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Abstract

In this work, we introduce a high-order unstructured path-conservative-based method to solve a novel sed-
iment transport model in generalized shallow water equations. The high-order of accuracy of the proposed
fully discrete scheme is achieved by several new strategies developed for the sediment transport context.
Some important properties of the scheme such as stability, well-balanced and preserving-positivity have been
proved. The performance of the method is assessed on a number of test cases. The results obtained are
compared with other schemes, reference/exact solutions and experimental data. The proposed unstructured
path-conservative-based method is suitable for parallel computations and allows for consideration of a wide
variety of nonconservative problems available in the literature. This work extends and generalizes recently
proposed unstructured positive finite volume schemes.

Keywords: Sediment transport(ST), Nonhomogeneous Shallow Water Equations, Path-conservative based
methods, Well-balanced preserving-positivity(WBPP), Unstructured mesh, Experimental data

1 Introduction

We propose in this work to solve by using a new unstructured finite volume method, a novel two-
dimensional(2D) sediment transport model(STM) that is able to adapt to some coastal or estuary envi-
ronments and has the potential to integrate multiple physics. The developed model is a nonlinear hyperbolic
nonconservative system that admits the steady states, particularly the “steady at rest” and which any analyt-
ical expressions for the eigenstructure exists. The dynamic of sediments in layer of suspended particles and
the morphodynamics in bedload layer in rapidly-varying-hydraulic conditions require a coupled modeling.
Decoupled approach can lead to numerical instabilities and can fail a rigorous estimation of the morpho-
dynamics. It is more difficult to find an analytical solution due to its nonlinear nature and the presence
of complex coupled terms. For a multidimensional(multiD) problem, it is important to develop multiD
numerical strategies to find numerical solutions. The literature does not enough offers simple and robust
unstructured path-conservative based methods able to simulate multiD sediment transport equations. We
develop a new numerical method that does not require any complex resolution technique. This case can
appear when we design an unstructured path-conservative method combined with a Riemann-based solver
with multiple intermediate waves.

We develop here a multidimensional stable, fast and robust path-conservative based method using a
simple 1D Riemann solver without any intermediate waves to solve our proposed 2D model. The proposed
method does not require any Ad-hoc assumption or simplification as in [41] or any complex method of
resolution such as the fix-point method used in [1]. It is well-known that robust numerical schemes should
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be well-balanced and positive even in presence of wet-dry fronts [2], [12],[27], [13], [38], [50],[51]. There is
the need to be a balance between flux and source terms because the solution of such a model can be a small
perturbation of the steady states.

Some numerical schemes are not proved positive and fail in approximating equilibria or near equilibria 2D
solutions. Here, a new unstructured well-balanced positivity-preserving scheme is developed to solve a new
sediment transport model. A novel hydrostatic reconstruction is also proposed to achieve the positivity of
water depth. The set of balance laws of the model has the main disadvantage of containing nonconservative
products due to non-equilibrium hydrostatic pressure. The non-equilibrium pressure creates the variable bed
topography and the variable sediment concentration in the x, y−momentum equations that lead to solutions
containing shock waves. Therefore, a unique definition of possible discontinuous solutions of the model is
used in path sense. The choice of a path allows to prove several shock waves definitions according to [4]. In
this case many shock wave theories can be used to define a shock wave solutions of the model. The finding of
shock waves connecting two states with different propagation speeds is not the objective of this paper. With
the presence of nonconservative products, the explicit calculation of the eigenstructure of the proposed model
is one of the complex one. To overcome this drawback, we propose to use the Gerschgorin theorem to find
the one-sided local speeds needed to evaluate numerical fluctuations. Gerschgorin theorem is more refined
than the Lagrange theorem used in [50]. For a nonconservative problem, the presence of nonconservative
product can produce instabilities during simulations. It is well observed in some solutions generated by
several Godunov-type schemes available in the literature. The difficulty related to the discretization of
nonconservative products can be overcome by using smooth paths.

Some numerical path-conservative methods were developed to solve 1D and 2D nonconservative
problems[9]. Path-conservative strategies are often combined with Roe solver , HLL (Harten-Lax-Leer) solver
and its variants such as HLLC (Harten-Lax-Leer with Contact), HLLEM (Harten Lax Leer entropy) Riemann
solvers, DOT (Dumbser-Osher-Toro) solver and other numerical techniques. All these solvers give rigorous
methodologies to compute the discrete flux or numerical fluctuations at the cell interfaces. Several path-
conservative methods based on these solvers have been designed and successfully applied to solve sediment
transport models [8], [7], [27], [34], [32], [36], [35], [40] and the references therein. We can also combine CU
scheme with path-conservative framework to derive Path-conservative central-upwind scheme. This strategy
has been introduced to overcome the drawbacks of CU schemes and applied only to a large number of 1D
nonconservative problems (related to SWE) by Castro et al.,[6].

Designing a well-balanced scheme is more complicated for sediment transport than for shallow water
equations. For example, the well-balanced discretization developed in Castro et al.,[6] is only valid for 1D
shallow water-based equations. Indeed, their strategy uses a non-singular matrix obtained by projection of
the Jacobian matrix in the steady state spaces. Some well-balanced strategy developed for SWE fail for
sediment transport equations. For some sediment transport models, the projected Jacobian matrix into the
steady states space is singular, therefore, it is not invertible (see Ngatcha and Njifenjou [35]). In order to
guarantee the exactly well-balanced property even in presence of wet-dry fronts, sophisticated numerical
methods must be designed.

Several well-balanced numerical methods have been developed to solve sediment transport problems [?
], [38], [2], [24]. These above schemes are valid only for 1D cases. For multiD problems it is necessary to
design multiD numerical methods. Here, we design a well-balanced numerical method valid for both 1D
and 2D cases. With our proposed strategy we have proved that the scheme verifies the C-property. It
is well-known that the HLL solver is an incomplete Riemann solver and is dissipative [5]. It is also well-
known that some schemes require empirical considerations and choice of specific functions. The proposed
2D numerical methodology on structured mesh does not require the knowledge of the full eigenstructure of
the flux matrix per time step as HLL Riemann solver [23] and its variants(HLLC, HLLEM), Roe scheme [37],
DOT(Dumbser-Osher-Toro) Riemann solver [16].

1D solver can be extended to design 2D schemes on both structured and unstructured mesh. 2D structured
finite volume schemes based on 1D solver have been developed in the literature to solve sediment transport
problems. In this work a methodology to design 2D PCCU scheme on structured cartesian mesh is briefly
presented. This scheme is seen as an extension of one-dimensional PCCU and does not use any empirical
consideration or specify functions as in the designing of some Multidimensional approximate Riemann solvers
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available in [41] and [1]. One drawback of 2D schemes on the rectangular structured mesh is that the fluxes
are computed only at the interfaces of the cells. Structured numerical methods do not take into account the
flux at the level of the vertices of each cell. With such a methodology the solutions obtained will be isotropic.
The finding of isotropic solutions is not always desirable when solving a sediment transport problem. To
take into account the conservative and nonconservative fluxes in all the directions of the cell, it is important
to design a numerical method on unstructured mesh. We introduce in this work a unstructured PCCU
method based on the efficient, robust and highly accurate WBPP multiD numerical methodology. With
that, the proposed multiD scheme can be applied to all conservative and nonconservative problems without
major modifications. WBPP shock-capturing PCCU methods combined with a high order reconstruction
technique for solving multiD sediment transport models with wet-dry fronts on general triangular meshes are
not reported in the literature.

In the current study, a central-upwind scheme in the path-conservative framework is developed on trian-
gular meshes to approximate a multiD nonconservative hyperbolic system.

Few multiD path-conservative methods for nonconservative problems designed satisfy all the following
major properties: (i) well-balanced that is exactly capable of preserving steady-state solutions (lake at rest
states) even in the presence of wet-dry interfaces; it stably simulates the wet-dry zones without numerical
oscillations; (ii) it stably handles the discontinuities since the nonconservative products are well-defined; (iii)
positivity-preserving that is capable of maintaining the water depth non-negative during the simulation with-
out reducing the global time step. The developed method satisfies all these major properties. Some schemes
found in literature, although verifying some of the above properties, are not suitable complex geometries.

Our main goal is to derive a fast, robust and efficient second order unstructured path-conservative central-
upwind method combined with a special spatio-temporal reconstruction that captures the steady states, shock
fronts and rarefaction waves. Another important goal is to use the method for solving a new developed fully
coupled STM.

The model includes in the momentum equations friction source terms. The influence of the friction term
does not disappear in some practical applications (for example when the water depth is small or zero). The
presence of this term increases the level of complexity in numerical computations. To overcome this difficulty,
we propose to implement third-order Semi-implicit Runge-Kutta time integration method that sustains the
well-balanced and positivity-preserving properties of the proposed scheme. A high-order well-balanced
positivity-preserving PCCU scheme can be obtained by increasing the order of the gradient derivatives in the
reconstruction procedure. Here, qualitative and quantitative comparisons between experimental, numerical,
reference and analytical solutions for several benchmark problems are presented.

The rest of the paper is organized as follows. In section 2, we propose a new sediment transport model in
nonconservative form. In section 3, we develop some new extensions of path-conservative based schemes for the
proposed model. We present a CU scheme in a path-conservative framework in subsection 3.1 and we develop
a PCCU scheme for the 1D model in subsection 3.2. In section 4, we design new well balanced positivity-
preserving PCCU schemes and we prove some properties of the scheme. We introduce a multidimensional
PCCU (M-PCCU) method on general triangular mesh for the proposed model in section 5. In section 6, we
propose a time discretization procedure and we prove that the PCCU scheme is positive. In Section 7, we
expose several numerical examples demonstrating the performances of the proposed method.

2 Mathematical modelings and derivation

We propose a new fully coupled nonlinear hyperbolic system consisting of five equations based on multi-
physics and multi-components flow models described below (see Fig. (1)). Three layers are considered to
derive these equations and these layers allows us to develop three sub-models: a hydrodynamic sub-model, a
morphodynamical sub-model and a sediment concentration sub-model. Firstly, we consider three-dimensional
(3D) two phases (solid and fluid) equations and we use the nonhomogeneous Navier-Stokes equations for both
phases. Secondly, by summing on both phases the two-phase equations and assuming that the mixture velocity

3



and the fluid are equal, we find a nonhomogeneous 3D fluid flow father model:

∂ρ

∂t
+ div(ρU) = 0, (1)

∂ρU

∂t
+ div(ρU ⊗ U) + grad(P) = F , (2)

div(U) = 0, (3)

where t is the time, U = (u, v, w) are component of fluid velocity. F is the source term and P is the pressure
term. ρ is the mixture density. div and grad are the 3D divergence and gradient operators respectively.

Figure 1: Multi-physics and multi-components flow models: water, water/sediment mixture and topography

We use the hydrostatic assumption consisting to neglect the vertical acceleration of the fluid. Therefore,
the z-direction of 3D momentum equation reduces to:

∂P

∂z
= ρg. (4)

This implies that the pressure distribution over the vertical direction is hydrostatic.
The situation where the density is influenced by the sediment concentration c is considered:

ρ = ρw(1− c) + ρsc, (5)

where the pure fluid density ρw and the sediment density ρs are assumed to be constant in space and time
and where c is the flux volumetric sediment concentration. There is a counterpart in the evolution of the
fluid volume fraction that will compensate to achieve the following evolution of the mixture density:

∂ρ

∂t
+
∂ρu

∂x
+
∂ρv

∂y
+
∂ρw

∂z
= 0. (6)

At the free surface, the total sediment flux is assumed to be zero:

Wsc+ σz
∂c

∂z
= 0, (7)
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where Ws is the effective settling velocity obtained by averaged Lagrange equation of the motion over the
set of particles and depending of local concentration and given by:

Ws

Ws
= (1− c)m, (8)

where m is a positive exponent.

A material point on a free surface M(x, y, z, t) = −z + η(t, x, y). Thus
dM

dt
= 0 leads to:

∂η

∂t
+ u(t, x, y, η)∇η − w(t, x, y, η) = 0. (9)

The relation given by Eq. (9) is obtained under the assumption that, any fluid particle which is on the
free surface of the fluid at the initial time will remain on the free surface for any further time. The sediment
flux near the bed is function of sediment erosion (E) and deposition (D) exchange:

Wsc+ σz
∂c

∂z
= D − E. (10)

We can define a quantity
dFb
dt

(where Fb(t) = z(t) − Z∗b (t,x(t))) that describes the erosion/deposition ex-

change. Using this quantity we can define the bedload interface equation as:

∂Z∗b (x, t)

∂t
+ u(t,x, Z∗b )∇Z∗b (x, t) =

dFb
dt

+ w(t,x, Z∗b ) (11)

The following assumptions are used:

1. Long waves propagating assumption ε =
H

L
� 1, where H and L are two scale length characteristics.

Therefore h = (ε) and
∂P

∂z
= O(ε).

2. We assume that |u− u| ≤ O(ε) where instantaneous velocity and averaged velocity.
3. The fluid is viscous and incompressible, no heart transfer (the horizontal gradient temperature is zero).
4. The suspension is assumed to be sufficiently dilute to justify the use of the Boussinesq approximation.
5. The sediment diameters d50 are uniform.
6. The vertical averaging technique of Saint-Venant at the first approximation is used.

We introduce here the averaged of a function ψ by

ψ =
1

h

∫ η

Zb

ψ(x, t)dz where h(x, t) = η(x, t)− Zb(x, t) (12)

ψ′ is the fluctuation with respect to the average. It value is ψ′ = ψ−ψ and clearly the average of fluctuation
ψ′ is zero. h and Zb and η are the water depth, bed level and the free surface respectively (see below).

