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Abstract: We construct strongly walk-regular graphs as coset graphs of the

duals of codes with three non-zero homogeneous weights over Zpm , for p a prime,

and more generally over chain rings of depth m, and with a residue field of size q, a

prime power. In the case of p = m = 2, strong necessary conditions ( diophantine

equations) on the weight distribution are derived, leading to a partial classification in

modest length. Infinite families of examples are built from Kerdock and generalized

Teichmüller codes. As a byproduct, we give an alternative proof that the Kerdock

code is nonlinear.
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1 Introduction

Since the seminal article of Delsarte [12], there is a well-known interplay between

two-weight codes and strongly regular graphs (SRG) via the coset graph of the dual

code [2, 3]. Strongly walk-regular graphs (SWRG) were introduced in [11] as a gen-

eralization of strongly regular graphs. Instead of a regularity condition bearing on
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paths of length 2, the notion of SWRG demands a regularity on paths of length

s > 1. Specifically, a graph is s-SWRG if there are three integers (λ, µ, ν) such that

the number of paths of length s between any two vertices x and y is

• λ if x and y are connected;

• µ if x and y are disconnected;

• ν if x = y.

This is reminiscent of strongly regular graph (SRG) a regular graph on ν vertices

such that the number of paths of length 2 between any two vertices x and y is

• λ if x and y are connected;

• µ if x and y are disconnected;

• κ if x = y.

Note that an immediate counting argument shows that strongly regular graphs are

s-SWRG for all s > 1. In a previous paper [39], the authors connected together the

two notions of triple sum sets (TSS) and SWRG over finite fields. In the present paper

we extend this correspondence to a correspondence between TSS’s over certain finite

rings and SWRG’s via the notions of syndrome graphs and homogeneous weights.

This leads us to study the sum of the weights of three-weight codes. The first class

of rings we consider is that of Zpm , for p a prime, when the homogeneous weight can

be described explicitly. Building on the study in [37], we give a sufficient condition

to construct SWRGs from the dual code of a three-weight code. This condition

bears on the sum of the three weights in question. In concrete examples, we focus

on Z4-codes which have been studied extensively since [20]. The Gray map, which

preserves MacWilliams duality, allows us to write the four Pless power moments for

the binary image code, and to classify the relevant three-weight codes in short length.

Further, a class of irreducible cyclic codes [42] related to the Kerdock code [20] gives

an alternative proof of the nonlinearity of the binary Kerdock code. The second class

of rings considered is that of chain rings of given depth and residue field. The p-ary

three-weight codes introduced in [38], and the generalized Teichmüller codes of [25]

provide infinite families of three-weight codes leading to SWRG’s.

The material is organized as follows. The next section collects some prerequisite

on, successively, homogeneous weights, triple sum sets, and coset graphs of codes over
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rings. Section 3 derives the preliminary results coming from spectral graph theory.

Section 4 focuses on Z4 codes, derives strong necessary conditions, gives examples in

short lengths, as well as an infinite family related to the Kerdock codes. Section 5

describes how the main results extend when the alphabet is a finite chain ring, and

gives an infinite family related to generalized Teichmüller codes.

2 Background

2.1 Homogeneous weight

For simplicity, let R be a finite commutative ring. A linear code C over R of

length n is an R-submodule of the standard R-module Rn. The dual code of C is

defined as C⊥ = {x ∈ Rn | x · C = 0}, where x · y = x1y1 + · · · + xnyn denotes the

standard inner product on Rn.

Definition 1. Let R be a finite ring. A function w : R→ R is called a homogeneous

weight, if w(0) = 0 and

1. if Rx = Ry then w(x) = w(y) for all x, y ∈ R;

2. there exists a real number γ 6= 0 such that
∑

y∈Rxw(y) = γ|Rx| for all x ∈
R \ {0}.

It is known from the work in [9, 17, 23] that a homogeneous weight exists for

all finite commutative rings R, and is uniquely determined up to the normalization

factor γ. In the sequel we will denote the homogeneous weight by whom, assuming

that γ has been fixed. As usual we extend whom to a weight function on Rn by

whom(x1, . . . , xn) =
n∑

i=1

whom(xi).

