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Justyna Swolkień4, Christoph Knote 9, Sanam N. Vardag1,10, Anke Roiger8, and André Butz1,10,11

1Institute of Environmental Physics (IUP), Heidelberg University, Heidelberg, Germany
2Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research (IMK-ASF),

Karlsruhe, Germany
3Environmental Sensing and Modeling, Technical University of Munich (TUM), Munich, Germany

4AGH – University of Science and Technology, Kraków, Poland
5National Institute of Research and Development for Optoelectronics (INOE2000), Măgurele, Romania
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Abstract. Given its abundant coal mining activities, the Upper Silesian Coal Basin (USCB) in southern Poland
is one of the largest sources of anthropogenic methane (CH4) emissions in Europe. Here, we report on CH4 emis-
sion estimates for coal mine ventilation facilities in the USCB. Our estimates are driven by pairwise upwind–
downwind observations of the column-average dry-air mole fractions of CH4 (XCH4) by a network of four
portable, ground-based, sun-viewing Fourier transform spectrometers of the type EM27/SUN operated during
the CoMet campaign in May–June 2018. The EM27/SUN instruments were deployed in the four cardinal di-
rections around the USCB approximately 50 km from the center of the basin. We report on six case studies for
which we inferred emissions by evaluating the mismatch between the observed downwind enhancements and
simulations based on trajectory calculations releasing particles out of the ventilation shafts using the Lagrangian
particle dispersion model FLEXPART. The latter was driven by wind fields calculated by WRF (Weather Re-
search and Forecasting model) under assimilation of vertical wind profile measurements of three co-deployed
wind lidars. For emission estimation, we use a Phillips–Tikhonov regularization scheme with the L-curve cri-
terion. Diagnosed by the emissions averaging kernels, we find that, depending on the catchment area of the
downwind measurements, our ad hoc network can resolve individual facilities or groups of ventilation facilities
but that inspecting the emissions averaging kernels is essential to detect correlated estimates. Generally, our
instantaneous emission estimates range between 80 and 133 kt CH4 a−1 for the southeastern part of the USCB
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and between 414 and 790 kt CH4 a−1 for various larger parts of the basin, suggesting higher emissions than ex-
pected from the annual emissions reported by the E-PRTR (European Pollutant Release and Transfer Register).
Uncertainties range between 23 % and 36 %, dominated by the error contribution from uncertain wind fields.

1 Introduction

The atmospheric abundance of methane (CH4) has increased
by a factor of 2.6 since pre-industrial times from roughly
720 ppb (parts per billion) to about 1879 ppb in 2020 (Dlu-
gokencky, 2021), mainly driven by anthropogenic influences
(e.g., Bousquet et al., 2006; Loulergue et al., 2008; Kirschke
et al., 2013; IPCC, 2013; Nisbet et al., 2014; Conley et al.,
2016; Schwietzke et al., 2016; Worden et al., 2017; Alvarez
et al., 2018; Saunois et al., 2020; Hmiel et al., 2020). Roughly
20% of the total global anthropogenic CH4 emissions are
caused by the fossil fuel industry (Bousquet et al., 2006;
Schwietzke et al., 2016; Saunois et al., 2020) and an exten-
sive source of CH4 is hard coal mining. Poland is the largest
hard coal producer in the European Union with the Upper
Silesian Coal Basin (USCB) as one of the largest hard coal
producing regions in Europe. Several bottom-up inventories
report on the total CH4 emissions for the USCB: accord-
ing to the GESAPU database, the USCB emitted a total of
405 kt CH4 in 2010 (Bun et al., 2019). The E-PRTR (http:
//prtr.ec.europa.eu/, European Pollutant Release and Transfer
Register, 2018) collects emission reports of every individual
mine, yielding an aggregated total of 507 kt CH4 a−1 for the
USCB. Dreger (2021) reports hard coal mining emissions
of 530 kt CH4 for the USCB in 2018, and the Copernicus
Atmosphere Monitoring Service regional emission inven-
tory (CAMS-REG-GHG/AP) lists 632 kt CH4 a−1 (Granier
et al., 2019; Fiehn et al., 2020). EDGAR v4.3.2 (Emission
Database for Global Atmospheric Research) gives emissions
of 675 kt CH4 a−1 (Janssens-Maenhout et al., 2017) for fuel
exploitation emissions (EDGAR abbreviation PRO) for the
USCB in the year 2012. EDGAR v6.0 (Crippa et al., 2020)
states 454 kt CH4 a−1 for the sector abbreviation PRO COAL
for the USCB in 2018. The extrapolated seasonal break-
down provided by EDGAR for the relevant months May and
June 2018 matches the total 2018 EDGAR emission estimate
for the USCB.

In addition to the bottom-up inventories, top-down ap-
proaches have examined USCB emissions. During the
CoMet mission (Carbon dioxide and Methane mission 2018,
from 23 May to 12 June 2018), several ground-based in-
struments and aircraft measured the atmospheric CH4 abun-
dance in the USCB. In our precursor study (Luther et al.,
2019), we used stop-and-go measurements of the column-
average dry-air mole fractions of CH4 (XCH4) by a mobile,
ground-based Fourier transform spectrometer (FTS) to eval-
uate the mining emissions of individual ventilation facilities
and found similar emissions as suggested by the E-PRTR in-

ventory. The total USCB emission estimates of Fiehn et al.
(2020) and Kostinek et al. (2021), based on airborne in situ
measurements, are in broad agreement with the E-PRTR data
for single flights. Using airborne imager data, Krautwurst
et al. (2021) found some discrepancies between their esti-
mates and the E-PRTR inventory for small groups of ventila-
tion facilities. The isotopic CH4 composition was measured
by Menoud et al. (2021) with ground-based in situ instru-
ments. Swolkień (2020) discusses the short-term, shaft-wise
CH4 release in the USCB.

