Graduate Student Member, IEEE Hamoud Younes
email: hamoud.younes@edu.unige.it

Member, IEEE Ali Ibrahim
email: ali.ibrahim@edu.unige.it

Member, IEEE Mostafa Rizk
email: mostafa.rizk@liu.edu

Senior Member, IEEE Maurizio Valle
email: maurizio.valle@unige.it

A Shallow Neural Network for Real-Time Embedded Machine Learning for Tensorial Tactile Data Processing

Keywords: Embedded machine learning, real-time, tensorial kernel, tactile sensors, neural networks, singular value decomposition, FPGA. I

This paper presents a novel hardware architecture of the Tensorial Support Vector Machine (TSVM) based on Shallow Neural Networks (NN) for the Single Value Decomposition (SVD) computation. The proposed NN achieves a comparable Mean Squared Error and Cosine Similarity to the widely used one-sided Jacobi algorithm. When implemented on an FPGA, the NN offers 324× faster computations than the one-sided Jacobi with reductions up to 58% and 67% in terms of hardware resources and power consumption respectively. When validated on a touch modality classification problem, the NN-based TSVM implementation has achieved a real-time operation while consuming about 88% less energy per classification than the Jacobi-based TSVM with an accuracy loss of at most 3%. Such results offer the ability to deploy intelligence on resource-limited platform for energy-constrained applications.

the Gaussian-Radial Basis Function (RBF) and linear kernels in an image recognition task.

Gastaldo et. al. have extended the tensorial kernel approach for tactile data processing in [START_REF] Gastaldo | A tensorbased pattern-recognition framework for the interpretation of touch modality in artificial skin systems[END_REF]. This approach has been adopted since it preserves the inherent tensorial structure of the data collected by tactile sensors. As an end result, the tensorial-based SVM achieves higher accuracy in classifying touch modalities compared to the Regularized Least Square (RLS) algorithm. In [START_REF] Ibrahim | Real-time embedded machine learning for tensorial tactile data processing[END_REF], the first FPGA implementation of the Support Vector Machine (SVM) algorithm based on tensorial kernel has been presented. Specifically, two implementations were provided: Cascaded and Parallel. The former failed to ensure real-time classification of touch (i.e in less than 400 ms [START_REF] Lele | The reaction time to touch[END_REF]), and the latter reported a relatively large hardware area and high power consumption of 1.14W. Such results were not acceptable for the application with limited power budget and area constraints [START_REF] Fares | Distributed sensing and stimulation systems for sense of touch restoration in prosthetics[END_REF].

In this paper, our main goal is to provide a new architecture and hardware implementation of the tensorial SVM (TSVM) aiming at reducing the hardware complexity and power consumption while keeping real-time operation. For this purpose, we analyzed the complexity of the tensorial SVM architecture to pin-out most computationally complex and demanding blocks. Fig. 1 illustrates the estimated number of operations required in each step of the tensorial SVM algorithm, where m and n are the dimensions of the unfolded matrix, N c , N t , and N sv are the number of classes to be discriminated, the number of training tensors, and the number of support vectors, respectively. In [START_REF] Ibrahim | Real-time embedded machine learning for tensorial tactile data processing[END_REF], the one-sided Jacobi algorithm has been adopted for finding the singular vectors. Such algorithm involves a high number of arithmetic operations and requires several iterations to converge [START_REF] Zhou | Efficient one-sided Jacobi algorithms for singular value decomposition and the symmetric eigenproblem[END_REF]. As reported in [START_REF] Ibrahim | Real-time embedded machine learning for tensorial tactile data processing[END_REF] (m = 8, n = 20, N c = 2, N t = 100, etc.), the Singular Value Decomposition (SVD) computation corresponds to about 96% of the overall algorithm. Thus, the main focus of the proposed new architecture is to find an alternative algorithm for SVD computation. This alternative should impose complexity reductions without affecting the classification accuracy of the tensorial SVM.

A Neural Network (NN) is one of the candidates for the SVD computation. The idea first surfaced in 1991 when Samardzija et. al. proposed an artificial continuous-time neural network to estimate the eigenvectors and eigenvalues [START_REF] Samardzija | A neural network for computing eigenvectors and eigenvalues[END_REF]. In [START_REF] Yi | Neural networks based approach for computing eigenvectors and eigenvalues of symmetric matrix[END_REF], the convergence and computational complexity through computer simulations of such network are assessed. Another neural network has been presented in [START_REF] Tang | Another neural network based approach for computing eigenvalues and eigenvectors of real skew-symmetric matrices[END_REF]. The network is characterized by an order n-Ordinary Differential Equations (ODEs) leading to reduced dimensionality. Such neural network has evolved to further applications such as Principle Component Analysis (PCA) [START_REF] Qiu | Neural network implementations for PCA and its extensions[END_REF].

