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Abstract—Network-on-chip (NoC) has been introduced as a
novel communication interconnection structure to overcome the
limitations of traditional structures in terms of bandwidth,
latency, and scalability. Quick feasibility assessment of various
NoC structures demands the availability of high abstraction level
simulation tools. However, existing NoC simulator solutions are
either too slow to address the functional simulation of real-
life applications or not flexible enough to allow NoC-based
design space exploration. Furthermore, the necessity to run the
application tasks while observing the data-dependent traffic is
often missing. In this regard, the simulation tools modeling
NoC interconnection structures have to cope with various NoC
parameters and allow easy modeling of applications. In addi-
tion, these tools should be cycle-accurate and provide flexibility
and capability of configuration and customization. This paper
addresses the requirements of NoC simulator that enable rapid
design and verification of NoC-based systems. It illustrates the
design experience using flexible cycle-accurate NoC simulator to
implement and verify emergent applications.

Index Terms—NoC, MPSoC, simulator, design experience

I. INTRODUCTION

Recently, multiprocessor architectures have been the key
trend in implementing efficient hardware architectures to run
complex and demanding applications. Such systems have been
deployed in order to extend the applicability of Moore’s
law. Connecting several processors through a communication
network grantees the enhancement of the system efficiency
by exploiting the advantage of parallel execution of multiple
processes. On the other hand, multiprocessor architectures
suffer from different limitations such as inter-processor com-
munication, synchronization, and load balancing.

System on chip (SoC) emerges by integrating all of the
system components on the same chip. SoC provides closer
coupling between system components and increases the yield
of the chip fabrication. This reduces the overhead in terms
of implementation area, power consumption and cost. The
term multiprocessor system-on-chip (MPSoC) is commonly
used to describe SoC which uses multiple processors. MPSoC
incorporates the components necessary for an application such
as processing elements (PEs) with specific functionalities
reflecting the requirement of the expected application domain,
memory blocks, timing resources, peripherals, and power man-
agement circuits in addition to the interconnection between all
modules. MPSoCs embody an essential and distinct branch of

multiprocessors [1]. They are not simply traditional multipro-
cessors fitted to a single chip but have been developed to fulfill
the desired unique requirements of specific applications.

MPSoC technology has been increasingly emerging as the
best effective solution for running complex and demanding
applications. The use of heterogeneous multiprocessors bring
an added value by allowing customization of processors to
fit with the functionality of the different tasks of the embed-
ded application. Such customization leads to fulfill the ever
increasing requirements in terms of shrinked implementation
area, enhanced performance and reduced energy consumption.

Nowadays, embedded applications include a large number
of distinct processing tasks that communicate continuously.
For example, the widespread video streaming application
encompasses several tasks which require large storage and
multitude processing elements to handle large amount of data.
In addition, emergent applications support real-time processing
with high data rates. Moreover, modern devices are multi-
functional; i.e. execute concurrently different applications.
These facts impose that a large number of diverse modules
have to be used to constitute the computational resources
of MPSoC. An efficient interconnection strategy has to be
adopted to ensure fast and robust communication infrastructure
between various resources integrated on the chip.

Different on-chip communication modes have been recently
devised. The traditional on-chip communication structure con-
sisted of conventional bus, which is a common wire branch
that interconnects multiple system modules with the aid of an
arbiter that manages the access to the bus. Although different
generations have been developed such as buses with crossbars
and decoupling buses, bus structures suffer from limitations
in terms of latency, bandwidth, and poor scalability. Latency
arises when in progress transactions lead to stalling high
priority accesses. Bandwidth limitation is due to the clock-
frequency which refers to the critical path that depends on
the length of the wires. Furthermore, for additional connected
modules communication bottleneck is reached and arbitration
becomes complex due to the bus poor scalability. Thus, shared
bus can not be considered a long term solution for on-chip
communication. On the other hand, dedicated point-to-point
connections approach ensures optimal solution for bandwidth,
latency, and power consumption. Nevertheless, the number of
independent links increases exponentially with the increase of
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the connected modules. This leads to overhead in terms of
routing and implementation area. Fig. 1 (a) and Fig. 1 (b)
presents respectively the traditional bus-based and dedicated
point-to-point communication modes.