Given the magnitude of emissions and the range of es-
timates, CH4 in the USCB warrants further investigation.
Here, we report on CH4 emission estimates derived from
measurements of four stationary, sun-viewing FTSs of the
type EM27/SUN arranged in a network-like pattern en-
closing the USCB during the CoMet campaign activities.
The setup largely mimics previous network deployments
for quantifying urban greenhouse gas emissions in Berlin
(Hase et al., 2015), Paris (Vogel et al., 2019), St. Petersburg
(Makarova et al., 2021), Munich (Dietrich et al., 2021), In-
dianapolis (Jones et al., 2021), and other places. Our four
EM27/SUN instruments were positioned in the four cardinal
directions at a distance of a few tens of kilometers to the cen-
ter of the USCB. We calculate differences between pairs of
upwind and downwind observations to determine enhance-
ments (1XCH4) in our XCH4 records attributable to sources
within the USCB. Further developing the model setup of
Kostinek et al. (2021), we use the flexible Lagrangian parti-
cle dispersion model (FLEXPART) together with wind fields
from the Weather Research and Forecasting model (WRF)
constrained by three wind lidars to translate the observed
XCH4 enhancements into emission estimates for groups of
coal mine ventilation shafts. To this end, we set up an inverse
estimation scheme based on Phillips–Tikhonov regulariza-
tion. This setup enables careful information content analysis
while not relying on estimates of a priori emission uncertain-
ties, which are often inaccessible. This work demonstrates
emission estimation of a methane-emitting hotspot based on
an FTS network combined with a Phillips–Tikhonov regular-
ized inversion approach.

Our paper first summarizes the campaign setup (Sect. 2).
Then, Sects. 3 and 4 detail the modeling and regularization
methods. Section 5 reports on emission estimates for six case
studies, and Sect. 6 discusses our results in terms of com-
patibility with other emission estimates and methodological
strengths and weaknesses.

Atmos. Chem. Phys., 22, 5859–5876, 2022 https://doi.org/10.5194/acp-22-5859-2022

http://prtr.ec.europa.eu/
http://prtr.ec.europa.eu/


A. Luther et al.: Observational constraints on methane emissions 5861

Figure 1. The USCB in southwest Poland. The small inset on the
left illustrates the region of Silesia in black and the map excerpt of
the USCB in red. Ventilation shafts are marked as grey triangles.
Stationary EM27/SUN FTS locations are marked as red triangles;
the three wind lidars DLR85, DLR86, and DLR89 are marked as red
stars. Eastern and southern wind lidars are placed at the same loca-
tions as the respective EM27/SUN instruments. The western wind
lidar is located about 30 km to the east of the western EM27/SUN.
Background map from ESRI (2019).

2 Campaign deployment and XCH4 measurements

As part of the CoMet activities in May and June 2018, our
campaign deployment of the EM27/SUN focused on the
USCB, extending roughly 80 × 80 km2 in the southwest of
Poland. Figure 1, adopted from our precursor study on mo-
bile measurements (Luther et al., 2019), illustrates the net-
work pattern together with the locations of the most impor-
tant coal mine ventilation shafts and the wind lidars. The four
stationary EM27/SUN spectrometers are positioned roughly
in the four cardinal directions around the center of the basin,
ensuring that at least one instrument measures upwind and
one downwind of the USCB for most wind situations. Due
to mainly easterly wind conditions prevailing during our de-
ployment, the eastern station (The Glade) functions as the
upwind station for all case studies discussed here. The re-
spective downwind stations are located in the south (Pustel-
nik) and west (Raciborz) of the USCB. The northern station
(Za Miastem) was identified as neither an upwind nor down-
wind station for any of the cases.

The functioning of the EM27/SUN FTS and the data re-
duction techniques are described in detail by Gisi et al.
(2012), Hase et al. (2015, 2016), and with a particular fo-
cus on our setup by Luther et al. (2019). Generally, the
EM27/SUN instruments observe spectra of direct sunlight in
the shortwave infrared spectral range from which the total
column concentrations of CH4, carbon dioxide (CO2), wa-
ter vapor (H2O), molecular oxygen (O2), carbon monoxide

(CO), and other substances (Butz et al., 2017) can be re-
trieved. CH4 and O2 are of relevance here. All EM27/SUN
spectrometers participating in the campaign successfully un-
derwent the instrumental quality assurance tests required
by the Collaborative Carbon Column Observing Network
(COCCON) and presented in Frey et al. (2019) before field
deployment.

We run the software package PROFFIT (Hase et al., 2004)
to retrieve the column concentrations [O2] and [CH4] from
the 7765 to 8005 and 5897 to 6145 cm−1 spectral win-
dows, respectively, using absorption line parameters by Toon
(2017) and Rothman et al. (2009). The respective column-
average dry-air mole fractions of methane, XCH4, are cal-
culated via normalization through [CH4]

[O2]
× 0.2094, where the

atmospheric O2 mole fraction is assumed to be 0.2094. The
normalization is generally recommended to lessen spurious
artifacts due to pressure and solar zenith angle (SZA) depen-
dencies. The SZAs during our measurements did not exceed
56◦, which is within the range that does not require air-mass-
dependent bias correction (Frey et al., 2015). Slightly devi-
ating from the processing recipe (Frey et al., 2019) and in
line with our precursor study (Luther et al., 2019), our CH4
retrievals only scale the CH4 concentrations in the layers be-
low 1700 m a.g.l. where we expect elevated methane due to
the localized sources at the ground. Further, we extract the
a priori CH4 profiles from a dedicated ECHAM/MESSy At-
mospheric Chemistry simulation described by Jöckel et al.
(2016) and Nickl et al. (2020).

