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Abstract

This paper deals with the estimation of the tail index of a condi-
tional heavy-tailed distribution of a spatial process. We are particularly
interested in the estimation of conditional spatial rare events when the
process is f—mixing. Given a conditional stationary real-valued multi-
dimensional spatial process {Yxi, iczV }, we investigate its conditional
heavy-tail index estimation and the corresponding conditional quantile.
Asymptotic properties of the corresponding estimators are established
under mild mizing conditions. The particularity of the tail proposed
estimator is based on the spatial nature of the sample and its unbiased
and reduced variance properties compared to well known conditional
tail index estimators. A numerical study on synthetic and real data
sets is conducted to assess the finite-sample behaviour of the proposed
estimators.

keywords: Asymptotic normality; [S-mixing; conditional extreme value index; bias
correction; spatial dependence; functional estimation.



1 INTRODUCTION

Extreme value theory knows a growing dynamic in recent years motivated by the large
number of applications in various and varied fields. The literature on statistical infer-
ence in extreme value theory, developing sophistic statistical tools for modeling extreme
events towards several direction is then very extensive. We refer to Daouia et al. [2019)
2018], Basrak and Tafro| [2014], [Ledford and Tawn| [1996] [1997], Beirlant and Van-|
dewalle| [2002], Heffernan and Tawn| [2004], Draisma et al| [2004], [Peng| [2010} [1999]
among many others.

Speaking of the estimation of the heavy distribution tail index, we refer to existing
work, particularly that of Bobbia et al| [2019, 2021], Daouia et al|[2020], Bassene|
[2016], Ndao et al.| [2014], [Resnick et al] [1998], Hsing| [1991], [Hill [1975] to name but
a few. The most tail index estimator is that of for times series under the
independent hypothesis while Resnick et al. [1998] discuss the consistency of Hill’s es-
timator when it is applied to certain classes of heavy-tailed stationary and dependent
processes. Other authors looks for estimator properties and its applications
in finance (risk measure), medicine... when Ndao et al| [2014] deal with censure data
and Bassene| [2016] extends these works in spatial case.

Almost all the existing statistical tools for estimating the heavy distribution tail index
are developed for independent or time-dependent data despite the numerous situations
where data are of spatial dependency nature. In fact, in many fields, data are now
collected with geographical positions such as oceanography, epidemiology, forestry sur-
vey, economy and many others. The study of these kinds of data or any characteristic
of such data cannot be done without taking into account their respective geographi-
cal positions and eventually spatial dependency. Spatial analysis is a general term to
describe a technique that uses the spatial information in order to better handle the
dependency of the observed data in an inference.

For modelling extreme spatial processes, the reader may refer to Tchazino et al. [2021],
Bopp et al.| [2021], [Sharkey and Winter] [2019], |Opitz| [2016], Bassene| [2016], Basrak and|
Tafro| [2014], [Thibaud et al| [2013], Davison et al.| [2012], Blanchet and Davison| [2011],
Turkman et al| [2010] among others. In particular, for tail index estimation, Basrak
and Tafro| [2014] considered the extremely behaviour of moving averages and moving
maxima on a regular two dimension discrete grid while Bassene [2016] extended the
previous works to a more general context under strongly conditions. Recently
extend Bassene [2016] il the functional context under S-mixing condition.
Tail index estimation is important in many extreme value theory problems in particu-
lar when estimating extreme quantiles (see Bolancé and Guillen| [2021], |Velthoen et al.|
[2021], [Chavez-Demoulin and Guillou [2018], [Bassene| [2016], |Goegebeur et al.| [2014]
among others). |Goegebeur et al| [2014] and Bassene [2016] proposed Weissman ex-
treme quantile estimators for f—mixing non-spatial process (resp. a—mixing spatial
process) from tail estimation. Velthoen et al. [2021] proposed recently a gradient boost-
ing procedure to estimate a conditional generalized Pareto quantiles while
introduced a new method to estimate longevity risk based on the kernel
estimation of extreme quantiles.

It is quite natural to note that the advent of a phenomena would not have been consid-
ered as independent of any other plagues but as the result of several related plagues.




Thus it would be convenient to associate a covariate (which can be a set of variables)
with the process describing the phenomenon being studied. Speaking of the conditional
estimation of the extreme distribution tail index, we refer to Bassene [2016], Ndao et al.
[2014], (Gardes and Stupfler| [2014], Gardes et al. [2012], Davison et al.| [2012], Gardes
and Girard [2010, [2008], Resnick et al. [1998] to name but a few. Bassene| [2016] pro-
posed a non-parametric conditional tail index estimation and Weissman type estimator
of extreme quantile under a-mixing condition while Ndao et al. [2014] early did the
same but under random censoring. |Gardes and Stupfler| [2014] propose the estima-
tion of the tail index in the presence of a finite-dimensional random covariate inspired
by (Gardes and Girard| [2010] where the covariate is recorded simultaneously with the
quantity of interest while early (Gardes and Girard| [2008| based their approach on a
weighted sum of the log-spacing between some selected observations. Davison et al.
[2012] introduced a latent variable modeling which allows a better fit to marginal dis-
tribution.
Let (Y;);ez be a real and measurable process, where Y; has the same distribution as Y’
defined on the probability space (€2, 4, P) and (z;) a deterministic process observed to
the point i (z; € R? | d € N*). We provide R with the metric d(-,-). We assume that
the condition of the regular variation of the probability tail from Y conditionally to x
is given by:

Yy > 0, P(Y > y,a) =y 79 L(y, z), (1)

where ~y(+) is unknown positive function of covariate x and L(-,x) is a slowly varying
function at infinity.

The function v(+) is referred to as conditional tail index function or conditional extreme
value index function.

In a series of observations, since we are interested in extreme or unusual values, it is
essential to find a method of identifying and collecting such values conditionally at z. In
this context where we are interested in the Y; process related to the information of the
x process that we set, two methods are proposed in the literature; methods by moving
window approach proposed by |Gardes and Girard| [2008] and the one of (Goegebeur
et al.| [2014]. There is in the literature the conditional version of the estimator of |Hill
[1975] using either of the two extreme stock selection methods.

Another aspect of this estimator of the extreme distribution tail index that attracts
the attention of many researchers is the functional one. To our knowledge, there are
at least three works going in this direction; Tchazino et al. [2021], Chavez-Demoulin
and Guillou [2018], Goegebeur and Guillou [2013].

Chavez-Demoulin and Guillou [2018] considered a [-mixing time series (Y;);eny and
built an estimator of tail index ~:

Qn(t)
@n(1)

where Qn,(t) = Y] n 0 <t < n/k is the quantile and K a function with support in
(0,1).

In this paper, we are particularly interested in the conditional estimation of the tail
index and extreme quantile for a process (Y;) associated to a deterministic process (z;).
Indeed, we wish to extend the estimator proposed by |Chavez-Demoulin and Guillou
[2018] for a mixing time series process with the conditional framework.