The structure of the on-chip communication links becomes
more critical as the number of modules increases. In fact,
in MPSoC, the communication needs rise dramatically to
the reach the point of preventing the system to meet with
the desired requirements in terms of performance, latency,
implementation area, and energy consumption. In order to
circumvent the communication bottleneck, network-on-chip
(NoC) has been introduced as candidate solution to implement
the interconnection architecture of MPSoCs [2] [3] [4] [5].
Several advantages of structure, performance, and modularity
is attained when using a network to replace global wiring [2].
NoCs ensure better performance, bandwidth, and scalability
when compared to bus-based and dedicated point-to-point
interconnection architectures [6]. The NoC architecture serves
as an embedded network of interconnected switches with
resources connected to these switches. A resource can be
a computation unit (embedded processor, DSP core, FPGA
block, intellectual property (IP) block etc.), storage unit
(RAM, ROM, etc.) or their combination [5]. Whereas, a switch
routes and buffers messages between resources.

Functional verification of MPSoC and performance evalua-
tion are crucial processes in chip design cycle. Both processes
play an important role in reducing development costs and in
getting designs out faster. Often verification and evaluation
processes are performed using logic simulation and/or FPGA
prototyping. Despite their effectiveness, both methods are
based on the hardware description language (HDL) source
code (Verilog or VHDL), which is error-prone and requires
long development time in case of large and complex designs.
In addition, logic simulation is often not fast enough for large
designs and hardware verification operates slowly when probes
are added directly to the RTL design. Hence, the increase in
design complexity and the increase in pressure to validate
designs out faster impose to model a complete SoC at a
high abstraction level prior to modeling it with lower level
abstractions. High abstraction level modeling is performed
before HDL to confirm the correctness and feasibility of the
system to be implemented leading to significant reduction of
the time and efforts expended for verification as compared to
HDL-based methods.

Recently, multitude simulation tools have been developed
to model NoC such as Garnet [7], SICOSYS [8], ATLAS
[9], Booksim2 [10], DARSIM [11] and Noxim [12]. These
simulators differ in their corresponding features regarding
supported flexibility, cycle-accuracy, capability of configura-
tion and extension, and provided results and statistics. Other

existing multi-core system-level architecture and processor
micro-architecture simulators such as gem5 [13][14] and
Sniper [15] are wildly used in research activities. How-
ever, these simulators are either too slow to address real-
life applications or not flexible to allow NoC-based design
space exploration. The literature contains many surveys that
discuss available NoC simulation tools including comparative
studies [16][17][18][19]. However, a comprehensive study
of exiting related works highlighted the lack of analysis of
NoC simulation requirements. The objective of this paper is
to specify the set of requirements for the simulation tools
that model NoC structures in order to facilitate research in
on-chip communication for researchers and developers when
experimenting emerging technologies. These requirements are
specified according to the authors practical expertise in using
NoC simulators for a range of advanced applications [20]
[21] [22] [23]. Two case studies are presented to illustrate
the importance of exploiting simulating tools embedding the
specified requirements.

The rest of the paper is organized as follows. Section 2
presents an overview about NoC structure. Section 3 discusses
the simulator requirements. Section 4 presents two application
case studies where NoC simulator that meets the requirements
is utilized. Finally, Section 5 concludes the paper.

II. NoC BACKGROUND

This section provides an overview about NoC structure,
basic properties that contribute in characterization and clas-
sification of various NoCs, and the performance parameters
considered in evaluation.

A. NoC structure

A network-on-chip typically consists of three main blocks:
the links, the routers, and the network interfaces (NIs)
[24][25]. The links interconnect physically the nodes and
actually implement the communication. The NIs establish the
connection between the network from one side and the storage
resources or processing elements from other side. The router,
which implements the communication protocol, performs sev-
eral functionalities: (1) receiving incoming packets; (2) storing
packets; (3) delivering these packets to a given output port; and
(4) sending packets to others routers. Fig. 1(c) illustrates NoC
architecture.

B. NoC basic properties

1) Topology: 1Tt is the structure of the routers connections
in a network and it is mainly represented by a graph that
relates the routers and channels. Topologies are classified into
direct or indirect topologies [26]. In direct topology, nodes are
created by coupling the routers to a computational or storage
resource. Whereas in indirect topology, some routers are
utilized only to propagate the messages through the network,
while others are associated with PEs or storage units. Recently,
various topologies for NoC architecture have been proposed
including mesh, torus, ring, butterfly, octagon, star, tree, etc.
[27]. Trregular topologies can be obtained by adopting several
topologies in a hierarchical, hybrid, or asymmetric fashion.



