriguing patterns that occur in these experimental lists
of critical values.

2.1 Properties of critical values

We first begin by a few properties of the critical values, that are valid on any
finite abelian group.

Proposition 2.1. Let G be a finite abelian group of odd order d, and λ a
critical value on G, then:
(i) all the Galois conjugate of λ are also critical values on G,
(ii) one has |λ| ≤ d with equality if and only if λ = d,
(iii) the ratio d/λ is also a critical value on G,
(iv) The ratio λ−1

2
is an algebraic integer.

Corollary 2.2. There exist only finitely many critical values on G.

Proof of Corollary 2.2. Since it is obtained by elimination, the set of critical
values on G is either finite or its complement in C is finite. Since, by (ii) it
is bounded, it must be finite.

Proof of Proposition 2.1. (i) Equations (1.2) have rational coefficients.
(ii) This follows from Cauchy-Schwarz inequality. Indeed, setting

‖f‖∞ = max
k∈G

|f(k)| and ‖f‖2 = (
∑

k |f(k)|2)
1

2 , one has

|λ|‖f‖2∞ = ‖f ⋆ f‖∞ ≤ ‖f‖22 ≤ d ‖f‖2∞.

Hence |λ| ≤ d. In case we have equality the function f must have constant
modulus, and must satisfy f(k+ℓ)f(k−ℓ) = f(k)2, for all k, ℓ. Hence f is
proportional to a character and one has λ = d.

(iii) If f is a λ-critical function on G, then its Fourier transform f̂ , which
is given by, for every character χ : G→ C∗,

f̂(χ) =
∑
x∈G

f(x)χ(x),

is a d/λ-critical function on the dual group Ĝ which is isomorphic to G.
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(iv) Let G+ be a subset of G of cardinality d−1
2

such that for each non-zero
ℓ ∈ G either ℓ or −ℓ is in G+. The equations (1.2) can be rewritten as

λ−1
2
f(k)2 =

∑
ℓ∈G+

f(k+ℓ) f(k−ℓ) for all k in G (2.1)

Let K be the subfield of C generated by the coefficients f(k). To prove that
λ′ := λ−1

2
is an algebraic integer, it is enough to check that, for all non-

archimedean absolute value |.|v on K, one has |λ′|v ≤ 1.
We set ‖f‖v := max

ℓ∈G
|f(ℓ)|v, we choose k such that ‖f‖v = |f(k)|v, and we

compute

|λ′|v‖f‖2v = |λ′f(k)2|v = | ∑
ℓ∈G+

f(k+ℓ)f(k−ℓ)|v

≤ max
ℓ∈G

|f(k+ℓ)|v|f(k−ℓ)|v ≤ ‖f‖2v.

This proves that |λ′|v ≤ 1 as required.

2.2 Construction of critical values

From now on, G will be the cyclic group Z/dZ. It is not clear from the
definition that there does exist d-critical values that are non-induced and
non-special. The following theorem tells us that this is always the case for
d ≥ 5.

Theorem 2.3. Let a,b be positive integers with a+b=d and a≡ (d+1)2

4
mod 4.

Then the complex number λ :=
√
a+ i

√
b is a d-critical value.

Remark 2.4. The congruence assumption in Theorem 2.3 is equivalent to

a− b ≡ 1 mod 4 and ab ≡ 0 mod 4. (2.2)

A more concrete way to state Theorem 2.3 is:
For d ≡ 1 mod 4, the following values are d-critical:√
d ,

√
d−4+2i ,

√
d−8+2i

√
2 ,

√
d−12+2i

√
3 , ...

For d ≡ 3 mod 4, the following values are d-critical:
i
√
d , 2+i

√
d−4 , 2

√
2+i

√
d−8 , 2

√
3 + i

√
d−12 , ...

More precisely, we will see that, surprisingly, for these values λ, the set
of λ-critical functions has positive dimension. Indeed, we will construct a
one-parameter family of λ-critical functions using a suitable Jacobi theta
function.

Before that we discuss the above congruence condition on a.
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Lemma 2.5. Let a,b be positive integers with a+b=d and let λ :=
√
a+ i

√
b.

The number λ−1
2

is an algebraic integer if and only if a≡ (d+1)2

4
mod 4.