50() = Tc(@n) = o (2253 ) atero), 2)
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This paper is organized as follows. Section [2| presents the estimator of the conditional
tail index and a bias correction method and it’s asymptotic properties while Section
deals with conditional extreme quantile estimator and it’s asymptotic properties. In
order to study the finite sample performance of our estimators,we also propose finite
sample properties of the estimates with simulated study and a real data application in
Section [4] and finally the proofs of the main results are presented in Section | All the
figures and tables are in Section [0]

2 Functional estimation of the conditional extreme
value index

2.1 Methodology

Let Z¥; N > 1 be an Euclidean space N-dimensional of the point indices and
{Yi;i e ZN } a real and measurable spatial process where Y; has the same distribution
as Y defined on the probability space (2,.4,P). Let (x;) be a deterministic process
observed to the point i (z; € R? | p € N*). d will denote the euclidean distance on
RP. For reasons of simplicity, we note the couple (Y;, z;) as Y,,. We assume that the
condition of the regular variation of the Y'’s tail probability given x stated in equation
is satisfied; i. e. Y given x belongs to the Fréchet attraction domain of index
a(x) = 1/v(z); where v(-) is unknown positive function of covariate  and L(-,z) is a
slowly varying function at infinity that is:
im 27 s, 3)
y—=oo L(y, x)
In the following, we are interested in the non-parametric point-wise estimation of
this positive function of covariate z, v(-) for spatial data.
For that purpose, let i = (i1,...,iy) € Z" be a site and consider the notation of the
rectangular domain (see Bassene| [2016]):

In={i=(iy,...,in);1<ip<mgk=1,...,N}; (4)

with lexicographical order; in the sense that i = (i1,...,in) < j = (J1,.-.,jn)
11 < jroriy = jrandig < joor,... i = randiy < jy, k=1,..., N — 1. Consider
a sample (Y;; zi)ier, of conditional dependents variables verifying the relationship .
In the triangular ordering, the observations become (Y;,x;)1<i<a Where each index
i=1,...,1=mn3 Xny X ..Xny, is identified by a site i in the region I, (see Robinson
[2011]).
Let I, = {i;1 <i <n} and for simplicity set i = n. In the following all limits are
considered for n — oc.

Let us recall the moving window approach proposed by |Gardes and Girard, [2008§]
that we use in the following for filtering process (Y,). For r > 0, let

i

B(z,r) = {w c R, d(x,w) < r} (5)

be the ball with center x and radius r and let r,, , be a sequence of positive real numbers
tending to 0 when n — oo. Since the estimator of v(z) for given z is based on the
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variables Y; for which the associated covariates x; belongs to the ball B(z,r, ), the
proportion of points in this ball is therefore given by

1
O(Tne) = =Y UaieBarma)}-
niEIn

From there, the number of observations Y; for which the associated z; € B(x,r, ), is
given by m,, , = ng(r, ). Our estimator is built according to the following steps:

e Data filtering: Let {Z;(z) =Y;, x; € B(x,r,.)} be the set of Y;’s for which the
associated covariates x; belongs to the ball B(z,7,.);

e Data ordering and construct the conditional quantile function @, ,(t,z). The
process {Z;(x), © € I,} can be ordered in the following order : Z;,,, () <
Zomno () < o0 < Zy oo (). Let (K, ) be an intermediate sequence of
integers such that k,,, ., < m, . We will assume that

ky = km,. = 00; kp,, =0(Mmy,) as n — oo. (6)

Mn,z

We set Qum, (¢, %) == Zun, . kot)m,. (¥) Where 0 < ¢ < 5= the conditional
quantile function measurable through (Y;) for a given z; in the ball B(z,7,.). It
is obvious that for all 0 <t <1, Q.. (t, ) > Qm, . (1, 2);

e Estimation strategy: as in Chavez-Demoulin and Guillou| [2018] and in [Tchazino
et al.| [2021], for given x, consider z(-, x) : [0, 1] — R a measurable function, and
consider the function:

1
/ log <Zg x;) d(tK (1)), if the right-hand side is defined and finite,
0 z(1,x

0 otherwise.

Thus a class of estimators of y(x) from the model is given by:

08,0 = Te@n) = [ o (20D ) aoro),

where K is a function with support in (0, 1).

Remark 2.1 Under the differentiability conditions on the function K, the estimator
in |Bassene [2016] (conditional spatial version of |Hill [1975]) is a special case of this
functional conditional estimator for K =1).

2.2 Asymptotic properties

To establish the asymptotic properties of our class of estimators, we need some as-
sumptions and conditions.



1
Condition Cx: Let K be a function such that 0 < / K(t)dt < oo. Suppose that

0
K is continuously differentiable on (0,1) and that there exist M > 0 and 7 € [0,1/2)
such that |K(t)| < Mt™".

Condition C); (mixing condition): Let oy (7T) = o({Y;,i € T}) denote the o-field
generated by {Y;,i € T} for T C Z". For any subsets T} and T, of Z*, the S-mixing
coefficient between oy (77) and oy (1) is defined by

BT T2) = sup 5SS IP(A; 01 B,) = PA)P(B,), ®

j=1s=1

where the supremum is taken over all partitions {Aj}jzl C oy(Th) and {B,}>_, C
oy (Ty) of ZV. Let R(b) denote the collection of all finite disjoint unions of cubes in

ZN with total volume not exceeding b. Then, let
B(a,b) = sup {B(Tl,T2)§d(T17T2) >a;T1,1T5 € R(b)} ,  a,b>0, (9)

where d(T,T,) = inf {||x — y||;x € T1,y € To}. We assume that there exist a nonin-
creasing function 8; with lim, ., $1(a) = 0 and a nondecreasing function g (that may
be unbounded) such that

B(a,b) < Bi(a)g(b); a,b>0. (10)

Condition C}y (second order condition):
There is a constant p(x) < 0 and a rate function A(-,z) with index p(z); verifying
A(y,z) — 0 when y — oo for all x € R?, such that for ¢ > 1,

. log(U(ty, 2)/Uly, 7)) — y(z) log(t) _ | t"" —1
yh—>nol<> Ay, x) = log(?) p(z)

where U is the quantile function with regular variation defined by U(-,z) = (1/(1 —
F(-,x)))" (+ refers to the generalized inverse continuous on the left).

Note that this condition is a consequence of the Theorem B.3.1 (De Haan et al. [2006],
De Haan and Stadtmiiller| [1996]) used in the literature as a second-order condition
(see [Ndao et al.|[2014] and Bassene, [2016]).

Condition Cg: (regularity)
There is € > 0, a function 7 : R x R — R.
Set Z(j) ={i;jx(p+q) +1 < i < jr(p+q) +p;k=1,..., N} acollections of disjoints
sites of size p¥ (pV = o(Mns), P = Prne = 00 s @ = Gy, — 00, ¢/D — 05 Ty, =

~

My, @ X ==+ X My, ) and separate at list by ¢. Set (K, ) a sequence of integers such
that &, . < ..
-
(a) IB(%pN) A +pN log kmn,x - O’

N Mn ¢ =
p ’ kmn,w



(b) 72— Cov | ¥ Lz@sre(obmm,s/ima)} . 2 Hz@)>F (—hmat/ins)} |

B i€Z(j) i€Z(j)
J€lmn o €T s
r(z,9),
VO<zy<l+eand
L, = {i=(i1,...,in)i 1 Sip <ok =1,..., N}; (11)

(c) there exists a constant C' such that V 0 <z <y <1+e€:

4

A

mn X
N]% E Z 1{Fk(1_kny/mn,x)<Zi(x)§FH(1_1}mn,zz/mn,m)} S C(y o 2)
P Rmg e ieZ(j)
jeImn,x

Remark 2.2 The hypotheses Cy is classical in extreme value theory (see|Gardes and
Girard [2008], Ndao et al.| [201])]) see also|Drees [2000], Drees et al.| [2005], [de Haan
et al.| [2016] but without conditional data. The S—mixing random fields condition Cyy
is given in |Tchazino et al| [2021] | Kurisu et al| [2021], |Bradley [1995], |Dedecker et al|
[2007]) in the non conditional case while condition Cg is an extension to conditional
spatial context of the one-dimension regular condition given m ) Condition
Ck is technical to achieve our goals. We need the additional assumptions (like Cy
and C3 in |Drees et al| [2005]) if one wants to obtain the regularity condition Cg.
Particularly the condition Cr — (a) is verified if (@) hold. The condition Cyk follow
the same line as in|Tchazino et al.| [2021).

The following Theorem [2.2]is the conditional version of Theorem 2.1 in [Tchazino et al
[2021] and the conditional spatial version of the Theorem 1 in [Chavez-Demoulin and)
Guillou| [2018]. The particularity lies in the spatial and conditional aspect of the
considered process.

Definition 2.1 (Zieliriski [1998]).
We define Zy,, ,—|thy|mn.. to be an F-uniformly strongly consistent (or simply uniformly
strongly consistent if the statistical model is fized) estimator of the ¢'" quantile if

(Ve > 0)(Vn > 0)(3IN)(Ym > N), PF{ SUP | Zn,, o —the | hn. — 2q(F)] > e} <n, (12)

hn,o>m

where F' is the distribution function of the process.