2) Routing algorithm: 1Tt specifies the path of a packet
between the source and the destination nodes [28]. Relying on
the algorithm logic, an output port is selected to forward an ar-
riving packet according to the routing information provided in
the packet header. In the literature, several routing algorithms
are available and are classified according to different criteria:
deterministic or adaptive, static or dynamic, unicast, multicast,
or broadcast, and minimal or non-minimal [28] [29].

3) Arbitration logic: 1t is the control mechanism that se-
lects the input port when several packets reach the router at
the same time instant and request to reserve the same specific
output port. The arbiter implementation can be distributed or
centralized and can rely on static or dynamic priorities among
ports [24] [29].

4) Switching: It determines the way data is transferred
between the source destination nodes. Two main switching
approaches exist: the circuit switching and packet switching.
In the circuit switching, the payload is not sent until all the
total path is previously determined and reserved; whereas, in
packet switching, the payload is forwarded to next router when
the connection is establishes between two neighbor routers.

5) Forwarding strategy: Three forwarding strategies are
commonly used: store-and-forward, wormhole, and virtual cut-
through. The node has to store all the packet prior forwarding
it to the next node when store-and-forward strategy is adopted.
On the other hand, in wormhole strategy the payload follows
the header to next node, which identity is determined locally
in the current node. Virtual-cut-through strategy only differs
from wormhole strategy by that the current node demands a
confirmation that all payload to be sent can be accommodated
in the next node.

6) Flow control policy: 1t is defined as the mechanism that
determines the packet movement along the network path [30].
Flow control is adopted to ensure the correct operation of the
network and optimal utilization of its resources. Relayed poli-
cies are classified into centralized (NoC-level) or distributed
(router-level). Virtual channels concept is the foremost flow
control policy that is used to avoid deadlocks, optimize wire
usage, and enhance overall performance.

7) Buffering policy: It is the method utilized to save infor-
mation in the router when congestion occurs in the network
such that packets cannot be transferred. These methods differs
according to the number, location and size of the buffers.
There are two main buffering methods: implementing a single
buffer in the router which is shared by all input ports, or
implementing one buffer per port.

C. NoC Performance Parameters

1) Bandwidth: 1t is the maximum rate of data transfer in
the network and it is usually measured in bit per second.

2) Latency: 1t is the time duration between sending the
packet from the source node and receiving it at the destination
node. Latency is measured in time units (clock cycles). Mainly
average latency of all packets is computed rather than single
packet latency.

3) Throughput: 1t is the maximum amount of information
delivered to the network per time unit. It is measured in bit
per time unit (clock cycle) per node.

Focusing on a single performance parameter is not sufficient
to evaluate the performance of the NoC. Latency-throughput
curve is commonly used to measure the performance of
interconnection networks.

III. SIMULATOR REQUIREMENTS

The evolution and adoption of emerging NoC technology
depends on the availability of accurate modeling that allows to
conduct real simulations required to evaluate the performance
and estimate the overhead of proposed NoC designs. This
section specifies the needed requirements of NoC simulation
models to enable rapid verification leading to rapid prototyping
of NoC-based systems.

A. Accuracy

Accuracy is an essential feature of NoC simulators since
these models have to demonstrate the state of the modeled
NoC at every time instant. Although cycle accurate simulations
may need more time to be accomplished, they does not
introduce any approximation. Thus, the obtained results are
exact and represents the actual performance of the modeled
NoC. HDL-based RTL model, as in [31], are accurate but can
take hours to process many cycles. Lately, high-level hardware
verification languages have been introduced with the growing
complexity of chips. These languages mimic the HDLs and
provides real-time environment, which supports system-level
modeling, architectural exploration, performance modeling,
and functional verification.

B. Flexibility

Flexibility is an important feature for simulation models
especially for research uses. As mentioned in previous sec-
tion, the NoC parameters are multitude. The NoC specifica-
tions may encompass a wide range of parameters related to
topology, dimension, routing algorithm, flow control policy,
switching, buffering policy, etc. Thus, characterizing different
NoC architectures leads to performance and design trade-offs.
The simulation model should be powerful for architectural
exploration which demands the varying of the parameters and
characteristics of an architecture and then evaluate correspond-
ingly the change in the obtained results. In addition, flexibility
requires to enable the user to devise his own specifications
and add it to the model. For example, a user interested in
experimenting a new irregular topology form can develop its
code and easily add it to the model.