For network deployments such as undertaken here, it is
common practice to cross-calibrate the network nodes by
side-by-side measurements (Frey et al., 2015, 2019; Chen
et al., 2016; Jones et al., 2021; Dietrich et al., 2021) in or-
der to exclude spurious gradients when conducting upwind–
downwind analyses. We calibrated the four instruments
through side-by-side measurements on 23 and 26 May 2018
at the southern location Pustelnik. Figure 2 shows the raw
and calibrated XCH4 records, and Table 1 lists the respective
calibration factors. These instrument-specific empirical cali-
bration factors have been applied to the XCH4 campaign data
discussed in the following. After calibration, the mean ab-
solute instrument-to-instrument difference is roughly 1 ppb,
which is compatible with Frey et al. (2019), who state the
instrument-to-instrument difference for an EM27/SUN en-
semble as 0.8 ppb for XCH4. We estimate the precision for
XCH4 as 0.6 ppb for 1 min integration time from measure-
ments sampled during the campaign in the rather variable
methane field of the USCB, which is consistent with the
precision stated by Chen et al. (2016). Based on measure-
ments of the eastern and northern instruments (The Glade –
E and Za Miastem – N) observed from 07:00 to 10:00 UTC
on 28 May 2018 (upper panel Fig. 7), we calculated the pre-
cision as the standard deviation of the observations averaged
between the two instruments during this period. We chose
this period, since the two timelines are not affected by any
strong methane sources in the vicinity.
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Figure 2. Side-by-side measurements at station Pustelnik (S) on
23 May 2018 on the first day of the deployment. (a) Unscaled
data with an average instrument-to-instrument difference of 5 ppb.
(b) Measured XCH4 after scaling with about 1 ppb of instrument-to-
instrument difference. Note that the instruments detected a plume-
like structure at the beginning of the measurements and around
11:20 UTC. The instrument for The Glade (E) measured side-by-
side on 26 May with the Pustelnik (S) instrument (data in Fig. A1).

Table 1. Calibration factors towards the western station Raciborz
for each instrument and species, along with the nominal geolocation
in the network.

Site Lat. ◦N Long. ◦E m a.s.l XCH4 O2
cal. cal.

Za Miastem (N) 50.599 18.963 305 0.9949 1.0079
The Glade (E) 50.329 19.416 303 1.0002 0.9967
Pustelnik (S) 49.933 18.799 266 0.9989 1.0034
Raciborz (W) 50.083 18.192 223 1 1

In addition to the EM27/SUN network, we also operated
three Leosphere Windcube 200S Doppler wind lidars (Vasil-
jević et al., 2016; Wildmann et al., 2018, 2020) marked as
red stars in Fig. 1 and as detailed in Luther et al. (2019) and
Kostinek et al. (2021). The measured wind profiles (10 min
time interval) reach up to 4 km a.g.l. and are assimilated into
the WRF simulations to improve the modeled wind fields as
discussed in Sect. 3.

Figure 3. Overview of the two WRF domains over central Europe.
The first larger domain (colored shape) has a spatial resolution of
∼ 15 km. The inner domain (red rectangle) has a spatial resolution
of ∼ 3 km and is focused on the USCB. The Tatra mountain ridge
(with elevations > 2000 m a.s.l.) in the southern part of the second
domain along the border towards Slovakia is fully enclosed by the
inner domain.

3 Dispersion modeling of methane

Our simulations of methane dispersion in the USCB are par-
titioned into two steps, largely adopting the basic setup re-
ported by Kostinek et al. (2021): first (Sect. 3.1), the wind
fields are modeled by a two-domain WRF setup including as-
similation of the wind lidar observations. Second, the WRF
wind fields drive the particle dispersion in the Lagrangian
particle dispersion model FLEXPART (Sect. 3.2).

3.1 WRF wind fields

The WRF V4 (Skamarock et al., 2019) setup is driven by
3-hourly GFS data (NCEP, 2017) in two domains (Fig. 3)
focusing on central Europe and the USCB. The outer domain
has a spatial resolution of roughly 15 km, and the inner do-
main has a spatial resolution of roughly 3 km. The simula-
tions start at 00:00 UTC on the day of interest to allow for
several hours of spin-up. Details are explained in Kostinek
et al. (2021).

WRF has the possibility to assimilate observational data
via four-dimensional data assimilation (FDDA), which we
use for our wind lidar measurements. At a 10 min time in-
terval, the wind profile observations are fed into the WRF
calculations to constrain the simulated wind fields. The as-
similation process is adjustable via several parameters, e.g.,
radius of influence rxy , time window1t , and horizontal wind
coefficient cuv , in the WRF input file directly. Kostinek et al.
(2021) have identified a selection of parameter settings to ob-
tain the best-guess parameter combinations for the same re-
gion, WRF domains, and time periods discussed here. There-
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fore, we adopt the same setup here and report on the over-
all WRF performance by comparing the simulations with the
wind lidar observations.

Figure 4 displays a comparison between modeled and ob-
served wind speed (upper panel) and wind direction (lower
panel) for altitude levels in the planetary boundary layer
(PBL). PBL height is estimated by means of eddy dissipa-
tion rate gradients calculated from the wind lidar observa-
tions directly. The observation levels of the wind lidar do
not match the WRF grid levels exactly. Thus, the compari-
son includes modeled and observed data if the WRF wind
level is within the range of ±25 m around the level of obser-
vation. This represents all of the WRF wind levels but dis-
misses some of the wind lidar levels as the lidar data have a
finer vertical resolution. The comparison is restricted to the
three days of the case studies to be discussed below (28 May;
6, 7 June 2018). The prevailing wind directions were north-
east to southeast, and prevailing wind speeds range from 2
to 9 ms−1. The root mean square error (RMSE) for the wind
speed comparison calculates to 1.7 ms−1. When eliminating
the top two levels, the wind direction RMSE is reduced from
38 to 26◦, indicating model inaccuracies towards the PBL
top where wind shear effects are expected. Low wind speeds
on 7 June possibly deteriorate the wind direction bias, as
wind direction uncertainties are generally larger for low wind
speeds. Further challenges for the wind direction estimation
are the onset of convection during the observational morn-
ing hours with subsequent PBL rise and the calming winds
towards the end of the observational days. In general we ob-
served most outliers for the top comparison levels for wind
direction, which could be related to a significant number of
conspicuous low-wind-speed simulations and observations
for these levels. This might be related to model uncertainties
when estimating the PBL height, leading to misinterpretation
of actual above-PBL observations with inside-PBL simula-
tions and vice versa.