The Leibniz’s relations are also used to derive the model:

∂hψ

∂x
=

∂

∂x

∫ η

Zb

ψdz =

∫ η

Zb

∂ψ

∂x
dz − ψ(η)

∂η

∂x
+ ψ(Zb)

∂Zb
∂x

, (13)

and
∂hψ

∂t
=

∂

∂x

∫ η

Zb

ψdz =

∫ η

Zb

∂ψ

∂t
dz − ψ(η)

∂η

∂x
+ ψ(Zb)

∂Zb
∂t

. (14)

The hydrostatic approximation used in the modeling leads to:

∂P

∂z
= −ρg ⇒ P−Pa = −ρg(z − η) (15)

⇒ P = Pa − ρg(z − η) (16)

(17)
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The pressure term in horizontal momentum equations obtained reads:

∇P = ∇ρg(η − z) = ρg∇η − g(η − z)∇ρ, (18)

1

ρ
∇P = g∇η − g(η − z)∇ρ.

Now the horizontal momentum equation takes the form

∂u

∂t
+∇.(u⊗ u) +

∂(uw)

∂z
+

1

ρ
∇P = F (19)

Integrating the divergence-free equation over the depth of water and using the Leibniz relations we obtain
the mass and momentum conservation equations. The derived system constitutes the hydrodynamic sub-
model. The final model is obtained by adding sediment transport equations (bedload equation and sediment
concentration equation) to the hydrodynamic sub-model.

2.1 Hydrodynamic sub-model

The hydrodynamic sub-model reads:

∂h

∂t
+∇.(hu) =

(E −D)

(1− p)
, (20a)

∂hu

∂t
+∇.

(
q⊗ u +

1

2
gh2I

)
= −gh∇Z∗b −−

1

2ρ
gh2(ρs − ρw)∇C − (E −D)

(1− p)
u− ghSf . (20b)

Here, u = (u, v) is the horizontal velocity vector with the depth-averaged components u and v along the
coordinates axis and q = (q1, q2) = (hu, hv) = hu is the mass flux. I is the identity square matrix in R2.
Z∗b = Zb+B is the total bed level, B is the non erodible bed and Zb is the mobile bed level (see Fig. (1)). The
mixture density ρ = Cρs + (1− C)ρw where C is averaged sediment volume concentration (see below). The

momentum flux is q⊗u+
1

2
gh2I and the pressure is assumed hydrostatic. The gradient operator ∇ is defined

by ∇ = (
∂

∂x
,
∂

∂y
) and the divergence is noted by ∇.(.). The erosion/deposition exchange is represented by

(E −D)

(1− p)
, p being the bed porosity, E and D are respectively the erosion and deposition rates. In the system

(20b), (SFx, SFy)T = −gh(Sfx, Sfy)T are the friction term components, which depend on the flow regime.
When the flow is turbulent, Darcy-Weisbach law can be used:

(Sfx, Sfy) =
n‖u‖(u, v)

8gh
, (21)

where n is the Darcy-Weisbach friction factor.

Eq. (20a) for
(E −D)

(1− p)
= 0 is the Lagrangian form of mass conservation equation:

∂h

∂t
+∇.(hu) = 0. (22)

Note that hu in (22) and q in (20b) are different in their role. The system (20) is named generalized Shallow
Water/Sediment model. Yet, for steady state or unsteady solutions, the continuity equation (22) degenerates
to a constraint ∇.(hu) i.e. the depth-integrated velocity is a solenoidal filed. We have:

∇.(u⊗ q) = (u.∇)q + q(∇.u). (23)

The first term of RHS in Eq. (23) is associated to the background flow and the second term is closely linked
to the change in the water depth along flow path. Illustrating how the change in the depth h are insert
wined. We observe that the divergence ∇.(u⊗ q) contains (q.∇)u and (∇.q)u. Moreover, the term (∇.q)u
characterizes the wave propagation and (∇.q)u+gh∇η is the wave-like propagation on top of the background
flow. This means that the depth-averaged velocity u = q/h is transported by the mass flux q.
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2.2 Sediment transport equations.

Here, we expose the sediment concentration equation described in the layer of suspended sediment particles
and the bedload equation in the bottom layer. We choice an Eulerian approach for both equations.

Sediment concentration equation

The averaged equation governing the sediment concentration reads:

∂hC

∂t
+∇. (huadvC) = ∇. (νsfh∇C) + E −D (24)

The diffusion term is obtained by using Darcy’s law into the averaged density evolution equation. Really,
the advection velocity is given by uadv = Fcorru, where Fcorr convert the averaged velocity into advection
velocity [26]:

Fcorr =
I2 − log(B/30)I1
I1 log(eB/30)

, (25)

where I1, I2 are given by [14]:

I1 =


1

1−Ro
(1−B1−Ro), Ro 6= 1

− log(B), Ro = 1
, and I2 =


I1 + log(B)B1−Ro)

Ro− 1
, Ro 6= 1

−0.5(log(B))2, Ro = 1,

where B =
h

ks
with ks is bed roughness taken as in [32]. For sake simplicity, we take Fcorr = 1 in all the

tests. The function f is the sediment mode parameter introduced to represent the percentage of sediments
transported by the suspended load. We adopt the following relation[21]

f = min{1, 2.5e−Ro}, (26)

where Ro =
Ws

κu∗
is the Rouse number used to define the mode of sediment transport (bed-load or suspension),

κ = 0.4 is Von Karman number, u∗ is the bottom velocity and Ws being the settling velocity given by [42]:

Ws =

√
(
13.95ν

d50
)2 + 1.09sgd50 − 13.95

ν

d50
,

where d50 is the sediment diameter and where ν is the clear water viscosity. The parameter s =
ρs
ρw
− 1 is

the submerged specific gravity of sediment.

Bed evolution equation

By assuming that u(t,x, Z∗b )∇Z∗b (x, t)− w(t,x, Z∗b )→ 1

1− p
∇qb, the bed-load equation given by (11) is

replaced by the Exner’s equation. Here, qb is the horizontal sediment transport rate. Following Eq.(11), the
bedload equation can be rewritten as:

∂Z∗b
∂t

+
1

1− p
∂qb1
∂x

+
1

1− p
∂qb2
∂y

= − (E −D)

1− p
, (27)

where qb1, qb2 denote volumetric sediment transport rates per unit width along the cartesian coordinates.
Therefore, the morphodynamic sub-model using a Grass approximation reads:

∂Z∗b
∂t

+
Ag

1− p
∂

∂x

(
(hu)

[
(hu)2 + (hv)2

]
h3

)
+

Ag

1− p
∂

∂y

(
(hv)

[
(hu)2 + (hv)2

]
h3

)
= − (E −D)

1− p
, (28)
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where Ag[s
2/m] represents the intensity of fluid/sediment interaction and where we have denoted qb =

(qb1, qb2) = (hu, hv)

([
(hu)2 + (hv)2

]
h3

)
.

Exner based equation for the conservation of mass of sediment given by (28) states that the rate of
change of bed elevation within a control volume is driven by the sediment fluxes crossing the boundaries of
that volume and the erosion/deposition exchange.

Closure model

In above equations, D is the deposition rate [10]:

D = Ws(1− Ca)mCa, (29)

where m is a parameter indicating the hindered influence of high sediment concentrations on settling velocity.
The function Ca is the local near-bed uniform sediment concentration in volume, which can be determined
for uniform grain size as:

Ca = αcC, (30)

where αc is given as in [10]:

αc = min{2, 1− p
c
}.

The erosion rate E is calculated in as [2]:

E :=

ϕ(θ − θcr)
√
u2 + v2

hd0.2
, θ > θcr

0, otherwise
(31)

For sediment entrainment E, ϕ[m1.2] is the coefficient that controls the erosion force. The function θcr is the
critical value of Shields parameter θ defined by

θ =
u∗
gsd50

, (32)

where, u∗ is the function velocity defined using the manning coefficient u∗ =
√
Cfu2. Another formulation

account the sediment supply condition can be given (for dunes):

u∗ =
u

6 + 2.5 ln(
h

ks
)

, (33)

where ks is a roughness coefficient depending on sediment supply condition [32].

2.3 Nonconservative form of the model

The final two-dimensional sediment transport model in generalized shallow water equations reads:

∂h

∂t
+∇.(hu) =

(E −D)

1− p
, (34a)

∂hu

∂t
+∇.

(
hu⊗ u +

1

2
gh2I

)
+ gh∇Z∗b +− 1

2ρ
gh2(ρs − ρw)∇C = − (E −D)

(1− p)
u− ghSf , (34b)

∂hC

∂t
+
∂FcorrhuC

∂x
+
∂FcorrhvC

∂y
= ∇. (hνsf∇C) + (E −D), (34c)

∂Zb
∂t

+
Ag

1− p
∂

∂x

(
(hu)

[
(hu)2 + (hv)2

]
h3

)
+

Ag

1− p
∂

∂y

(
(hv)

[
(hu)2 + (hv)2

]
h3

)
= − (E −D)

1− p
, (34d)

∂B

∂t
= 0. (34e)
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The proposed model can be seen as an extension of those proposed by Clare et al.,[14], Greimann et al.,[21],
Huybrechts et al.,[26], Huabin et al.,[27], Holly et al.,[25]. It very similar to the one recently developed by
Ngatcha et al.,[32]. Moreover, it extends the model developed b y Cao et al.,[10] and its extensions used in
some papers such as [2], [30] and [49]. The proposed model can reformulate in nonconservative form as:

∂W

∂t
+
∂F1(W)

∂x
+
∂F2(W)

∂y
= T1(W)

∂W

∂x
+ T2(W)

∂W

∂y
+Q1(W)

∂W

∂x
+Q2(W)

∂W

∂y

+S1(W )
∂W

∂x
+ S2(W )

∂W

∂y
+ Se(W) + SD(W) + SF (W) x, y ∈ Ω ⊂ R, t ∈]0, T ].

(35)

Here, x, y ∈ Ω ⊂ R2, t ∈ (0, T ), W =


h
hu
hv
hC
Zb

 is the vector containing the conserved variables and W = (W,B).

The functions F1,2(W,B) are the physical fluxes on both x,y-directions given by:

F1(W,B) =


hu

hu2 + 1/2gh2

huv
FcorrhuC

q̃b1
0

 , F2(W,B) =


hv
huv

hv2 + 1/2gh2

FcorrhvC
q̃b2
0

 , (36)

where (q̃b1, q̃b1) =
Ag

1− p
(qb1, qb1) and where

∂Fk(W,B)

∂B
= 0, k = 1, 2. The nonconservative vectors read:

T1(W,B) =


0
−gh

0
0
0
0

 , T2(W,B) =


0
0
−gh

0
0
0



Q1(W,B) =



0

−gh2 ρw − ρs
2ρ

0
0
0
0


, Q2(W,B) =



0
0

−gh2 ρw − ρs
2ρ

0
0
0


, S1(W ) =


0
−gh

0
0
0
0

 , S2(W ) =


0
0
−gh

0
0
0

 .

The bottom friction, the erosion/deposition exchange and diffusion source terms are defined respectively
by:

SF =


0

−ghSfx
−ghSfy

0
0
0

 , Se =



(E −D)

(1− p)
− (E −D)

(1− p)
u

− (E −D)

(1− p)
v

E −D

−E −D
1− p
0


and SD =



0
0
0

∂

∂x

(
hνsf

∂C

∂x

)
+

∂

∂y

(
hνsf

∂C

∂y

)
0
0


.
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The smooth solution must satisfy some positivity constraints which lead to the following solution space
for physically admissible solutions

W =
{
W ∈ R6, h > 0, C > 0

}
,

The Jacobian matrix of the system reads:

Ak(W) = Ak(W)− Tk(W)−Qk(W)− Sk(W ), k = 1, 2. (37)

where Ak(W) =
∂Fk(W)

∂W
. We note that

An = A.n = A1.n1 +A2.n2, (38)

where n = (n1,n2) is unit normal vector.

2.4 Steady state solution
We develop steady-state solutions for the one-dimensional sediment transport in a nonhomogeneous shal-

low water system obtained from our proposed model. We start by computing the steady-state solution in
the 1D case. In situations when the erosion/deposition effects are zero(E −D = 0), the stationary solutions

satisfying
dW

dt
= 0 can be obtained:

h ≡ constant, hu ≡ constant in time, Z∗b ≡ constant in time, C ≡ constant in time, ρ ≡ constant in time.
(39)

If we assume that:
hu ≡ q0, ∂xZ

∗
b ≡ −K0, ∂xC ≡ −H0, ρ ≡ ρ0. (40)

The last equation of (40), corresponds to saturated sediment medium. According to Eq(40), we obtain the
constant water depth h0 defined by:

F (h0) = 0, with F (h0) =
gδρH0

ρ0
h4

0 + gK0h
3
0 −

nq2
0

8
. (41)

The structure of 2D steady-state is not easy, but it is possible to find a quasi 1D steady-state solutions:

h ≡ constant, hu ≡ constant, hv ≡ 0, ∂xZ
∗
b ≡ constant in time, ∂yZ

∗
b ≡ 0, (42)

∂xC ≡ constant in time, ∂yC ≡ 0, ρ ≡ constant in time,

or

h ≡ constant, hv ≡ constant, hu ≡ 0, ∂yZ
∗
b ≡ constant in time, ∂xZ

∗
b ≡ 0, (43)

∂yC ≡ constant in time, ∂xC ≡ 0, ρ ≡ constant in time.

When the bed Z∗b and the sediment concentration C are constant in time, we set Z∗b (x, y, t) = Z∗b (x, y) and
C(x, y, t) = C(x, y).