On the other hand, flexibility supports iterative refinement
and improvement of the tailored architecture. Hence, the
designer can start with an initial parameters characterizing the
NoC structure or the functionality of the connected resources.
Then, the designer can iteratively modify the parameters and
use the simulation model in order to obtain a new set of
results. In each iteration, the designer can focus separately on
a specified design metric (clock, parallelism, power consump-
tion, implementation area, injection rate, latency, etc.). At the
end, taking into consideration the obtained results, the designer
chooses the architecture that fit most with the requirements.



C. Functional simulation

One important requirement of a NoC simulator is the
capacity to address the functional simulation of real-life ap-
plications. The simulator should enable the user to describe
and integrate easily the functions of different tasks of the
application. It should also allow efficient execution of these
tasks. Furthermore, the user should be able to choose and
modify the scheduling method to run the implemented tasks.
In this context, the necessity to run the application while
observing the data-dependent traffic is a key requirement
which is often missing in existing NoC simulator solutions.

D. Extendability

Extendability refers to the ability to implement new com-
ponents to the modeled architecture. It allows the designer to
develop new modules and add them easily to the simulator
and then conduct simulations without the need to modify the
remaining parts of the simulator. If the simulation model is
characterized by modularity, its modular architecture allows
the designers to implement their hardware and software com-
ponents simply. Hence, the functionality and behavior of each
added module (PE, IP cores, memory, etc.) can be individually
described.

E. Configurability

Configurability deals with the ability to adjust individual
NoC components in order to mimic the behavior of special
architectures. Unlimited configurability allows the designer to
change the modularity, functionality of NoC blocks such as
packet maker and unmaker, adapters, etc.

F. Programing language

The programing language utilized in modeling the simulator
has several requirements. If the simulator is based on standard
programing language, then the users can describe their config-
urations and extendable modules without the need of acquiring
expertise in particular HDLs. In addition, this capitalize on
the extensive and available infrastructure of compilation and
debugging tools. Furthermore, an object-oriented programing
language-based simulator would enhance design productivity
and facilitates re-usability through making use of capabilities
such as inheritance and templates. This feature allows rapid
verification of NoC-based systems. Also, the framework of
the selected language must support fast simulation speed and
reduced system requirements especially in terms of memory
and CPU.

G. Provided results and statistics

In order to promote the evaluation methodology of studied
systems, an NoC simulator model have to provide several
performance metrics such as average latency, injection rate,
number of switch conflicts, average hop number, and estimated
energy dissipation. In addition, the simulator flexibility should
allow the designer to extract his own comparison parameters.

Offering these requirements increases the life cycle of the
simulator, as the researches are continuously looking for more
powerful simulators, with more computational capabilities and
degrees of modularity and accuracy.

Processor/ Memory

Adapter
Unmaker
Scheduler
Priority manager

Network Interface

Fig. 2. The generic structure of the network interface in the simulator

IV. RAPID VERIFICATION EXPERIENCE USING NOC
SIMULATOR

In our work, the feasibility assessments have been con-
ducted for multitude NoC-based MPSoC architectures in
various domains such as smart memories, dynamic run-
time remapping of tasks over heterogeneous platforms, and
memory-based computation. The simulator is characterized
by its cycle-accuracy, flexibility, extendability, and modularity
which are important features especially for research uses.
Furthermore, the simulation model permits to configure the
NoC components and the interconnection structure. The model
has been developed using SystemC, which has been introduced
as a system-level modeling language based on the well-
known object oriented C++ language that guarantees accuracy
of models and evaluation results [32]. SystemC enables the
designer to build systems with hierarchical modules that
can work concurrently and intercommunicate via ports using
simple or complex communication channels.

The devised simulator model allows to define the number
of processors and memory elements and to attach them to
specific routers. Each router is considered to have five ports
to interconnect with other routers and to attach memory or
processing elements. For each router, the routing algorithm can
be selected as well as for the arbitration. Each node consists
of a network interface and memory/processing element. The
structure and size of memory modules can be specified. The
processing elements can execute several functions according to
the predefined scheduling method. Fig. 2 illustrates the generic
structure of the network interface adopted in the simulator. The
back-end part of the NI includes a packet maker and un-maker,
which are used to assemble and disassemble the packets, and
a priority manager to synchronize packet transmission and
reception. The front-end of an NI includes an adapter that
can be configured in order to implement application-specific
functions. Fig. 3 depicts a typical 4 x4 2D mesh NoC modeled
using the simulator.