3.2 Lagrangian methane dispersion via FLEXPART

WRF wind fields drive the trajectory calculations in FLEX-
PART. The model simulates trajectories for 50000 parti-
cles for every USCB coal mining shaft reported by the E-
PRTR and the CoMet database (Gałkowski et al., 2021) with
a total mass of 105 kgĊH4. The simulations do not con-
sider background CH4. The model releases particles in a
10 m ×10 m ×10 m box on the ground. The modeling pe-
riod starts at 00:10 UTC the day of interest and continues
until 17:50 UTC, which results in 17.7 h simulation time. We
chose the grid output option in FLEXPART with 100× 100
boxes and a spatial resolution of roughly 1.3 km stacked in
24 layers up to 3 km altitude. The simulated XCH4 measure-
ments are the sums of all boxes above each pixel enclosing an
EM27/SUN location. The 6 min FLEXPART output is inter-
polated to the observational time interval, which is generally
one measurement per minute. After unit conversion, the sim-

Figure 4. Comparison of WRF wind estimates and wind li-
dar observations for the observational period between 07:00 and
17:00 UTC for the three days of interest 28 May (blue), 6 June (or-
ange), and 7 June (green). Shaded areas include roughly 80% of the
data points for ±2 ms−1 for wind speed in (a) and include roughly
50% of wind direction measurements in a ±15◦ range in (b). Wind
direction simulations differ most from the observations for 7 June
(green), a day with generally lower wind speeds than the other two
discussed cases. This indicates wind information uncertainties when
it comes to low wind speeds. For the wind direction comparison,
note that values close to 0 and 360◦ represent virtually the same
wind direction but may introduce an error to the root mean square
error (RMSE) calculations.

ulated methane enhancement is compared to the measured
upwind–downwind difference 1XCH4.

The FLEXPART simulations are iterated with slightly dif-
ferent meteorological parameters to provide an uncertainty
analysis. There are seven ensemble runs: the CONTROL run
with best-guess input, the WINDp5 run with +5◦ wind di-
rection change of the whole wind field, the WINDm5 run
with −5◦ wind direction change of the whole wind field, the
SPEEDp06 run with the wind speed increased by 0.9 m s−1,

https://doi.org/10.5194/acp-22-5859-2022 Atmos. Chem. Phys., 22, 5859–5876, 2022
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Figure 5. Lagrangian time lag sketch. Instrument A measures back-
ground methane (upwind). The methane enhancements induced by
the emissions of the shaft are calculated by subtracting the back-
ground (upwind) measurements from the downwind observations of
instruments B and C. Depending on wind speed, the air mass mea-
sured by instrument A will be at instrument B and C after different
travel times.

the SPEEDm06 run with the wind speed decreased by
0.9 m s−1, the PBLp100 run with the PBL height increased
by 100 m, and the PBLm100 run with the PBL height de-
creased by 100 m. We use the same ensemble setup as dis-
cussed by Kostinek et al. (2021).

We further used the FLEXPART simulations for modeling
the air mass travel time from the upwind to the downwind
instruments (Fig. 5). To this end, we implemented a virtual
methane source at the upwind measurement location at the
beginning of each observational period. Then, we estimated
the air mass travel time by recording the time required for the
virtual tracer plume to cross the tangent point of the down-
wind measurement location, i.e., the point that was closest to
the downwind location along the PBL-averaged wind direc-
tion. Given that the distance between upwind and downwind
locations exceeds 50 km for some cases, estimated travel
times range between 1.5 and 4.6 h. Thus, in order for the
upwind measurement to be representative of the background
conditions for the later downwind measurement, we consider
the air mass travel time between the two measurements by
subtracting the respective time-shifted upwind measurements
when calculating1XCH4. The travel time is calculated once
for every case study beginning with the first upwind mea-
surement, which is part of the inversion process, and ending
when the virtual tracer reaches the respective downwind in-
strument. To account for possible background methane vari-
ability, we altered the simulated travel time by ±30 min and
calculated the average methane enhancement for each indi-
vidually time-shifted period. The difference between min-
imum and maximum averaged 1XCH4 of these periods is
included in the emission estimation routine to represent the
error related to background methane uncertainties.

4 Emission estimates via Phillips–Tikhonov
regularization

In order to estimate the shaft emissions from the mismatch
between measured and simulated methane enhancements
1XCH4, we use a Phillips–Tikhonov inverse method. We set
it up such that the state vector x consists of m dimensionless
factors that scale the emissions of each coal mine ventilation
shaft considered by the FLEXPART simulations. We assume
the scaling factors to be constant for each day of measure-
ment; i.e., we impose the assumption of the source strength
being constant over the time of a day. FLEXPART is the for-
ward model K (m × n) relating the emissions of the n shafts
tom1XCH4 measurements. The measurement vector y con-
tains the1XCH4 enhancements, observed at 1 min intervals,
translated from units of parts per billion (ppb) into total mass
column enhancements (kgm−2). The Phillips–Tikhonov in-
verse method then delivers the estimated state vector xλ by
minimizing a two-term cost function consisting of a mea-
surement term and an a priori term (Phillips, 1962; Tikhonov,
1963; Twomey, 1963):

xλ = argmin
{
‖S−

1
2

ε (Kx− y)‖22+ λ
2
‖W(x− xa)‖22

}
, (1)

with Sε the error covariance matrix, λ the regularization pa-
rameter, W the weighting operator, xa the a priori state vec-
tor, and || · ||2 representing the L2 norm. Sε contains the av-
eraged standard deviation of the FLEXPART simulation en-
semble summed in quadrature with the XCH4 background
variability and the measurement noise. Note that, for sim-
plicity, we did not consider correlations in Sε . The estimated
background error ranges between 0.3 and 2.2 ppb for the in-
dividual case studies based on the differences of minimum
and maximum average 1XCH4 calculated under considera-
tion of ±30 min time shifts of the simulated methane travel
times. The measurement noise amounts to 0.6 ppb, calculated
as the standard deviation of the averaged measurements of
The Glade (E) and Za Miastem (N) from 07:00 to 10:00 UTC
on 28 May 2018 (see top panel in Fig. 7). W is a diagonal ma-
trix with elements 1

xa,j
,j = 1, . . .,m, which renders the sec-

ond cost term dimensionless (Butz et al., 2012). Technically,
we transform the Phillips–Tikhonov regularization problem
into a plain least-squares fit using the definitions (Hansen and
O’Leary, 1993; Hansen, 1999; Golub and Von Matt, 1997)

C=
[

S
−

1
2

ε K
λW

]
and d =

[
S
−

1
2

ε y

λW xa

]
, (2)

which transforms Eq. (1) to

xλ = argmin
{
‖Cx− d‖22

}
, (3)

and is treatable by a standard least-squares solver (e.g.,
python module scipy.optimize.lsq_linear).