3 Finite volume methods

In this section, we develop a WBPP path-conservative central-upwind scheme. We start with considering
an open bounded interval of R, denoted by Ω and representing the flow domain. A uniform grid {xi =
i∆x}i∈I is defined on Ω (recall that Ω is the closure of Ω in the topological sense), where ∆x is the grid size.
The associated finite-volume cells Ki (named also control-volumes) are defined as: Ki = [xi−1/2, xi+1/2].

These control-volumes should meet the following condition Ω =
⋃N
i=1Ki, where N = Card(I) is a given

nonnegative integer assigned to tend to +∞. The family of control-volumes Ki is denoted by T . Sometimes
∆x is called the size of T . We assume that at any time t ≥ 0 the average (in space) W i(t) of the solution over

any control-volume Ki is available. Recall that W i(t) =
1

∆x

∫
Ki
W (x, t)dx. W i interpreted as the average of

W̃ (a piecewise constant approximation for all x ∈ K of W (x, t) at time t+ ∆t). The design of CU scheme
in path-conservative framework requires the choice of sufficiently smooth paths in the normed space R6

10



3.1 A well-balanced CU scheme

In this subsection, we begin by develop a CU scheme in path-conservative version for the one-dimensional
version of the proposed model:

∂W

∂t
+A1(W) = S(W(x, t)); x ∈ Ω ⊂ R, t ∈]0, T ] (44)

Here, W = (W,B) is the unknown vector, F (W) = F1(W) is the physical flux and A1(W) =
∂F1(W)

∂x
. The

source term expresses as:

S = S0(W) + S(W ) + Sc(W) + Se(W) + SD(W) + SF (W),

where S0, Sc, S are respectively given by:

S0 =



0

−gh∂Zb
∂x

0
0
0
0


, Sc =



0

−gh
2(ρs − ρw)

2ρ

∂C

∂x
0
0
0
0


, S =



0

−gh∂B
∂x

0
0
0
0


(45)

The first-order semi-discrete CU scheme for quasi 1-D model reads:

1

∆x

d

dt

(∫
Ki

W (x, t)dx

)
= −

(Fi+1/2(t)−Fi−1/2(t)

∆x
− S(W i(t))

)
,Ki ∈ T , i ∈ Z. (46)

Here, the CU flux Fi+1/2 reads:

Fi+1/2 =
1− αi+1/2

1

2
F (W+

i+1/2) +
1 + α

i+1/2
1

2
F (W−

i+1/2)− α
i+1/2
0

2

(
W+
i+1/2 −W

−
i+1/2

)
, i ∈ Z. (47)

where

F (W) =



hu

hu2 +
1

2
gh2

huv
FcorrhuC

1

1− p

(
(hu)

[
(hu)2 + (hv)2

]
h3

)
0


. (48)

Remark 3.1. and where

α
i+1/2
0 =

−2a+
i+1/2a

−
i+1/2

a+
i+1/2 − a

−
i+1/2

, α
i+1/2
1 =

a+
i+1/2 + a−i+1/2

a+
i+1/2 − a

−
i+1/2

, (49)

The one-sided local speeds of propagation a±i+1/2 are upper/lower bounds on the largest/smallest eigenval-

ues of Jacobian matrix of the system A1 determined by the polynomial characteristic given at first order
approximation by:

a+
i+1/2 = min

{
λ1(A1(W+

i+1/2)), λ1(A1(W−
i+1/2)), 0

}
, (50)

a−i+1/2 = max
{
λ6(A1(W+

i+1/2)), λ6(A1(W−
i+1/2)), 0

}
.
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In absence of sediment flux qb, the eigenvalues of the quasi-1D system are given by:

λ1,6 = u±
√
gh, λ2,3 = 0, λ4 = u, λ5 = Fcorru. (51)

Thus the semi-discrete CU scheme can be rewritten in term of fluctuations as:

d

dt
Wi(t) = −

(
Fi+1/2(t)− (F (W+

i−1/2)− F (W−
i+1/2))−Fi−1/2(t) + (F (W+

i−1/2)− F (W−
i+1/2))

∆x

)
+ S(Wi(t))(52)

=

(
D−i+1/2 +D+

i−1/2 − (F (W+
i−1/2)− F (W−

i+1/2))

∆x

)
+ S(Wi(t)),

where D±i+1/2 are the fluctuations given by:

D−i+1/2 = Fi+1/2 − F (W−
i+1/2), and D+

i+1/2 = −Fi+1/2 + F (W+
i+1/2). (53)

Particularly, the condensed form of the definition of fluctuations for CU scheme is written as follows:

D±i+1/2 =
1 + α

i+1/2
1

2

∫ 1

0

A1(Ψi+1/2(s))
dΨi+1/2

ds
ds± α

i+1/2
0

2

(
W+
i+1/2 −W

−
i+1/2

)
. (54)

We expose this formulation to show how the CU technique does not account the nonconservative terms in
the definition of fluctuations given by (53) or (68). In this semi-discrete CU scheme, we denoted W+

i+1/2 and

W−
i+1/2 the left and right intermediate values of polynomial reconstruction

W̃(x, t) =
∑
i

PiXKi
(x),Pi =

(
P

(1)
i , P

(2)
i , ...., P

(N)
i

)T
, (55)

where X -the characteristic function, P
(j)
i -polynomials of a certain degree satisfying the conservation and

accuracy requirements defined for all i by:

1

∆x

∫
Ki

Pi(x)dx = W i, and P
(j)
i (x) = W (j)(x) +O((∆x)s1), x ∈ Ki

with s1 a (formal) order of accuracy and W(x) = (W(1), ....,W(N))t-is the exact smooth solution. We are
interested at boundary extrapolated values. One has:

W−
i+1/2 = W̃(xi+1/2, 0) = Pi(xi+1/2), W+

i+1/2 = W̃(xi+1/2, 0) = Pi+1(xi+1/2). (56)

Here, W−
i+1/2 and W+

i+1/2 are connected via Riemann fan by γ(W+
i+1/2,W

−
i+1/2) (a curve in phase space).

For some smooth W, we have:

W±
i+1/2 = W(xi+1/2) +O(|Ki|s), ∀i ∈ Z. (57)

At the first order we have:
W−

i+1/2 = Wi and W+
i+1/2 = Wi+1. (58)

Note that the quantities Wi, W±
i+1/2, a±i+1/2 are the quantities depending on time, but we simplify the

notation by suppressing this dependence. The source terms are discretized in well-balanced sense as follows:

(Sc)
(2)
i = − (ρs − ρw) g

2ρi

[(
h−i+1/2 + h+

i+1/2

)(
(hC)−i+1/2 − (hC)+

i−1/2

)
(59)

−
(

(hC)−i+1/2 + (hC)+
i+1/2

)(
h−i+1/2 − h

+
i−1/2

)]
(60)

(S0)
(2)
i =

g

2

(
h−i+1/2 + h+

i+1/2

)(
Z−b,i+1/2 − Z

+
b,i−1/2

)
,
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Remark 3.2. The semi-discrete well-balanced CU scheme for the 1D proposed model is given by (48), (53),
(55), (56),(58), (50) and (59). This scheme does not account the nonconservative products present in the
model that modify the wave speed propagation. It important to design a numerical scheme that take in
consideration these terms.

3.2 A one-dimensional PCCU scheme.

In this section, we develop a new PCCU scheme for 1D version of the proposed model. The designed
scheme is an extension of the one developed in Ngatcha and Njifenjou [35] (see also [32]). A quasi-1D
nonconservative problem derived from our model reads:

∂W

∂t
+A(W)

∂W

∂x
= Se(W) + SD(W) + SF (W), x ∈ Ω ⊂ R, t ∈]0T ], T > 0, (61)

where A(W) = A1(W) =
∂F1(W)

∂W
− T1(W)−Q1(W)− S1(W ), T1 = T , Q1 = Q, S1 = S.

We start by choosing the linear path Ψ:

Ψi+1/2(s) =
(

Ψ
(1)
i+1/2,Ψ

(2)
i+1/2, ....,Ψ

(N)
i+1/2,Ψ

(N+1)
i+1/2

)
:= Ψ(s,W+

i+1/2,W
−
i+1/2).

Next, we defined the discretization of nonconservative terms using these paths. The nonconservative vectors

T1 = T and Q1 = Q are associated to multiple paths (Ψ
(1)
i+1/2,Ψ

(2)
i+1/2, ....,Ψ

(N)
i+1/2) and the fixe topography

vector S1 = S is associated only to (Ψ
(N+1)
i+1/2 ).

These linear paths connect both states W+
i+1/2 and W−

i+1/2 across the jump discontinuity at x = x0, such

that a local-Lipschitz application Ψ : [0, 1]× Ω× Ω→ Ω satisfies the following property:

Ψ(0,W−
i+1/2,W

+
i+1/2) = W−

i+1/2and Ψ(1,W−
i+1/2,W

+
i+1/2) = W+

i+1/2, for all W−
i+1/2,W

+
i+1/2 ∈ Ω.

(62)
We can define a nonconservative product [X∂xY ], with X ∈ RN , N > 0 and Y ∈ R as:

[X.∂xY ]Φ =

[∫ 1

0

X(Ψ(s,W−i+1/2,W
+
i+1/2))

dΨ

ds
(s, Y −i+1/2, Y

+
i+1/2)ds

]
= XΨi+1/2

. (63)

Now, we will noted by MΨi+1/2
,M = T,Q, S to represent the nonconservative contribution terms at discrete

level. This definition is similar to the one proposed by Volpert [47] for the nonconservative product. We take
a particular example of the simplest linear segment paths:

Ψi+1/2(s) = W−
i+1/2 + s(W+

i+1/2 −W−
i+1/2), s ∈ [0, 1]. (64)

The jump condition using the definition of paths reads:∫ 1

0

A(Ψ(s,W−
i+1/2,W

+
i+1/2))

dΨ

ds
(s,W−

i+1/2,W
+
i+1/2)ds (65)

= [A(W)∂xW]Ψ − [T (W)∂xZb]Ψ − [Q(W)∂xC]Ψ − [S(W)∂xB]Ψ

= F (W+
i+1/2)− F (W−

i+1/2) + T (W+
i+1/2,W

−
i+1/2)(Z+

b,i+1/2 − Z
−
b,i+1/2)

+Q(W+
i+1/2,W

−
i+1/2)(C+

i+1/2 − C
−
i+1/2) + S(W+

i+1/2,W
−
i+1/2)(Bi+1/2 −Bi−1/2)

= σ(W+
i+1/2 −W−

i+1/2),

where σ is speed of discontinuity. The LHS term of (65) is the fluctuation which is split right moving waves
arising in the Riemann solution the fluctuation is defined by:

D(W+
i+1/2,W

−
i+1/2) =

∫ 1

0

A(Ψ)
dΨ

ds
ds = D−(W+

i+1/2,W
−
i+1/2) +D+(W+

i+1/2,W
−
i+1/2), (66)
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where D−(W+
i+1/2,W

−
i+1/2), D+(W+

i+1/2,W
−
i+1/2) represents the difference between the numerical flux and

the physical flux at both sides of the cell interface and are computed using Central-Upwind technique. In
Eq.(65), we have used a quadrature method to compute the integral for all the nonlinear functions associated
to nonconservative terms:

T (W+
i+1/2,W

−
i+1/2) =

∫ 1

0

T (Ψi+1/2(s))ds = T (
W+

i+1/2 + W−
i+1/2

2
), (67)

Q(W+
i+1/2,W

−
i+1/2)(C+

i+1/2 − C
−
i+1/2) =

∫ 1

0

Q(Ψi+1/2(s))
dΨi+1/2(s)

ds
ds, and

S(W+
i+1/2,W

−
i+1/2) =

∫ 1

0

S(Ψi+1/2(s))ds = S

(
W+
i+1/2 +Wi−1/2

2

)

Particularly, the nonconservative contribution for sediment concentration reads:∫ 1

0

Q(Ψi+1/2(s))
dΨi+1/2(s)

ds
ds

=

(
δρ

ρ+
i+1/2 + ρ−i+1/2

((hC)+
i+1/2 − (hC)−i+1/2)−

(δρ)(C+
i+1/2 + C−i+1/2)

2(ρ+
i+1/2 + ρ−i+1/2)

(h+
i+1/2 − h

−
i+1/2)

)
T

(
W+

i+1/2 + W−
i+1/2

2

)
.

The components of Ψi+1/2 are: Ψi+1/2 =
(
Ψh,i+1/2,Ψhu,i+1/2,Ψhv,i+1/2ΨhC,i+1/2,ΨZb,i+1/2,ΨB,i+1/2

)T
.

We have for example:

g[h∂xZb]Ψ = g

∫ 1

0

Ψh(s)
∂ΨZb

(s)

∂s
=
h+
i+1/2 + h−i+1/2

2
((Zb)

+
i+1/2 − (Zb)

−
i+1/2).

Therefore, we rewrite the fluctuations D±i+1/2 for the nonconservative system as follows:

D±i+1/2 =
1 + α

i+1/2
1

2

∫ 1

0

A(Ψi+1/2(s))
dΨi+1/2

ds
ds± α

i+1/2
0

2

(
W+

i+1/2 −W−
i+1/2

)
. (68)

We retrieve the fluctuation formulation for conservative systems developed in CU scheme when A = A.
With this new formulation of fluctuation, the second order semi-discrete PCCU scheme reads:

dWi(t)

dt
= − 1

∆x

(
D−i+1/2 +D+

i−1/2 + F (W−
i+1/2)− F (W+

i−1/2)− Ti −Qi − Si
)

+(Se)i+(SD)i+(SF )i. (69)

Here, we have used the definition of the polynomial reconstruction to compute Ti, Qi, Si:

Ti =

(∫
Ki

T (Pi(x)) dx

)(
Z−b,i+1/2 − Z

+
b,i−1/2

)
, (70)

Qi =

(∫
Ki

Q (Pi(x)) dx

)(
C−i+1/2 − C

+
i−1/2

)
,

Si =

(∫
Ki

S (Pi(x)) dx

)(
Bi+1/2 −Bi−1/2

)
where

Mi =

(∫
Ki

M (Pi(x)) dx

)
= M

(
W−

i+1/2 + W+
i−1/2

2

)
,M = T,Q, S.