In the following subsections we demonstrate how the sim-
ulator features enable the rapid design and verification of
Notifying memory concept and NoC-MRAM architecture for
memory-based computing.

A. Notifying memory concept

Notifying memories (NM) concept has been introduced
in [21] to reduce the overhead of increased communication
latency due to NoC adoption. NM concept eliminates useless
memory accesses to decrease latency which is penalizing
for data-flow applications. The devised approach transforms
memories into masters, which notify the processing elements
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Fig. 4. The structure of the NIs adopted for processor and memory nodes to
demonstrate the NM concept

whenever the required data is ready. In order to assess the NM
concept relevancy, the NoC simulator has been extended by
augmenting memory modules with notification and processing
elements with listening mechanisms. These mechanisms are
implemented in the network interface (NI) in order to be
independent from memory and processor architectures. The
structure of the NIs adopted for processor and memory nodes
to demonstrate the NM concept are illustrated in Fig. 4.
Readers interested in the detailed architectures of the notifier
and listener module can refer to [21].

The utilized NoC is a 4 x 4 2D mesh-based network similar
to that presented in Fig. 3. It interconnects 13 PE and 15
memory nodes. It adopts deterministic XY routing algorithm,
wormhole packet switching mode, and flow control policy
without virtual channels (VCs). In the routers, one arbiter is
coupled per each port and only one buffer is allocated for each
input port.

On the other hand, the PEs have been modeled to execute
the MPEG-4 part 2 Simple Profile decoder (MPEG4-SP),
which is developed by the Moving Picture Experts Group. The
structure is partitioned into three parts, which each corresponds
to a dedicated processing: parsing, residual decoding and
motion compensation. The parser separates the processing of
each image components in three parallel paths (Y, U and
V) in order to increase the parallelism. At the end of the
processing, the image components are then merged back.
In this work, the ORCC tool is utilized for compiling and
software synthesis [33]. Our work makes use of the generated
C-code for multi-core platforms. The adopted simulator tool
allows to functionally simulate real applications. We exploit
this feature in order to run the real MPEG application and
obtain accurate results concerning data transfer and timing.
The configurability feature of the adopted simulator allows us
to modify easily the structure of the NIs to mimic exactly the

TABLE I
NOTICATION MEMORY GAIN FOR DECODING DIFFERENT VIDEO
SEQUENCES [34]

Video sequence |bridgefafgrandma bus bus [foreman|
Format QCIF | QCIF | QCIF | CIF CIF
# Frames 2099 870 150 150 300
Latency -67.22%]|-68.55%|-67.44%-75.14%-74.92%
Througput +9.69% | +9.32%|+9.58%|+9.04%|+9.93%

-45.90%]-53.96%-33.03%-34.35%-47.53%
-70.81%]-75.88%|-61.87%-62.38%-71.62%
-51.14%}-58.25%|-39.45%}-40.29%-52.74%

Injection rate
Switch conflicts
Flits number

real architectures of the notifier and the listener modules.

Multiple simulations have been conducted using the sim-
ulation model in order to decode several real-life video se-
quences from [34] with different formats and characteristics.
In addition, the results obtained when adopting NM are com-
pared with the ones obtained when adopting ordinary mem-
ories while using identical NoC features. Table I shows the
comparison results in terms of latency, throughput, injection
rate and switch conflicts. The comparison shows significant
reductions in terms of latency, injection rate , switch conflicts
and total number of flits along with remarkable throughput
improvement.

B. NoC-MRAM architecture for memory-based computing

NoC-Memory Based Computing (NMBC) architecture has
been introduced in [22] and [23] as an efficient solution for
memory-based computing. The novel architecture relies on
a NoC and power-gated distributed magnetoresistive random
access memories (MRAMSs). The feasibility of the proposed
approach has been demonstrated through a relevant case study
of a database application implemented with neuromorphic
architecture based on sparse-neural-network (SNN). The SNN
depends on two distinct phases: (1) the message learning and
(2) the information retrieval. In the learning phase, each field
of each record is mapped to a single neuron in each cluster. In
the information retrieval phase, the best candidate neuron for
each cluster that corresponds to an unknown field is chosen
by means of known neurons in other fields. This selection is
done according to the winner-take-all ranking algorithm.

The tailored architecture is based on an NoC that intercon-
nects three types of IP blocks: memory modules, processing
elements and managers. Each memory module encompasses a
cluster of memory blocks that store the connection information
between the neurons of all clusters at the learning phase. The
manager is responsible for processing requests and sending
them as packets to memory clusters. The processing elements
apply the winner-take-all computational principle in order to
find the neuron with the highest score.