Theorem 2.1 Let {Yxi; s ZN} be a conditional process, where {Yi; s ZN} s a sta-
tionary and spatial process. Assume that the condition of the regular variation of the Y ’s
tail probability given x stated in equation is satisfied. Let assume that the conditions
Cu, Cr, Ca and Ck are satisfied. Assume also that the sample quantile Qy,, . (t, )
is an F-uniformly strongly consistent estimator of the ¢ quantile z, = Q(q,t,z) as
My — 00 and thy/m, . — q. We have:

Ak, (K, 2)—y(2) a.s as my, — oo. (13)
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Theorem 2.2 Let {Yx,-; s ZN} be a conditional process, where {Yi; 1€ ZN} s a sta-
tionary and spatial process. Suppose that the distribution function of Y given x is
continuous. Let assume that the conditions Cy, Cr, Ca and Ck are satisfied. Let
(km,...) be an intermediate sequence verifying (@) such that /kz A(b(my, »/ke, ), ) —
A7) < 0o, n — oo. We have:

« 1
S WK, ) = () = Ao ), 5)
X /0 1 (£ — 1= p(a)t") log(1)) K(t)dt}
@) [ [FWe) - W] deK ) (1)

where (W (t))icp,1) is a Gaussian centered process and covariance function r defined in
Cr and
b(t,z) = F(1 -t ) t>1, (15)

FT(y,z) =inf{t, F(t,x) >y}, 0<y<1, fora given z;

F being a distribution function and therefore subject to regular variation:

F(b(t,z),2) ~t7, F:=1-F (16)

Corollary 2.1 Under the conditions of Theorem [2.2, we have:

@(%(K z) — y(z)) —5 N (M) AB(K, z), AV(K, x)); (17)
1 ! —p(x —p(z
where AB(K,z) = p(x)/o (t P@) 1 — pla)t Hog(t)) K(t)dt
and AV(K,z) = +(z)? /0 1 /O 1 l“z’:) - r(tL; b _ ’”(18’ ) e, 1)] ALK (1))d(sK (s)).

Remark 2.3 If we assume that the {Ym;ie ZN} are i.i.d and K(t) =1 for every
t € (0,1), we obtain the asymptotic normality of the same form as that of the estimator

of [Hill [1975].

Since this estimator is biased, the bias reduction methods will be discussed below.

2.3 Bias correction

This section follows the same lines as in [Tchazino et al.| [2021]

We propose a bias reduction method, useful for low values of |p| and for the correspond-
ing quantile estimator. Knowing that the bias of the considered class of estimators
depends on the function K, we will choose an optimal one, i.e. making both the bias
almost zero and minimizing the variance. The particularity of our approach compared

8



to those of |(Chavez-Demoulin and Guillou| [2018] and that of Goegebeur and Guillou
[2013] lies in the consideration of a more wide class of functions K.
To do this let’s consider two functions K; and K verifying Cx and for a given z set:

Ko@) ) (t) = a(2)Ki(t) + f(2)Ks(t); a(z), flz) € R (18)
such that ﬁ + ﬁ = —1 (this condition imposed on «a(z) and f(x) is just technical

1
for the results we want) and / Ka(2),8@))(t)dt > 0. Let us now evaluate the bias of
0
the estimator i, (K(a(2),8(2)), Z)-
We got
A(z) Alz)
Vg Vg

Since we are dealing with bias reduction, let us find the values of «(z) and S(z) for
which the bias is close to 0. Then we obtain the system of equations:

AB (K(a(x)’g(m)), JZ) = (a(z)AB(Ky, z) + f(x)AB(K,, x)) .

a(z)AB(Ky, ) + B(x)AB(Ks, ) =0

1 1 _
o Tawm =1

Then we have S = (a(m) = AB(KX?(;(?Z(K“I) , B(x) = AB(KXE)(;(;L‘?)(KZ’:E)) € R?is the
whole solution.

The resulting K leads to an asymptotically unbiased estimator.

Corollary 2.2 Under the assumptions of the Theorem 2.2}, and assuming that K, and
K5 satisfy the condition Ck, we have

Ve G (Ks,2) —5(2)) 5 N (0, AV(Ks, ). (19)

Let Cy(z) = {A, (Ks, ), K1, Ky verifying Ck} be the class of asymptotically unbiased
estimators of vy(x). The next part of the work consists in constructing the estimator
with minimum variance.

In the case of the i.i.d variables, Goegebeur and Guillou [2013] (Theorem 2 and Corol-
lary 4) establish that the pair function (K7, K5) verifying the condition C for which
the variance is minimal is given by: (1, (1-— p(x))t’p(m)) Although we have not es-
tablished the optimal function K of minimum variance in our context, we propose to
take the same couple (1, (1-— p(x))t*p(‘”)> of minimum variance in the case of i.i.d..

Thus, the function Kg« from the couple (1, (1-— p(x))t_p(“*’)) of the form 1) is given
by
34 242 34 242
K () = P =400 £ 20(0) _ pla)! = (e’ + 20) )

(1=2p(2))*(2 = p(x)) (1= p())(2 = 3p(z))

Ake (Ks+,7) € Cy(z) and is of minimal variance.

(20)



Remark 2.4 [fwe seta(x) = p(x)’ — 4p()® + 2p(x) p(x)® —4p(x)? 4 2p(z)

0 2@EE @) ™ "= T = )

and under the assumption of independence, the variance of our estimator is given by:

_ 2p(z)
1 —p(x)

This variance decreases and leads to 0 when p(z) —0 and explodes when p(x) —
—o0o; which is contrary to the existing estimators in the literature. In addition to this
difference in the direction of variation, our estimator allows us to make the variance as
small as desired. Thus, we propose to consider the estimator that achieves the trade-off
between these two types (in terms of direction of variation) of variance in such a way
as to minimize the variance depending on the values of p(x). Such an estimator is one
whose function K is given by:

AV(Kge2) = 7(2)? (<a<x> b)) a<x>b<x>)

K- if ple) < pla)
Ko = (21)
K i p(z) = p(x)

where p(z) is the unique solution to the equation: AV(Kg«,x) = AV(Ka+,x) and
2
1-— 1-— 1—-2
Rty (L 20)_ AN
plx) p(x)
Let p(x) be a value taken by p(x) in (20 or a point (or canonical) estimator of
p(z). We have

Kz (t) = a(z) — b(z)t 7@ (22)

where @(x) and b(z) are the respective values of a(z) and b(z) by replacing p(z) by
p(x). The following corollary holds:

Corollary 2.3 Under the assumptions of the Theorem[2.2], and assuming that Ky and
K5 satisfy the condition Ck, we have:

Ve G (K., 7) = 7(x) —5

3 2—p(x) b(z) 2— p(x)—2p(x) -
N (N0 a0~ T ey e ] V) 29

The bias cancels out when p(x) and p(x) coincide.

Admittedly, Ak, (Kg.,z) is biased but it is of particular interest for the control
(reduction) of the bias because a judicious choice of p(z) (since p(z) is a parameter
that controls the speed of convergence) would allow us to reduce the bias considerably,
contrary to that in Corollary 2.1} On the other hand since it is possible to cancel this
bias (for p(x) = p(z)) if we replace p(z) by one of it’s consistent estimator in probability
Py, o oy (@) Which is a function of an intermediate sequence (ki ,,p(z))m, .en, We get
the following theorem:

Theorem 2.3 Let {Yx,-§ i€ ZN } be a conditional process, where iYi; ic ZN} is a sta-
tionary spatial process with a continuous distribution function and verifying conditions

10



Cwy, Cr and Cy. Let py,, . (%) be an consistent estimator of p(x), which is a func-

tion of an intermediate sequence (km,, , p(z))mn.en; and (K, ) another intermediate
sequence verifying (@ such that \/ky A(b(my 2 /kzy ), x) — ANz) < 00, n — oc0. We

have:

Vhe (G (K s, w) = 7)) =5 N (0, AV(Kse, 7)), (24)
where K¢. is of the form by replacing p(x) by pr,, . . (@) = p(x) for simplicity.