Triggered by the performance of neural networks in many domains [START_REF] Li | A survey of convolutional neural networks: Analysis, applications, and prospects[END_REF] and the continuous quest for efficient designs specifically for resource-limited applications [START_REF] Véstias | A survey of convolutional neural networks on edge with reconfigurable computing[END_REF], a neural network based tensorial SVM architecture is proposed. The main contributions of this paper are summarized as follows:

• It presents a novel architecture for SVD computation using shallow neural networks. The architecture achieves 324× speedup with 58% and 67% reductions in the required hardware resources and power consumption respectively compared to the traditional one-sided Jacobi algorithm. Such reductions are obtained while providing a comparable performance in terms of Mean Squared Error (MSE) and Cosine Similarity (CS) metrics. Moreover, the proposed architecture is adequate for implementations on resource-limited platforms (e.g. Zynqberry [START_REF]TE0726 Resources-Public Docs-Trenz Electronic Wiki[END_REF]). • It presents the first hardware architecture and implementation of SVM algorithm featuring multidimensional tensorial inputs, where shallow neural networks are employed to compute the singular value decomposition. • It demonstrates the feasibility of the implemented system for real-time touch modality classification while consuming 6.28 mJ. The proposed cascade architecture achieves 131× classification speedup with a 39% and 50% resources and power reductions respectively compared to similar stat-of-the-art solution [START_REF] Ibrahim | Real-time embedded machine learning for tensorial tactile data processing[END_REF].

• It provides scalability assessment of the proposed SVD architecture. Replacing the one-sided Jacobi with a neural network in the tensorial SVM architecture reported only 1% increase in the required FFs compared to 29% when the number of training tensors is doubled. The rest of the paper is organized as follows: Section II presents an overview of the tensorial SVM for touch modality classification. Section III provides a review on the efficient existing SVD algorithms and their hardware implementations. It also reports the complexity of the proposed architecture compared to existing solutions. Section IV details the process of designing a neural network for SVD and its performance when tested on a tactile dataset. Section V provides the FPGA implementation and verification of the tensorial SVM based on SVD computation via shallow neural networks. Section VI presents a scalability study of the proposed architecture in terms of hardware resources and time latency. Section VII concludes the paper and illustrates some observations.

II. SVM CLASSIFICATION BASED ON TENSORIAL KERNEL

A. Overview

A theoretical approach that extends kernel methods to tensor data has been presented in [START_REF] Gastaldo | Computational intelligence techniques for tactile sensing systems[END_REF]. The framework allows the classification of an input tensor using SVM in 4 main steps:

• Tensor Unfolding: A tensor φ(

I 1 × I 2 × I 3) is transformed into three matrices X 1 (I 1 × I 2 I 3), X 2 (I 2 × I 1 I 3) and X 3 (I 3 × I 1 I 2).
• SVD Computation: The unfolded matrices are symmetrized into square matrices that can be written in the form:

X 1 = U SV T (1)
where U and V T contain the left and right singular vectors respectively, and S is the diagonal matrix storing the singular values σ i of X 1 .

• Kernel Computation: The tensorial kernel extended from the Gaussian kernel is computed using the function:

K (x, y) = z 1 k z (x, y) (2)
where k z is the kernel factor defined as:

k(x, y) = exp(-1 2σ 2 (I n -trace(Z T Z))) (3)
where Z = V T x V y , V x and V y represent the singular vectors of the unfolded matrix obtained during the inference and training phase respectively, and trace represents the sum of diagonal elements.

• Classification: Applying the SVM classification function expressed as:

ŷ = f SV M (x) = n i β i K (x i , x) + b (4
)
where ŷ is the predicted label of input tensor x, n is the number of training tensors, β i are the coefficients obtained during training, and b is the bias.

B. Touch Modalities Classification

The tensorial SVM has been initially presented as an effective algorithm for touch modality classification in [START_REF] Gastaldo | Computational intelligence techniques for tactile sensing systems[END_REF]. In this paper, three binary and one multi-class classification problems are used to test the accuracy of the proposed neural network based tensorial SVM. Specifically, the problems are:

• Problem A: "brushing a paintbrush" versus "rolling a washer" • Problem B: "brushing a paintbrush" versus "sliding the finger" • Problem C: "sliding the finger" versus "rolling a washer" • Problem D: "one versus the others" These modalities are derived from a tactile dataset that has been collected by 70 participants. Each participant performed the modality on both the horizontal and vertical axes of a 4 × 4 tactile sensor for a duration of 10 seconds. Thus each touch modality is represented by a tensor φ(4 × 4 × 30, 000). However, such tensor size is reduced into φ(4 × 4 × 20) where 20 is the obtained number of samples using the data pre-processing algorithm (Algorithm 1) reported in section IV.