The set Rn then forms a distance space under the homogeneous distance dhom defined

by dhom(x, y) = whom(x− y). A code C ⊆ Rn is called a (homogeneous) three-weight

code with weights w1 < w2 < w3 if every non-zero codeword has homogeneous weight

w1, w2, or w3, and the three weights actually occur. If the code C is linear then on

C × C the homogeneous distance takes only these three values and zero.
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A matrix G ∈ R`×n is called a generator matrix of the linear code C if the rows

of G generate C as an R-module.

Definition 2. Let C have ` × n generator matrix G = [g1| . . . |gn]. The code C is

called:

1. regular if {x · gi | x ∈ R`} = R for i = 1, . . . , n;

2. projective if Rgi 6= Rgj for any pair of distinct coordinates i, j ∈ {1, . . . , n}.

In particular, a code is regular if every column contains at least one unit element.

We extend this notion also to a single column vector.

In the sequel we shall be interested mostly in the case R = Zpm , the ring of integers

modulo a prime power pm. In this case the homogeneous weight is given by

whom(x) =


0 if x = 0,

pm−1 if 0 6= x ∈ pm−1Zpm ,

(p− 1)pm−2 otherwise.

The chosen normalization constant is γ = (p− 1)pm−2, which is the most convenient

for our purposes. For m ≥ 2 the homogeneous weight is always an integer. For general

p and m, regular and projective is characterized by a metric property of the dual [31].

For p = m = 2, the homogeneous distance coincide with the classical Lee distance of

[20]. For a Z4-code to be both regular and projective is equivalent to d⊥ ≥ 3, where

d⊥ denotes the dual Lee distance.

2.2 Triple sum and s-sum sets

We extend the definition of triple sum sets given in [10] from finite fields to finite

commutative rings R with a unit group R×. The set Ω ⊆ Rk is a triple sum set (TSS)

if it is stable by scalar multiplication by units ∈ R× and if there are integer constants

σ0 and σ1 such that a non-zero h ∈ Rk can be written as

h = x+ y + z, withx, y, z ∈ Ω,

• σ0 times if h ∈ Ω,

• σ1 times if h ∈ Rk \ Ω.
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This can generalized immediately to the notion of an s-sum set by replacing the

equation h = x+ y + z by h =
s∑

i=1

xi where each xi ∈ Ω.

2.3 Syndrome graph

An eigenvalue of a graph Γ (i.e., an eigenvalue of its adjacency matrix) is called

a restricted eigenvalue if there is a corresponding eigenvector which is not a multiple

of the all-one vector 1. Note that for an η-regular connected graph, the restricted

eigenvalues are simply the eigenvalues different from η.

Definition 3. Let T be a finite abelian group and S ⊆ T a subset satisfying S = −S
and 0T /∈ S. The corresponding Cayley graph C(T, S) has vertex set equal to T ; two

vertices g, h ∈ T are adjacent in C(T, S) iff g − h ∈ S.

The conditions imposed on S ensure that C(T, S) is a simple graph. The graph

C(T, S) is regular of degree |S|, and it is connected iff S generates the group T . We

use the same idea as in [6] to associate with any linear code C over Zpm a certain

Cayley graph, called the syndrome graph of C and denoted by Γ(C).

Let H = [h1 | · · · | hn] ∈ (Zpm)`×n be a parity-check matrix of C. The vertex set

of Γ(C) is V =
{
Hx;x ∈ (Zpm)n

}
, the column space of H, which is isomorphic to the

dual code C⊥. The elements of V are called syndromes of C. Two syndromes Hx,

Hy are adjacent in Γ(C) if they differ by a unit-multiple of a column of H :

Hx ∼ Hy :⇐⇒ H(x− y) = uhi for some 1 ≤ i ≤ n and u ∈ Z×pm . (1)

It is obvious that Γ(C) is the Cayley graph of V corresponding to the generating S =

{uhi;u ∈ Z×pm , 1 ≤ i ≤ n}. If C is regular then 0 /∈ S and −S ⊆ S, implying that Γ(C)

is simple. Moreover, if C is projective, Γ(C) is regular of degree |S| = pm−1(p− 1)n

and has pmn

|C| vertices. The latter follows from |C|
∣∣C⊥∣∣ = |(Zpm)n| = pmn.