The one-dimensional semi-discrete PCCU scheme for the 1D proposed model can be rewritten as:

d

dt
Wi(t) = − 1

∆x

(
Fi+1/2 −Fi−1/2

)
− 1

∆x
(−Ti −Qi − Si)−

1

∆x
HΨ,i+1/2+SD(Wi(t))+SF (Wi(t))+Se(Wi(t)),

(71)
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where we denoted the jump contribution HΨ,i+1/2 reads:

HΨ,i+1/2 =
a+
i−1/2

a+
i−1/2 − a

−
i−1/2

[
TΨ,i−1/2 +QΨ,i−1/2 + SΨ,i−1/2

]
−

a−i+1/2

a+
i+1/2 − a

−
i+1/2

[
TΨ,i+1/2 +QΨ,i+1/2 + SΨ,i+1/2

]
. (72)

The source terms SD,i = SD(Wi(t)) SF,i = SF (Wi(t)) and Se,i = Se(Wi(t)) are discretized as follows:

Se,i =



E −D
1− p

− (E −D)ui
(1− p)

− (E −D)vi
(1− p)
E −D

−E −D
1− p
0


, SF,i =



0

−g

(
h−i+1/2 + h+

i+1/2

)
2

S1f,i

−g

(
h−i+1/2 + h+

i+1/2

)
2

S2f,i

0
0
0


, SD,i =



0
0
0

δxi (hνfC)
0
0


.

where the operator δxi expressed as δxi (.) =
(.)i+1 − (.)i

∆x
.

Remark 3.3. The Path-conservative central-upwind method is formally consistent with the particular defi-
nition of weak solutions while the original CU is only consistent with smooth solutions. The use of PCCU
scheme is a great interest than the original CU-scheme. The semi-discrete PCCU scheme coincides with a
semi-discrete version of path-conservative HLL Riemann solver with intermediate wave.

Remark 3.4 (2D PCCU scheme on cartesian mesh). A simple 2D PCCU scheme on structured meshes
can be derived directly without any difficulty following the methodology described in Fig. (2) and by using to
the previous results.

Figure 2: 2D structured meshes, methodology to evaluate the fluctuations. In this methodology, the fluctuations D±
i,k+1/2

and

D±
i+1/2,k

are computed at each cell faces of the meshes and the half indices (i + 1/2, k) and (i, k + 1/2) to denote cell faces
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4 AENO nonlinear reconstructions and main properties

4.1 Generalized AENO nonlinear reconstruction for 1D schemes

We present a computational economical second order limiter. This limiter is inspired from the ENO
methodology of [39]. We start by writing the piecewise polynomial as follows:

Pi(x) = Wi + (x− xi)∆i; x ∈ Ki, with xi =
xi+1/2 − xi−1/2

2
, (73)

where ∆i = (∇W)i, i ∈ Z are the slopes that approximate (∇W(xi, t
n) in a non-oscillatory manner using a

nonlinear slope obtained by convex combination of ∆i+1/2(Wi,Wi+1) and ∆i−1/2(Wi,Wi−1) as follows:

(∇W)i = ∆i =

{
∆i+1/2 + β+(∆i−1/2 −∆i+1/2)φ, if |∆i+1/2| > |∆i−1/2|,
∆i−1/2 + β−(∆i+1/2 −∆i−1/2)φ, if |∆i−1/2| > |∆i+1/2|.

(74)

In Eq. (74), φ = abs

(
sign(∆i+1/2) + sign(∆i−1/2)

2

)
. The parameters β± are defined as:

β±(r) =
r±√

γ2 + r±2
, r± > 0 (75)

where

r+ = abs

(
∆i+1/2

∆i−1/2 + ε

)
if |∆i+1/2| > |∆i−1/2|, (76)

r− = abs

(
∆i−1/2

∆i+1/2 + ε

)
if |∆i−1/2| > |∆i+1/2|.

In Eqs (74)-(76), the slopes ∆i±1/2 are defined as follows:

∆i+1/2 =
Wi+1 −Wi

∆x
, ∆i−1/2 =

Wi −Wi−1

∆x
. (77)

In the above equation (75), γ is a positive parameter, and ε is a small positive tolerance to avoid division by
zero.

Some minmod based reconstructions choose the absolute minimum of the slopes between right and left
slopes. This can produce diffusion for a second order scheme and even for a high order scheme. The choice
of highest slope can produce small oscillations during the simulation. To overcome this drawback we can
use an AENO methodology. The above AENO-based procedure given by (73)-(77) uses also the ADER
methodology and ENO strategy. This reconstruction technique is proven to have a formal second accuracy
and is computationally economic than the classical AENO reconstruction developed in [44]. This methodology
reconstruction can be naturally extended in 2D schemes.

4.2 AENO nonlinear reconstructions for 2D schemes

Here, we extend the above modified AENO reconstruction following two step process.

P(x, y) = Wi,k+∆i(x−xi)+∆k(y−yk); x, y ∈ Ki, with xi =
xi+1/2,k − xi−1/2,k

2
, yk =

yi,k+1/2 − yi,k−1/2

2
(78)

where the above slopes ∆i(∆i+1/2,k,∆i−1/2,k) and ∆k(∆i,k+1/2,∆i,k−1/2) are defined in 2D manner using
(74) with

∆i+1/2,k =
Wi+1,k −Wi,k

∆x
, ∆i−1/2,k =

Wi,k −Wi−1,k

∆x
(79)

∆i,k+1/2 =
Wi,k+1 −Wi,k

∆y
, ∆i,k−1/2 =

Wi,k −Wi,k−1

∆y
.
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Now we can estimate the solution at the face centers by linear reconstruction:

W+
i−1/2,k = Wi,k −

1

2
∆i, W−

i+1/2,k = Wi,k +
1

2
∆i, (80)

and

W+
i,k−1/2 = Wi,k −

1

2
∆k, W−

i,k+1/2 = Wi,k +
1

2
∆k. (81)

Using this 2D reconstruction, we can obtain easily a second order 2D PCCU (or 2D PCCU-AENO for short)
scheme in space. However we can increase the order of derivatives of Wi to obtain a high order scheme but
a high order scheme do not still ensure a high order accuracy.

Remark 4.1. (High order PCCU schemes) The order of the proposed scheme depends on the choice of
the functions P|Ki =

(
P (1), P (2), ......, P (N+1)

)
. For any smooth functions W, and according to Eq. (57) we

have:

P(x) = W(x) +O(|Ki|s1),∀x ∈ Ki (82)

dPi

dx
= W′(x) +O(|Ki|s2).

Then, the semi-discrete PCCU-AENO scheme (71)is an approximation of order at least r = min(s, s1+1, s2+
1) of the nonconservative quasi-1D system (61) in the following sense:(

D+
i+1/2 +D−i−1/2 +

∫
Ki

A(P(x))
dP

dx
dx

)
− Si =

∫
Ki

A(W)
∂W

∂x
+ S(Wi) +O(|Ki|r), (83)

where S(Wi) = Se(Wi)+SD(Wi)+SF (Wi) computed in each cell by using a barycenter formula. According
to remark 4.1, the order of PCCU is at least r, we can obtain the high order methods based on first order
PCCU numerical scheme by increasing the derivative of W.

4.3 Well-balanced discretization strategy for PCCU schemes

In this subsection, we propose a well-balanced discretization for the proposed model in quasi-1D case.
According to Eqs.(40)-(41), the proposed numerical method satisfy the C-property for the derived STM if
the condition:

E −D = 0, u = 0, v = 0, Z∗b = Z
∗
b(x), h+ Z∗b = w0, C = K0, (84)

holds for stationary flows at rest. Using (84), the source terms are treated in such a way are preserved at a
discrete level.

In Eq.(84), K0, C0 are the positive constant. Using the reconstructed unknown values by AENO recon-
struction, the discretization of source terms must preserve (84) at discrete level.

The numerical methodology proposed here is a robust and highly accurate technique and among other
things very suitable for sediment transport problems. We denote by: W the admissible space that satisfies
Eq. (84), W0 the admissible space guaranteeing that ”lake at rest” solutions are exactly preserved at discrete
level andW+

0 =Wh>0
0 the admissible space in which ”lake at rest” solutions and the positivity of water depth

at discrete level is exactly preserved. To obtain a stationary solution, i.e.
dWi(t)

dt
= 0, ∀W ∈ W0, the

following relation must be satisfied:

T
(2)
i + S

(2)
i =

(
F (2)
i+1/2 −F

(2)
i−1/2 −H

(2)
Ψ,i+1/2

)
, (85)

= F (2)
i+1/2 −F

(2)
i−1/2 −

a+
i−1/2

a+
i−1/2 − a

−
i−1/2

(T
(2)
Ψ,i−1/2 + S

(2)
Ψ,i−1/2)

+
a−i+1/2

a+
i+1/2 − a

−
i+1/2

(T
(2)
Ψ,i+1/2 + S

(2)
Ψ,i+1/2),
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where F (2)
i+1/2 = F(W+

i+1/2,W
+
i+1/2) is the second component of well-balanced numerical flux defined for

reconstructed unknowns W+
i+1/2, W+

i+1/2 ∈ W0, that is:

F (2)
i+1/2 =

1− αi+1/2
1

2
F (2)(W+

i+1/2) +
1 + α

i+1/2
1

2
F (2)(W−

i+1/2), with W+
i+1/2,W

+
i+1/2 ∈ W0 (86)

Here, T
(2)
i , S

(2)
i are the second components of nonconservative topography term defined above. Since

W+
i+1/2,W

+
i+1/2 ∈ W0, one has:

w+
i+1/2 = w−i+1/2 ⇒ h+

i+1/2 + Z∗,+b,i+1/2 = h−i+1/2 + Z∗,−b,i+1/2, (87)

where the above unknowns h and Zb are computed in positivity-preserving sense (see below). In Eq. (87),
we have noted that

Z∗,±b,i+1/2 = Z±b,i+1/2 ±Bi±1/2. (88)

The jump contribution for topography source term is given by:

T
(2)
Ψ,i+1/2 + S

(2)
Ψ,i+1/2 = −g(

h+
i+1/2 + h−i+1/2

2
)(h−i+1/2 − h

+
i+1/2). (89)

Therefore, the well-balanced discretization strategy for the topography source term is obtained by combining
(85) and (89). This strategy can be easily extended on unstructured mesh. With this well-balanced procedure,
the steady solution at rest can be easily obtained.

4.4 AENO positivity-preserving reconstruction procedures

In this subsection, we present some important results showing that the proposed unstructured method is
able of preserving the positivity of the water depth at each time-step. The proposed technique is similar to
the one exposed in a recent work of Ngatcha and Njifenjou [35] (see also Ngatcha et al.,[32]).

Well-balanced positive hydrostatic reconstruction

A good PCCU-AENO method for the proposed model should thus be well-balanced (in the sense that
it must exactly preserve physically relevant steady states) and positivity preserving (in the sense that the
computed values of h must be positive). Negative values of h can lead to an impossibility of calculating
the eigenvalues (51). In this subsection, we present a procedure originally developed in [35], extended in
[32] to preserve the positivity of water depth. We introduce the above reconstructed AENO values h±i+1/2,

(hu)±i+1/2, (hv)±i+1/2, Z∗,±b,i+1/2 of the unknowns to the left and right of i+1/2. The velocity and concentration

components at the interface are calculated as:

u+
i+1/2 =

(hu)+
i+1/2

h+
i+1/2

, u−i+1/2 =
(hu)−i+1/2

h−i+1/2

(90)

and

v+
i+1/2 =

(hv)+
i+1/2

h+
i+1/2

, v−i+1/2 =
(hv)−i+1/2

h−i+1/2

, (91)

The right/left bed elevation at the cell interface i+ 1/2 in right is given by:

Z∗,+b,i+1/2 = min(max(Z∗b,i+1, Z
∗
b,i), ηi+1), Z∗,−b,i+1/2 = min(max(Z∗b,i+1, Z

∗
b,i), ηi). (92)

Therefore, Z∗,±b,i+1/2 = Bi+1/2 + Z∗,±b,i+1/2 which should satisfy that Z∗,±b,i+1/2 + h±i+1/2 = η±i+1/2 = const if the

still water ηi + Z∗b,i = const is given. This treatment makes the reconstructed bed elevation equal to the
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water free surface level at the interface of wet/dry cells. In order to preserve the reconstructed water depth
nonnegative, the values of water depth are corrected as:

h−i+1/2 = max(0,min(ηi − Z∗b,i+1/2, hi)), h+
i+1/2 = max(0,min(ηi+1 − Z∗b,i+1/2, hi+1)), (93)

which verified at the steady states h+
i+1/2 = h−i+1/2. where Zi+1/2 = max(Z∗,−b,i+1/2, Z

∗,+
b,i+1/2) Finally the rest

of unknowns can be recalculated as:

u+
i+1/2 =

(hu)+
i+1/2

h+
i+1/2

, u−i+1/2 =
(hu)−i+1/2

h−i+1/2

, (94)

v+
i+1/2 =

(hv)+
i+1/2

h+
i+1/2

, v−i+1/2 =
(hv)−i+1/2

h−i+1/2

, (95)

and

C+
i+1/2 =

(hC)+
i+1/2

h+
i+1/2

, C−i+1/2 =
(hC)−i+1/2

h−i+1/2

, (96)

η±i+1/2 = h±i+1/2 + (Z∗)±b,i+1/2.

