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Abstract: Approximate Computing Techniques (ACT) are promising solutions towards the achieve-
ment of reduced energy, time latency and hardware size for embedded implementations of machine
learning algorithms. In this paper, we present the first FPGA implementation of an approximate
tensorial Support Vector Machine (SVM) classifier with algorithmic level ACTs using High-Level
Synthesis (HLS). A touch modality classification framework was adopted to validate the effective-
ness of the proposed implementation. When compared to exact implementation presented in the
state-of-the-art, the proposed implementation achieves a reduction in power consumption by up to
49% with a speedup of 3.2×. Moreover, the hardware resources are reduced by 40% while consuming
82% less energy in classifying an input touch with an accuracy loss less than 5%.

Keywords: approximate computing; embedded machine learning; tensorial kerne; high-level synthe-
sis; tactile sensing

1. Introduction

Machine Learning (ML) algorithms are efficient solutions for various tasks includ-
ing speech recognition, tactile data classification and image processing. Consequently,
embedding machine learning is increasingly used in several application domains such
as prosthesis, Internet of Things (IoT), robotics, smart appliances and wearable devices.
Support Vector Machine (SVM) is one of the most used supervised algorithms as it exploits
complex relationships among data samples by using “Kernels” to create an optimal hyper-
plane that separates different classes [1]. Despite having a high classification accuracy,
SVM is characterized by its computational complexity. Thus, hardware implementations
dedicated to SVM impose additional overhead in terms of power consumption and execu-
tion time [2]. This overhead adds a design challenge when targeting real-time embedded
systems. Several hardware implementations have been presented using different com-
puting platforms that fulfill the requirements in terms of limited hardware resources,
low power consumption and low latency. These platforms include Advanced RISC Ma-
chines (ARM), Application-Specific Integrated Circuits (ASIC) and Field-Programmable
Gate Array (FPGA). The authors of [3] showed that the implementation of the tensorial
SVM (TSVM) algorithm on an ARM Cortex M4 microcontroller (STM32F405) operating at
165 MHz classifies an input touch in 7 s. The latter is higher than the classification time
obtained using the FPGA device presented in [4], which is about 400 ms. As for ASIC, the
implementation of machine learning inference is characterized by several challenges such
as: reconfigurability and design cycle complexity. On the other hand, FPGAs are suitable
for prototyping where their features of programmability make them more cost-effective
than ASICs. Thus, FPGAs are suitable platforms for implementing such algorithms. In
addition, FPGAs are desirable for ASIC prototyping. In this perspective, FPGA has been
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proposed as a hardware platform for implementing SVM due to its powerful and parallel
processing as a re-configurable device with an efficient utilization of hardware resources [2].

The authors of [5,6] presented a hardware implementation of the linear SVM model
that classifies biomedical data targeting FPGA devices. The implementations proposed
in [5,6] have achieved a speedup of 85× and 6×, respectively, when compared to similar
implementations targeting General-Purpose Processor (GPP). Mandal et al. [7] used a
multiplier less-kernel architecture to implement a polynomial based SVM. The architecture
leads to a power reduction of 3.5% compared to the use of vector-based kernel. A 2D
pipelined streaming architecture with a Radial Basis Function (RBF) kernel implementation
is proposed in [8], achieving a 2× speed improvement. In [4], the authors presented an
FPGA implementation of SVM based on the tensorial kernel approach, which is proposed
in [9]. The advantage of such implementation is that the tensorial representation of data
preserves the implicit structure of the original data. Sidiropoulos et al. [10] conducted
a survey that demonstrates the importance of using tensorial data in signal processing
and machine learning. The survey covers several algorithms and applications, including
optimization and statistical performance algorithms, collaborative filtering, classification
and multilinear subspace learning. In addition, tensorial representation is recommended
for applications such as image and tactile processing [9,11].