As defined, Γ(C) depends on the particular choice of H. The terminology “syn-

drome graph of C” is justified, however, since Γ(C) has another representation as a

“coset graph” of C, which shows that its isomorphism type is determined by C. It is

well-known that there is a one-to-one correspondence between syndromes of a code

and its cosets [30], given by x + C 7→ Hx. The condition in (1) can be restated as

H(x − y − uei) = 0, where ei denotes the ith standard unit vector in (Zpm)n. Thus

Γ(C) is isomorphic to the graph whose vertices are the cosets of C and in which two
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vertices x + C, y + C are adjacent if their difference is a coset of the form uei + C.

This is the Cayley graph of the quotient group (Zpm)n/C with generating set

S∗ = ∪ni=1 ∪u∈Z×pm (uei + C).

Now, we recall the relation between the weight distribution of a linear code over

Zpm and the eigenvalues of the syndrome graph of its dual code. This extension of

Lemma 3.4 in [6] was derived in [37] Theorem 4.1 and its proof is omitted here.

Theorem 1. Suppose that C is a regular, projective linear code over Zpm with homoge-

neous weights wi and corresponding weight distribution Ai = |{x ∈ C; whom(x) = wi}|.
Then the eigenvalues of Γ(C⊥) are n(p− 1)pm−1 − pwi with multiplicity Ai.

The coset graph with b loops Γ(C)b of a code C is obtained from Γ(C) by adding

b loops around every vertex. The following result is immediate from the previous

theorem. The proof is omitted. (In general, we call dual weight distribution of a code

the weight distribution of the dual code).

Corollary 1. If C is a Zpm-code, with dual weight distribution [〈wi, Ai〉], such that C⊥

is regular and projective, then the spectrum of Γ(C)b is {(b+n(p− 1)pm−1− pwi)
Ai}.

Thus Ai is the frequency of the homogeneous weight wi in C⊥ and the multiplicity of

the eigenvalue b+ n(p− 1)pm−1 − pwi.

3 Spectral graph theory

Let Rk denote the set of all regular vectors in Rk, i.e.,

Rk =
{
ω ∈ Rk : {ω · x : x ∈ Rk} = R

}
.

If Ω ⊆ Rk, we denote by C(Ω) the regular and projective code of length n = |Ω|
|R×|

obtained as the kernel of the k × n matrix H with columns the projectively non-

equivalent elements of Ω. Thus H is the check matrix of C(Ω). To simplify notation,

let ΓC(Ω) = Γ(Ω) and Γb
C(Ω) = Γ(Ω)b, where we also write Γ(Ω)0 for Γ(Ω).

The following result is immediate from the definitions in the introduction, and

will be used repeatedly and implicitly in the rest of the paper.

Theorem 2. Keep the above notation. Assume that C(Ω) is regular and projective.

The following are equivalent
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• Ω (resp Ω ∪ 0) is an s-sum set,

• Γ(Ω) (resp. Γ(Ω)1) is an s-SWRG.

Proof. Observe that Γ(Ω) is a Cayley graph on the group (Rk,+) with generators the

columns of H. Thus the definition of an s-sum set can be regarded as a statement on

the number of paths of length s between 0 and a linear combination of s columns of

H. (By translation, we can assume that 0 is the first endpoint of the path).

The following result comes from the well-known connection between SRGs and

two-weight codes. It is described for codes over fields in [2, 3], and for codes over

rings in [5].

Theorem 3. If C(Ω)⊥ is a two-weight code, then both Ω ∪ 0 and Ω are s-sum sets

for all s > 1.

Proof. If C(Ω)⊥ is a two-weight code, it is well-known that Γ(Ω) is an SRG [5]. The

result follows by Theorem 2, and the observation, made in the introduction, that

SRGs are s-SWRG for all s > 1.

The following result was observed in [19] Theorem III.6 for the Hamming weight.

Theorem 4. If Ω or Ω ∪ 0 is an s-sum set, then C(Ω)⊥ has at most three nonzero

weights. Furthermore, if s is even, then C(Ω)⊥ is a 2-weight code.

Proof. This is a consequence of [11, Theorem 3.4] applied to the the graph Γ(Ω),

and based on Theorem 2.

We come to the coding-theoretic characterization of 3-sum sets which is contained

for finite fields in [10, Th. 2.1]. The consideration of syndrome graphs with loops

might seem artificial but is justified by the existence of several non-trivial examples,

as evidenced by Section 4.