In particular, by Proposition 2.1.iv, when a 6≡ (d+1)2

4
mod 4, the complex

number λ =
√
a+ i

√
b can not be a d-critical value.

Remark 2.6. Note that, for any algebraic number λ, one has the equivalence:

ν := λ−1
2

is an algebraic integer ⇐⇒ ν ′ := λ2−1
4

is an algebraic integer. (2.3)

Indeed, theses two elements ν and ν ′ are related by the equation ν2+ ν = ν ′.

Proof of Lemma 2.5. The number ν ′ := λ2−1
4

is equal to ν ′ = a−b−1
4

+ i
√
ab
2
. It

is an algebraic integer if and only if a − b ≡ 1 mod 4 and ab ≡ 0 mod 4.

As seen in (2.2), this condition is equivalent to a≡ (d+1)2

4
mod 4.

Corollary 2.7. Let p,q be positive integers with p odd and q even and let
d := p2 + q2. Then the complex number λ := p+ iq is a d-critical value.

Proof. Condition (2.2) is true: p2 − q2 ≡ 1 mod 4 and p2q2 ≡ 0 mod 4.

2.3 More numerical experiments

A reasonable aim in this topic would be to give, for each d the list of the
d-critical values λ, and for each λ the description of the projective algebraic
variety given by the λ-critical functions (number of connected components,
their dimension,...).

Here are a few less ambitious questions supported by numerical experi-
ments that suggest that some hidden structure has to be understood.

The first question deals with the properties of the λ-critical functions
when λ belongs to a real or imaginary quadratic number field.

Question 2.8. Let d be an odd integer and λ a d-critical value which is
quadratic. Does there exist an even λ-critical function?

That is a λ-critical function f such that f(−k) = f(k) for all k.
We checked, using numerical experiments, that this is true for d ≤ 11.

Unfortunately this is not true when λ is not quadratic as 2
√
2−1+2i

√
2+

√
2.

The second question deals with the properties of the d-critical values.

7



Question 2.9. Let d be an odd prime and λ a d-critical value.
Are λ and d/λ Galois conjugate, except for λ = 1 and λ = d?

More generally, when d is not prime, one might still expect a similar
question to be true for non-induced d-critical values.

Note that we do not expect all the Galois conjugates in C of the non-real
critical values λ to have absolute value equal to

√
d. We computed, using

numerical experiments, an example of d-critical value λ of degree 8 over Q

with two real and six non-real Galois conjugates in C.

The third question deals with critical values that are real quadratic.

Question 2.10. Let d be an odd prime and λ a d-critical value which is a
real quadratic number. Is such a λ special?

We recall that special means that λ = 1, d, ±
√
d, or

d−3±
√

(d−1)(d−9)

2
.

Note that the d-critical values which are quadratic over Q and non-real
can be described up to sign thanks to Proposition 2.1 and Theorem 2.3.

We checked, using numerical experiments, that this is true for d ≤ 11.

The last question deals with critical values that are quadratic over Q but
are non real. More precisely it deals with the sign of Re(λ) in Theorem 2.3.

Question 2.11. Let d be an odd integer and a,b be positive integers with
a−b≡ d2+1

2
mod 8 and a+b=d. If d 6≡ 2 mod 3, is the number λ := −√

a+i
√
b

a d-critical value?

Moreover, for each d ≡ 2 mod 3, one still expects the answer to this
question to be true with at most one exception. Recall that the interesting
case is when the critical value λ is quadratic over Q i.e. when the integer a
is a square (see Remark 3.9).

We checked, using numerical experiments, that −1+2i and −2+ i
√
7 are

not critical values and that, for d ≤ 23, the only other possible exceptions
are −3 + 2i

√
2 and −4 + i

√
7.

There is another similar question: let d = a2 be the square of an odd
integer a ≥ 3. We know that this integer a is a d-critical value. But when is
its opposite −a also d-critical? I checked, using numerical experiments, that
−3 is not 9-critical but that −5 is 25-critical.
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3 Theta functions and elliptic curves

Our aim now is to prove Theorem 2.3.