The a priori information xa for each ventilation shaft is
taken from the annual E-PRTR emission inventory updated
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by Gałkowski et al. (2021). The a priori generally guides
the minimization process towards physically reasonable so-
lutions if the inverse problem tends to be ill-posed, e.g., when
there is insufficient measurement information on some of the
state vector elements. However, the solution is dependent on
the regularization parameter λ, which has to be found by trad-
ing the propagation of measurement errors against influence
of the a priori. Here, we use the L-curve criterion to deter-
mine the regularization parameter λ for each individual case
study (e.g., Hansen, 1999). The L-curve is a graphical repre-
sentation of the mismatch between measurements and sim-
ulations ‖Kxλ− y‖2 plotted against the norm of the state
vector ‖xλ‖2 evaluated for a range of λ (see Fig. 9). The
plot typically looks like an L. For small λ, the measurement
term dominates the cost function, and the estimate xλ be-
comes noisy and drives large deviations from the a priori.
For large λ, the a priori term dominates the cost function,
and the estimate xλ ignores the measurements and produces
a large norm of the measurement term. The corner of the L
indicates a reasonable regularization parameter for the given
minimization problem and is graphically chosen. In addition,
we found that the shape of the L-curve is sensitive to forward
model errors, e.g., when errors in the FLEXPART trajecto-
ries and the driving wind fields suggest a spurious, erroneous
link between emissions and methane enhancements. Obvious
distortions of the L-curve shape are used as a criterion to fil-
ter out periods when the forward model does not represent
the actual dispersion conditions.

Besides the L-curve, the regularized inversion approach
holds another diagnostic measure: the emissions averaging
kernel matrix Aλ with dimensions m × m. It is defined via
the gain matrix Gλ (Rodgers, 2000; Butz et al., 2012; Bors-
dorff et al., 2014).

Aλ =GλK (4)

Gλ =

(
KT S−1

ε K+ λ2
·WTW

)−1
KT S−1

ε (5)

The averaging kernel matrix, for a given regularization
strength λ, diagnoses how information propagates from the
true and a priori states, xtrue and xa, into the emission esti-
mate.

xλ = Aλxtrue+ (1−Aλ)xa (6)

The rows of Aλ are called the averaging kernels, quantify-
ing how an estimated state vector element calculates from
the other state elements and what portion comes from the
prior. For our purposes, the averaging kernels quantify how
the emission estimate for a ventilation shaft is affected by
the neighboring shafts and whether there is sufficient mea-
surement information. In the perfect case, the emissions av-
eraging kernel is unity for the shaft under consideration and
zero for all other shafts, indicating that the shaft can be per-
fectly resolved and discriminated from neighboring sources
and that it is well constrained by measurement information.

In reality, groups of neighboring sources and sources behind
each other along the trajectory are not resolvable, and some
shafts only marginally affect our measurements, implying
broader and smaller emissions averaging kernels.

The errors due to measurement noise, background
methane variability, and atmospheric transport incorporated
in Sε are propagated into the a posteriori error covariance for
the emission estimates via

Sx,λ =GλSεGT
λ , (7)

where we report the square root of the diagonal as the er-
ror bars of the shaft-wise emission estimates and the square
root of the sum of the entire covariance matrix as the error
of the total emissions aggregated over all shafts. For the case
studies discussed in Sect. 5, the emission errors due to mea-
surement noise range between 0.62 and 4.46 kt a−1, which
is small compared to the errors introduced by the dispersion
modeling ensemble that range between 27 and 143 kt a−1. Er-
rors related to background methane variability introduced by
a ±30 min time shift of the air mass travel time range be-
tween 0.83 and 8.5 kt a−1.

5 Case studies

We report on six case studies on three different days of
the CoMet campaign. For the days 28 May and 6 and
7 June 2018, Fig. 6 illustrates typical FLEXPART trajecto-
ries of air masses around midday dispersing out of the USCB
coal mine ventilation shafts. For all cases, easterly winds
led to the southern station Pustelnik being influenced by a
few southern shafts (red trajectories) and the western station
Raciborz being influenced by many shafts in various parts of
the basin (blue trajectories). The eastern station The Glade
provides the background measurements, and the northern sta-
tion Za Miastem was not used here since The Glade (E) was
the better background station given the prevailing easterly
winds.

Figure 7 depicts the corresponding XCH4 measurements
for all stations, indeed pointing at significantly elevated con-
centrations at the downwind sites typically amounting to
1XCH4 on the order of 10 ppb with some diurnal and day-to-
day variability. For 28 May, the maxima during the morning
hours at Pustelnik (S) and Raciborz (W) are most likely con-
nected to nighttime methane accumulation and subsequent
transport with rising convection and mixing during the morn-
ing hours. When considering the Lagrangian travel time of
air masses, these morning hours are excluded from the period
of investigation since we have to wait for the air masses from
the upwind site The Glade (E) to arrive downwind at Pustel-
nik (S) and Raciborz (W). Therefore, the period of investiga-
tion starts later than the Pustelnik (S) and Raciborz (W) mea-
surement records. For Pustelnik (S), travel times ranged be-
tween 1.3 and 2 h and for Raciborz (W) between 3 and 5.5 h;
7 June had the longest travel times linked to the slow wind
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Figure 6. FLEXPART simulations of CH4 trajectories released
from the USCB ventilation shafts for 28 May (a), 6 June (b), and
7 June 2018 (c) (simulation at 12:04 UT). Red, blue, and grey shad-
ings indicate trajectories that went over Pustelnik (S), Raciborz (W),
or none of the observation sites, respectively. Background shading
indicates topography.

speeds on that day (see Fig. 4). In particular, for 7 June, the
consideration of the travel time implies that only a small frac-
tion of the measurements at the end of the day is considered
for the emission estimates. The stations The Glade (E) and Za
Miastem (N) show roughly consistent background XCH4 for
28 May and 6 June, but, on 7 June, significant differences in-
dicate that the background concentration field was not homo-
geneous. Nonetheless, the FLEXPART trajectories point to
The Glade (E) being representative of the background condi-
tions for the downwind stations Raciborz (W) and Pustelnik
(S). Following the procedures described in Sects. 3.2 and 4,
we calculate observed 1XCH4 from the XCH4 observations
by subtracting the background record of The Glade (E) from
the Pustelnik (S) and Raciborz (W) records, shifting the time
series by the calculated Lagrangian travel times. Then, we
estimate the shaft-wise emissions by the Phillips–Tikhonov
technique.