This procedure does not affect the C-property of the scheme. Moreover, this procedure is adapted in the
case where the bed elevation of the dry cell is higher than the water surface elevation of the neighbor’s wet
cell. With this procedure, we ensure the C-property of our scheme for the dry-bed application.

Remark 4.2. Although the 2D well-balanced positivity-preserving PCCU-AENO scheme on structured mesh
is interesting, it cannot produce anisotropic solutions. The finding of anisotropic solutions is recommended
for a multiD STM. In next section, the multidimensional CU (M-CU for short) scheme is reformulated
in path-conservative framework and using this later we derived particularly simple-yet highly accurate and
robust-multidimensional PCCU scheme.

5 A well-balanced unstructured path-conservative central-upwind method

In this section, we develop for the first time a genuinely path-conservative central-upwind method for non-
conservative problems on general triangular grids. The designed method is applied to the nonconservative
problems governing by sediment transport equations but can also be used for all nonconservative equations
available in the literature. To design this method, we develop a CU scheme for 2D model on general triangular
grids in path-conservative framework. The jump contributions are added simply in the fluctuation formula-
tions for unstructured mesh. The proposed unstructured PCCU method is view as a linear combination of
simple solvers. Only one path connecting two waves (without intermediate waves) is used to obtain it. With
this method, it not necessary to design a unstructured method based on multidimensional solver that can
become difficult to implement when the number of unknowns becomes greater.

5.1 Finite volume gridding

We assume that Ki is a triangular cells of size |Ki|. The mesh T is given by T :=
⋃
iKi. We denote

by nij := (cos(θij), sin(θij)) the outer unit normal to the corresponding sides of Ki of length lij such that
nij = −nji. Let (xi, yi) be the coordinates of the center of mass for Ki and p = (xpij , ypij ), be the mid
point of j − th side of Ki the set of neighboring of cells Ki is denoted by Vi = {Kj ∈ T ,Ki

⋂
Kj 6= ∅}. We

have Ki :=
⋃
j∈Vi Kij , where Kij is a non-overlapping sub-cells which contain an edge of the cell Ki. Kij is

associated to the interface of ∂Ki

⋂
∂Kj = ∂Kij

⋂
∂Kj . The distance between pij and Ci(the center of the

cell Ki) is noted d(pij , Ci). We note by Λi the minimum of this distance, that is Λi = minj∈Vi(d(pij , Ci)).
All these notations can be found in Fig. (3).

19



Figure 3: meshes and notations

General path-conservative formulation

Using the above unstructured mesh described in Fig. (3), it is possible to design a high order unstructured
path-conservative based scheme of the form:

Wi(t)

dt
=

∫
Ki

A(P(x))
dP

dx
dx +

∑
j∈Vi

Dij(Wi,Wj , nij) = S(Wi(t)). (97)

The term
∫
Ki
A(P(x))

dP

dx
dx is a approximation of the regular measure of Lebesgues decomposition of

[A(W)
∂W

∂x
]Ki

while the terms Dji = D(Wi,Wj , nji) and Dij = D(Wi,Wj , nij) are to its singular part.

We have, D(Wi,Wj , nij) = D(Wi,Wj ,−nji). At the first order accuracy, the first term in RHS disappears.
For conservative hyperbolic equations, a first order semi-discrete scheme reads:

Wi(t)

dt
=
∑
j∈Vi

Dij(Wi,Wj , nij) = S(Wi(t)), (98)

where the fluctuation terms Dij take account only the conservative flux:

Dij(Wi,Wj , nij) =

∫
∂Ki

⋂
∂Kj

∂Fk
∂xk

.nds, nij =

∫
∂Ki

⋂
∂Kj

nds (99)

Next, we will introduce a methodology to design PCCU scheme on unstructured mesh. To simplify the
presentation we will remove SΨ, the nonconservative contribution due to fixe topography. We assume that
the non-erodible topography is constant and this leads to consider W instead of W = (W,B).
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5.2 Reformulated M-CU scheme

In this subsection, we rewrite a M-CU scheme in path-conservative form. We start by proposing a
multidimensional CU (M-CU for short) scheme for the proposed model. This scheme reads:

W i(t)

dt
= − 1

|Ki|
∑
j∈Vi

lij cos(θij)

aij + aji
[ajiF1 (Wj(pij)) + aijF1 (Wi(pij))] (100)

− 1

|Ki|
∑
j∈Vi

lij sin(θij)

aij + aji
[ajiF2(Wj(pij)) + aijF2(Wi(pij))]

+
∑
j∈Vi

aijaij
aji + aji

[Wi(pij)−Wj(pij)] + S(W i(t)),

where the source term is S(W i(t)) = S0(W i(t)) +Sc(W i(t)) +S(W i(t)) +Se(W i(t)) +SF (Wi(t)), and where
W i(pij) and W j(pij) are the corresponding values to the pij of the piecewise linear reconstruction. These
values read:

Wi(pij) := lim
x→pij , x∈Ki

W̃ (x), Wj(pij) := lim
x→pij , x∈Kj ,j∈Vi

W̃ (x). (101)

We neglected in this equation the nonconservative terms present in (35) and thus the resulting method is only
consistent with smooth solutions. The order of method is given in sense of remark (4.1). A reformulation of
the M-CU scheme in term of fluctuations is possible and one has:

W i(t)

dt
= − 1

|Ki|
∑
j∈Vi

ajilij
aij + aji

[cos(θij)F1 (Wj(pij)) + sin(θij)F2(Wj(pij))] (102)

− 1

|Ki|
∑
j∈Vi

lijaij
aij + aji

[cos(θij)F1(Wi(pij)) + sin(θij)F2(Wi(pij))]

− 1

2

∑
j∈Vi

−2aijaji
aji + aij

[Wi(pij)−Wj(pij)]

+ S(W i(t)).

We denote the fluctuations at interface ∂Kij

⋂
∂Kj by Dij(Wi,Wj) and Dji(Wi,Wj). The M-CU scheme is

rewritten in path-conservative framework as:

W i(t)

dt
= − 1

|Ki|
∑
j∈Vi

(Dij(Wi,Wj) +Dji(Wi,Wj)) (103)

+
1

|Ki|
∑
j∈Vi

lij [cos(θij) (F1(Wi(pij))− F1(Wj(pij))) + sin(θij) (F2(Wi(pij))− F2(Wj(pij)))] + S(W i(t)),

where the fluctuations read:

Dij,ji =
1

2

(
1± αij1

)
lij cos(θij)(F1 (Wj(pij))− F1 (Wi(pij)) + lij sin(θij) (F2 (Wj(pij))− F2 (Wi(pij)))(104)

± αij0 (Wj(pij)−Wi(pij))

where the terms αij0 and αij1 are respectively:

αij0 =
−2aijaji
aij − aji

and αij1 =
aij + aji
aij − aji

.

Remark 5.1. This reformulation helps us (i) to show that the main drawback of the original multidimensional
central-upwind scheme was the fact that the jump in the nonconservative product terms across cell interfaces
have never been taken into account and (ii) to understand how the nonconservative products discretized on
unstructured mesh can influence the numerical solution.

21



5.3 PCCU scheme on unstructured meshes: M-PCCU scheme

Here, a new version of path-conservative methodology for nonconservative is developed. The semi-discrete
M-CU scheme given by (100) can be directly reformulated into a M-PCCU scheme by adding the nonconser-
vative products in the fluctuation terms:

W i(t)

dt
=

1

|Ki|
∑
j∈Vi

(Dij +Dji) (105)

+
1

|Ki|
∑
j∈Vi

lij [cos(θij) (F1(Wi(pij))− F1(Wj(pij))) + sin(θij) (F2(Wi(pij))− F2(Wj(pij)))]

+
1

|Ki|
(−Ti −Qi) + S(W i(t)).

where the source term decomposes as follows:

S(W i(t)) = SD(W i(t)) + Se(W i(t)) + SF (Wi(t)).

Unlike the M-CU scheme, the developed M-PCCU method incorporates all the nonconservative terms,
precisely in the definition of terms linked to fluctuations. We have defined the fluctuations for M-PCCU
scheme as follows:

Dij,ji =
1

2

(
1± αij1

)
[lij cos(θij) (F1 (Wj(pij))− F1 (Wi(pij))) + lij sin(θij) (F2 (Wj(pij))− F2 (Wi(pij)))](106)

− 1

2

(
1± αij1

) [
−TΨij,ji −QΨij,ji

]
± αij0 (Wj(pij)−Wi(pij)) .

Here, Dji = D(Wi,Wj ,−nij), Dij = D(Wi,Wj , nij) are the fluctuations that represent the difference between
the numerical flux and the physical flux at both sides of the cell interface.

In this formulation, we have considered a sufficiently smooth path Ψij,ji : [0, 1] × R5 × R5 −→ R5 such
that:

Ψij(1,Wi(pij),Wj(pij), nij) = Wi(pij), Ψji(1,Wi(pij),Wj(pij), nji) = Wj(pij) (107)

Ψij(0,Wi(pij),Wj(pij), nji) = Wi(pij), Ψji(0,Wj(pij),Wi(pij), nij) = Wi(pij).

Using this definition, we can define the matrix TΨij,ji , QΨij,ji as:

TΨij,ji
=

∫ 1

0

T (Ψij,ji(s,Wi(pij),Wj(pij),n),n)
dΨij,ji

ds
ds, (108)

QΨij,ji
=

∫ 1

0

Q(Ψij,ji(s,Wi(pij),Wj(pij),n),n)
dΨij,ji

ds
ds,

and Ti, Qi by:

Ti =

∫
Ki

T (Pi(x))
dPi(x)

dx
dx, Qi =

∫
Ki

Q(Pi(x))
dPi(x)

dx
dx, (109)

The terms
1

2

(
1± αij1

) [
−TΨij,ji −QΨij,ji

]
take account the contributions of the jumps of the nonconser-

vative products at the cell interfaces. The terms Ti, Qi account the contribution of nonconservative product
in the cell center. These terms disappear in a first order accuracy scheme.

Remark 5.2. The nonconservative terms make the numerical scheme to become formally consistent with a
particular definition of weak solutions. Unlike the M-CU scheme, the designed M-PCCU scheme incorporates
all the nonconservative terms. precisely in the definition of terms linked to fluctuations.
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5.4 MultiD well balanced discretization

Following the same procedure presented for 1D case a well balanced discretization can be obtained. One
has: (

T
(2)
i +Q

(2)
i

)
=
∑
j∈Vi

(
D

(2)
ij +D

(2)
ji

)
(110)

+
∑
j∈Vi

lij

[
cos(θij)

(
F

(2)
1 (Wi(pij))− F (2)

1 (Wj(pij))
)

+ sin(θij)
(
F

(2)
2 (Wi(pij))− F (2)

2 (Wj(pij))
)]
.

where

D
(2)
ij,ji =

1

2

(
1± αij1

)[
lij cos(θij)

(
F

(2)
1 (Wj(pij))− F (2)

1 (Wi(pij))
)]

(111)

+

[
lij sin(θij)

(
F

(2)
2 (Wj(pij))− F (2)

2 (Wi(pij))
)]
− 1

2

(
1± αij1

) [
T

(2)
Ψij,ji

−Q(2)
Ψij,ji

]
,

where F
(2)
i , i = 1, 2 are given in well-balanced sense (particularly according to Eq. (84)).

5.5 New Hybrid reconstruction state procedure

We employ an approximation of W at each interface Γij using combination gradients of center of cells,
gradients of center of subcells and a ponderation parameter α ∈ [0, 1].

Wi(pij) = Wi +
1

2
(α∇Wi.Cip+ (1− α)∇Wil.Cilp) , (112)

Wj(pij) = Wj +
1

2
(α∇Wj .Cjp+ (1− α)∇Wjl.Cjlp) . (113)

Note that the spatial discretization in (56) does not necessarily monotone and non-physical oscillations
may occur during the simulations. Therefore to eliminate these numerical oscillations and order to obtain a
TVD M-PCCU method, we introduce an appropriate slope limiter:

Wi(pij) = Wi +
1

2
Limit (α∇Wi.Cip+ (1− α)∇Wil.Cilp,∇Wil) , (114)

Wj(pij) = Wj +
1

2
Limit (α∇Wj .Cjp+ (1− α)∇Wjl.Cjlp,∇Wjl) . (115)

Another method consists to use the neighboring triangle in the discretization:

Wi(pij) = Wi +
1

2
Limit (α∇Wi.Cip+ (1− α)(Wjl −Wil),Wjl −Wil) , (116)

Wj(pij) = Wj +
1

2
Limit (α∇Wj .Cjp+ (1− α)(Wjl −Wil),Wjl −Wil) , (117)

where Limit in (114) and (116) is a slope limiter function such as the well-known MinMod limiter function:

Limit(a, b) = max(0,min(1,
a

b
)) (118)

Other slope limiter functions can be used (see [31]).