III. SVD ALGORITHMS AND IMPLEMENTATIONS

A. Literature Review

Singular value decomposition can be computed numerically through several methods such as the Jacobi method, the QR method, and the one-sided Hestenes method [START_REF] Yang | Reducing the computations of the singular value decomposition array given by Brent and Luk[END_REF]. For parallel implementations, computing the SVD using the Jacobi method is superior to other methods in terms of complexity and execution time [START_REF] Yang | Reducing the computations of the singular value decomposition array given by Brent and Luk[END_REF]. Brent et. al. have shown that two-dimensional systolic array could be used for implementing the Jacobi method [START_REF] Brent | The solution of singular-value and symmetric eigenvalue problems on multiprocessor arrays[END_REF]. In [START_REF] Cavallaro | Architectures for a cordic SVD processor[END_REF], the authors have presented various realization for the Jacobi SVD computation using Coordinate Rotation Digital Computer (CORDIC) [START_REF] Delosme | CORDIC algorithms: Theory and extensions[END_REF]. The latter is adopted in majority of the existing hardware implementations of the Jacobi SVD method. For small matrix dimensions, an efficient implementation of SVD for the use in Multiple Input Multiple Output (MIMO) precoding and real-time signal processing has been presented in [START_REF] Milford | Singular value decomposition using an array of CORDIC processors[END_REF]. The implementation is based on CORDIC processors. For an arbitrary m × n matrix, Ibrahim et. al. have presented an FPGA implementation with fixed-point arithmetic [START_REF] Ibrahim | Singular value decomposition FPGA implementation for tactile data processing[END_REF]. The implementation managed to compute the SVD of an 32 × 127 matrix in 13 ms while occupying 20% and 67% slice registers and LUTs respectively on a Virtex-6 FPGA. Fast and efficient FPGA implementation for computing the singular and eigen value decomposition based on a simplified CORDIC-like algorithm is presented in [START_REF] Zhang | Fast implementation for the singular value and eigenvalue decomposition based on FPGA[END_REF]. The implementation uses fixed-point arithmetic for sequential and parallel operations leading about 3× faster computation in an image denoising application compared to computations via an Intel CPU based PC. The authors in [START_REF] Jiang | Implementation of matrix SVD decomposition module for subspace channel estimation[END_REF] used High-Level Synthesis (HLS) to model the one-sided Jacobi SVD computation on a Zedboard development board. For a 16 × 16 matrix, SVD computation takes around 1.1 seconds with a power consumption of 1.38W. Using CMOS 28-nm technology, Deng et.al proposed a hardware architecture for tensor SVD [START_REF] Deng | High-performance hardware architecture for tensor singular value decomposition: Invited paper[END_REF]. Compared with real-world CPU-based implementations, the architecture provides an average of 14× speed on various workloads.

Targeting the TSVM architecture in [START_REF] Ibrahim | Real-time embedded machine learning for tensorial tactile data processing[END_REF] where the one-sided Jacobi is identified as a performance bottleneck, the existing alternative implementations for SVD computation share several common challenges: (1) they operate only on square matrices. Thus, if the input matrix is rectangular, an additional complexity is added due to matrix symmetrization [START_REF] Deng | High-performance hardware architecture for tensor singular value decomposition: Invited paper[END_REF].

(2) if the implementation uses floating-point representation, the complexity is relatively high even for small matrix dimensions [START_REF] Ibrahim | FPGA implementation of fixed point CORDIC-SVD for E-skin systems[END_REF], and (3) depending on the required output precision, the algorithm might require additional iterations to converge [START_REF] Zhou | Efficient one-sided Jacobi algorithms for singular value decomposition and the symmetric eigenproblem[END_REF]. Recently, a scalable SVD engine on FPGA has been introduced in [START_REF] Wang | A scalable FPGA engine for parallel acceleration of singular value decomposition[END_REF] targeting these challenges. The proposed engine managed to compute the SVD of rectangular matrices using floating-point arithmetic. However, the implementation results show that a large number of DSPs is required for several matrix dimensions which has a direct impact on the power consumption of hardware implementations. Another noticeable observation is that the authors compared the SVD engine only to CPU-based SVD computations. In this paper, a new architecture for SVD computation based on shallow neural networks is proposed. The architecture offers the ability to operate on rectangular matrices (thus symmetrization is not needed, see Fig. 2) and utilizes floating-point arithmetic. As for convergence, the neural network training is usually performed offline on a high-end computing device. Thus, a network could be trained several times for any given amount of time to achieve top notch performance.

B. Computational Complexity

In this section, we compare the complexity of the one-sided Jacobi algorithm with that of a shallow neural network in terms of the total number of operations. Consider a shallow neural network of one hidden layer of size H and an output layer of size O. For an input A m×n , the outputs of the hidden layer Y h and the output layer Y O are expressed respectively as:

Y h = f h (W h .A + b h) (5) Y O = f O (W O .Y h + b O) (6)
where W , b, and f represent the weight, bias, and activation function respectively. The output of each layer consists of matrix multiplication, addition, and activation operations. The number of operations for matrix multiplication and addition is expressed as:

N h = H (2m × n -1) + H = 2H (m × n) (7)
Assuming that the activation function requires N Act operations, the total number of operations in the hidden layers is expressed as:

N h = 2H (m × n) + N Act h (8)
The same can be applied to the output layer, thus the number of required operations is:

N O = 2H × O + N Act O (9
)
Authorized licensed use limited to: IMT ATLANTIQUE. Downloaded on August 26,2021 at 10:23:56 UTC from IEEE Xplore. Restrictions apply. Finally, the number of operations for the whole network could be expressed as: [START_REF] Qiu | Neural network implementations for PCA and its extensions[END_REF] To estimate N, suppose there exists an upper bound T such that N ≤ T . T is an upper bound when both N Act h and N Act O correspond to the most complex activation function i.e. the tangent hyperbolic function (tanh). The latter is expressed as:

N = N h + N O = 2H (m × n + O) + N Act h + N Act O
f (z) = e z -e -z e z + e -z (11)
To find the number of operations required for the term e z , we referred to the function implementation in the IEEE-754 library in [START_REF] Bui | Design and synthesis of an IEEE-754 exponential function[END_REF]. The implementation uses the Taylor expansion with an order 3 for floating-points, leading to a total of 16 operations. Thus the number of operations N Act h = 35H . Similarly, N Act O = 35O. For the network to output the right singular vectors V of an m × n matrix, the output layer size O is equal to n 2 . This simplifies [START_REF] Qiu | Neural network implementations for PCA and its extensions[END_REF] to:

N <= (2H × n)(m + n) + 35H + 35n 2 (12)
Knowing that the number of operations for the one-sided Jacobi algorithm is (see Fig. 1):