3.1 Main result

We recall the definition of the Jacobi theta function:

θτ (z) = θ(z, τ) :=
∑
m∈Z

eiπτm
2

e2iπmz, for z ∈ C and τ ∈ H,

where H is the upper half plane H = {τ ∈ C | Im(τ) > 0}. This function
is 1-periodic: θτ (z + 1) = θτ (z). We can now explain our construction of
λ-critical functions on Z/dZ.

Definition 3.1. We will say that the function θτ is (λ, d)-critical if, for all
z in C, the function fz,τ : ℓ 7→ θ(z+ℓ/d, τ) is λ-critical on Z/dZ.

This means that, for all z in C,

∑
ℓ∈Z/dZ

θ(z + ℓ/d, τ) θ(z − ℓ/d, τ) = λ θ(z, τ)2.

Theorem 2.3 is a special case of the following Proposition 3.2.(a). The
whole Proposition 3.2 tells us more. It tells us exactly for which parameters
d, λ, τ , the function θτ is (λ, d)-critical.

Proposition 3.2. Let a,b be positive integers with a ≡ (d+1)2

4
mod 4 and

a+b=d. Set λ0 :=
√
a + i

√
b and

τ0 := 1
4d2

(a− b− d2 + 2i
√
ab). (3.1)

(a) The function θτ0 is (λ0, d)-critical.
(b) Conversely, let τ ∈ H such that the function θτ is (λ, d)-critical, then one
has λ = ±√

a± i
√
b with a, b as above.

(c) The function θτ is (λ, d)-critical for λ = ±λ0 if and only if τ = (k+τ0)/p
with τ0 as above, k ∈ Z and p > 0 a divisor of the integer Nk := d2 |k+τ0|2.
(d) The above sign ε = ± is given by the Jacobi symbol ε = ( p

4k−1
).
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Remember that the Jacobi symbol (γ0
δ0
) = ±1 is defined for two relatively

prime integers γ0 and δ0 with δ0 odd, and that, by convention, when δ0 is
negative, it is given by (γ0

δ0
) = ( γ0

−δ0
).

Note also that, in view of Point (b), the assumption λ = ±λ0 in Point (c)
is not restrictive since one has the equivalence:

θτ is (λ, d)-critical ⇐⇒ θ−τ is (λ, d)-critical.

Remark 3.3. The parameter τ0 will be called the fundamental parameter
and the parameters τk,p := (k + τ0)/p the associated parameters. These
parameters τk,p and the integers Nk can also be given by the simple formulas

with m0 :=
a−b−d2

4
and N0 :=

(d+1)2−4a
16

:

τk,p =
1

d2p
(d2k +m0 + i

√
ab/4) where p |Nk := d2k2 + 2m0k +N0 .

Example 3.4. To be very concrete, we give below the list of all values τ = τk,p
for which θτ is (±λ0, d)-critical with k in Z and p divisor of Nk, when d ≤ 9.

⋆ d = 5, λ0 = 1 + 2i : τk,p =
1

25p
(25k − 7 + i) where p | 25k2−14k+2.

⋆ d = 7, λ0 = 2 + i
√
3: τk,p =

1
49p

(49k−12 + i
√
3) where p | 49k2−24k+3.

⋆ d = 9, λ0 = 1+2i
√
2: τk,p =

1
81p

(81k−22 + i
√
2) where p | 81k2−44k+6.

⋆ d = 9, λ0 =
√
5 + 2i: τk,p =

1
81p

(81k−20 + i
√
5) where p | 81k2−40k+5.

Given d and λ0, we have seen that it is always possible to choose k and
p such that λ = ελ0 with sign ε = ( p

4k−1
) equal to +1: we just choose p = 1.

On the other hand, given d and λ0, it is sometimes possible to choose k
and p such that λ = ελ0 with sign ε = ( p

4k−1
) equal to −1. For instance,

⋆ when λ = −2− i
√
3 with τ = 1

98
(37 + i

√
3), or

⋆ when λ = −
√
5− 2i with τ = 1

162
(61 + i

√
5).

We mention the following corollary that tells us exactly when this is possible.

Corollary 3.5. Let a,b be positive integers with a≡ (d+1)2

4
mod 4 and a+b=d.