Figure 7. XCH4 for 28 May (a), 6 June (b), and 7 June (c) 2018
at the stations Raciborz (W, blue), Pustelnik (S, red), The Glade (E,
green), and Za Miastem (N, cyan). Background shadings indicate
the time frames used for further analysis considering the individual
travel times (light red for Pustelnik – S, blue for Raciborz – W,
purple for both Raciborz and Pustelnik).

5.1 Southern station Pustelnik

Focusing on the Pustelnik (S) records first, Fig. 8 illustrates
the measured and simulated 1XCH4 enhancements (trans-
lated into units of kg m−2) and the time periods used for
estimating emission rates (blue shading). Generally, FLEX-
PART simulations using the a priori emissions based on E-
PRTR underestimate the enhancements substantially for all
cases. The FLEXPART simulations with optimized emission
rates fit the measurements well. Residual discrepancies range
between 2.35× 10−8 and 4.56× 10−8 kg m−2 (2.62× 10−8

and 4.72× 10−8 kg m−2) in terms of mean bias (root mean
square error). The regularization strength for optimizing the
emissions was determined via the L-curves depicted in Fig. 9,
for which the L-shape is clearly recognizable. The corner of
the L-curve and the corresponding regularization parameter
λ is identified by visual inspection. Beside excluding data at
the start of the daily time series due to the travel time, we
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Figure 8. 1XCH4 for 28 May (a), 6 June (b), and 7 June (c) 2018
measured (red solid and dotted line) and simulated based on the a
priori emissions (grey dashed) and on optimized emissions (dark
grey and blue) at the station Pustelnik (S). The grey and blue shad-
ings indicate the uncertainties due to measurement errors and atmo-
spheric variability.

also exclude data that we diagnosed to be affected by sys-
tematic forward model errors. The periods before 10:00 and
after 13:30 UTC on 28 May (Fig. 8, upper panel) are an il-
lustrative example. For these periods, we find substantial de-
viations between the measured and modeled time series that
the optimization cannot resolve by adjusting emission rates.
We expect that such patterns originate from systematic er-
rors in the wind fields that drive FLEXPART. If we include
these periods in our optimization scheme, we end up with
distorted L-curves (Fig. 9, upper panel, grey dashed line).
Thus, inspection of the L-curve provides us with a diagnos-
tic tool to identify periods that are affected by forward model
errors, which we then exclude. The other excluded periods
are around noon on 6 June and the beginning of 7 June (faint
colors in Fig. 8).

After selecting the data periods well represented by the
FLEXPART simulations and choosing a suitable regulariza-

Figure 9. The L-curves for the three Pustelnik (S) case studies.
Panel (a) additionally depicts the L-curve of the same case study
(dashed grey line) but under consideration of the full data set in-
cluding the morning and afternoon hours, which suffered from for-
ward model errors and are omitted in the final analysis (blue curve).
The regularization parameters, λ, range from 0 to 100. The red star
marker depicts the respective λ used for the emission estimation.

tion parameter, we estimate the compatible shaft-wise emis-
sion rates illustrated in Fig. 10. Before evaluating the esti-
mates, it is mandatory to inspect the emissions averaging ker-
nels (upper sub-panels in Fig. 10), which encode the informa-
tion on whether individual shafts or groups of shafts can be
resolved. For 28 May (upper panel in Fig. 10), the emissions
averaging kernels are greater than 0.7 and well positioned
for the two Silesia shafts, while, for the Brzeszcze shafts, the
emissions averaging kernels are small, indicating that there is
very little measurement sensitivity to these shafts. Low sen-
sitivity might be caused by air mass trajectories going over
these shafts only for a short period of time. For the Silesia
shafts, the estimated emission rates are substantially greater
than the E-PRTR-based prior. On 6 June (middle panel in
Fig. 10), the emissions averaging kernels indicate substantial
sensitivity to Silesia V and Brzeszcze II, VI, and IX, as well
as some sensitivity to Brzeszcze IV, but the emissions aver-
aging kernels for Brzeszcze II and VI are double-peaked at
each of the shafts, indicating the shafts cannot be resolved
individually, e.g., because trajectories went over both shafts
most of the time. A similar double-peaked emissions averag-
ing kernel occurs for Silesia V and Brzeszcze VI. The shaft
that can be best resolved is Brzeszcze IX. Generally, the opti-
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Figure 10. Shaft-wise emission estimates (lower sub-panels) for the three case studies at the southern station Pustelnik and the corresponding
emissions averaging kernels (upper sub-panels). Colors of the shaft-wise emission estimates resemble colors of the emissions averaging
kernel. Error bars contain atmospheric variability and observational uncertainty (measurement noise and background variability). Grey bars
illustrate the a priori emission estimates.
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mized emissions are again significantly greater than the pri-
ors. For Brzeszcze VI, the prior even indicates zero emis-
sions, while our estimate exceeds 10 kt a−1. On 7 June (mid-
dle panel in Fig. 10), sensitivity is considerable for Silesia
I and V, Brzeszcze IV, and to a lesser degree Brzeszcze II,
but generally the emissions averaging kernels are not single-
peaked but distributed among several shafts, which fits the
rather unstable wind conditions on that day. It is noteworthy
that we find small emissions for Silesia I on 7 June, while for
the other days Silesia I showed emissions of 15–20 kt a−1.
This might point at day-to-day variability of the ventilation.
Aggregating the emissions over all shafts (Table 2), we find
that on all three days the optimized emissions are substan-
tially greater than the prior. On 28 May and 7 June, the total
optimized and prior emissions are compatible within the er-
ror bars, but on 6 June, our estimates indicate emissions twice
as high as the prior: 133± 31 kt a−1 compared to 63 kt a−1.
The difference of the total emission estimates from the other
days is largely due to better sensitivity to all the Brzeszcze
shafts and to the larger respective emission estimates.