Approximate computing has emerged as a promising solution to obtain considerable
resource utilization, energy and time savings at the expense of acceptable accuracy loss [12].
There exist notable hardware implementations of SVM in the literature using ACTs on both
the algorithmic and circuit levels. Van Leussen et al. [13] presented a hardware architecture
with re-configurable kernels and overflow resilient limiter. The proposed architecture
achieved a saving of 15% in the consumed energy and 14% in the implementation area for
the epileptic seizure detection application compared to a fully-exact implementation. The
traditional Ripple-Carry Adder (RCA) has been replaced by an approximate accumulator
,which achieves up to 70% power reduction for the kernel computations in SVM for hyper-
spectral image classification problem [14]. The authors of [15] designed an approximate
adder and fixed-width multiplier with a low-cost compensation. Adopting the devised
adder and multiplier in SVM classifier leads to reduce the power-delay product (PDP),
area and critical path delay by 32.4%, 18.7% and 16%, respectively. All the mentioned
architectures imply an accuracy loss less than 8% for the target applications. However, to
the best of our knowledge, there is currently no implementations of approximate tensorial
SVM classifier presented in the literature.

The work presented in this paper aims to reduce the hardware complexity of the tensorial
SVM algorithm using algorithmic level ACTs. A touch modality binary classification problem
was adopted to validate the proposed implementation. The exact tensorial SVM classifier in
[9] as taken as a reference, and then the impact of ACTs on reducing power consumption,
hardware resources and time latency was analyzed. High-Level Synthesis (HLS) with Vivado
2018.3 and Virtex-7 FPGA was used for the implementation. HLS design is adopted since
it offers: (1) faster development process compared to RTL design; (2) built-in optimization
directives; and (3) easier design manipulation through high-level programming languages
(e.g., C/C++). The rest of the paper is organized as follows. Section 2 presents the algorithmic
level approximate computing techniques and how they are applied on machine learning
methods. Section 3 provides a general overview of the tensorial approach. Section 4 details
the proposed approximate tensorial SVM architecture and implementation. Section 5 presents
an assessment of the hardware implementation results targeting FPGA using HLS. Finally,
Section 6 concludes the paper and illustrates the future work.

2. Algorithmic Level Approximate Computing

Approximate computing techniques can be applied at algorithmic, architecture and
circuit levels [16]. Algorithmic level techniques are divided into two categories: data-
oriented and process-oriented. The authors of [17] presented an approach on how to apply
these techniques on machine learning algorithms, as shown in Figure 1.
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Figure 1. Algorithmic level Approximate Computing Techniques: (a) data-oriented; and (b)
processing-oriented. Adopted from [17].

The data-oriented category involves modifying the data properties (size and bit-width)
to minimize the work-load on the circuit level. This category includes:

• Dataset Reduction (DsR) decreases the amount of the processed data by eliminating
samples randomly or using a subsampling method as the one proposed in [9]. Fur-
thermore, DsR can be applied through downsampling and downscaling. The former
adjusts the sampling frequency of the electronic interface used to collect raw data
samples from sensors in the time domain, while the latter reduces the dimension of
the collected data themselves (e.g., reducing the tensor size from 4× 4× 3 to 3× 3× 3),
as shown in Figure 1.

• Data Format Modification (DFM) reduces the bit-width of the data and its correspond-
ing arithmetic operations. This can be done by replacing floating-point representation
with a fixed-point one. For instance, a 24-bit fixed-point representation data is adopted
in [18] instead of floating-point to represent tactile data with a negligible precision loss.

The process oriented category targets the algorithm itself by reducing the number of
tasks or replacing some of them with a less-complex counterpart. This category includes [19]:

• Computation Skipping (CS) skips a certain number of tasks in an algorithm. If these
tasks are loop iterations, then it is referred to as Loop Perforation (LP). For example, in
some machine learning applications, a pre-processing task such as data normalization
may be skipped without affecting the quality of service of the target application.

• Computation Approximation (CA) proposes an equivalent version of a computation-
ally complex function. The two versions should be mathematically equivalent with an
acceptable output error margin. For example, a division function could be replaced
by a reciprocal multiplication [19].