Gradient approximation

Let consider Ci,l, l=1,2,3 the vertices of cell Ki. The vertices of subcells Kil are {Ci, Ci,l, Ci,ip(j)} where
ip(1) = 2, ip(2) = 3, ip(3) = 1. We consider in Kil a linear approximation of gradient ∇Wil using the values
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Wi, Wi,l, l = 1, 2, 3 which are second order approximation of W (Ci),W (Ci,1),W (Ci,2),W (Ci,3) respectively.
This approximation can be written as:

∇Wjl = Wi,0∇λ0
j +Wi,l∇λjj +Wi,ip(j)∇λ

ip(j)
j , (119)

where λ0
j , λ

j
j , λ

ip(j)
j are the barycentric coordinates associated to the vertices. We also denote by bij , j = 1, 2, 3

the corresponding barycenters of subcellsKil. Given a smooth functionW by applying the quadrature formula
of the barycenter, we obtain:

1

|Kil|

∫
Kil

W (x)dx = W (bil) +O(∆2), l = 1, 2, 3 (120)

and thus the following equality holds:

W i =
1

|Ki|

∫
Ki

W (x)dx =

3∑
j=1

|Kij |
|Ki|

W (bij) +O(∆2). (121)

We can easily verified that:

|Ki1|
|Ki|

W (bi1) +
|Ki2|
|Ki|

W (bi2) +
|Ki3|
|Ki|

W (bi3) = W

(
|Ki1|
|Ki|

bi1 +
|Ki2|
|Ki|

bi2 +
|Ki3|
|Ki|

bi3

)
+O(∆2). (122)

Therefore, the following equality also holds:

Wi = W (Ci) +O(∆2), (123)

where Ci =
∑3
j=1

|Kij |
|Ki|

bij .

The constant gradient deduced from a P1 approximation on the subcells Kij is given by a weighted average
of the gradients on the subcells of Ki,

∇Wi = ∇W |Ki
=

∑3
j=1 |Kij | ∇W |Kij∑3

j=1 |Kij |
. (124)

The directional local speeds aij and aji are defined by:

aij(pij) = min {λ1(Aij(Wi(pij))), λ1(Aij(Wj(pij))), 0} , (125)

aji(pij) = max {λ5(Aij(Wi(pij)), λ5(Aij(Wj(pij)), 0} ,

Here λ1(Wi(pij)) and λ5(Wi(pij)) are the upper bound on the largest eigenvalue and lower bound on the
smallest eigenvalue of Aij(Wi(pij)) and Aij(Wj(pij)) respectively. The Jacobian matrices of the nonconser-
vative system of the proposed model read

Aij(Wj(pij)) = cos(θij)

[
∂F1

∂W
(Wj(pij))− T1(Wj(pij))−Q1(Wj(pij))

]
(126)

+ sin(θij)

[
∂F2

∂W
(Wj(pij))− T1(Wj(pij))−Q1(Wj(pij))

]
,

and

Aij(Wi(pij)) = cos(θij)

[
∂F1

∂W
(Wi(pij))− T2(Wi(pij))−Q2(Wi(pij))

]
(127)

+ sin(θij)

[
∂F2

∂W
(Wi(pij))− T2(Wi(pij))−Q2(Wi(pij))

]
.

The proposed scheme converges to steady-state solutions, preserves the positivity of the water depth, captures
the shock near the moving bottom and conserves local properties of conservation.
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General remark on the Gerschgorin’s disc theorem

The Gerschgorin theorem gives a good methodology to obtain an upper bound on the largest positive
root of a polynomial. This theorem is based on the following concept:

Remark 5.3. Let us the Jacobian matrices for our model given by (126) and (127). The concept of the
Gerschgorin’s disc theorem for our model is that one can take the diagonal entries of matrices Aij(Wi(pij))
and Aij(Wj(pij)) respectively aij(Wi(pij)) = a1

ij and aij(Wj(pij)) = a2
ij as coordinates of complex plane.

These points then, act as the centers of 5 discs. Each disc is centered at aij on the complex plane with
radius Vi(Alij), l = 1, 2 that are the sum of magnitudes of the 4 others entries from the same row noted

Vi(Alij) =
∑
i6=j |alij |, l = 1, 2. For short, the Gerschgorin disc for each matrix can be noted D(alij , Vi(Alij)).

Here, for each matrix Aij(Wi(pij)) and Aij(Wj(pij)) at least one of these Gerschgorin discs has radius 0,
since each matrix admits one row with non diagonal entries all equal to zero. Then, all the eigenvalues of
these matrices will lie within the union of these discs. The following result generalizes this concept.

Proposition 5.1 (Existence of Gerschgorin disc). Every eigenvalue of Aij(Wi(pij)) and Aij(Wj(pij))
given by (126) and (127) respectively lies within at least one Gerschgorin disc.

Remark 5.4. The proposed multidimensional scheme depends on the definition of the state reconstruction
operator Pi(t) that depends on Wj(pij), Wi(pij). Therefore the order of multi-dimensional PCCU depends
on the order of the operator Pi(t) and its derivative. A first-order method is a high-order method where the
order of the operator is zeros. A second-order is a high-order where the order of the operator is one. It
is possible we can easily extend the above reconstruction in space to obtain the high-order TVD scheme by
using a high-order approximation of W (Ci), W (Ci,1), W (Ci,2), W (Ci,3). We can also extend in the time
discretization method presented above to four and even fifth order without major modifications. A nonlinear
approximation of gradient ∇Wil using the values Wi, Wi,l, l = 1, 2, 3 is not discussed in this paper.

6 A time positive discretization method for Path-conservative-based schemes

The equation (52), (71) and (105) represent second order semi-discrete schemes in space. We start by
rewriting the Eq. (??) as follows:

dhi
dt

= L(1)[W ]i, (128)

dqi
dt

= L(2)[W ]i + Z[W ]iqi, q = hu, hv

d(hC)i
dt

= L(4)[W ]i,

dZb,i
dt

= L(5)[W ]i,

where j − th component of L reads:

L(j) = D(j) + S
(j)
D + S(j)

e , j = h, hu, hv, hC,Zb (129)

where Z[W ]i = Cf |qi| with S
(2,3)
F = Z[W ]iqi.

Path-Conservative schemes can be re-written as:

∂W

∂t
+D(W ) = Ŝ(W )W (130)

where Ŝ(W ) is substituted to S(W )F . This system of ODEs with stiff source term Ŝ(W )(t) is solved using
the third-order semi-implicit Runge-Kutta (SI-RK3) method which is a modified version of the third-order
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strong stability preserving RK (SSPRK) method. The method treats the non-stiff terms using explicit RK
methods while the stiff terms use implicit methods. Without stiff terms, the SI-RK method reduces to the
corresponding explicit RK method. To write the fully discrete M-PCCU scheme, we starting by write the
following three steps:

W
(1)

=
W

n
+ ∆t D(W

n
)

1−∆t Ŝ(W
n
)

(131)

W
(2)

=
3

4
W

n
+

1

4

W
(1)

+ ∆t D(W
(1)

)

1−∆t Ŝ(W
(1)

)
(132)

W
(3)

=
1

3
W

n
+

2

3

W
(2)

+ ∆t D(W
(2)

)

1−∆t Ŝ(W
(2)

)
(133)

(134)

where W
(k)

= (h
(k)
, hu

(k)
, hv

(k)
, hC

(k)
, (Zb)

(k)), k = 1, 2, 3.
Thus the fully discrete M-PCCU scheme reads:

M
n+1

= M
(3)
, for M = h, hC, Zb (135)

qn+1 =
q(3) − (∆t)2 D(k)(W

(3)
) Ŝ(W

(3)
)

1 + [∆t Ŝ(W
(3)

)]2
, q = hu, hv (136)

(137)

where k = 2, 3 and D(k) is the second and third component of the vector D. The SI-RK3 method allows
us the use of a important time step compared to its explicit counterpart. It maintains the discrete balance
between the fluxes and source terms capturing the steady states and preserving the positivity of water depth.

A proof of Positivity of PCCU schemes

Here, we prove that the proposed numerical method is positivity-preserving at discrete level. We have
the following result.

Lema 6.1. Consider the general fully discrete PCCU scheme given above by Eq. (131)-(135). If h
n

i ≥ 0;∀i;
then h

n+1

i ≥ 0;∀i.

We prove this result in a one-dimensional case and the 2D version of lemma 6.1 can be proved in a similar
manner.

Proof. For the M = h we have:

h
(1)

= h
n

i + ∆t D(h)(W
n
), (138)

h
(2)

=
3

4
h
n

i +
1

4
h

(1)
+ ∆t D(h)(W

(1)
), (139)

h
(3)

=
1

3
h
n

i +
2

3
h

(2)
+ ∆t D(h)(W

(2)
), (140)

h
n+1

= h
(3)
, (141)

(142)

where W
(k)
, k = 1, 2 are defined in (135). The rest of unknowns expressed in the form (135).
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Here, considering the fact that the h component of fluctuations and friction source term is zero, we have:

D(h)(W
n
) =

1

mes(K)

[(
1− αi+1/2

1

2
Fh(W+

i+1/2) +
1 + α

i+1/2
1

2
Fh(W−i+1/2)− α

i+1/2
0

2

(
h+
i+1/2 − h

−
i+1/2

))]
(143)

− 1

mes(K)

[(
1− αi−1/2

1

2
Fh(W+

i−1/2) +
1 + α

i−1/2
1

2
Fh(W−i−1/2)− α

i−1/2
0

2

(
h+
i−1/2 − h

−
i−1/2

))]

We can express h
(1)

i as linear combination of h+
i+1/2, h−i+1/2, h−i−1/2 since we have used the fact that h

(n)

i =

h+
i+1/2 + h−i+1/2

2
and assumed that h+

i−1/2 = 0. Following the above considerations, one has:

h
(1)

i =

[
1

2
+ c

(
−1

2
u−i+1/2 −

1

2
α2
i+1/2u

−
i+1/2 −

α
i+1/2
1

2

)]
h−i+1/2 (144)

+ c

(
1

2
u−i−1/2 −

1

2
α
i−1/2
1 u−i−1/2 +

α
i−1/2
0

2

)
h−i−1/2

+

[
1

2
+ c

(
−1

2
u+
i+1/2 +

1

2
α
i+1/2
1 u+

i+1/2 +
α
i+1/2
0

2

)]
h+
i+1/2,

where c =
∆t

mes(K)
.

We will show that each coefficient of h
(1)

i see as linear combination of three nonnegative reconstructed

values h+
i+1/2, h

−
i+1/2, h

−
i−1/2. We have according to equation (50), α

i+1/2
0 ≥ 0 since a+

i±1/2 ≥ 0, a−i±1/2 ≤
0, a+

i±1/2 − a−i±1/2 ≥ 0. Moreover, because all the reconstructed water depth are nonnegative, we have√
gh+

i+1/2 ≥ 0 and thus a+
i+1/2 − u

+
i+1/2 ≥ 0 and u−i+1/2 − a

−
i+1/2 ≥ 0. This leads to conclude that the two

first coefficient are positive. Using the above same arguments and the fact that:

α
i+1/2
1 + α

i+1/2
0

2
≤
a+
i+1/2 − a

−
i+1/2

2
≤
a+
i+1/2

2
,

we get the following relations:

0 ≤

(
−1

2
u+
i+1/2 −

1

2
α
i+1/2
1 u+

i+1/2 −
α
i+1/2
0

2

)
≤
a+
i+1/2

2

and

0 ≤

(
1

2
u+
i−1/2 −

1

2
α
i−1/2
1 u+

i−1/2 −
α
i−1/2
0

2

)
≤
a+
i−1/2

2
.

We conclude that the coefficient in h+
i+1/2 will be also nonnegative, if the following restriction

0 ≤ c ≤ 1

max{a+
i+1/2,−a

−
i+1/2}

is satisfied.
Since and all the coefficients are non-negative, which leads to h

(1)

i ≥ 0. We prove using same way that h
(k)

i ;

k = 2, 3 are non-negative. We can seen that h
(n+1)

i can expressed as linear combination of h
(k)

i ; k = 1, 2, 3.

Therefore h
(n+1)

i ,∀i is non-negative.
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7 Numerical Results

In this section, several 1D and 2D tests are proposed to assess the performance of the proposed PCCU
method on unstructured meshes. In this section, we run a series of test cases to verify our implementation
and evaluate the M-PCCU MATLAB program. A study of the efficiency and a acceptable validation of 1D
and 2D PCCU-AENO methods are exposed using reference solutions, exact solutions, CU scheme and one
experimental data set. Our main objectives are to:

1. Verify that the well-balanced discretization strategy here interesting

2. Test if the method is able to recover the exact solution for a problem with exact solution

3. Study the effect of interaction between sediment and fluid on the stability of the scheme and prove the
importance of high-order methods

4. Test the ability to resolve a multi-class sediment transport model

5. Verify if at least the second order accuracy is achieved

6. Study the convergence and compute the rates of convergence

7. Compare with some of the existing methods in terms of accuracy, efficiency and robustness

8. Compare with experimental data

9. Verify the adaptability of our model in several environment contexts

For one-dimensional tests, the numerical stability is imposed by the Courant-Friedrich-Lewy (CFL) condition.
The integration time step is evaluated as:

∆t = CFL
mes(Ki)

a
, (145)

where Ki = [xj−1/2, xj−1/2] and where a = max(a+
j+1/2,−a

−
j+1/2), with a±j+1/2 is the local propagation speeds

defined in (50).
For 2D structured grid we use the following stability condition:

∆t = CFLmin

(
∆x

4a
,

∆y

4b

)
, (146)

where a = max(a+
i+1/2, a

+
i+1/2), b = max(b+i+1/2, b

+
i+1/2).