To model the architecture, the utilized NoC simulator has
been modified to interconnect 6 memory modules, 11 PE, and
1 or 2 manager(s) as shown in Fig. 6. The adopted NoC is
a 4 x 4 2D mesh-based network that uses a wormhole packet
switching mode, a deterministic XY routing algorithm, and
a flow control policy without VCs. The implemented routers
have one buffer per input port and use one arbiter per output
port.
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Fig. 6. The structure of the NoC employing power-gated distributed MRAMs

Three different types of 256-bit x 256-word MRAMs (Type
I, Type II, and Type III) with different power gating (PG)
policies have been modeled. These types are shown in Fig. 7.
Type I controls one 256 x 256 MRAM; whereas, Type II and
Type III control four 128 x 128 MRAMs. Type I adopts one
PG transistor for a 256 x 256 MRAM. Type II adopts four
PG transistors for four 128 x 128 MRAM subblocks. The
maximum write bitwidth for Type III is 32 bits, whereas the
maximum read bitwidth is 256 bits as for Types I and II.
Adopting PG reduces the leakage current of the cell array
compared to that of an SRAM cell array. The peripheral
circuits can be power-gated using the pMOS transistor when
the MRAM is at the idle state. In this work, two different
policies of PG have been addressed: only cell PG (OCPG)
and full PG (FPG). In OCPG, the the MRAM cells are power-
gated at the idle state and the peripheral circuits are always at
the active state. IN FPG, the whole MRAM is power-gated at
the idle state. FPG reduces the leakage current in comparison
with the OCPG while a wake-up operation is required for the
peripheral circuits, which cost extra energy dissipation and
delay time. For more information about the adopted MRAM
memory types, interested readers can refer to [23].

Furthermore, the PEs have been modeled to execute the
winner-take-all computational principle. In addition, the struc-
ture of NIs associated to each memory module is upgraded
in order to decode the requests sent by the manager, handle
the communication of results to the processors, and provide
managers with monitoring data about bandwidth usage and
processor usage. These services are dedicated to NIs in order
to remain compliant with any existing memory and to be

Memory configuration
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Fig. 7. Power-gating types and granularity in 256-bit X 256-word MRAMs:
(a) Type I, (b) Type II and (c) Type III [23].
independent from NoC parameters. Hence, the front-end of
the NI has been configured to encompass the functionalities
of a bit selector and an address finder as shown in Fig. 5.
The configurability of the adopted simulator allows to model
the desired structure of the memory modules and NIs. Its
flexibility has been exploited to test the application using one
and two managers. The simulator enables to track the trans-
ferred data and allows to check the content of transmitted and
received packets. Accordingly, precise hit rates are computed.
The simulator accuracy allows to determine precise timing
information required to calculate the energy consumption.
Several simulations have been performed over the MRAM-
based computing architecture targeting hundreds of database
queries of the Yeast database (Cellular Localization in Pro-
teins) from the UCI Machine Learning Repository [35]. In
order to evaluate the efficiency of the proposed NoC-MRAM
architecture has been compared to SRAM ones while using
identical NoC features. The results show hit rates of about
95%. Fig. 8 presents the energy consumption for different
memory types and PG policies. The comparison shows an
impressive power reductions when compared to SRAM for
all cases with FPG policies.

V. CONCLUSION

In order to satisfy the tight constraints on implementation
area and power consumption and fulfill nowadays require-
ments in terms of performance and throughput new design
paradigms have been devised in designing MPSoCs which
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incorporate modularity and explicit parallelism. In this context,
NoC is considered as a key concept for interconnecting
emergent MPSoCs. However, NoC structure encompasses a
wide spectrum of specifications and customizations, which
lead to trade-offs with regard to latency, energy dissipation,
throughput and implementation area. On the other hand, the
emerging applications adopting NoC-based architectures are
becoming more complex. Hence, exploring the design space
of a NoC and assessing its performance require the availability
effective simulation tools. In this paper, the requirements

of

an effective simulation framework have been addressed.

Simulators endorsing these requirements are pioneer models

for

architectural exploration and for assessing the performance

of multiprocessing platforms mapped to different NoC inter-
connect architectures. Design experiences using flexible cycle-

acc

urate NoC simulator to implement and verify emergent

applications have been illustrated.
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