N j = 24m(n -1)[n 2 (2n -1) + n 3 + 6] (13
)
through simulations, the values of m, n, and H are varied to compare [START_REF] Véstias | A survey of convolutional neural networks on edge with reconfigurable computing[END_REF] and [START_REF]TE0726 Resources-Public Docs-Trenz Electronic Wiki[END_REF]. Fig. 3 plots the number of operations N j and N required to compute the SVD of a matrix using one-sided Jacobi and a shallow neural network respectively. Generally, the comparison results are in favor of the neural network approach as shown in Fig. 3. The one-sided Jacobi is superior for very small dimensions such as 2 × 2 for H > 21. As the dimension starts to increase, the neural network requires significantly less number of operations for SVD computations. For instance, for (m, n) = (20, 16) and (m, n) = (4, 80) (these dimensions are often used for tensorial SVD implementations based on the one-sided Jacobi algorithm [START_REF] Ibrahim | Real-time embedded machine learning for tensorial tactile data processing[END_REF], [START_REF] Osta | Energy efficient implementation of machine learning algorithms on hardware platforms[END_REF]), computing the right singular vectors V using a shallow neural network requires less number of operations than using the one-sided Jacobi (N < N j) for all values of H ≤ 70, 000 and H ≤ 800, 000 respectively. Such values of H are very large even for the largest existing neural networks. The number of operations (N) required for each activation function is presented in Table I. The hidden layer activation function could be ReLU (Standard, LeakyReLU or Parametric), Sigmoid, or hyperbolic tangent (tanh), it is selected based on the trade-off between complexity and the required performance. In the output layer, only the hyperbolic tangent function can be used, due to the fact that the values of the singular vectors are bounded between -1 and 1.

IV. SVD USING NEURAL NETWORKS

A. Network Structure

A regression model is targeted since the NN is needed to compute the singular vectors. For that, there are two possible categories to work on: [START_REF] Signoretto | A kernel-based framework to tensorial data analysis[END_REF] Classification NN that should be modified to perform regression and re-trained [START_REF] Jernelv | Convolutional neural networks for classification and regression analysis of onedimensional spectral data[END_REF] and (2) Regression NNs [START_REF] Fernández-Delgado | An extensive experimental survey of regression methods[END_REF]. Although the classification accuracy achieved by the one-sided Jacobi TSVM could be obtained by an existing NN model from the two above mentioned categories, the main concern remains in the computational Even the smallest models such as MobileNet [START_REF] Howard | MobileNets: Efficient convolutional neural networks for mobile vision applications[END_REF], Shuffle Net [START_REF] Zhang | ShuffleNet: An extremely efficient convolutional neural network for mobile devices[END_REF], and EffNet [START_REF] Freeman | EffNet: An efficient structure for convolutional neural networks[END_REF] contains at least four layers. On the other hand, for the regression NNs, with only one hidden layer, a shallow network is considered to be the smallest possible regression NN model.

A tactile tensor φ(4×4×20) is unfolded into three matrices M(4 × 80), N(4 × 80), and P(20 × 16). According to (1) each matrix could be decomposed into:

M 4×80 = U 4×80 × 80×80 × V T 80×80 (14
)
N 4×80 = U 4×80 × 80×80 × V T 80×80 (15
)
P 20×16 = U 20×16 × 16×16 × V T 16×16 (16)
Authors in [START_REF] Gastaldo | Computational intelligence techniques for tactile sensing systems[END_REF] and [START_REF] Osta | An energy efficient system for touch modality classification in electronic skin applications[END_REF] reported that for tensor SVD, only a small number of the columns of V is required to obtain acceptable classification accuracy when embedded in SVM. Using the three touch modality problems reported in section II.B, the V matrices that resulted in the highest classification accuracy are: V T 80×4 , V T 80×4 , and V T 16×2 . Fig. 4(a) shows the proposed shallow neural network that is capable of computing the right singular vectors V . The network is composed of three fully connected layers: an input layer of size m × n, a hidden layer of size H , and an output layer of size O = n × t, where t is the selected number of columns from V . Thus, two neural networks are designed. one with an 80 × 4 output and the other with a 16 × 2 output.

The neural networks share two activation functions (f h) and (f O) defined as:

f h (z i) = z i z i ≥ 0 βz i other wise (17) f O (z) = ⎧ ⎪ ⎨ ⎪ ⎩ -1 z < -1 1 z > 1 z otherwise (18
)
The function f h shown in Fig. 4(c) is called Parametric Rectified Linear Unit (PReLU) where z i is just one feature out of the feature vector z and β is a learnable weight used to keep negative values compared to the standard ReLU function. It is adopted for the hidden layer to preserve the sign of the neurons' output with low computational complexity compared to other activation functions (e.g. Sigmoid function). The function f O shown in Fig. 4(e) is called hard hyperbolic tangent activation function [START_REF] Gulcehre | Noisy activation functions[END_REF]. It is used at the output layer to output the elements v i of the V matrix in the range [-1, 1] with a reduced computational complexity compared to the hyperbolic tangent function.