3. Tensorial SVM Algorithm

Gastaldo et al. [9] presented a tensorial kernel approach for touch modalities classifi-
cation. The approach involves four main steps: (i) Unfolding includes the transformation
of a third-order tensor T(I1 × I2 × I3) into three matrices M(I1 × I2 I3), N(I2 × I1 I3) and
P(I3 × I1 I2). (ii) Singular Value Decomposition (SVD) is used to find the eigenvectors V for
each of the three unfolded matrices as:

A = USVT (1)
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where U and VT contain the left and right singular vectors, respectively, and S is the
diagonal matrix storing the singular values σi of A. SVD computations are achieved by
using the one sided Jacobi algorithm, which is considered as one of the fastest methods to
converge compared to other algorithms [20]. (iii) Kernel computation extends the Gaussian
kernels to tensorial patterns. The kernel function can be expressed as:

K(x, y) =
z

∏
1

kz(x, y) (2)

where kz is the kernel factor defined as:

k(x, y) = exp(
−1
2σ2 (In − trace(ZTZ))) (3)

where Z = VT
x Vy, Vx represents the singular vectors of the unfolded matrix, Vy represents

the singular vectors of the unfolded matrix obtained from the training phase and trace
represents the sum of diagonal elements. (iv) SVM classification applies the classification
function expressed in the following equation:

y = fSVM(x) =
Np

∑
i

βiK(x, y) + b (4)

where y represents the predicted label of an input x and βi represents the coefficients
obtained during training with a bias b.

4. Approximate Tensorial SVM

The proposed architecture of Approximate SVM is presented in Figure 2. The architecture
is an extension to the exact architecture presented in [21]. For the rest of the paper, the latter is
referred to as Exact SVM. It involves two stages: offline learning and online inference.

Figure 2. Sketch of the proposed Approximate Tensorial SVM.
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4.1. Touch Modality Framework

The touch modality classification problem “Brushing a brush vs. Rolling a washer”
referred to as Problem A in [9] was adopted to verify the proposed architecture. This
problem is based on a dataset that includes readings from 70 participants. The tactile dataset
was acquired by conducting experiments to sense the human touch pressure levels on a
4× 4 tactile sensor array for a duration of 10 s with a sampling rate of 3000 samples per
second. Thus, each modality can be described by a tensor φ(4× 4× 30,000). The final
dataset was split into training and testing sets with Nt = 180 and Nc = 80. The proposed
algorithmic-level approximate computing method discussed in Section 2 was applied on
the exact tensorial SVM for the mentioned classification problem. Table 1 shows the effect
of using this method on the classification accuracy.

Table 1. Effect of approximate computing techniques on classification accuracy.

Approximate Computing Technique Accuracy (%)

None (Exact SVM) 90.47
10% Data Set Reduction 90.47
20% Data Set Reduction 80.95
30% Data Set Reduction 80.95

Loop perforation with sf = 2 90.47
Loop perforation with sf = 3 85.71
Loop perforation with sf = 4 80.95

DFM (24-bit) 85.71
DFM (16-bit) 75

The dataset reduction was applied by randomly removing samples from the original
dataset. To ensure credible assessment, if a sample is removed during the 10% reduction, it
is automatically removed for the 20% and 30% reductions. Loop perforation was applied
on the loops of SVD computation block with a skipping factor s f (i.e., how many loops are
perforated). As for data format modification, 24- and 16-bit fixed-point representations were
applied for all the SVM operations with < 8, 16 > and < 6, 10 > precision, respectively,
using the C libraries used in [18]. Based on the obtained results, the training and inference
of the exact tensorial SVM were incorporated with the ACTs that resulted in an acceptable
trade-off between accuracy and complexity. Combining several ACTs is also known as
“cross-layer approximate computing” [12].

4.2. Offline Learning

The SVM training was conducted offline on a PC with Intel i7 CPU. The training
process starts by activating the AU1 (Approximate Unit 1) (see Figure 2). AU1 applies
dataset-reduction and downscaling techniques on the dataset by performing the following
steps:

• The dataset size is reduced by eliminating data that corresponds to five participants
with noisy readings. Figure 3a shows an example of such reading where the voltage
is almost constant along the measured time. Therefore, the machine learning model
will not learn new information from such sample. Hence, it is removed.