For general triangular mesh, we use the following restriction:

∆t = CFLmin
i,j

(
Λi

max(aij , aji)

)
. (147)

where Λi = mini(d(pij , Ci)).
For the test cases where the exact solution exists, the error estimate (err) is computed between the

numerical solutions and the exact solution:

‖err‖Lp =

 ∑
Kj∈T

|Kj ||W ex
T −W

app
T |

p

 1
p

(148)

where W ex and W app are the exact solution and numerical solution respectively. And the convergence rate is
deduced. For the test cases that do not admit reference solution, we verify the convergence of the proposed
method by using the measure of the difference between the solutions computed on two consecutive grids. The
L1 − norm is given by:

‖ΦN −ΨN‖1 =
1

N2

N∑
i=1

N∑
k=1

|ΦNi,k −ΨN
i,k| (149)
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where ΦN := {ΦNi,k} and ΨN := {ΨN
i,k} are two functions prescribed on structured mesh of N ×N cells. The

rates of convergence are calculated as:

O(L1) = Log2

(
‖ϕN/2 − ϕN/4‖1
‖ϕN − ϕN/2‖1

)
, (150)

where we have noted that Logb(x) = y ⇒ by = x. More generally, the error estimate is evaluated in
Lp − norm, p = 1, 2,∞ at the time t = T , where T is the final time. The computational parameters used
in some simulations are found in Table. (1).

Table 1: Computational parameters

quantity ρw ρs g ϕ νf λ
Reference value 1000Kg/m3 2650Kg/m3 1m/s2 0.015m1.2 1.2 ∗ 10−6 0.25

General algorithm

In the following, we briefly present the algorithmic steps necessary for implementation of the second order
M-PCCU scheme:

1. Construct the unstructured mesh.

2. We locate each cell with its center and its interfaces via a special pre-processing procedure.

3. We perform the reconstruction states in order to obtain the slope (∇W )i in equation (124).

4. We extrapolate values at cell boundaries pij, Wi(pij) and Wj(pij), by using Eq. (116).

5. We compute the family paths Φij(s,Wi(pij),Wj(pij), n) and Φji(s,Wi(pij),Wj(pij), n).

6. At each interfaces, we compute the flux F (Wi(pij)) and F (Wj(pij)) and we use these flux to compute
the fluctuation Dij,ji given by Eqs.(106).

7. At each interfaces: use the values Wi(pij) and Wj(pij) to compute the contribution of the jumps of
nonconservative products TΨij,ji

, QΨij,ji
and SΨij,ji

by using Eqs.(108).

8. Via Gerschgorin disc, we compute the eigenvalues of Jacobian matrices given by (126) and (127)

9. We use these eigenvalues to compute the local speeds propagation aji(pij) and aji(pij).

10. We compute the vectors Ti, Qi, Si via Eq. (109).

11. We implement a procedure of type SI-RK3 perform the update cells averaged by using the multidimen-
sional semi-discrete scheme (105).

7.1 Accuracy tests with Shallow Water Equations(SWE)

This test is performed to assess the accuracy of our WBPP PCCU-AENO scheme. We consider a 1D
SWE (20a)-(20b) with flat topography, dry/wet zones and without sediment transport (Ag = 0, E−D = 0)
and friction source term (n = 0). The domain of simulation Ω = [0, 2000] is discretized with N=1000 uniform
cells. A similar test is performed in some works in the literature. The initial velocity and the initial water
depth for both tests are respectively:

h(x, 0) =

{
6 if x ≤ 1000m

0.01 if x > 1000m
, h(x, 0) =

{
6 if x ≤ 1000m

0.2 if x > 1000m
,u(x, 0) = 0. (151)

Neumann condition is used at all boundaries:

h.ν = 0, hu.ν = 0
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Figure 4: Accuracy test with dry zones. Comparison between exact solution and numerical solution obtained by PCCU scheme
at the first order.

Figure 5: Accuracy test with wet zones. Comparison between exact solution and numerical solution ibtained by using PCCU
scheme at the first order.

The numerical solutions for both tests are computed via the proposed WBPP method at the final time
T = 40s. The exact solutions of SWE are compared to PCCU solutions. The results of these comparisons
are displayed in Figs. (4)-(5). Our PCCU-AENO method exhibits good convergence behaviour for this
well-known nonlinear hyperbolic problem.

Our scheme accurately locates the dry-wet transition and reproduces quite well the profile of the wave
tip. Figs. (4)-(5) show that shock waves and rarefaction waves are well captured by the scheme. In both
tests, the positivity of the water depth is well preserved. The robustness and the efficiency of the method is
well observed.

A variant of this test is performed to assess the ability of the scheme to achieve a high order accuracy. A
dam break with small water depth is performed to test this ability. The domain of simulation is Ω = [0, 1].
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Figure 6: Accuracy test for dam break problem. Water depth and velocity computed via the proposed first and second PCCU
schemes at time t =0.5.

The initial condition is:

h(x, 0) =

{
0.01 if x ≤ 0.5m

0.02 if x > 0.5m
,u(x, 0) = 0.1 (152)

and the Neumann condition as in the previous test is used. In all the simulation the CFL = 0.5. The results
of this test is displayed in Fig. (6).

One expects that for all the cases the computed solution at the first and second order (computed with
N = 100) convergence to reference obtained via a refined mesh. We show that the proposed scheme can solve
complex problems with at least a second order accuracy. This test confirm our theoretical results presented
above state an order of convergence (at least 2).

7.2 Accuracy test with Shallow-Water-Exner equations

We consider a simple 1D Saint-Venant-Exner test where a smooth analytical solution exists. This solution
refers to a steady-state condition for a subcritical water flow coupled with a linear-in-time bed erosion, as
proposed by Berthon et al.,[3]. A similar test problem has been studied in [24] and [8]. The SVE problem is a
variant obtained from the proposed model when we set E −D ≡ 0, B = 0 and when the friction source term
and sediment concentration vanished. In this application we use the first order path-conservative central-
upwind scheme to approximate the 1D Saint-Venant-Exner model without source terms in domain Ω = [0, L],
L = 7m. The exact solution is given by [3]:

qexact = 1,

uexact =

[
%x+ β

Ag

]1/3

,

hexact =
qexact
uexact

,

Zb,exact = 1− uexact + 2gqexact(x)2

2guexact
,

(153)

where the coefficients are given by % = β = Ag = 0.005. The comparison is made for both exact and
numerical solutions and is plotted in Fig.(7).
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Figure 7: Comparison between analytical solution and numerical solution computed by the proposed PCCU-AENO scheme.

Table 2: The L1-errors and convergence rates for h, u and Zb at the first order.

h hu Zb
N L1 − norm O(L1) L1 − norm O(L1) L1 − norm O(L1)
50 5.78E-3 / 2.34E-2 / 4.569E-2 /
100 2.78E-3 1.053 1.32E-2 0.821 2.31E-3 0.981
200 1.36E-3 1.028 6.98E-3 0.922 1.03E-3 1.0417
400 7.101E-4 0.941 3.45E-3 1.011 5.46E-4 1.041

The Result displayed in Fig. (7) demonstrates that the proposed scheme can describe the bed level and
water height evolution with good accuracy. We can see that our first order PCCU scheme provides a good
approximation of the exact solution. Similar results were also obtained in literature in [8], [24], [3]. We run
the computation on different grids varying the number of cells N from 50 to 400. We show the L1−norm of
the errors and the convergence rates O(L1) at the first order in Table (2). We expected that the convergence
rate tends to 1.

7.3 Steady state solutions at rest

In this test we show that our M-PCCU scheme can capture steady-state solutions and thus satisfy the
well-balanced property. This test is designed to verify that, when the erosion/deposition exchange source
term is zero, all the rest of the contributions will not affect the well-balanced property in quiescent water
with uniform sediment deposition. A similar test is done in [50]. We see also the behavior of the bottom
in quiescent water. The computational domain is [0, 2] × [0, 2] and is divided into N = 400 cells and set
zero-order extrapolation boundary conditions at both ends of the domain, that is W 0 = W 1, WN = WN+1.
The initial conditions read:

h(x, y, 0) = 1, u(x, y, 0) ≡ v(x, y, 0) ≡ 0, Zb(x, y, 0) ≡ C(x, y, 0) = 1.2 exp(−0.2(x− 1.4)2 − 0.2(y − 0.8)2).
(154)

Grass formula is used with Ag = 0.003. In Fig.(8), we show the computed quiescent water surface, sediment
concentration and bed evolution profiles at time t = 2s.
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Figure 8: Free surface, bottom elevation and sediment concentration computed by the proposed well-balanced PCCU scheme.
CFL =0.1

As one can see, no oscillations are developed at the quiescent water surface. When the erosion/deposition
exchange source term is zero, all the rest of the contributions do not affect the lake at rest steady state at a
discrete level. This test prove also the fact that Z∗b (x, y, t) ≈ Z∗b (x, y) and C(x, y, t) ≈ C(x, y). The Table (3)
clearly illustrates that our 2D PCCU scheme preserves the studied steady-state solutions within the machine.

Table 3: The L1− errors for h, C and Zb

N ‖hN − hN/2‖1 ‖CN − CN/2‖1 ‖ZNb − Z
N/2
b ‖1

100 1.16E-14 1.879E-8 2.548E-7
200 6.254E-16 2.547E-10 2.454E-9
400 5.2147E-17 4.011E-11 9.0124E-11
800 4.321E-17 8.471E-11 1.245E-13
1600 2.78E-18 7.584E-14 1.365E-15

7.4 Comparison with reference solution.

We consider here to solve a reduced model obtained when qb = 0 by using 1D PCCU scheme. The solved
model has been originally proposed by Cao et al.,[10] and solved by a flux limiting method by Benkhaldoun
et al., [2]. In this test, fourth sediment of diameters d = 0.002, 0.001, 0.0008, 0.0001 are tested to show the
ability of the model to adapt to a wide range environments. The domain of simulation is Ω = [0, 50000] with
a dam located at the middle of Ω. The initial conditions are given:

h(x, 0) =

{
40 if x ≤ 25000m

2 if x > 25000m
, u(x, 0) = 0, C(x, 0) = 0.001, Zb(x, 0) = 0 (155)

The Neumann condition is used for all the variables. The PCCU scheme is computed and plotted in Fig.(11).
There is no analytical solution to this problem therefore a reference solution is computed with the PCCU
scheme on a fine grid N = 2000. The reference solution is compared with the solutions obtained at first,
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second and third order. The obtained results using our PCCU-AENO method are also in good agreement
with those reported in [2].

Figure 9: Comparison with reference solution. Free surfaces, bottom evolutions and sediment concentrations computed at the
second order for d=0.001 and N=2000 cells, CFL = 0.55.

Figure 10: Comparison at different times of simulation. Free surfaces, bottom evolutions and sediment concentrations computed
at the second order for d=0.001 and N=2000 cells CFL = 0.55.
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Figure 11: Free surface, horizontal velocity and sediment concentration profiles computed at first order for fourth different grain
sizes. N=2000 cells CFL = 0.55

It is expected that the solution for each sediment size d does not present any numerical diffusion. These
results show that the dam break over the mobile bed can participate in the creation of a highly concentrated
wavefront, which is limited by the forefront and a sediment transport contact discontinuity and decreases
with time. It is observed that the sediment concentration is more intense for fine grains and this situation is
associated with low velocity due to dilute flow (Boussinesq assumption). The presence of fine sediments in
the water reduces the flow velocity and is well suitable to use Boussinesq assumption. However when the size
of the sediment becomes greater, the concentration becomes low and fluid/sediment velocity has the same
behavior as clear fluid velocity. In this situation the Boussisnesq assumption becomes questionable and the
longitudinal diffusion coefficient can be revised. Moreover, the proposed method captures well the sediment
concentration near the regions of large gradients without any oscillation.
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Figure 12: Comparison both first and second order schemes. Free surface, bottom evolution and sediment concentration
computed at the first and second order accuracy for d=0.0018, CFL = 0.5. N=100

First and second order schemes

We compare now the results obtained by both first and second order scheme different sediment diameters
d = 0.18mm, d = 3mm with the same computational parameters as previously. The first order scheme is
computed at different grid numbers N = 100, 200, 400. The obtained results are displayed in Figs.(12)-(13).

Comparison with existing methods

Next we compare the performance of the proposed PCCU scheme to the well-known CU scheme developed
in Eq. (52). We consider the same parameters of simulation as previously and the computational solutions
at different grid-points are plotted in Fig.(14).

The result Fig. (14) shows how the lack of well balanced discretization of nonconservative terms can fail
the numerical convergence. It observed that the CU scheme does not detect the jump and does not accurately
capture the shock waves possible solution of the model. The WBPP PCCU-AENO method proposed here
eliminates the excess diffusion due to the presence of nonconservative terms. This confirm the drawbacks
of CU scheme stated and proved in [35]. The computational time is very important aspect when long-term
bed evolution of a river, estuaries and coastal environment must be investigated in engineering management
application. With a various computational grids resolution, the PCCU-AENO method presents a better
performance than the CU-AENO scheme.