5.2 Western station Raciborz

In contrast to the case studies for Pustelnik (S), the FLEX-
PART simulations indicate that the western station Raciborz
is influenced by a large and varying number of shafts (be-
tween 30 and 50 shafts for the three days discussed here).
Figures 11 and 12 show the fits to the 1XCH4 observations
for the prior and optimized emission estimates and the L-
curves for the selection of the regularization parameter, re-
spectively. For 6 June, we again find that the FLEXPART
simulations could not represent our measurements at the be-
ginning and end of the time series, and therefore we ex-
cluded these periods based on visual inspection of distor-
tions of the L-curve. Overall, after optimization the simu-
lated 1XCH4 records fit the observations well, while simu-
lations with prior emissions show substantially smaller-than-
observed 1XCH4. The residual differences between simula-
tions with optimized emissions and observations range be-
tween 7.13×10−8 and 1.45×10−7 kg m−2 (7.49×10−8 and
1.46×10−7 kg m−2) in terms of mean bias (root mean square
error).

Figure 13 illustrates the shaft-wise emission estimates and
the corresponding emissions averaging kernels (upper sub-
panels). Due to the large number of shafts involved, the pic-
ture is less clear than for the Pustelnik (S) station. The emis-
sions averaging kernels show that it is typically groups of
shafts to which the measurements have good sensitivity but
that, mostly, individual shafts cannot be resolved. Overall,
the optimization points at emissions greater than the prior.
When aggregated over all the shafts (Table 2), the optimized
emissions are a factor of 2.4 (28 May), 1.7 (6 June), and 2.4
(7 June) greater than the prior emissions, and the differences
are greater than the error bars estimated from measurement
errors and the ensemble simulations representing transport

Figure 11. 1XCH4 for 28 May (a), 6 June (b), and 7 June (c)
2018 measured (red solid and dashed line) and simulated based on
the a priori emissions (grey dashed) and on optimized emissions
(dark grey and blue) at the station Raciborz (W). The grey and blue
shadings indicate the uncertainties due to measurement errors and
atmospheric variability.

variability. On 28 May, our estimates indicate large contri-
butions from ventilation associated with the southwestern
part of the USCB. On 6 June, the more northern and central
mines show emissions greater than the prior, which is zero
for some of the mines (e.g., Centrum Witczak/Staszic and
Julian II/Rozbark Barbara). On 7 June, the number of con-
tributing shafts is less than for the other days, and the esti-
mates point at large emissions from ventilation of Ziemowit,
Janina, and Chwałowicze V.

6 Discussion and conclusion

We estimated CH4 emissions from coal mine ventilation fa-
cilities in the USCB during the CoMet campaign in May–
June 2018. To this end, we deployed four EM27/SUN spec-
trometers in a network configuration enclosing the USCB.
Combining pairs of upwind–downwind XCH4 observations
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Table 2. Overview of all case studies including respective emission sums and their errors (bold numbers). Mean bias and root mean square
error (RMSE) of the CONTROL run residuals refer to the regularized solution. The errors due to observational uncertainties and due to
background methane variability are listed in the last four columns.

Station Date Estimated Error E-PRTR Control run residuals Observational Background
emissions

√∑
Sx,λ 2014 (kg m−2

× 10−8) error variability

(kt a−1) (kt a−1) % (kt a−1) BIAS RMSE (kt a−1) % (kt a−1) %

Pus. (south) 28 May 80 29 36 62.82 2.56 2.75 0.62 0.8 0.99 1.2
6 June 133 31 23 62.82 4.56 4.72 0.82 0.6 1.12 0.8
7 June 85 28 33 62.82 2.35 2.62 0.65 0.8 0.83 1.0

Rac. (west) 28 May 790 157 20 328.61 7.13 7.49 4.46 0.6 8.5 1.1
6 June 414 99 24 241.63 8.11 8.14 3.05 0.7 2.2 0.5
7 June 474 107 23 193.48 14.5 14.6 3.12 0.7 5.3 1.1

Figure 12. The L-curves for the three Raciborz (W) case studies.
Panel (b) additionally depicts the L-curve of the same case study
(dashed grey line) but under consideration of the full data set in-
cluding the morning and afternoon hours, which suffered from for-
ward model errors and are omitted in the final analysis (blue curve).
The regularization parameters, λ, range from 0 to 100. The red star
marker depicts the respective λ used for the emission estimation.

with trajectory simulations by the Lagrangian particle disper-
sion model FLEXPART, we attributed the observed 1XCH4
enhancements to the emission rates of the facilities. The tra-
jectory calculations were driven by wind fields simulated
by WRF under assimilation of wind measurements by three
wind lidars distributed throughout the region. The trajectory
calculations also enabled us to take into account the travel

time of air masses between the upwind and downwind sta-
tions. For emission estimation, we used a Phillips–Tikhonov
regularization approach together with the L-curve criterion
for selecting a well-suited regularization parameter. The reg-
ularization scheme comes with the emissions averaging ker-
nel diagnostics that allow for quantifying which facilities or
groups of facilities the measurements are sensitive to. For es-
timating errors, we constructed an ensemble of seven FLEX-
PART runs, each with slightly perturbed atmospheric param-
eters (wind speed, wind direction, PBL height).

Upscaling our emission estimates to annual emissions, we
find higher emission rates than listed by E-PRTR. Other stud-
ies (Luther et al., 2019; Kostinek et al., 2021; Fiehn et al.,
2020) have shown better agreement between their instan-
taneous estimates and the E-PRTR inventory, while, in our
study, only two out of six cases are compatible with the E-
PRTR inventory within the error range (see Table 2). The
other four cases suggest 1.7 to 2.4 times higher emissions
than reported by the E-PRTR. The comparisons with E-
PRTR are only of an illustrative nature. Depending on the
under-ground mining activities, the emissions from the min-
ing process are highly variable in time, and thus our mea-
surements are certainly not representative of the annual total
reported by E-PRTR. In order to constrain the latter, a per-
manent observatory network would need to be operated with
reasonably dense sampling throughout the year.