Note that K¢. depends on p(x) and m,, , then we need an additional condition on the
term /K, . p@) AN/ K, o p(2), ), @). Although the K. is in the form , it cannot
be written in the form (18) (where K; and K5 are functions of p(x) and « and /3 of
the functions of p(z)). Thus it is necessary to estimate p(z).

Gomes et al.| [2002] proposed a possible family of j(x) used in De Haan et al.| [2000]
and in Chavez-Demoulin and Guillou| [2018] expressed as follows.

(2) (2)
H(x) = T O \/BS’C’“”’I”’(“ i with S e (2 3) (25)
PAT) = 4522) _3 kmn,e,p() 3'4)°

mn’m,p(z)

where
(4) B (1) 4 2 ) 2
(2) L 3 |:Mkmn,xvp($) 24 (Mkmn,wﬁp(w)) :| |:Mi€n 2 (Mkmn,xm(ﬂc)) :|
kmn l,p(z) T Z 3 2 ’
' (3) N (1)
|:Mk’mn,zﬁ(z) 6 (Mk’mn,z»l’(z>) :|
with
( ) 1 kmn,xaﬁ(z) o
T > <log L o —itlmme — 108 Zmn,rkmn,x,p@)vmn,z) , a €N,

Ko@) i3
(26)
In this family of the estimators p(z) defined in (25) we have the following corollary.

Corollary 2.4 Let {Ym; i€ ZN } be a conditional process, where Yy i € ZN | is a sta-
tionary spatial process with a continuous distribution function and verify the conditions
Ch, Cr and Cy. Suppose also that condition C is satisfied. Let p(x) be an estimator
of p(x), where the intermediate sequence (kp,, . p(x))mn.en 5 such that

K p(2) A 2/ K o p(@)> ), ) — 00. Let (K, ) be another intermediate sequence

such as \ky A(b(my, 2 /ke, ), 2) — Mz) < 00, n — 0co. We have:

Vi G (g, ) = () =5 N (0, AV(Ks-, 7). (27)

This corollary is similar to the Corollary 4 in |Chavez-Demoulin and Guillou [2018]; the
difference lies in the consideration of the process; spatial and conditional in our case.
Here the sequence (ki , o(x))nezn is such that \/kn,. . 0@ A0(May e/ ki, o p(a)s T), T) —
oo is needed to ensure the consistency of the estimator py,, . () of p().

In practice we consider that K is a kernel, but this does not prevent us from using
Kgna, construct in this article. The estimation of (+) is the only (necessary) step in the
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estimation of the quantile. In our approach, not only we have considered a conditional
and spatial process, but also our condition Ck differ from those of our predecessors,
notably (Chavez-Demoulin and Guillou [2018], |[de Haan et al.| [2016], Goegebeur and
Guillou/ [2013] which are restricted to the case where the function K is a kernel.

3 Estimation of the conditional extreme distribu-
tion quantile

One of the main purposes of extreme value theory is prediction of future extreme events,
the tail index estimation proposed in the previous section is useful in this situation.
We then are interested in inference of the extreme quantile

z(z) =U(1/p,x) p—0. (28)

Especially, our contribution consists in estimating the extreme quantile by applying
the tail index estimator.
From the condition C'4 we obtain

2P _q
p(z)

By setting {1z = 1/p and t = Yo, .~ 5,2 ma. (2), 0 < A < 5= where Y is a ran-
dom variable from a standard Pareto distribution and since Z,, koA mn. (7) =
UV o— ko] ;mn. (), ), we get the approximation

U(tz,x)

Uta) 27 exp {A(t, 7)log(2)

|t

1
PY o= kod ] min.e

V(z)
Zp(x) = Zm7L,w_|_kw)\J7mn,x (x) ( (x)) eXp {A(Ym7L,¢_|_kL>\J M,z (x)7 x)

p(z)
- 1
1 (pymn,m\_kzx\],mn’z (J:))
x log O

men,zftkI)\J M,z p(x)

1 ()
= Zmn,ac_ I_kac)\J M,z (I) ( ) )

pb(mn,r/kma x

) (;)P( ) 1
b(m,, ./ k. ] Pb(1mn 2 /Ko ) 29
D 4 A (D1 /s, 1), 2) log (pb(mm /W)) - )

where the last step follows from replacing Yy, ,—|k.A]m.. (%) Dy its expected value
b(mp,z/ks, x). This estimator is accessible only if you replace y(x) and A (b(my, »/ ks, ), )
by their estimators. It should be noted that the term A (b(my,./ks, x), x) is seen as
the moderator or corrector of the quantile estimator since we find the Weissman-type
estimator if m, , is large enough that is, if A (b(my,/ks, ), 2) — 0 (see Weissman
[1978]).
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Remark 3.1 This extreme quantile estimator has a peculiarity over those existing in
the literature. Indeed the presence of the multiplicative term 10g(Zp,, ,— ko)) mn.. (7))
rather large, implies that the speed of convergence of the term A (b(mpz/ks,x),x)
around O is bigger.

Chavez-Demoulin and Guillou| [2018] have proposed an estimator of A (b(my, .. /ks, ), x)
in non-conditional cases that we adapt in our context. A (b(my./ks,x),x) can be
estimated by :

_ (1= &(x)(1 = 2¢(x))
§(x)?

where £(z) is a negative canonical or a consistent estimator of p(x). Thus by replacing
v(z) and A (b(my, »/kz, x), x) by their estimators in the relationship we obtain:

! s (1 - &(@))(1 - 26(2))
pb(mn,x/kx’ x)) P { §(z)?

2p7£($) (x) = Zmn,w_ \_kl)\J M,z (x) < )
)5(96

) 1 (pbmnz/km
X[ (K1, 2) = e (Ko, )] log <pb<mn,x/kx,x>> ()

Convergences in distribution under appropriate assumptions has been established by
the same authors that we adapt in our spatial and conditional context.

Theorem 3.1 Let {Yx,-; s ZN} be a conditional process, where iYi; s ZN} s a sta-
tionary spatial process with a continuous distribution function and verifying conditions
Cu, Cr and Cy. Let py,, . (x) be an estimator of p(x), consistent in probability,
which is a function of an intermediate sequence (Kp,, . p(z))mn.oen; 5€t (km, ) an inter-
mediate sequence such as

VEz Ab(M o/ ky, ), 2) — A(z) < 00, My, — 00 and suppose that p = py,, , such

1
10g ( Pb(mn,z [k ) )

that e x/kr, y — 09, N — 0 and m,, 5 logp — 0 for any a > 0, then we
have
kI Z xX
— (Z”’“ e) 1) Ly N (0, AV(Ks-, ), (30)
0g sy \ (%)

where £(x) is a negative parameter p(x) or an estimator consistent in probability p(x)
such that [p(z) — p(x)| = Op(m,<,) for e > 0.
4 Finite sample properties

In this section, we illustrate the finite-sample performance of the proposed estimators
using simulated and real datasets.

4.1 Simulation study

We would like to estimate the conditional extreme distribution tail index y(x) for a
given z of the simulated log-Laplace process (see Tchazino et al. [2021]). To do this
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we duplicate N = 100 processes of the said process and we consider a range of the
highest values k& (k = 1,---,600) to be considered to display the best estimator, i.e.
the one of minimum error. We have compute these three family of estimators; that
of Hill , Chavez-Demoulin and Guillou| [2018] given by and the ones built in this
article given by . It will allow us to appreciate each estimator but also validate our
estimator (21)).