Set λ := −√
a− i

√
b. There exists τ in H whose function θτ is (λ, d)-critical

if and only if either a is not a square in Z or −b is not a square in Z/2aZ.

Concretely, here are a few special cases of our criteria for such a function
θτ to exist, in which a is a square in Z and b is either 4ℓ or 4ℓ− 1 with ℓ a
positive integer:
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⋆ When λ = −1− 2i
√
ℓ : never.

⋆ When λ = −3− 2i
√
ℓ : ℓ ≡ 1 mod 3.

⋆ When λ = −5− 2i
√
ℓ : ℓ ≡ 2 or 3 mod 5.

⋆ When λ = −2− i
√
4ℓ− 1: ℓ ≡ 1 mod 2.

⋆ When λ = −4− i
√
4ℓ− 1: ℓ ≡ 1 mod 2.

⋆ When λ = −6− i
√
4ℓ− 1: ℓ ≡ 1, 2, 3 or 5 mod 6.

The proof of this corollary that relies on quadratic reciprocity is left to
the reader. We will not use it below. The rest of the paper is devoted to the
proof of Proposition 3.2.

3.2 Preliminary formulas

The proof of Proposition 3.2.(a) relies on three classical formulas for the
theta functions, the “addition formula”, the “isogeny formula”, the “trans-
formation formula”. We will only need special cases of these formulas that
we state below.

We need to introduce the theta functions1

θ[0](z) = θ[0](z, τ) :=
∑

m even

eiπ
τ
2
m2

e2iπmz

θ[1](z) = θ[1](z, τ) :=
∑

m odd

eiπ
τ
2
m2

e2iπmz .

Note that one has the equalities:

θ[0](z, τ) = θ(2z, 2τ) and θ[0](z, τ) + θ[1](z, τ) = θ(z, τ/2). (3.2)

Here is the first formula that we need.

Lemma 3.6. Addition formula For all z, w in C, τ ∈ H, one has

θ(z + w, τ)θ(z − w, τ) = θ[0](w, τ)θ[0](z, τ) + θ[1](w, τ)θ[1](z, τ). (3.3)

Proof. Just write the left-hand side as a double sum over m, n in Z and split
this double sum according to the parity of m−n.

Here is the second formula which is simple but useful.

1With other ”classical” notations for theta functions as in [3], one has the equalities,

θ[0](z, τ) = θ0,0(2z, 2τ) = θ
[

0
0

]

(2z, 2τ) and θ[1](z, τ) = θ1,0(2z, 2τ) = θ
[

1/2
0

]

(2z, 2τ).
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Lemma 3.7. Isogeny formula For τ ∈ H, d odd positive integer, one has

∑
ℓ∈Z/dZ

θ[0](ℓ/d, τ) = d θ[0](0, d
2τ) and

∑
ℓ∈Z/dZ

θ[1](ℓ/d, τ) = d θ[1](0, d
2τ).

Proof. Just write the left-hand sides as a double sum over m in Z and ℓ in
Z/dZ and notice that

∑
ℓ∈Z/dZ e

2iπℓm/d is equal to d when d divides m and is
equal to 0 otherwise.

The last formula deals with an element σ =
(

α β
γ δ

)

∈ SL(2,Z).

Lemma 3.8. Transformation formula If σ ≡ 1 mod 2, and γ > 0, then

θ(0, στ) = i
δ−1

2 (γ
δ
) (γτ + δ)

1

2 θ(0, τ). (3.4)

In this formula, the SL(2,Z) action on the upper half plane H is the

standard action στ = ατ+β
γτ+δ

, the number z
1

2 is the square root of a complex

number z ∈ H whose real part is non negative, and the symbol (γ
δ
) = ±1 is

still the Jacobi symbol.
Note that Formula (3.4) can be equivalently rewritten as

θ(0, στ) = εδ (
2γ
δ
) (γτ + δ)

1

2 θ(0, τ),

where εδ = 1 when δ ≡ 1 mod 4, and εδ = −i when δ ≡ 3 mod 4.