B. Network Training and Tuning

The chosen network model is trained using floating-point representation during both forward and backward propagation. The network is trained to export the right singular vectors V with the least possible error margin compared to exact computations obtained via MATLAB. The proposed network is a regression model that outputs singular vectors, for that the performance is determined based on two metrics: (1) Mean Squared Error (MSE) and (2) Cosine Similarity (CS). These metrics are defined as:

M S E = 1 n n i=1 (V i -Vi) 2 (19)
C S = 1 n n i=1 (V i . Vi ||V i || × || Vi ||) (20
)
where V is the matrix generated from the neural network and V is the one generated from applying the SVD using MATLAB software. Thus, the training aims at finding a network model that achieves the lowest MSE (i.e. the elements v i of the V and V matrices have similar values) and highest C S (i.e. the vectors V i of the V and V matrices have similar direction i.e C S tends to 1). The proposed neural network is hand crafted and can be customized. The training process is used to tune the network hyperparameters [START_REF] Yang | On hyperparameter optimization of machine learning algorithms: Theory and practice[END_REF] i.e. parameters that determines the network structure and training behavior (e.g. size of hidden layer H , learning rate) and parameters (e.g. weights). During training, the weights and biases of the network are randomly initialized, then updated using one of the below optimizers. As for the hyperparameters, the following settings have been tested:

• The tactile dataset from [START_REF] Gastaldo | Computational intelligence techniques for tactile sensing systems[END_REF] is used for training. However, some modifications have been applied based on the following:

• Some participants recordings are noisy (see Fig. 5(a)), thus their corresponding data has been removed from the training dataset. • Since no particular indications were given to the participants in [START_REF] Gastaldo | Computational intelligence techniques for tactile sensing systems[END_REF] about the pressure level, silent intervals (i.e. voltage readings from sensor taxels equals to zero, see Fig. 5(b)) are observed in the recordings. These silent intervals will not help the neural network to learn new patterns and thus are removed. Specifically, all reading outside the timing interval [3.5, 7] are omitted. Algorithm 1 summarizes the pre-processing technique applied to the dataset. The algorithm truncates each modality from 10s to 3.5s resulting in a tensor T (4 × 4 × 10, 500). Afterwards, subsampling is applied to obtain 20 readings (P = 20) from the 10,500 resulting in a final tensor φ(4 ×4 ×20). After pre-processing, 4480 matrices of dimensions 4 × 80 and 20 × 16 have been derived. Then, their corresponding V matrices are generated using MATLAB. These matrices are divided into 80% for training, 10% for validation, and 10% for testing.

C. Network Performance

The neural network is coded in Python using Tensorflow and Keras libraries. Then, it is trained on an ASUS PC equipped with an NVIDIA GTX 1650 graphics card with 4GB VRAM.

TABLE II

BEST MODEL PERFORMANCE COMPARED TO ONE-SIDED JACOBI Fig. 6 shows the MSE and CS while testing the proposed network under different activation functions. Although using the hyperbolic tangent function leads to a model with the lowest MSE and highest CS, it imposes the highest computational complexity as reported in Table I. Hence, PReLU activation function has been adopted for the hidden layer as a trade-off between complexity and MSE/CS. Fig. 7 shows the MSE and CS of the model with best achieved performance. The latter is obtained using the characteristics presented in Table II. One noticeable observation is that the size of the hidden layer differs for the two input dimensions. This is due to the fact that the network has to output 320 elements (80 × 4) for the input dimension (4 × 80) The obtained performance is compared to that of computing the SVD using the one-sided Jacobi algorithm based on the architecture presented in [START_REF] Ibrahim | Singular value decomposition FPGA implementation for tactile data processing[END_REF]. According to the comparison shown in Table III, the proposed neural network is capable of computing the right singular vectors V while: (1) providing low MSE and high CS during training, validation, and testing, and (2) achieving comparable performance in terms of MSE and CS to the exact computation using the one-sided Jacobi. This is evident for both input dimensions 4 × 80 and 20 × 16.

V. HARDWARE IMPLEMENTATION AND VERIFICATION

This section presents the architecture and implementation details of the two shallow neural networks and the overall tensorial SVM. The latter is characterized by adopting these networks for SVD computation. The input, weights, and biases are represented in 32-bit floating point. Each hardware architecture has been coded in C++, synthesized and implemented using Vivado/Vivado HLS 2020.1 targeting Virtex-7 FPGA device operating at 100 MHz. To test and validate the hardware implementation, a C++/RTL co-simulation is performed in Vivado HLS to compare the results between the C++ simulation and the RTL implementation. Afterwards, the RTL implementation has been exported as an Intellectual Property (IP) to Vivado where the hardware resources and number of clock cycles are recorded. The time latency is computed as:

T = cc × 1/ f max (21
)
where cc is the number of clock cycles in post-implementation timing simulation and f max is the maximum operating frequency. As for power consumption, a post implementation functional and timing behavioral simulation is performed to generate a Switching Activity Interchange File (SAIF). This file is used to obtain a vector-based power estimation post-routing.

For the rest of the paper, let NN1 and NN2 denote the neural networks with input dimensions 4 × 80 and 20 × 16 respectively.

A. FPGA Implementation of the Shallow Neural Network

Fig. 8 shows the architecture of the proposed shallow neural network. For an input X of size L (one of the unfolded matrices), it outputs the V matrix using sequential operations. The outputs Y h and Y O corresponds to the equations (5) and (6), where f h and f O are the PReLU and the hard tangent hyperbolic activation functions respectively. The input X and the weights are stored on-chip using BRAMs and the multiplier is fed from the BRAM to perform elementby-element multiplication of the input and weight values. Similarly, the multiplication result is fed to the adder and the bias values are read from on-chip BRAMs. The right singular vectors matrix V is obtained by transforming the output vector Y O into a 2D array as shown in Fig. 9. The advantage of such architecture is that it allows the use of network pruning without any loss in performance (MSE/CS). The weight and bias matrices obtained from the offline training phase have been analyzed to identify neurons with very low weight/bias values. These neurons could be removed without affecting the network performance during inference. Thus, pruning is applied on matrix multiplication/addition by skipping operations where