For this simulation study, we use the empirical form of the estimator that is:

1 ke Zm . . . , .
A, (K, ) = kzlog< S "*””(@) x <K (lj) + ki x K (;)) (31)
T 4=1 x x €T

Zmn,z —kz M,z (I)

where K’ is the first derivative of the function K and Z,,, ,—im, . () is the ordered de-
pendent variable Y, for which the non-random covariate x; belongs to the ball B(x,r).
In this simulation study, the covariate x; is assumed to be an realisation of the variable
X belonging to the uniform [0, 1] and we take z € {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}
and r = 0.1.

The following conditional tail-index function is similar to one in [Daouia et al.| [2011],
see also Ndao et al.| [2014].

v(z) = (50/33) x (.1 +sin(mz)) x (1.1 — .5 X exp(—64(z — .5)?)) (32)
The true quantile function (belongs to Frechet domain of attraction) is given by:

a(p,x) = (=ql(1 — p,z) log(1 — p)) " (33)

where p is a probability and ¢l(-, z) is the conditional loglaplace quantile function.
A sample of true values of v(z) and ¢(0.001, z) are given in Table [4.1}

x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

~(x) 0.682 1.145 1461 1.331 1.000 1.331 1.461 1.145 0.682

q(0.001,z) 5.545 17.750 39.381 28.414 12.340 28.414 39.381 17.750 5.545

Table 4.1 A sample of true values of y(x) and (0,001, z) for a given x

We essentially verify the performance of our estimator (7)) and that of |(Chavez-Demoulin
and Guillou [2018] given by for each given z according the values of p(x).

For each = € {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}, we execute the following calcula-
tion program:

1. Compute estimators for each replication t = 1,2,..., Rand for 1 <k <m, — 1
noted 4; (K, x).
2. Compute absolute error €, = |J;1(K,z) —y(x)| for i =1,2,..., R.
3. Recovering the number of extreme values k; = Argmin (¢;;); the estimator of
1<k<mg—1

7(z) on the replication i is given by 4; x, (K, ).

4. Compute the extreme quantile estimator for replication i; ¢;(p,z) is the one
computed with 4, , (K, ).
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5. The estimator of v(z) is then given by
1 R
fAVk‘z(Ku l’) = E Z?yl,/ﬂ(Kv x)?
i=1

1
where k, = 7 S°F | k; and that of ¢(p, x) is given by:

1 R

Q(p,w) = 5> ai(p. ).

i=1

The results of our simulations allow us to conclude that our estimator is also
useful than ([2]) for low values of p(z). Thus, based on these results, we recommend the
use of the estimator which realizes the compromise between the two estimators
and (2)). The results of our simulations are reported in Table[6.1]for v(-) and Table
for ¢(0.001, -).

Figures |6.1H6.8| and [6.9H6.16| show the boxplots of the N realisations of the estimator of
~(z) and ¢(0.001, z) respectively for every x € {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.
As we have noted that the estimator of gamma is highly dependent on the covariate x,
the quantile estimator is even more sensitive to it. Indeed, a bad estimator of y(z) has a
negative effect on the predicted quantile making the estimation error more remarkable
than that of v(z). In our simulation study, we can well notice that the performance
of the predicted quantile deteriorates when the covariate is at the edge of the (0, 1)
interval and acceptable in the center of this interval. Figures [6.9H6.16] illustrates this
last remark well.

These results clearly show the influence of the parameter p(z) and sample size on the
estimators. We can also see that there is a relationship between the sample size n and
the number k, of extreme values to be considered.

Furthermore from these results it appears that the estimators of gamma and quantile
capture quite well the shape of the conditional extreme value index function x — ~y(x)
and quantile function z — ¢(0.001, ) respectively.

Finally, one can clearly see from these simulation results that our estimators seem to
have better performance compared to conditional Hill’s and conditional Weissman’s
estimator. We can remark that our estimators quality deteriorates as the sample size
decreases.

4.2 Application to real data

We illustrate here the behaviour of the proposed methodology on rainfall data from
1559 stations in the West Africa Region on first September 2019 (available on NASA-
datalink). This data set contain the geographical position (longitude, latitude), rain,
relative humidity, air pressure, temperature and wind speed.

The mesh was made over West Africa by varying the longitude in the interval [—17, 3.5]
and the latitude in [4.5, 16].

The spatial aspect is materialized by longitude and latitude. The observed process has
a minimum value of 0 and a maximum value of 65.94 with a mean of 6.94 and a median
of 4.94. Tt can be seen that the mean is very close to the minimum observation and very
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distant from the maximum observation. The median shows the extremal aspect of the
observations quite large. Indeed 50% of the observations are concentrated in [0, 4.94]
and the rest scattered in [4.94, 65.94]; this aspect is visible on the Figure [6.25] We can
thus think of the existence of a tail on the right, hence the interest of an extreme data
study. The Figure . shows a grouping by similarity (color gradient) of the data on
the geographical level. This makes us think of spatialized data or spatial dependence
of data.

The Figure [6.26][6.25] illustrates two main aspects of the data: the spatial aspect ma-
terialized by the longitude and latitude and the extreme aspect is visualized by the
color gradient which shows very few large observations (light blue, yellow and red).
These figure also illustrates the spatial dependence marked by the grouping of data by
similarity (size of observations) and according to geographical positions; we can notice
the cluster of colors (materializing the size of observations) by location: dark blue (the
most frequent observations), light blue which is found by geographical location, the
largest observations in red and dark red (rare) surrounded by the observations more
or less high (yellow). This data set is analysed in [Tchazino et al.| [2021]

We re-analyse the data taking into account some covariate. The selected covariate
is air pressure ( denoted by x in the following). Indeed, we performed a regression to
identify the variable that best explains the variable of interest (rain); among the four
explanatory variables (relative humidity, air pressure, temperature and wind speed).
Air pressure best explains followed by relative humidity with a significance level above
99%.

We carry out, in Figure [6.28] visual checks of whether the heavy-tailed assumption
makes sense for this sample of data (Y). The boxplot and histogram of the Y; both
give descriptive evidence that Y has a heavy right tail. To further confirm that the
heavy-tailed framework is appropriate, we drew a quantile-quantile plot of the weighted
log-spacings within the top of the data against the quantiles of the unit exponential
distribution. Formally, let Y7, < Y5, < ... <Y, , denote the order statistics of the
sample (Y1, ---.,Y,). Let Z;,, = ilog(Yo—it1.n/Yn-in), 1 < i < n — 1, denote the
weighted log-spacings computed from the consecutive top order statistics. It is known
that, if Y is heavy-tailed with tail index ~(-) then, for low i, the Z; ,, are approximately
independent copies of an exponential random variable with mean (see e.g. Beirlant
et al. [2006]). The Figure therefore gives a quantile-quantile plot of the Z,,, for
1 < i < |n/5] versus the exponential distribution. The relationship in this quantile-
quantile plot is approximately linear, which constitutes further evidence that the heavy
tail assumption on Y makes sense. The tail on the right is visible on Figure [6.28|

We can well notice that on average 1200 or 76.97% of the observations are close to the
mean while very few observations (less than 6.41%) are very far from the majority.
Since the data shows heavy-tailed behavior, we estimate the conditional tail index ()
and the quantile ¢(0.001, z) of the conditional distribution Y (rain) given X (air pres-
sure. We use the same estimation method described in Section with respect to the
empirical form of the estimator of v(-) and the extreme quantile.

In the theory we have mentioned for the selection of conditional variables, the use
of the ball centered on an x and of radius r that we give ourselves. Indeed we col-
lect the realizations of the variable of interest for which the corresponding realizations
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of the covariate fall into the ball. In practice the choice of the radius is a critical
issue. We estimates the tail estimators and quantile for a given x = 97.10 (mean-
standard deviation of air pression), = 98.91 (mean of air pression) and z = 100.72
(mean+standard deviation of air pression). For each of these values we vary the radius
r € {1.5, sd(z) = 1.81, 1.96 x y/sd(z) = 2.65, 1.96 x sd(x) = 3.55, 4} and we retain
the one achieving the smallest error calculated on R = 100 replications; each replica-
tion being a resampling of the starting sample.