Our emissions estimates for the totals of all contributing
facilities show errors in the range between 23% and 36%.
Measurement errors (0.62 to 4.46 kt a−1) and background-
variability-induced errors (0.83 to 8.5 kt a−1) are negligibly
small compared to errors induced by uncertainties of the
wind fields (27 to 143 kt a−1). As hinted at by the emissions
averaging kernels, estimates for individual shafts are corre-
lated, and these correlations were taken into account when
calculating the aggregated total emissions. For all cases,
these background concentrations were taken from the mea-
surements conducted at the eastern station The Glade since
the trajectory calculations showed that it was more repre-
sentative for the background than the northern station Za
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Figure 13. Shaft-wise emission estimates (lower sub-panels) for the three case studies at the western station Raciborz and the corresponding
emissions averaging kernels (upper sub-panels). Colors of the shaft-wise emission estimates resemble colors of the emissions averaging
kernel. Error bars contain atmospheric variability and observational uncertainty (measurement noise and background variability). Grey bars
illustrate the a priori emission estimates.
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Miastem. While for 28 May and 6 June, the two stations
show similar concentrations (Fig. 7), The Glade (E) records
higher XCH4 than Za Miastem (N) on 7 June. Thus, the back-
ground concentration field has some spatial variability, which
might be connected to remote sources such as the Krakow ur-
ban region affecting The Glade (E) but not Za Miastem (N)
(Menoud et al., 2021). In the future, we will aim at estimat-
ing errors due to spatial background variability by running a
model that includes all known sources in a larger area around
the target region or by deploying more spectrometers.

Our inverse method was set up such that the parameters
to be estimated included all the individual CH4 ventilation
shafts for which the trajectory calculations indicated contri-
butions to the measurements. The problem requires regular-
ization since CH4 plumes might mask each other (e.g., shafts
located behind another shaft along the trajectory), since the
detected contributions might have occurred only for a short
period, and since, due to errors in the wind fields, the tra-
jectories might indicate contributions when there were ac-
tually none or vice versa (e.g., for trajectories barely hitting
the downwind station). The Phillips–Tikhonov regularization
with L-curve criterion provides useful tools to diagnose the
robustness and information content of the problem. The L-
curve shows distortions for episodes when the FLEXPART
trajectories cannot represent the true link between emissions
and downwind concentrations. Thus, inspecting the L-curve
allows for excluding episodes affected by these simulation
errors. The emissions averaging kernels are useful to identify
the shafts or groups of shafts for which the emissions can be
reliably estimated from the observations. For our configura-
tions, we found that we can resolve emissions of individual
shafts for the Pustelnik (S) downwind station where only a
few comparatively close facilities contribute to the 1XCH4
enhancements. For the Raciborz (W) station with a much
larger catchment area, we can typically resolve groups of
shafts along the main wind direction, but disentangling indi-
vidual shafts is not possible when they are close to each other
or behind each other along the air mass trajectory. Nonethe-
less, we argue it is useful to set up the problem in terms of
individual shafts instead of a priori aggregating shaft clusters
since inspecting the emissions averaging kernels provides a
tool to check which shafts can be resolved and since the ag-
gregated total emissions and their errors can be calculated a
posteriori.

CH4 emissions from sources other than coal mining are
not considered in our FLEXPART simulations; i.e., the pair-
wise 1XCH4 enhancements are assumed to be caused only
by the ventilation shafts. Kostinek et al. (2021) have in-
spected EDGAR v4.3.2 for CH4 emissions from sources
that are not related to coal mining activities such as land-
fills, wastewater treatment, and livestock in the USCB. They
found that these other sources amount to roughly 14 % of the
USCB total CH4 emissions and that the larger contributions
stem form the northwest of the basin, which our measure-
ments are not sensitive to. The CoMet inventory (Gałkowski

et al., 2021) lists annual emission estimates for 4 of 16 land-
fills relevant for our case studies, which in total amount to
0.97 kt a−1. We expect similar emission estimates for the
other 12 landfills reported with undefined emissions. Thus,
we assume that contributions from sources other than coal
mining are small compared to our error bars. We did not con-
sider chemical reactions such as oxidation of methane with
OH, since the timescales relevant for this study are too short
for oxidation to have a significant influence on the emission
estimations.

Overall, our study shows that deploying sun-viewing spec-
trometers in an ad hoc network configuration around the
USCB allows for estimating CH4 emissions from coal mine
ventilation facilities with some resolution for individual fa-
cilities and groups of them, depending on the deployment
location. Given that the errors are dominated by uncertain-
ties in the wind fields driving the trajectory calculations, it is
essential to validate model winds by local wind data or, as
in our case, to assimilate local wind lidar measurements. In
the view of developing such networks toward a monitoring
capacity, priority should be put on making the networks per-
manent for better temporal representativeness of the obser-
vations and on making the networks denser in order to gain
sensitivity to more shafts and to better quantify spatial vari-
ability in the background concentrations. In addition to the
monitoring aspect, permanent networks could also validate
satellite missions, and the different ground-based and space-
borne emission estimation approaches could be consolidated.

Appendix A

Figure A1. Calibrated XCH4 measurements from 26 May. The in-
struments for The Glade (E) and Pustelnik (S) measured side-by-
side at the station Pustelnik. The other two instruments measured at
their respective campaign locations. The calibration of The Glade
(E) towards the other instruments is based on these measurements.
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J., Swolkień, J., Fix, A., Roiger, A., and Butz, A.: Quantifying
CH4 emissions from hard coal mines using mobile sun-viewing
Fourier transform spectrometry, Atmos. Meas. Tech., 12, 5217–
5230, https://doi.org/10.5194/amt-12-5217-2019, 2019.

Makarova, M. V., Alberti, C., Ionov, D. V., Hase, F., Foka, S. C.,
Blumenstock, T., Warneke, T., Virolainen, Y. A., Kostsov, V. S.,
Frey, M., Poberovskii, A. V., Timofeyev, Y. M., Paramonova, N.
N., Volkova, K. A., Zaitsev, N. A., Biryukov, E. Y., Osipov, S.
I., Makarov, B. K., Polyakov, A. V., Ivakhov, V. M., Imhasin, H.
Kh., and Mikhailov, E. F.: Emission Monitoring Mobile Experi-
ment (EMME): an overview and first results of the St. Petersburg
megacity campaign 2019, Atmos. Meas. Tech., 14, 1047–1073,
https://doi.org/10.5194/amt-14-1047-2021, 2021.

Menoud, M., van der Veen, C., Necki, J., Bartyzel, J., Szénási,
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