W [i], b[i] ≤ 10 -4 .
Table IV shows the implementation details for the SVD computation on a 4 × 4 × 20 input tensor (i.e. NN1 is utilized twice to compute the SVD of the matrices M, N while NN2 is utilized once to compute the SVD of the matrix P) compared to the one-sided Jacobi based on the architecture presented in [START_REF] Ibrahim | Real-time embedded machine learning for tensorial tactile data processing[END_REF]. The obtained results show that using neural networks for SVD computations allows for a 324× speedup with an average resources and power reductions of 58% and 67% respectively. Another observation is that the neural network architecture uses slightly more BRAMs. This is due to the fact that the weights and biases matrices obtained from network training are mapped into BRAMs and are not saved on an external memory. Knowing that the Virtex-7 FPGA is used for implementation to have a credible comparison with the state-of-the-art, the obtained results show that the proposed neural network for SVD computations is adequate to fit in a resource-limited platform such as the Zynqberry. This is not possible for the implementation of the one-sided Jacobi targeting large matrix dimensions.

B. FPGA Implementation of the Neural Network Based SVM

The neural networks NN1 and NN2 have been embedded into the cascade architecture of the tensorial SVM presented in [START_REF] Ibrahim | Real-time embedded machine learning for tensorial tactile data processing[END_REF]. The new NN-based TSVM architecture is presented in Fig. 10. The "NN Memory" contains the weights and biases matrices of the designed neural networks. The "SVM Memory" contains the singular vector training matrices. k 1 , k 2 , and k 3 are the three kernel factors obtained using (3). The architecture performs the SVD computation of the three unfolded matrices using the proposed NN1 and NN2 neural networks. Table V shows the different operating modes in the cascade architecture. For S 0 S 1 = 00, the first unfolded matrix X 1 is selected and NN1 is activated, then for S 0 S 1 = 01, the second unfolded matrix X 2 is selected and NN1 is utilized. As for S 0 S 1 = 10, the third unfolded matrix X 3 is selected and NN2 is activated. When active, each network computes the right singular vector matrix V of each of the unfolded input matrices. The obtained V matrices along with the ones exported from the training phase are used to compute the kernel factors as depicted in [START_REF] Ibrahim | Real-time embedded machine learning for tensorial tactile data processing[END_REF], which are required to output a classification decision as shown in (4). and N c = 2. The energy per classification is computed as E = P × T where P is the dynamic power consumption and T is the time latency. The NN-based TSVM and Jacobi-based TSVM recorded 0.9 W and 1.8 W respectively. Results show that replacing the one-sided Jacobi algorithm with a shallow neural network in the architecture of the TSVM leads to faster classification time up to 131×. The NN-based TSVM also requires 39% less average hardware resources with 50% reduced power consumption. This leads to 88% reductions in the energy per classification factor. Three main observations could be noted: the proposed NN-based TSVM (1) is capable of real-time classification within 36 ms (ti me ≤ 400ms [START_REF] Lele | The reaction time to touch[END_REF]), (2) achieves real-time classification using cascaded architecture, which was not possible using the Jacobi-based TSVM as reported in [START_REF] Ibrahim | Real-time embedded machine learning for tensorial tactile data processing[END_REF]. The latter has been the main reason for using the parallel architecture which has led to high power consumption, (3) offers the reductions in resources and energy per classification at the expense of increased memory requirements to store the weights and biases matrices compared to Jacobi-based TSVM.

C. Performance Verification

The NN-based TSVM implementation is verified using the four classification problems mentioned in Section II.B. Table VII presents the classification accuracy achieved by the proposed NN-TSVM in comparison with existing methods targeting the same touch modality classification. The classification accuracy of different methods is tested using a dataset with 30 samples. Using neural networks to compute the right singular vectors V provides approximate values compared to the exact one-sided Jacobi. However, this resulted in acceptable classification accuracy with only 3% loss in the worst case. This is evident in the comparable MSE/CS of both architectures as presented in Table III.

Compared to other methods, for binary classification (A, B, and C), the proposed NN-TSVM shows a worst case of 6% loss compared to RLS for Problem B and a 5% better accuracy for Problem C, and 9.6% loss compared to kNN for Problem C while providing up to 20% accuracy increase in Problems A and B. Problem C has been identified as very challenging for TSVM in [START_REF] Gastaldo | Computational intelligence techniques for tactile sensing systems[END_REF], it has been solved in [START_REF] Younes | Data oriented approximate K-nearest neighbor classifier for touch modality recognition[END_REF] using k-Nearest Neighbor (kNN). For multiclass classification (Problem D), NN-TSVM achieves an accuracy comparable to Jacobi-TSVM and RLS, with a 7% worst case loss compared to Deep Convolutional Neural Network (DCNN) and TSVN with Ideal Regularized Composite kernel (TSVM-IRCK).

VI. SCALABILITY OF NEURAL NETWORK BASED TSVM

In order to quantify the scalability of the NN-based TSVM hardware complexity (resources and time latency), two cases are assessed: (1) Scalability of the shallow neural network, and (2) Scalability of the NN-based TSVM. The former is studied by varying the hidden/output layer size and tuning the network to achieve the same MSE/CS reported in Table III. The latter is performed by increasing the number of training tensors while maintaining the overall classification accuracy of the NN-based TSVM as reported in Table VII.