• During data collection of the tactile dataset, no precise instructions were given to the
participants regarding the amount of pressure to be applied on the sensor [9]. Thus,
some touch samples with silent readings where observed such as the one presented
in Figure 3b. Such samples could be pre-processed to extract meaningful information
in certain time frame. Each sample is truncated from 10 to 3.3 s by omitting readings
outside the interval [3.7, 7] s. This results in a new tensor φ(4× 4× 10, 500).

• To reduce the computational complexity of the tensor-based learning algorithms,
the tensor size could be reduced without the loss of information originality using
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subsampling. The latter is applied by truncating each sample into a new tensor
φ(4× 4× 40) with 40 random time readings.

Then, the resulting tensor is unfolded into three matrices M(4× 160), N(4× 160)
and P(40× 16) that have to be symmetrized before applying SVD. The resulting support
vectors along with the Gaussian parameter σ = 1 are fed to the kernel computation block
(see Figure 2). The block outputs the kernel matrices for (+1 vs. −1), (+1 vs. +1), (−1
vs. +1) and (−1 vs. −1) binary classification problems where each row being labeled with
the corresponding class label. This step is essential since LIBSVM [22] does not support
tensorial kernels by default but can receive precomputed kernels. The LIBSVM library is
used to obtain a classification model based on the precomputed kernel. The model contains
the coefficients βi and the bias b.

Figure 3. Touch Modalities: (a) touch with noisy readings; and (b) touch with silent intervals.

4.3. Online Inference

The SVM inference of the proposed architecture was implemented on FPGA through
the steps shown in Figure 4. The architecture was coded in C++ using Vivado HLS. Then,
the architecture was optimized using HLS directives and synthesized to ensure that it
fits in the target FPGA device. Then, a C/RTL simulation was performed to ensure a
coherent output from the architecture coded in C++ and the RTL design provided by
Vivado HLS. Afterward, the architecture was exported as an RTL IP block targeting a
Virtex-7 XC7VX980T FPGA operating at a clock frequency of 120 MHz. The IP block was
imported into Vivado; then, a behavioral/combinational simulation was performed to
verify the integrity of the exported IP. Then, place and route was performed to implement
the architecture on the FPGA device. Finally, a detailed report about the utilized hardware
resources, the number of clock cycles and the power consumption was obtained once the
implementation was completed.
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Figure 4. FPGA implementation process.

The inference starts by fetching a sample tensor from the testing set (that was already
approximated using AU1). The selected tensor undergoes the unfolding, symmetrization
and SVD processes. The obtained support vectors along with the support vectors from
the training phase are provided to the kernel computation block. During online inference,
Approximate Unit 2 is active. It operates by applying:

• Loop perforation (LP) technique to the SVD block with a skipping factor s f . The
support vectors are obtained using the one side Jacobi Algorithm. The latter is an
iterative algorithm, thus it is perforated with s f = 2. This technique accelerates
the SVD computations but a large s f could not be applied to ensure the algorithm’s
convergence.

• Computation Approximation (CA) to the computation of Z in Equation (3). The ob-
tained singular vector matrices from the SVD block are V1(160 × 160),
V2(160 × 160) and V3(16 × 16). These matrices are truncated to V1′(160 × 4),
V2′(160× 4) and V3′(16× 2). Such truncation reduces the complexity of the matrix
multiplication in Equation (3) with an acceptable error margin. This technique was
also applied in the offline training phase so that the equation Z = VT

x Vy has correct
dimensions.

• Data Format Modification (DFM) to all the variables and arithmetic operations in dif-
ferent SVM blocks. HLS offers a library called “apfixed”, which allows the declaration
of variables with fixed-point precision. This declaration is limited by an upper bound
[23]. Specifically, the mathematical functions are Square Root (sqrt), which is used in
SVD calculations, and Exponential (exp), which is used in kernel computations. These
functions are supported only for bit-widths w ≤ 32 and w ≤ 16, respectively. This
limitation was resolved by a variable precision architecture. Hence, all the inference
blocks are implemented with 24- bit fixed-point representation with a < 12, 12 >
precision except the kernel computation block.