Indeed for each replication i = 1,--- , R we proceed as follows:
1. Compute the estimators of y(x) noted 4; x (K, x) for 1 <k <m, — 1.
2. we form several successive "blocks” of estimators of size B = 15.

3. we determine the k—value to be used (thereafter denoted by k;) from the block
with minimal standard deviation. Precisely, we take the middle value of the
k—values in the block (see |Goegebeur et al. [2014], Ndao et al. [2014])

4. Then the estimator of (z) for replication i is 4; , (K, )

The rest of the algorithm follows the same lines as in the simulation part as the com-
putation of the optimal k and the quantile ¢(p, ).
The results of our studies are in Table 6.3 and the boxplots are in Figure [6.17H6.24

Remark 4.1 One can remark according these results, the central role of the function
p(+) on the convergence of the estimators. For a given x, p(x) does not give the same
performance on the estimators.

Conclusion

The estimation of conditional tail index proposed in this article generalizes that Tc-
hazino et al.|[2021] where no exogenous variable was considered. The asymptotic prop-
erties of the proposed conditional tail index estimators (biased and unbiased) have
been established under mild conditions, in particular S-mixing condition compare to
the a-mixing one in Bassene [2016]. The originality of the considered framework lies
in the spatial nature of the dependent process studied but also on a wide class of
tail index estimators, reducing the asymptotic bias and variance. We also proposed
an asymptotically normal extreme quantile estimator. Future directions may include
considering models with random exogenous variables or space-time processes, with a
number of potential applications.
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5 Proofs of the main results

Proofs of the main results

To establish the proofs of our results, we adopt [Robinson| [2011]’s notation of the spa-
tial locations (for seek of simplicity). That is the process {Yi,i ez } is written as
{Y;;1 <i<mn=mny xXny X -+ X ny} using for instance a triangular array notation and
a lexicographic ordering. For this notation the mixing conditions Cy; and Cg (regu-
larity) are written as:

Condition ('), (mixing condition): Let (I,)nen+ be a sequence of integers such that
1 <1, <n;set B =o(Y;;m <i<j) be o-fields generated by the random variables
(Y;); with m < i < j. The S-mixing condition is given by:

B(ln) == supE | sup |P(A[B") —P(A)[| — 0 (34)
meN* AeBltLoierl ln—00

See [Drees| [2000] for a discussion on the S-mixing and examples.

Condition C%: (regularity)

There is € > 0, a function r : R x R = R, and (I, ,) defined above is such that
.. = 0(Mna/ky); and when n — oco. For simplicity set I, := Iy, -

(a)) Hldm,, , + 1,85 — 0;

In In
(b") 7%= Cov (.;1{Zi<z>>w(1—sz/mn,x>}7 ,_Zl1{zi<x>>Fe<1—kxy/mn,x>}> — 7(2,9),
VO<z,y<l+g

(¢’) there exists a constant C' such that V 0 <z <y <1+e:

4
ln,
Mpx

T F (Zl{Fﬂlkzy/mn,z><zi(x>sw<1kzz/mn,z») < Cly = 2).

=1

5.1 Proof of Theorem [2.1]

To prove this theorem we need the following lemma and propositions.

Proposition 5.1 Supose that V ¢ > 0, infz min {q —F (qu—s) v (Iq;“) — q} > 0
then sample quantile Zy,, .~ |tk |mn. Such that tky/my, . — q as m,, — oo is an F-

uniformly strongly consistent estimator of the ¢ quantile z, = z,(F)

Proof of Proposition 5.1}

2
use the following result of Hoeffding [1963]: if &, &, ..., &, are independent random

Fix € > 0 and let § = infz min {q —F (wq_e) v (wq;e) — q}. In the proof we shall
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variables such that, for some finite a and b, P{a < & < b} =1,i=1,2,...,n, then
for t > 0,

P{ié};-E(iéé@)zt}geq{—mnww—aﬁy

Take N such that g — %5 < thy /My, < q+ %(5 it m,,, > N. Denote by F,, the
empirical distribution function generated by the sample 7y, 75, ..., Z,, , and by §; the
random variable equal to 1 if 27; > 2z, + ¢, and equal to 0 otherwise. Set a sequence of
independent r.v’s Z7, Z3, ..., Z}  independent of Zy, 75, ..., Z, , such that Z;
has the same distribution as Z; and By ¢; the random variable equal to 1if 277 > 2z, +e,

Zq+E€

and equal to 0 otherwise; and Ov; an random variable such that v; = 1if Z; — 77 > =5

and v; = —1 otherwise
Then for m,,, > N;

PF {Zmn,:c_l_thjumn,ac > Zq + 6} = PF {Zmn,ac_tthJymn,:c - Z;nyzfttkzj,mn,z
+ Z:nn,z_ttka,mn,m > Zq + 6}

IN

N zqgt€
PF {Zmn,z_Ltka7m7L,w - Zmn@*LtkIJ,mn’z > q2 }

N Zqg T €
_I_PF{ mn,;c_l_thLmn,a: > q2 }
— A+ B,

and

PrA Zun-tthdinne < 7 =€) = Pr{Zunymlthadinae = Dot s
+ Z

Mn,x— Ltsz Mz

<zq—e}

Zg — €
PF {Zm7L,I_I_tk(IJJ7mTL,(L' - Z:)’Ln@*LtkIJ,mn’z < 2 }

. 2, — €
+Pr {Zmn,thsz,mn,z < q2 }
= A+ B.

IN

Hence for each m,, , > N and for each F' € F
Pr {| Zmp o~ ths)mne — 2l > €} <A+ A+ B+ B

Firt we evaluate B + B'. Since Z; are independent r.v/s and F (§f) =1—F (quﬁ)
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we have:

Pp {Zmn7thkzj,mn,z > - } = Pr {gmn’zfttkzj,mn,z > 1}

T | th, |=1
: { Zf—{ Zf}
TLCUZ]_ nl‘ll

{mmii? }}

e

| \/

oors5)

S { mff—{ 129
Mne =3 Mnpa ;2
Mn,x 1 mnx 5
< Pl 5 ¢ 56 )
<

mn7x52
exp | ———|.
P 2
In the same way one gets:

2y — € My 02
Pe{ i, < 2 ) 2o (255,

Now we compute the term A + A’.
v; as defined satisfy the condition Cj; through Z; verifying

B(n) < exp(—en”) for any positive n, (35)

where ¢ and 7 are positives constants. Set ¢; and ¢y two positives constants depending
only on ¢. Then by applying Bernstein type inequality given in Merlevede et al.| [2009,
2011] one gets:

20



A+ A

IN

IA A

So we get

N zqgt€
PF {Zmn,x_l_thJymn,x - Zmn,zfttkzj,mnyz > q2 }

. Zg — €
+PF {Zmn,z—ttkzj,mn,z - Zmn,z—Ltsz,mn,z < q2 }

PF {’Umn,z*Ltsz,mn,z = 1} + PF {Umn,z*Ltsz,mn,z = —1}

Mn,x Mn,x
Z Umip,o—tha | ;mn,e — Moz + PF Z Umip,o—the | ;mn,e — — Mo

[tz ]=1 [tha =1

PF{ 1Ui:mn,x}+PF{Zvi:_mn,x}

Pp

(_Clmi@/mn,z) + exp (—camin,/ (log(my, ) log(log(mn,.))))
(—c1me) + exp (—camy ./ (log(my, ) log(log(my,.)))) -

Pr{|Za—thatimns = Zal > €} < oxp (—camn o/ (log(my, 2) log(log(ma.))))