7.5 Experimental validation with a dry-wet transition test

In this test, a reduced model named SVE (Saint-Venant-Exner) model is solved by our numerical method
and compared with explicit staggered finite volume of Gunawan et al.,[24] and experimental data of [11]. The
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Figure 13: Comparison both first and second order schemes. Free surface, bottom evolution, horizontal velocity and sediment
concentration computed at the first and second order accuracy for d=0.003, CFL = 0.5. We computed the second order scheme
with N = 100 gridpoints

SVE is obtained from our model by removing the sediment exchange and bottom friction source terms in Eq.
(20). The initial conditions are given:

h(x, 0) =

{
0.1 if x ≤ 0

0. if x > 0
, u(x, 0) = 0, Zb(x, 0) = 0. (156)

The Neumann boundary conditions are used:

h.n1 = 0, u.n1 = 0, Zb.n1 = 0. (157)

The sediment diameter is d50 = 0.0032, the sediment density is ρs = 1.540, the domain of simulation
is Ω = [−1.25; 1.25], Grass formula is used with Ag = 0.003. The free surface and bed level profiles at
different times are shown in Figure (15) they show a good agreement between the numerical solution and the
experiment data of [11].
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Figure 14: Free surfaces computed at second order for both CU and PCCU schemes. The sediment diameter is d = 0.0005, CFL
= 0.55

The results obtained in Fig. (15) are practically similar to those obtained by [24] using an explicit finite
volume scheme on a staggered grid. The test shows that the developed WBPP AENO scheme can treat the
wet/dry zones without difficulty. We recall that the bedload equation is given by (11). The mass conservation
of moving particles can be applied to formulate the transport at the bedload interface in term of a transport
discharge flux qb:

u(t,x, Z∗b )∇Z∗b (x, t)− u3(x, t, Zb) = ∇.qb. (158)

In Exner equation obtained by (11) and (158), we assume that the motion at the bedload interface is
balanced by the gradient of the horizontal mass sediment flux qb. It well-known that the Exner equation
assumes that the bottom characteristic velocity moves at the same velocity than the velocity fluid. This
is not physically acceptable is constitutes an ad hoc assumption that produces the discrepancy observed in
the test presented in Fig.(15). A modification of the bedload equation can be given to improve the results
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Figure 15: Free surfaces and bed levels profiles computed at second order using PCCU scheme. N=100 cells

observed. Alternative formulations have been recently proposed by Ngatcha et al.[34, 32, 33].

7.6 Comparison between CU and PCCU schemes

In this test, we design a genuinely two-dimensional dam-break problem to validate our proposed scheme
for the sediment transport model in nonhomogeneous SWE developed here. The initial water depth displayed
in Fig. (16) is given by:

h(x, y, 0) = 2 + 0.25(1− tanh(c(
√
ax2 + by2)− 1)), (159)

where a = 2.5, b = 0.6, c = 10.

Figure 16: Initial water depth
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The initial sediment concentration is C(x, y, 0) = 0.001. The initial velocities are u(x, y, 0) = 0 and
v(x, y, 0) = 0, the initial bottom is Zb(x, y, 0) = 0. The sediment porosity is p = 0.25. Manning’s coefficient
is n = 0.02, the erosion force φ = 0.015, the diameter of sediment is d50 = 0.001. The Exner equation is used
with Ag = 0.001. The boundary conditions read:

h.n = 0, u.n = 0, C.n = 0, Zb.n = 0 (160)

The solution is computed using the 2D PCCU-AENO scheme presented here. All the unknowns are
plotted and presented in Fig.(19). The results demonstrate that the 2D-PCCU scheme can predict stable
morphodynamics.

Figure 17: Free surface, bed level and sediment concentration profiles. N=100 cells

Now we compare the M-PCCU scheme and M-CU scheme by using the same computational parameters.
The results are plotted in Figs. (18)-(20)

When the mesh is refined, the second-order convergence rate is observed for all the conserved variables,
h, hu, hv, C, Zb. The results of convergence for the two-dimensional problem on the structured mesh are
shown in Table.(4)-(5).
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Figure 18: Free surface profiles. Comparison between PCCU and CU schemes. Left CU scheme, Right PCCU scheme. N=500
cells.

Figure 19: Bed evolution solutions. Comparison between CU scheme and PCCU scheme. Left CU scheme, Right PCCU scheme.
N=500

Figure 20: Free surface contours. Left CU scheme, Right PCCU scheme.
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Table 4: The L1− errors and convergence rates for h, C and Zb

N ‖hN − hN/2‖1 O(L1) ‖CN − CN/2‖1 O(L1) ‖ZNb − Z
N/2
b ‖1 O(L1)

100 7.15E-3 / 9.83E-3 / 8.97E-3 /
200 1.969E-3 1.861 2.82E-3 1.801 2.14E-3 2.066
400 4.84E-4 2.021 7.21E-4 1.967 5.41E-4 1.986
800 1.189E-4 1.976 1.89E-4 1.925 1.38E-4 1.961
1600 2.97E-5 2.001 4.65E-5 2.025 3.65E-5 1.916

Table 5: The L1− errors and convergence rates for hu and hv

N ‖(hu)N − (hu)N/2‖1 O(L1) ‖(hv)N − (hv)N/2‖1 O(L1)
100 3.45E-2 / 2.14E-2 /
200 8.97E-3 1.943 5.84E-3 1.872
400 2.45E-3 1.872 1.34E-3 2.002
800 7.84E-4 1.644 3.58E-4 1.904
1600 2.014E-5 1.959 8.91E-5 2.007

Efficiency of the proposed well-balanced discretization

Now we verify the efficiency of the proposed well-balanced discretization strategy. We use the simulation
parameters of the previous test. The results are plotted in Fig. (21). We show that the PCCU scheme with
the well-balanced strategy developed gives best results than PCCU without using this strategy.

Figure 21: Bed evolution contours. Left non well-balanced PCCU scheme, Right well-balanced PCCU scheme.

7.7 Processing of Dry/wet and dry cells on a 2D Riemann problem

When utilizing WBPP shock-capturing PCCU-AENO scheme to predict sediment transport in coastal
flows in real 2D geometry the processing of dry-wet and dry cells is an important step. We consider a 2D
Riemann problem with dry/wet cells. The initial conditions given in Table. (6) are displayed in Fig.(22)
and Fig.(24). Two tests are performed to show the positivity and robustness properties of our proposed
2D method. The Riemann problem performed here consists to a dam break over erodible bed with high
sediment transport. The computational domain for both tests reads Ω = [−1; 1]× [−1; 1] and as previously,
the Neumann condition (160) is applied on all the boubdaries.
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Table 6: Initial conditions of 2D Riemann problem with wet/dry zones

Test1: wet zones h[m] Zb[m] u[m/s] v[m/s]
x ∈ [−0.5; 0.5], y ∈ [−0.5; 0.5] 2 1.5 0 0
x ∈ [−1; 1], y ∈ [−1; 1] 1 1 0 0
Test2: dry zones h[m] Zb[m] u[m/s] v[m/s]
x ∈ [−0.5; 0.5], y ∈ [−0.5; 0.5] 2 1.5 0 0
x ∈ [−1; 1], y ∈ [−1; 1] 0 0 0 0

For the first test, we have removed the bedload sediment flux (qb = 0) and for the second test, Grass
formula is performed with Ag = 0.003 and bed porosity p = 0.2. The sediment concentration is plotted with
d50 = 8mm, the friction term is considered with n = 0.03. The sediment concentration is C = 0.001, the
erosion force is ϕ = 0.25

The rest of parameter used the test is available in Table (2). All the source terms are considered in the
numerical simulations. We have used N = 200 structured cells for both tests. The solution obtained at
different times t = 0.2, t = 0.5 are displayed in Figs (23) and (25)

Figure 22: Initial condition of the Riemann problem: processing of wet cells

It is expected that all the profiles presented here describe well the dynamics of sediment and the free
surface flow during the simulation time. It is observed in Fig. (23), that the positivity and robustness of the
scheme are preserved during all the simulation. Therefore, we conclude that the proposed 2D AENO method
has been successful in eliminating the numerical diffusion and does not give rise to nonphysical oscillations
even near regions of large gradients while maintaining positive the water depth even in presence of dry cells.
The two-dimensional AENO-hydrostatic reconstruction proposed in this work is clearly interesting and can
be used for a wide range of two-dimensional conservative and nonconservative problems.
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Figure 23: Dam break over dry bed. Bed evolution and water depth profiles for fully coupled model with PCCU-AENO scheme
on structured meshes at different times

7.8 Low and high interaction between sediment and fluid. Comparison between Meyer&Peter-Muller formula
and Grass formula

In this test, we show that the proposed method can simulate the low and high interaction between sediment
and fluid. In fact, this is one of the main problems in order to obtain precise numerical approximations. Due
to the phase lag effect which does not integrate into the proposed sediment transport model, the numerical
diffusion can appear. It’s important to design a high-order PCCU scheme in order to avoid this phenomenon.
The sediment transport flux can write by a unified formulation:

qb = c1K2(h, q)(c2 + c3K1(h, q))m (161)

where m, c1, c2 and c3 are constant values and K1, K2 are scalar function of h and q. For Grass formula
c1 = Ag, K2(h, q) = u, c2 = 0, c1 = 1, K1 = |u|, m = mg = 1. To compare both Meyer&Peter-Muller
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Figure 24: Initial condition of the Riemann problem: processing of dry cells

formula and the Grass formula we approximate with the Grass model. In fact, the MPM formula without
critical shear stress can be interpreted as a particular case of the Grass model for values of Ag and mg. We
recall that Ag represents the type of interaction between fluid and sediment and for MPM model can read:

Ag =
8
√
gd3

(s− 1)R
1/2
h

, (162)

where s is specific density ratio, Rh is the hydraulic radius, we have Rh ∼ h and where d is constant.
Considering s = 2.65, g = 10, d = 0.0198, we obtain for MPM model:

Ag = 1.19× 10−4h−1/2. (163)

We observe that for a range of values of water depth, we have always had to do weak interactions.
The test is performed by a dam break. The fluid velocity u(x, y, 0) = 0. The domains of simulation are

Ω = [0, 2000] × [0, 10]. For two-dimensional we consider triangular meshes with 1400 triangles. The dam is
located in the middle of Ω. The dam separates two initial water depth exhibits; wet zones are h(x, y, 0) = 20m
on the left side and h(x, y, 0) = 1m on the right side of the domain. We perform the test by using both
Grass and MPM formulas. The results of the simulation are presented in Fig. (26)-(27). Fig.(26) compares
the solutions obtained by the our proposed second order TVD method. Fig.(27) shows the influence of the
degree of interaction between sediment and fluid Ag. It is also seen that for the considered sediment flux
formulae, the use of Gerschgorin disc theorem is particularly appropriate.

It is expected in Fig. (28) that the second order scheme becomes unstable when Ag becomes greater. This
unstability is due to the strong interaction between the sediment and fluid near the bottom. This scheme
allows to obtain a stable evolution of the morphodynamics when the fluid/sediment interactions are strong.
We conclude that it is important to develop a high order scheme to accurately capture these interactions.
There are no particular difficulties in extending these tests with a high-order scheme. This last step does
not pose any particular difficulty and will be useful for concrete applications. This would not be surprising
since we have demonstrated theoretically that our method is able to achieve a high order accuracy. Tests
will be done in a future article to confirm this. We have limited ourselves this paper only to the second-order
test. Exner equation is not appropriate to describe the morphodynamics in presence of strong sediment/fluid
interactions [32],[34]. A bed-load equation must be able to describe the movement of the bottom even when
the sediment/fluid interaction becomes greater.
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Figure 25: Dam break over wet bed. Bed evolution and water depth profiles for fully coupled model with PCCU-AENO scheme
on structured meshes at different times

8 Concluding and perspectives

In this paper, an unstructured path-conservative central-upwind scheme has been introduced and applied
to solve a new sediment transport model. The model is a coupling of nonhomogeneous shallow water equa-
tions with sediment transport phenomena. The model generalizes several recent sediment transport models
based on Shallow Water equations. The proposed model is a nonconservative system of nonlinear equations
admitting a complex Jacobian matrix. The existence of global weak solution of the model remains an open
problem. The Gerschgorin disc theorem has been applied with success to reduce the cost of finding the eigen-
values of the complicated Jacobian matrix. We have used these computed eigenvalues to design an original
simple, robust and highly accurate path-conservative method based on combination of 1D Riemann solvers
without any intermediate states. Contrarily to some mutlidimensional schemes available in the literature,
the total eigenstructure of the model is not necessary. A novel multidimensional well-balanced discretization
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Figure 26: Numerical solution of a dam break problem obtained using our unstructured PCCU method TVD method. The time
of simulation is T = 40s, MPM formula is used with Ag given by Eq.(163)

Figure 27: Dam break over mobile bed. Bed evolutions Zb with Grass formmulae. Left strong interaction Ag = 0.009 with
Grass formula, right weak interaction Ag = 0.09 with MPM formula.
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Figure 28: Dam break over high fluid-sediment interaction using the second order PCCU scheme, Ag = 0.9 The time of simulation
is T = 40s

strategy has been developed and implemented here. With that, the scheme has been proven well-balanced
and is able to capture steady-state solutions. The piecewise polynomial reconstruction procedure developed
here allows us to develop a high-order M-PCCU scheme. Some results related to the method have been proved
rigorously with acceptable mathematic formulations. Some tests have been made to show the performance
and interesting properties of our method (positivity-preserving, shock-capturing, well-balanced, stability).
The developed high-order unstructured PCCU method can be used to simulate sediment transport models
in complex flow while remaining robust and accurate. The proposed method is computationally efficient and
easy to apply in most computer programming languages.

Advantages and limitations of the numerical modeling

The use of the M-PCCU scheme will be appropriate to capture the shocks even when the number of cells
is small. It’s proven experimentally that the Exner’s equation is not applicable to accurately describe the
morphodynamics. There is a need to reformulate this equation in order to extend it to a wide range of sediment
transport problems in coastal environments. The bedload equation given by (11) can be a opportunity of
modeling and this has been proved in a recent work of Ngatcha et al[32]. The bed-load equation proposed
by these authors is susceptible to be improved. The well-balanced discretization strategy of the source terms
for multidimensional scheme can also be improved.

Perspectives

Future works are extended to: (i) The proposed model can be extended to a multi-class sediment transport
model; (ii) study the case where the distortion effect in the fluid flow plays an important role; (iii) other
types of meshes can be implemented.
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