A. Case 1

The scalability of the neural network depends on the size of each layer and the activation function in use. Through Fig. 3, an insight about the number of operations with respect to the dimensions (i.e. m, n, and H) could be learned for a certain application. To assess the scalability of the proposed NN architecture, the hidden and output layer sizes are varied. L is chosen so that the network maintains the same MSE/CS reported in Table III. O is derived from the dimension of the V matrix of the unfolded matrices obtained from the input tensor 4 × 4 × 20. We designed and implemented two more neural networks that compute the right singular vectors V without truncation i.e. output layer size O = n × n instead of O = n × t. Fig. 11 presents the hardware resources and the time latency with respect to hidden and output layer sizes for III. Analyzing the graphs leads to several observations:

• The number of required FFs and LUTs is not uniform (see Fig. 11(a),(b)). For instance, a similar number of FFs/LUTs is required for networks with 140 and 400 neurons in the hidden layer with the same output layer size. This could be justified with the pruned cascaded architecture where resources are shared for blocks with similar functionality. • Memory requirements in terms of BRAMs starts to increase once reached an output layer size of 80 × 80 with 400 neurons in the hidden layer (see Fig. 11(c)). This is justified since the sizes of the weight and the bias matrices increase in such cases, which requires more memory storage. • As shown in Fig. 11(d), regardless of the input/hidden/output layer size of the network, the number of DSPs is constant for the proposed architecture. • The SVD computation time is relatively short until reaching a high output layer size as shown in Fig. 11(e). This is due to the longer operations required to perform matrix multiplication/addition. However, according to the comparison in Section III.B, this is faster than using the one-sided Jacobi as long as H ≤ 70, 000 (H ≤ 800, 000) for 20 × 16 (4 × 80) matrices. The presented scalability assessment supports the use of these networks for SVD computations as an efficient solution especially for large matrix dimensions. Hence, the proposed idea could be extended into other applications via a two-stage approach as shown in Fig. 12: • Stage 1: Unfold all the tensors φ i in a dataset into 3 matrices. Then, find the V matrix for each of the unfolded matrices using MATLAB or other software. For the majority of the applications, a tensor has the same first two dimensions (e.g. image, touch modality) hence, two of the generated matrices will have the same dimension hence can be grouped in a subset A. The remaining matrix and its corresponding V matrix will be added to a subset B. • Stage 2: For each of the subsets, a shallow neural network is to be designed. Start with random hyperparameters for the initial model, then tune it using the generated subset to reach the required MSE and CS. Once, the best model is found, the weights and biases matrices could be exported and used by the architecture in Fig. 8.

For complexity tuning, one could modify the pruning rule while preserving the required performance metric imposed by the application.

B. Case 2

To study the scalability of the proposed NN-based TSVM, the number of training tensors has been varied between 200 and 900 and the implementation requirements are recorded once the NN-based TSVM recorded a comparable accuracy to the one presented in Table VII. According to the results obtained in Fig. 13: • The required hardware resources (FFs, LUTs, BRAMs) are slightly increased with the increase of the number of training tensors. In case of BRAMs, a steeper slope is [START_REF] Ibrahim | Real-time digital signal processing based on FPGAs for electronic skin implementation[END_REF], Fig. 14 shows that the proposed approach complexity versus the number of training tensors presents a reduced slope. For instance, the Jacobi-based TSVM requires 29% increase in the number of FFs when the number of training tensors is doubled. Using the NN-based TSVM, an increase of less than 1% in FFs is noticed. This is mainly due to two reasons: (1) the neural network requires significantly less resources than that of the one-sided Jacobi. (2) the NN-based TSVM is a cascaded implementation i.e. blocks are being re-used for implementation while increasing the time latency. In [START_REF] Ibrahim | Real-time digital signal processing based on FPGAs for electronic skin implementation[END_REF], the architecture is based on parallel computation due to their time constraint of real-time classification. The latter is assured using the proposed cascaded architecture for all of training tensors sizes.

The importance of the presented work lies in the ability to scale such architecture for processing larger number of samples while respecting the constraints of the application. When scaled up, the designed NN-TSVM could enable intelligence on smaller platforms (e.g. Zynqberry) if two issues are tackled. The first issue is reducing the number of DSPs: this could be achieved by using some approximate computing techniques [START_REF]A survey of techniques for approximate computing[END_REF] or using LUTs-only custom core for matrix operations. The second issue is reducing the number of BRAMs: this could be achieved by further pruning of the weight/bias matrices as long as the application performance is not highly affected. Another method is to offload these matrices completely to external DRAM. This imposes additional timing overhead. However, authors in [START_REF] Vieira | KNN-STUFF: KNN STreaming unit for FPGAs[END_REF] have presented a strategy to overcome such design challenge.

VII. CONCLUSION

This paper introduced a shallow neural network architecture for the SVD computation of tensorial inputs. The architecture achieves comparable performance to the stateof-art solutions while imposing significant reductions in the implementation requirements. Once embedded in the SVM architecture, the NN-based TSVM is capable of delivering faster touch modality classification time up to 131× using a cascade architecture. The latter is characterized by a 39% and 88% decrease in the resources and energy per classification respectively compared to the architecture presented in [START_REF] Ibrahim | Real-time embedded machine learning for tensorial tactile data processing[END_REF] targeting the same application. Moreover, the proposed NN-based SVM obeys the constraints imposed by the tactile data processing application e.g. small size, real-time response, and low power consumption. The encouraging scalability results present the first effective trial for designing an efficient embedded processing unit for an e-skin. A unit that is capable of delivering real-time performance with relatively acceptable power consumption without the need for high performance platform or multi-core devices.