Each of the three terms 2exp | —

+exp (—c1mp ) + 2exp (_m 2 ) )

My, 202

) oD (—camna (log(mn) log(log(m,.))))

and exp (—c;my, ;) tends to 0 as my, , — 00; hence Zy,,, . (k) mn. — 2 @.5. uniformly

inIF.
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Proof of Theorem [2.7]
For all 61,95 > 0 there exist M > 0 such that:

e, (K, ) = (@) =

IN A IN IN

IN

Potter

[A*

IN

<

where C' = /

0 <t <1 and where § is justified by Condition Ck, <

) tK(t)) + 787) 01 log (t) d(tK(t))‘

d(

K(t)+tK' (1)

dt

! ( 737) W|K(t)+tK'(t)|)
/ x (1) dt
1 Qm ( ,x) M ¥(@) pf
| ot t) © dt
M
s 2 (=)
lim [ |log ((’M> x () (C)M) dt
s—1 0 mn,z(s’x>
[ Q(t, x) M (@) o f
£1_rg ; log ((Q(s,x) X (s)°© dt
s IMO@-6)
o s (0400 (1) 0 )
lim SmgQ1+@w4x@f9Mth
s—1Jo

/01 ‘log(l + 51)M‘ dt

9

[log(1 + 6,)™

t)dt and since Qy,,, , (t, ) = Q(t, z) F-uniformly when m,, , — oo for

Potter . ,
is due to Potter’s lemma

(see De Haan et al.| [2006]) and % is verify by choosing dy < v(x) for a given x.

One get the proof as d; — 0

The others proofs of the theorems and corollary in Section [2] follows approximately the
same lines as in [Tchazino et al.| [2021] so that are omitted.
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5.2 Proof of Theorem [3.1]

Vk, 5
We need to show the asymptotic normality of a log Zp,é(f)' We have the
log pirariesy (@)

following decomposition:

\/k_ﬂ_i 10g 21775 ($)
log P Cmey ) 2p()
Vg { 1
log Zp,, o~ 1kar | mn . (T) + Ak, (K., x) log — log z,(x
log pib(mni/kz,x) = ka A , ( ) Tk ( S ) pb(mn,m//{x,m) P( )
1 §($)
(1 - £(2)(1 — 26(x)) A 1 Gema) 1
o K - K ) 1 L
£(2)? Ay (K1, ) = A, (K26(2), 7)) log Db e ) £(0)
Vka Q. (N, )
\/> S log pib(mn,i/kx,x) U(b(mn,x/k‘x, :L”), {E)
WV log U(s, ) () log 1
lOg pb(mn,i/kz,x) U(b(mn,x/kﬂw 33'), .l’) ! pb(mn,x/kza .1')
1 §(x)
(1-&@)(1 - 26() ;. ) Gos) 1
— kx K , _ K , n,z/ Rz,
o Vel () = (g, ) 22l
Vs Q. (N 2)
= ke (O, (Kge, ) — () + log —
\/7 S log pib(mn,i/kz,m) U(b(my, o/ ke, ), )
1 p(:c)
k i b)) 1
_ \/_ai A(b(mn,x/km7 ./L'), l’) (pb( n,z/kz, ))
IOg pb(mn,a/ke,x) p(CL’)
VEa

I A(b(mn,x/kmvx)v )

pb(mn,z [k )
y {log U( x) —log U(b(my, »/ks, x), ) — y(2) logm

B log

A(b(my, o/ kz, ), )

(pb(mn z/ kz }

(=€) —28(
3 (fv)2
= L'+ 1L -1T3-1T,—1T;
Now let’s look at the 5 terms.
Theorem guarantees the asymptotic normality of the term T;

T -5 N (0, PAV(Ks., 7))

1 )g(a;) 1

D 00,2~ S ) T

The corresponding Proposition 6.1 in (Tchazino et al.| [2021] guarantees that

T, 250
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Indeed

te[0,1]

\/710g< Cj;";/(l;w;) x)) - 7($)W(1)|

Qi (t:7) 1(2) log(t)
< tiképlﬁ o <1°g<u<b<mm/kx,x> w>>+fol <>ds>
—p(z) _
_ ) = VA (b0 ki ), 2) —a !
ii}éﬁf“ . (f(l )1<° gf ))
(9:)_
= o(1).

Under the hypothesis of the said theorem, T3 — 0.

To prove that Ty = o(1), we need the following inequality:

Suppose the relationship R2 (from condition C'4). By applying the function
2z +— log U(z) — vlog(z) to Theorem B.2.18 in |De Haan et al. [2006] we gets:
Ve, d>03ug=ug(e d) such that ¥V ux > wy;

log(U(uy, ) /U(u, x)) — v(x) log(y) ' —1 -
bl ) —1 < () 67 1) )
(4%) ) o(1) "= 5= < e max(y/. ™)
Then this last inequality leads to:
VE
Tl < 5 Ao/ ke, 2))]
0g pb(mn, o /kz,z)
" log U(%) — log U(b~(mn,x/km,x)) 7(z) log m
A(b(my, o/ kz, ), )
1 p(x)
_ (pb(mn,z/kl,x)) -1
p(x)
I B 1 p(x)+9
< o A ) e )
log e ) P o /K, )
= o(1)

for all 0 < § < —p(x).

Note that the term 75 is function of £(x) which can be a canonical value or an estimator
consisting of the probability of p(z).

o §(x) = p(w);

we have :

Vel (K1 2) = Ak (Koe, 0)] = kel (Ko, 2) — 7(2)] = ko [k (Ko, ) — v(2)]
— 0:(1)
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according to Corollary This leads to T5 = op(1).

o §(x) = p(w);

- (- ﬁ(xgi(l—zﬁ(x)) Vel (K1, 2) = A, (Ko ey, 7))

()
1 p(@)

) 1

plx)
(1= p(x)(A = 2p(x) 1. .

+ () \/l?a:[%x(Kh ) — A, (K2 p(2), )]
1 plx) 1 p()

O N Cicresioe) I G crves )

Y

plx) p()

now, based on Corollary [2.1] and Theorem

VElB (K1, @) = Ak, (Ko poys @) = kel (K1, 2) = 7(2)] = ke [k (Ko ey, ) — 7(2)]

_\/gli;?kz (KQ,ﬁ(:p)a iL') - ’AYkI (KQ,p(:p)a iL')]
= Op(1),

then Tj gives

L plx) 1 p(z)
1\ (L)
( b(mn,x/kxax)) (Pb(mn,x/kxvz))
T5 = Op 1 + op(1 P N —
et >{ o) pla)

1
= op(l) +op(1) /Opbm"’z/kz’x) sP@)=L(P@=p@) _ 15,

Inspired by |Chavez-Demoulin and Guillou [2018] we get
1
/ P Rt gp(@) =1 (P @=p@) _ 1)ds = op(1).
0

Which leads to the conclusion that 75 = op(1) and thus we get proof of Theorem (3.1
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6 Appendix
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Figure 6.1 The boxplot of Y (x) (Hill’s
estimator) and the true value of y(x) (red
line) for p = —3.67 and n = 10000.
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Figure 6.3 The boxplot of 4y (x) and the
true value of y(x) (red line) for p = —10

and n = 10000.
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Figure 6.2 The bozplot of
k. (Kas, ) and the true value of
v(z) (red line) for p = —3.67 and
n = 10000.
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Figure 6.4 The boxplot of
Ak, (Kas, ) and the true value of
v(z) (red line) for p = —10 and
n = 10000.
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Figure 6.5 The bozplot of 4y (x) and the
true value of v(x) (red line) for p = —3.67
and n = 40000.
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Figure 6.7 The bozplot of 4y (x) and the
true value of v(x) (red line) for p = —10
and n = 40000.
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Figure 6.9 The bozxplot of q(1/1000, x)

Hill and the true value of q(p,x) (red line)

for p = —3.67 and n = 10000.
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Figure 6.11 The bozplot of q(1/1000, x)