Proof. Up to sign, Formula (3.4) follows from the following two formulas

θ(0, τ + 2) = θ(0, τ),

θ(0,−1/τ) = (−iτ) 1

2 θ(0, τ).

and from the fact that the map (σ, τ) 7→ στ + δ is a cocycle on SL(2,Z)×H.
The precise determination of the sign is a classical issue due to Hecke. It can
be found for instance in [8, p.181] in [6, p.148] or in [7, p.32].

Remark 3.9. This precise determination of the sign is important for us be-
cause it will allow us to decide whether the critical value we will find is
λ =

√
a + i

√
b or its opposite. This is particularly important when a is a

square, because in this case λ and −λ are not Galois conjugate and one can
not apply Proposition 2.1.i.

The following corollary of Lemma 3.8 will be very useful.

12



Corollary 3.10. If σ ≡ ±1 mod 4, then, for all τ in H, one has

θ[0](0, στ)

θ[0](0, τ)
=

θ[1](0, στ)

θ[1](0, τ)
. (3.5)

Proof. Let

σ′ =

(
α β ′

γ′ δ

)
and σ′′ =

(
α β ′′

γ′′ δ

)
,

with β ′ = 2β, γ′ = γ/2 and β ′′ = β/2, γ′′ = 2γ, so that

σ′(2τ) = 2στ and σ′′(τ/2) = 1
2
στ .

Since the matrix σ is equal to ±1 mod 4, the two matrices σ′ and σ′′ are equal
to 1 mod 2. Therefore we can apply the transformation formula in Lemma
3.8 to both pairs (σ′, 2τ) and (σ′′, τ/2). Using the multiplicativity properties
of the Jacobi symbol, we see that the following two ratios are given by the
same formula

θ(0, 2στ)

θ(0, 2τ)
=
θ(0, 1

2
στ)

θ(0, 1
2
τ)

.

We now conclude thanks to Equalities (3.2).

3.3 The condition on theta contants

The first step in the proof of Proposition 3.2 is the following criterion on
λ, τ which ensures that the functions fz,τ are λ-critical. This criterion is a
relation between “theta constants”, i.e. theta functions evaluated at z = 0.

Lemma 3.11. Let τ ∈ H and λ ∈ C. The function θτ is (λ, d)-critical if and
only if one has the equalities

λ = d
θ[0](0, d

2τ)

θ[0](0, τ)
= d

θ[1](0, d
2τ)

θ[1](0, τ)
. (Tλ,τ )

Proof. For w in C we introduce the function

z 7→ Fw(z) = Fw(z, τ) := θ(z + w, τ) θ(z − w, τ).

We want to know when the two functions
∑

ℓ Fℓ/d and F0 = θ2 are propor-
tional. The key point of the proof is that all these functions Fw live in the

13



same two-dimensional vector space and that this vector space has a very con-
venient basis: (θ[0], θ[1]). We only have to express that the coefficients of our
two functions in this basis are proportional. These coefficients are given by
the following calculation in which we apply successively the addition formula
and the isogeny formula,

∑

ℓ

Fℓ/d(z, τ) =
∑

ℓ

θ[0](ℓ/d, τ) θ[0](z, τ) +
∑

ℓ

θ[1](ℓ/d, τ) θ[1](z, τ)

= d θ[0](0, d
2τ) θ[0](z, τ) + d θ[1](0, d

2τ) θ[1](z, τ) and

θ(z, τ)2 = θ[0](0, τ) θ[0](z, τ) + θ[1](0, τ) θ[1](z, τ).

These two functions are proportional with proportionality factor λ if and
only if one has

λ = d
θ[0](0, d

2τ)

θ[0](0, τ)
= d

θ[1](0, d
2τ)

θ[1](0, τ)
.

This is the criterion (Tλ,τ ).

3.4 The modular curve X(4)

In order to interpret the condition (Tλ,τ ), the following classical description
of the modular curve X(4) will be very useful.

For m ≥ 1, we introduce the principal congruence subgroup of level m

Γ(m) := {σ ∈ SL(2,Z) | σ ≡ ±1 mod m}

and the modular curve of level m

X(m) := Γ(m)\H.

Note that the element −1 ∈ SL(2,Z) acts trivially on H. It is classical that
X(m) is a Riemann surface with finitely many cusps whose genus can be
calculated thanks to Hurwitz formula. In this elementary paper we will only
deal with m = 4. In this case, X(4) has genus zero and six cusps. The
following lemma gives a nice interpretation of this fact.