Finally, the output of the kernel computation (i.e., a kernel) is used by the classification
block to predict a class for the tested tensor according to Equation (4).

4.4. Performance Booster

The performance of the proposed architecture was enhanced to achieve the lowest
possible time latency for applications with timing constraints [24] while increasing the
throughput. These requirements are usually accompanied by an increase in hardware



Electronics 2021, 10, 205 8 of 12

resources, but the use of algorithmic level approximate computing techniques, specifically
“dataset reduction” and “data format modification”, would compensate such increase.

These requirements are facilitated by the use of Vivado HLS optimization directives
[23]. The used directives are:

• Array Partition: tThis directive partitions a large BRAM occupied by a multidimen-
sional array into smaller separate memories. The array partitioning can be complete,
cyclic or block. The latter was applied on the tensor φ(4× 4× 40) with block size =
16, as shown in Figure 5. This results in an RTL IP block with smaller memories while
improving the throughput of the Unfolding process.

• Dataflow: This directive allows functions to overlap in their operations, enhancing
the overall throughput and latency of the design. The functions unfold and sym-
metrization are executed in a task-level pipelining using this directive, as shown in
Figure 6.

• Pipelining: This directive allows the parallel execution of loop iterations, hence
reducing the time latency. The computation of Z in Equation (3) is executed in parallel,
as shown in Figure 7.

Figure 5. Array partitioning: (a) without partitioning; (b) block partitioning; and (c) block with
size=16.

Figure 6. Dataflow pipelining: (a) without dataflow; and (b) with dataflow.
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Figure 7. Pipeline directive applied on vector multiplication.

5. FPGA Implementation Results and Assessment
5.1. Implementation Results

Figure 8 shows the normalized speedup and reduction in power consumption while
assessing different approximate computing techniques. The latter are applied one-by-one
resulting in eight different FPGA implementations. Each implementation is compared to
the exact implementation where the time latency (L) is recorded as:

L = N × 1
fmax

(5)

where N is the number of clock cycles and fmax is the maximum operating frequency. As
for the power consumption, a vector-based method was adopted as it provides the power
consumption related to the processing under a defined testbench. The method involves
generating a “saif” file via post-implementation functional and timing simulations.

Figure 8. Speedup and power consumption reduction under different ACTs.

Using the obtained results in Figure 8, a cross-layer Approximate SVM implementation
was performed where the adopted techniques are: 10% dataset reduction, loop perforation
with s f = 2 and 24-bit DFM. Moreover, the implementation details was recorded with the
performance booster ON and OFF to differentiate between the gain due to approximate
computing techniques with and without HLS optimization directives. Table 2 summarizes
the performance profile for the FPGA implementations based on the architecture in Figure 2.
The Exact SVM is based on the architecture presented in [21]. The boosted Approximate
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SVM corresponds to the Approximate SVM where the “Performance Booster” block is
activated (See Figure 2), i.e., with HLS optimization directives. The reduction is calculated as:

Reduction(%) = 100− (
Iapprox

Iexact
× 100) (6)

where Iapprox and Iexact are the implementation element (FF, DSP, LUT, etc.) of the Ap-
proximate (or boosted approximate) and Exact SVM, respectively. As for the energy per
classification, it is calculated using the equation:

E = P× T (7)

where T is the time latency and P is the dynamic power consumption reported in Vivado.

Table 2. FPGA performance profile of Exact and Approximate SVM.