Hill and the true value of q(p,x) (red line)

for p = —10 and n = 10000.
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Figure 6.10 The  boxplot  of
qas(1/1000, ) and the true value

of q(p,z) (red line) for p = —3.67
and n = 10000.
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of q(p,x) (red line) for p = —10
and n = 10000.
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Figure 6.13 The bozplot of q(1/1000, x)
Hill and the true value of q(p,x) (red line)
for p = —3.67 and n = 40000.
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(Hill) and the true value of q(p,x) (red
line) for p = —10 and n = 40000.
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of q(p,z) (red line) for p = —3.67
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Figure 6.19 The boxplot of y(x = X) for
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v(z = median(X)) for p = —3.67.
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n=10 000 n=40 000
value of x () Visa (T) ‘ () Vrcsa (2)
p=—3.67
0.1 0.688 0.685 0.690 0.682
36 72 75 129
[0.0215] [0.0144] [0.0249] [0.0078]
(0.0206) (0.0140) (0.0236) (0.0079)
0.2 1.147 1.142 1.150 1.146
124 221 224 291
[0.0129] [0.0141] [0.0211] [0.0061]
(0.0127) (0.0138) (0.0204) (0.0060)
0.3 1.467 1.458 1.464 1.463
124 198 215 213
[0.0236] [0.0196] [0.0151] [0.0110]
(0.0232) (0.0194) (0.0150) (0.0109)
0.4 1.339 1.333 1.335 1.329
118 200 246 250
[0.0251] [0.0186] [0.0185] [0.0049]
(0.0242) (0.0183) (0.0183) (0.0048)
0.5 1.0057 1.0006 1.0043 0.9999
102 169 209 267
[0.0204] [0.0101] [0.0190] [0.0086]
(0.0200) (0.0102) (0.0182) (0.0087)
0.6 1.3357 1.3297 1.3330 1.3311
139 228 233 269
[0.0200] [0.0160] [0.0119] [0.0084]
(0.0197) (0.0159) (0.0119) (0.0085)
0.7 1.4597 1.4570 1.4625 1.4626
141 226 247 277
[0.0168] [ 0.0218] [0.0105] [0.0057]
(0.0169) (0.0214) (0.0169) (0.0056)
0.8 1.1475 1.1456 1.1463 1.1445
123 218 219 277
[0.0149] [0.0102] [0.0096] [0.0086]
(0.0147) (0.0103) (0.0095) (0.0087)
0.9 0.6931 0.6843 0.6883 0.6821
45 82 82 120
0.0298] [0.0106] [0.02030] [0.0071]
(0.0277) (0.0103) (0.0192) (0.0071)
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p=—10

0.1 0.6899 0.6834 0.6881 0.6832
36 56 75 02
[0.0215] [0.0150] [0.0249] [0.0152]
(0.0206)  (0.0150) (0.0236) (0.0151)
0.2 1.147 1.1456 1.150 1.1431
124 172 224 261
[0.0129] [0.0110] 0.0211] [0.0084]
(0.0127)  (0.0109) (0.0204) (0.0083)
0.3 1.467 1.4593 1.464 1.4630
124 198 215 213
[0.0236] [0.0129] [0.0151] [0.0104]
(0.0232)  (0.0127) (0.0150) (0.0103)
0.4 1.339 1.3341 1.335 1.3331
118 165 246 236
[0.0251] [0.0163] [0.0185] 0.0116]
(0.0242)  (0.0164) (0.0183) (0.0114)
0.5 1.0057 1.0023 1.0043 1.0008
102 129 209 249
[0.0204] [0.0131] [0.0190] 0.0117]
(0.0200)  (0.0131) (10.0182) (0.0115)
0.6 1.3357 1.3337 1.3330 1.3311
139 228 233 269
[0.0200] [0.0144] 0.0119] [0.0078]
(0.0197)  (0.0143) (0.0119) (0.0079)
0.7 1.4597 1.4603 1.4625 1.4607
141 188 247 279
[0.0168] [0.0136] 0.0105] [0.0052]
(0.0169)  (0.0136) (0.0169) (0.0051)
0.8 1.1475 1.1467 1.1463 1.1454
123 154 219 244
[0.0149] [0.0135] [0.0096] 0.0060]
(0.0147)  (0.0134) (0.0095) (0.0059)
0.9 0.6931 0.6859 0.683 0.6851
45 56 82 91
[0.0298] [0.0143] [0.02030] 0.0115]
(0.0277)  (0.0138) (0.0192) (0.0110)

* k: number of extremes values
[MSE]: Mean Square Error
(sd): standard deviation

Table 6.1 Gamma estimators
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n=10 000 n=40 000
value of | Gmn(7) drsa(®) | Gun(x) Qrsa(T)
P(Y; > q/z) =107°, p = —3.67

0.1 10.893 4.352 8.691 5.500
[7.129] 3.212] [4.847] [1.892]

(4.739) (2.997) (3.706) (1.901)

0.2 17.738 17.772 17.743 17.761
0.611] 0.562] [0.094] 0.019]

(0.614) (0.544) (0.094) (0.019)

0.3 39.261 39.478 39.306 39.287
[1.421] [1.357] [0.667] 0.732]

(1.422) (1.361) (0.666) (0.730)

0.4 28.561 28.415 28.399 28.390
1.013] [1.010] 0.191] 0.297]

(1.008) (1.012) (0.192) (0.208)

0.5 13.056 13.290 12.626 12.502
2.032] 2.077] 0.979] [0.769)

(1.912) (1.623) (0.941) (0.756)

0.6 28.387 28.352 28.385 28.438
[0.754] 1.014] [0.215] [0.134]

(0.757) (1.018) (0.214) (0.134)

0.7 39.036 39.394 39.299 39.375
[1.178] 1.515] [0.389] [0.242]

(1.132) (1.523) (0.382) (0.244)

0.8 17.894 18.035 17.740 17.728
0.891] 1.271] [0.102] [0.175]

(0.883) (1.245) (0.103) (0.175)

0.9 10.371 3.835 8.430 5.293
16.787] 3.818)] [4.430] 1.972]

(4.796) (3.432) (3.379) (1.966)

36



P(Y; > ¢q/x) =107°, p=—10

0.1 10.893 4.699 8.691 5.758
[7.129] [4.696] [4.847) [1.964]
(4.739) (4.643) (3.706) (1.962)
0.2 17.738 18.489 17.743 17.720
[0.611] [1.861] [0.094] [0.176]
(0.614) (1.717) (0.094) (0.175)
0.3 39.261 39.405 39.306 39.274
[1.421] [0.960] [0.667) [0.704]
(1.422) (0.964) (0.666) (0.699)
04 28.561 28.306 28.399 28.402
[1.013] [1.054] [0.191] [0.297)
(1.008) (1.054) (0.192) (0.298)
0.5 13.056 13.322 12.626 12.818
[2.032] [2.959] 0.979] [0.218]
(1.912) (2.805) (0.941) (0.260)
0.6 28.387 28.460 28.385 28.417
[0.754] [0.853] [0.215] [0.208]
(0.757) (0.856) (0.214) (0.209)
0.7 39.036 39.542 39.299 39.359
[1.178] [1.351] [0.389)] [0.358]
(1.132) (1.348) (0.382) (0.360)
0.8 17.894 18.206 17.740 17.736
[0.891] [1.673] [0.102] [0.195]
(0.883) (1.618) (0.103) (0.196)
0.9 10.371 6.235 8.430 5.723
[6.787] [4.577) [4.430] [1.856]
(4.796) (4.548) (3.379) (1.857)

k [MSE]: Mean Square Error.

(sd): standard deviation

Table 6.2 Quantiles predictions
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value of z min(z) (km,.) Ak (Ksa, ) (km,.,)

¢(1/1000, z)

q(1/100, x)

Hill TN Hill JKga
p = —3.67

100.72 0.5374 (366) 0.3392 (208) 178.85 100.33  48.02 33.24
0.096] [0.075] [76.82] [101.50] [12.26] [17.12]

98.91 0.4003 (360) 0.4097 (282) 88.34 7296  34.73  31.60
[0.0583] [0.0524] [16.89] [11.64]  [4.33]  [4.18]

97.10 0.4381 (323) 0.4430 (269) 133.20 99.35  45.73  39.88
[0.086] [0.061] [66.83] [16.82] [10.22] [4.43]

[sd]: standard deviation

Table 6.3 Gamma estimation and quantile prediction on real data.
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