We introduce the meromorphic function Φ on H given by, for all τ in H,

Φ(τ) :=
θ[1](0, τ)

θ[0](0, τ)
.

14



Lemma 3.12. The map Φ induces a biholomorphism

ϕ : X(4) −→ P1Cr {0,∞,±1,±i}.

This lemma tells us that, as an hyperbolic surface, X(4) is the ”regular
ideal octahedron”.

The statement of this lemma is equivalent to the following four facts on
the meromorphic map Φ.
(a) For all σ in Γ(4) and all τ in H one has Φ(στ) = Φ(τ).
(b) For all τ in H, one has Φ(τ) 6= 0,∞,±1,±i.
(c) If Φ(τ) = Φ(τ ′), there exists σ in Γ(4) such that τ ′ = στ .
(d) For all z 6= 0,∞,±1,±i, there exists τ in H with Φ(τ) = z.

Note that the first fact (a) is the most important one for us in order to
prove Theorem 2.3 and that it is just a restatement of Corollary 3.10.

Proof of Lemma 3.12. This lemma is classical for the experts. We will just
relate it to the existing litterature. We will deduce these four facts from a
very similar statement in Mumford’s book [7]. In this book, Mumford uses
the four Jacobi theta-functions θa,b with a, b equal to 0 or 1, given by

θa,b(z, τ) =
∑
m∈Z

eiπτ(m+ a
2
)2e2iπ(m+ a

2
)(z+ b

2
)

It is proven in [7, Theorem 10.1 p.51] that the map Ψ given in homogeneous
coordinates by

Ψ : τ 7→ [θ20,0(0, τ), θ
2
0,1(0, τ), θ

2
1,0(0, τ)]

induces an biholomophism ψ between the curve X(4) and the curve

C := {[x0, x1, x2] ∈ P2C | x20 = x21 + x22 and all xi 6= 0}

which is a conic with six points removed. By the addition formula (3.3),
these theta-constants θa,b are related to the theta-constants θ[0] and θ[1] :

θ20,0(0, τ) = θ2[0](0, τ) + θ2[1](0, τ),

θ20,1(0, τ) = θ2[0](0, τ)− θ2[1](0, τ),

θ21,0(0, τ) = 2 θ[0](0, τ) θ[1](0, τ).

Hence one can express in a simple way the map Ψ thanks to the function Φ:

Ψ(τ) = [1+Φ2(τ) , 1−Φ2(τ) , 2Φ(τ)],

for all τ in H.

15



Remark 3.13. Note that this identification of X(4) is equivariant. More
precisely, the finite group G := PGL(2,Z/4Z) has cardinality 48 and acts by
biholomorphisms or biantiholomorphisms on X(4). The biholomorphism ϕ
identifies this group G with the group of isometries of the octahedron. This
follows from the identities

Φ(−τ ) = Φ(τ) , Φ(τ + 1) = Φ(τ) and Φ(−1/τ) =
−Φ(τ) + 1

Φ(τ + 1
.

3.5 Elliptic curves with complex multiplication

We can now go on the proof of Proposition 3.2, by explaining how we will
check that a pair (λ, τ) satisfies Condition (Tλ,τ ).

For τ in H, we introduce the lattice Λτ = Zτ ⊕ Z1 of C so that the
quotient Eτ := C/Λτ is the elliptic curve associated to τ . We will see that
the values of λ and τ = τk,p in Theorem 2.3 have been chosen so that the

elliptic curve Eτ has complex multiplication by µ := λ
2
. See [9] for more

classical applications of complex multiplication. More precisely, they have
been chosen so that µΛτ = Λd2τ . This means that

d2τ = µ (ατ + β), (3.6)

1 = µ (γτ + δ), (3.7)

for a matrix σ =

(
α β
γ δ

)
∈ SL(2,Z). We will be able to impose on σ the

extra condition

γ > 0 and σ ≡ ±1 mod 4. (3.8)

We explain why such a choice is relevant in the following lemma.