Fig. 1 .

 1 Fig. 1. Computational Complexity of the Tensorial SVM algorithm.

Fig. 2 .

 2 Fig. 2. SVD Computation using: (a) one-sided Jacobi, (b) Neural Network.

Fig. 3 .

 3 Fig. 3. Number of Operations required in one-sided Jacobi (Nj) and Shallow Neural Network (N), (m,n) are the matirx dimension and H is the hidden layer size.

 Authorized licensed use limited to: IMT ATLANTIQUE. Downloaded on August 26,2021 at 10:23:56 UTC from IEEE Xplore. Restrictions apply.

Fig. 4 .

 4 Fig. 4. Proposed Shallow Neural Network: (a) Overall Structure, (b) Hidden Layer Neuron, (c) PReLU Activation Function, (d) Output Layer Neuron, (e) Approximate Hyperbolic Tangent Activation Function.

 Authorized licensed use limited to: IMT ATLANTIQUE. Downloaded on August 26,2021 at 10:23:56 UTC from IEEE Xplore. Restrictions apply.

Fig. 5 .

 5 Fig. 5. Touch Modality with: (a) Noisy Readings, (b) Silent Intervals.

 H = [10, 20, 200] • PReLU β: learned parameter through Channel-wise or channel-shared modes [36] • Learning rate = [0.1, 0.01, 0.001, . . . 10 -5] • Optimizer: [SGD, Adam, Adadelta, RMSprop] • Batch size = [50, 100, 150]

Algorithm 1 Fig. 6 .

 16 Fig. 6. Network Performance Under Different Activation Functions.

Fig. 7 .

 7 Fig. 7. Best Model Performance: (a) CS for V (80 × 4), (b) MSE for V (80 × 4), (a) CS for V (16 × 2), (b) MSE for V (16 × 2).

Fig. 8 .

 8 Fig. 8. Shallow Neural Network Architecture.

Fig. 9 .

 9 Fig. 9. Vector Y O to Array V Transformation.

Fig. 10 .

 10 Fig. 10. Neural Network based SVM Cascade Architecture.

 Authorized licensed use limited to: IMT ATLANTIQUE. Downloaded on August 26,2021 at 10:23:56 UTC from IEEE Xplore. Restrictions apply.

Fig. 11 .

 11 Fig. 11. Scalability of Shallow Neural Network for varying the hidden/output layers size.

Fig. 12 .

 12 Fig. 12. SVD Computation Approach via Shallow Neural Network.

Fig. 13 .

 13 Fig. 13. Scalability of NN-based TSVM for binary classification (Nc = 2) and variable number of training tensors.observed which is due to the adoption of NN that requires the storage of weights and biases matrices. • The number of required DSPs is contsant for each size of training tensors. • The proposed implementation is capable of real-time classification even after 4.5× increase in the number of training tensors. Compared to the scalability study of the Jacobi-based TSVM presented in [41], Fig. 14 shows that the proposed approach complexity versus the number of training tensors

Fig. 14 .

 14 Fig. 14. Scalability Comparison with Existing Methods [41].

TABLE I COMPLEXITY

 I

ASSESSMENT UNDER DIFFERENT ACTIVATION FUNCTIONS

TABLE III BEST

 III MODEL PERFORMANCE COMPARED TO ONE-SIDED JACOBI compared to 32 elements (16 × 2) for the input dimension (20 × 16), which justifies the longer training time required (higher number of epochs). However, the training can be shortened into 250 and 100 epochs for output dimensions (80 × 4) and (16 × 2) respectively.

TABLE IV IMPLEMENTATION

 IV RESULTS FOR TENSOR SVD COMPUTATIONS

TABLE V NN

 V

-BASED TSVM OPERATING MODES

TABLE VI IMPLEMENTATION

 VI RESULTS FOR TENSORIAL SVM

Table

 VI presents the implementation details of both the NN-based TSVM and Jacobi-based SVM for N t = 200

TABLE VII TOUCH

 VII MODALITY CLASSIFICATION USING NN-TSVM IN COMPARISON WITH EXISTING METHODS

Authorized licensed use limited to: IMT ATLANTIQUE. Downloaded on August 26,2021 at 10:23:56 UTC from IEEE Xplore. Restrictions apply.

This work was supported in part by the TACTIle feedback enriched virtual interaction through virtual realITY and beyond (TACTILITY) Project under Grant EU H2020 and Grant Topic ICT-25-2018-2020, Research and Innovation Actions (RIA) Proposal ID 856718. This article was recommended by Associate Editor P. K. Meher.

Maurizio Valle (Senior Member, IEEE) received the M.S. degree in electronic engineering and the Ph.D. degree in electronics and computer science from the University of Genova, Italy, in 1985 and 1990, respectively. Since December 2019, he has been a Full Professor of electronics with the DITEN, University of Genova, where he leads the Connected Objects, Smart Materials, Integrated Circuits-COSMIC Laboratory. He has been and is in charge of many research contracts and projects funded at local, national, and European levels and by Italian and foreign companies. He is the coauthor of more than 200 articles on international scientific journals and conference proceedings. His research interests include bio-medical circuits and systems, electronic/artificial sensitive skin, tactile sensing systems for prosthetics and robotics, neuromorphic touch sensors, and electronic and microelectronic systems. He is a member of the IEEE CAS Society.