FF LUT DSP BRAM SRL Time
Latency (s)

Power
Consumption (W)

Energy per
Classification (J)

Classification
Accuracy (%)

Exact SVM 37057 42261 475 297 1060 2.4 6.3 15.12 90
Approximate SVM 17,187 25,558 283 291 202 0.91 3.12 2.83 86
Boosted
Approximate SVM 17,197 25,588 284 292 203 0.75 3.2 2.4 86

Approximate to
Exact Reduction 53.62% 39.5% 40.4% 2.02% 80.94% 2.64× 50.4% 81.28% −4%

Boosted Approximate
to Exact Reduction 53.59% 39.45% 40.21% 1.68% 80.84% 3.2× 49.2% 84.12% −4%

5.2. Implementation Assessment

The obtained results presented in Tables 1 and 2 and Figure 8 demonstrate the effec-
tiveness of using approximate computing techniques to reduce the hardware resources
utilization, time latency and power consumption of the FPGA implementation of the tenso-
rial SVM. Such reductions are accompanied by an accuracy loss that varies between 0%
and 10%. Another set of remarks can be noticed:

• In general, loop perforation achieves lower latency and power consumption compared
to dataset reduction with a comparable accuracy loss. This can be justified since the
SVD computation block is among the most complex blocks of the tensorial SVM, as
reported in [4].

• The transition to fixed-point representation results in the lowest latency and power
consumption compared to other methods. This is expected due to the reduced
complexity of the arithmetic operations based on fixed-point representation. This can
be seen in the reduced number of required DSPs between the exact and approximate
implementations. However, this comes at the expense of high accuracy loss; for
example, the use of a 16-bit fixed-point led to a 15% accuracy loss for the target
application.

• The number of used BRAMs is high since we are not using any external DRAM
for memory read/write operations. The range of the number of LUT and DSPs is
expected due to the level of parallelism introduced using HLS directives. For the
target FPGA, this is not a problem as long as we obtained a relatively reduced time
latency and power consumption in the case of Approximate SVM.

• Using “cross-layer” approximate computing: with an accuracy degradation of 4%,
the Approximate SVM requires about 43% less hardware resources and classifies an
unseen sample 2.64× faster while consuming 50% less power compared to its exact
counterpart.

• The accuracy loss due to the use of “cross-layer” approximate computing is not the
sum of the losses obtained for each single approximate technique. This is evident in
the final results presented in Table 2.
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• The use of ACTs shows a remarkable reduction in the energy per classification up to
82%, since such techniques affect both the time latency and power consumption of
the TSVM, as shown in Table 2.

• Applying the adopted HLS optimization directives offered an additional speedup
gain to the Approximate SVM in terms of speedup up to 3.2× accompanied with
84% less energy per classification. This added a negligible overhead less than 1%
increase in the hardware resources and power consumption. This is expected due
to the fact that pipelining offers a reduction in the number of clock cycles while
increasing the resources/power consumption. However, such increase is compensated
by the dataflow directive that allows resource sharing, providing an enhanced overall
implementation.

6. Conclusions

This paper presents the first FPGA implementation using High-Level Synthesis of an
approximate tensorial SVM classifier. An accuracy of 86% was obtained with a speedup
of 3.2× and 49% power consumption reduction resulting in up to 82% reduction in the
energy per classification. Such results were achieved by utilizing the concept of cross-layer
approximate computing. Combining several algorithmic level approximate computing
techniques demonstrated their efficiency in optimizing the proposed embedded machine
learning implementation. Moreover, specific design choices (e.g., using pipe-lined architec-
ture) could boost the implementation performance with the help of Vivado HLS directives.
The obtained reduction factor in hardware resources, time latency, and power consumption
through applying ACTs paves the way towards applying such techniques on the RTL HDL
design of the TSVM presented in [4] where similar reductions are expected. Such promising
results motivate the exploration of different types of ACTs such as circuit-level techniques
or the use of neural networks to further reduce the impact of computationally expensive
singular value decomposition, as it represents about 70% of the whole implementation.
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6. Hussain, H.; Benkrid, K.; Şeker, H. Novel dynamic partial reconfiguration implementations of the support vector machine
classifier on FPGA. Turk. J. Electr. Eng. Comput. Sci. 2016, 24, 3371–3387. [CrossRef]

7. Mandal, B.; Sarma, M.P.; Sarma, K.K. Implementation of Systolic Array Based SVM Classifier Using Multiplierless Kernel; 2014;
pp. 35–39. Available online: http://www.wseas.us/e-library/conferences/2014/Brasov/ACMOS/ACMOS-46.pdf (accessed on
5 November 2020).
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