Lemma 3.14. Let τ ∈ H and d an odd integer.
(a) The function θτ is (λ, d)-critical for some λ in C if and only if there

exists σ =
(

α β
γ δ

)

∈ SL(2,Z) satisfying (3.8) such that gτ = d2τ .

(b) In this case, the critical value is given by, setting µ = (γτ + δ)−1,

λ = εδ (
γ
δ
) µ1/2. (3.9)

Recall that εδ = 1 when δ ≡ 1 mod 4, and εδ = −i when δ ≡ 3 mod 4.
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Proof of Lemma 3.14. (a) According to Lemma 3.11, the function θτ is (λ, d)-
critical for some λ in C if and only if one has the equalities Φ(τ) = Φ(d2τ).

According to Lemma 3.12, this equality is equivalent to the existence of
an element σ in Γ(4) such that στ = d2τ . Note that this forces the lower-left
coefficient γ to be non zero. Replacing σ by −σ if necessary, we can also
assume that γ > 0.

(b) To compute the critical value λ, we use again Lemma 3.11 combined
with Formulas (3.2). We obtain

λ = d
θ[0](0, d

2τ)

θ[0](0, τ)
= d

θ(0, d22τ)

θ(0, 2τ)
.

Let σ′ =

(
α β ′

γ′ δ

)
, with β ′ = 2β, γ′ = γ/2, so that σ′(2τ) = d22τ. Since

the matrix σ equals ±1 mod 4, the matrix σ′ is equal to 1 mod 2. Hence we
can apply the transformation formula in Lemma 3.8 to σ′ and τ ′. We get

λ = d εδ (
γ
δ
) (γτ + δ)

1

2 . (3.10)

By assumption, the number µ := (γτ + δ)−1 is a complex multiplication
for the lattice Λτ , more precisely, one has µΛτ = Λd2τ . This gives the equality
µµ = d2, and Equation (3.7) can be rewritten as

d2 (γτ + δ) = µ.

Now Equation (3.10) can be rewritten as λ = εδ (
γ
δ
)µ

1

2 .

3.6 Choosing the elliptic curve

In order to end the proof of Proposition 3.2, it only remains to characterize
those points τ in H that satisfy the condition στ = d2τ for some σ in Γ(4)
and to express the d-critical value λ given in Lemma 3.14 without using σ.

We begin by recalling the notation of Proposition 3.2. Let a, b be positive

integers with a≡ (d+1)2

4
mod 4 and a+b=d. We introduced the “fundamental

parameter” τ0 := 1
4d2

(a − b − d2 + 2i
√
ab) ∈ H. For k in Z, we introduced

the integer Nk := d2|k + τ0|2. For p ∈ N dividing Nk, we also introduced the
“associated parameters” τk,p := (k + τ0)/p ∈ H.
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Lemma 3.15. (a) Let τ in H such that there exists σ in Γ(4) for which
στ = d2τ , then there exists k, p as above such that τ = τk,p or τ = −τ k,p.
(b) Conversely, for every τ = τk,p as above, there exists σ in Γ(4) such that
στ = d2τ .
(c) This matrix σ can be chosen to be σ =

(

2(a−b)−d2(1−4k) −4Nk/p
4p 1− 4k

)

.

Proof. We first notice that, in this lemma, we can always add the extra
conditions γ > 0 and σ ≡ 1 mod 4. Indeed, if needed, we can always replace
the matrix σ by −σ without changing the point τ . We can also replace σ by
the matrix

(

α −β
−γ δ

)

, the point τ is then replaced by −τ .

(a) We set µ := (γτ+δ)−1. Since the matrix σ =
(

α β
γ δ

)

has determinant

1, the equations (3.6) and (3.7) can be rewritten as

γ−1(µ−1 − δ) = τ, (3.11)

µ2 − t0µ+ d2 = 0, (3.12)

with t0 := α+ d2δ. We introduce a, b such that t0 = 2(a− b) and d = a+ b.
⋆ Since α ≡ δ ≡ 1 mod 4 and d2 ≡ 1 mod 4, both numbers a and b are
integers.
⋆ Since µ is not a real number, one has |t0| < 2d and the integers a and b are
positive.
⋆ Since σ ≡ 1 mod 4, one has αδ ≡ 1 mod 16, and these integers satisfy

a− b ≡ 1+d2

2
mod 8, and hence a≡ (d+1)2

4
mod 4.

⋆ Since Im(µ) < 0, solving Equation (3.12), one gets the equality

µ := (
√
a− i

√
b)2 = a− b− 2i

√
ab (3.13)

⋆ We write δ = 1− 4k with k ∈ Z, and one computes

Nk = d2|k + τ0|2 = 1
16d2

[((a− b)− (1− 4k)d2)2 + 4ab]

= 1
16
[1− 2(a− b)(1− 4k) + d2(1− 4k)2]

= (1− αδ)/16 = −βγ/16.

⋆ We write γ = 4p so that this integer p is a divisor of the integer Nk.
⋆ Plugging these informations in (3.11) gives τ = (k + τ0)/p.

(b) and (c) We assume now that τ = τk,p as above and we want to
construct the matrix σ. We follow the same computation as in (a) in opposite
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order. We set µ := a− b− 2i
√
ab and t0 := 2(a− b) so that Equation (3.12)

is satisfied. We choose δ := 1− 4k and α := t0 − d2δ. We first note that

αδ ≡ 1 mod 16. (3.14)

To check (3.14), just remember that one has t0 ≡ 1 + d2 mod 16, and hence

αδ − 1 ≡ (δ − 1)(1− δd2) ≡ 42 ≡ 0 mod 16.

Then the same computation as above gives the equality (1 − αδ)/16 = Nk.
Hence if we choose γ := 4p and β := −4Nk/p, the matrix σ is in Γ(4). By
construction these coefficients satisfy also Equality (3.11). Hence the matrix
σ satisfies Equalities (3.6) and (3.7).

Proof of Proposition 3.2. This proposition is now just a straightforward con-
sequence of Lemmas 3.14 and 3.15 combined with Formula (3.13).

3.7 Conclusion and Perspective

The aim of this paper was to explain why the algebraic integers
√
a + i

√
b

that occur in the lists of section 1.5 are indeed d-critical values when a, b are

positive integers with a+ b = d and a≡ (d+1)2

4
mod 4. To keep this paper as

elementary as possible, we have only discussed here these d-critical values.

However, in the lists of section 1.5, there are still remaining intriguing
d-critical values. In a more technical forthcoming paper [2], we will see
that these d-critical values belong to a wide class of critical values on finite
abelian groups that can be explained by an extension of the construction of
Proposition 3.2. This will be a nice application of the abelian varieties and
their theta funtions, relying on works of Siegel, Stark, Igusa and of Taniyama-
Shimura. See [1] for a recent paper surveying previous applications of these
tools. Indeed we will prove in [2].

Theorem 3.16. Let A = Cg/Λ be a principally polarized abelian variety and
ν be a unitary Q-endomorphism of A preserving a theta structure of level 2.
Let Tν be its tangent map, Gν the group Λ/(Λ∩TνΛ) and dν the order of Gν.

Then there is a critical value λν = κν d
1/2
ν detC(Tν)

1/2 on Gν with κ4ν = 1.

Note that |λν| = d
1/2
ν and that one can compute the fourth root of unity κν .
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Note also that, any finite abelian group can occur as a group Gν but,
even when g > 1, this group Gν may be cyclic. We will construct concrete
examples with Gν cyclic when the abelian variety A has complex multiplica-
tion. These constructions will explain all the intriguing d-critical values in
our lists. For instance we will show in [2] by using abelian surfaces.

Corollary 3.17. Let dj=aj+bj with d1 ∧ d2 = 1 and aj ≡ (dj+1)2

4
+2 mod 4

be positive integers. Then λ=(
√
a1+i

√
b1)(

√
a2−i

√
b2) is d-critical.

Corollary 3.18. Let d = a+b+c be positive integers, with b2 > 4ac, and
a≡b≡c≡1 mod 4. Then λ =

√
a+

√
c+ i

√
b−2

√
ac is d-critical.

A key remark in the proof of Corollary 3.18, is an old factorization formula:

√
a+

√
c+i

√
b−2

√
ac =

√
a

(
1+i

√
b+

√
b2−4ac
2a

)(
1−i

√
b−

√
b2−4ac
2a

)
.
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