The relation with the 3-SWRG property and the eigenvalues of a connected regular

graph was obtained in [11] Proposition 4.1:

Theorem 5. Let Γ be a connected regular graph with four distinct eigenvalues k >

θ1 > θ2 > θ3. Then Γ is a 3-SWRG iff θ1 + θ2 + θ3 = 0.

In our setting the formulas for the eigenvalues in Theorem 1 and Corollary 1 give:
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Theorem 6. Assume that C(Ω)⊥ is of length n and has three nonzero weights w1 <

w2 < w3. Let b be any non-negative integer.

• Ω is a TSS iff w1 + w2 + w3 = 3n(p− 1)pm−2;

• Ω ∪ 0 is a TSS iff w1 + w2 + w3 = 31+n(p−1)pm−1

p
;

• Γb
C(Ω) is a 3-SWRG iff w1 + w2 + w3 = 3 b+n(p−1)pm−1

p
;

Proof. For the first two cases we apply Theorem 2 to conclude the equivalence to

Γb
C(Ω) being a 3-SWRG for b = 0 and b = 1, respectively. Combining Corollary 1

with Theorem 5 gives the third case, which contains the first two cases for b = 0 and

b = 1, respectively.

Note that if m ≥ 2 and p 6= 3, then the second case of Theorem 6 is impossible.

More generally, for the third case of Theorem 6 the assumptions m ≥ 2 and p 6= 3

imply that b has to be divisible by p. Then, the condition may be rewritten as

w1 + w2 + w3 ≥ 3n(p− 1)pm−2 and w1 + w2 + w3 ≡ 0 (mod 3).

Example 1: If p = m = 2 and n = 4, then the possible triples of weights in the

first case of Theorem 6 are, with simplified notation, and by increasing value of w2

equal to

129, 138, 237, 147, 246, 345, 156, 255.

We will see in Subsection 4.2 that none of these possibilities can be attained by a

Z4-code and the smallest possible length for p = m = 2 and b = 0 is indeed n = 6.

Proposition 4.3 in [11] gives an explicit diophantine equation bearing on the eigen-

values of Γ to be an s-SWRG:

Theorem 7. Let Γ be a connected regular graph with four distinct eigenvalues k >

θ1 > θ2 > θ3 and s ≥ 3. Then Γ is an s-SWRG iff

(θ2 − θ3)θs1 + (θ3 − θ1)θs2 + (θ1 − θ2)θs3 = 0. (2)

We remark that for s = 3 Equation (2) is equivalent to (θ1 − θ2)(θ1 − θ3)(θ2 −
θ3)(θ1 + θ2 + θ3) = 0, i.e., Theorem 5 is contained as a special case. Similar as in the

proof of Theorem 6, we can use the formulas for the eigenvalues in Theorem 1 and

Corollary 1 to transfer [11, Proposition 4.3] to s-sum sets:
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Theorem 8. Assume that C(Ω)⊥ is of length n and has three nonzero weights w1 <

w2 < w3. Let b ≥ 0 and s ≥ 3 be integers.

• Ω is an s-sum set iff (w3−w2)(n(p−1)pm−2−pw1)s +(w1−w3)(n(p−1)pm−2−
pw2)s + (w2 − w1)(n(p− 1)pm−2 − pw3)s = 0.

• Ω ∪ 0 is an s-sum set iff (w3 − w2)(1 + n(p − 1)pm−2 − pw1)s + (w1 − w3)(1 +

n(p− 1)pm−2 − pw2)s + (w2 − w1)(1 + n(p− 1)pm−2 − pw2)s = 0.

• Γb
C(Ω) is an s-SWRG iff (w3 − w2)(b + n(p − 1)pm−2 − pw1)s + (w1 − w3)(b +

n(p− 1)pm−2 − pw2)s + (w2 − w1)(b+ n(p− 1)pm−2 − pw2)s = 0.

Example 4: If n = 12, p = m = 2 the only triples (w1, w2, w3) satisfying the first

condition of Theorem 8 for s = 5 are {11− i, 12, 13 + i}, for i = 0, 1, . . . , 10.

Note that w2 = 12 = n in all cases. This can be partially explained by the fact

that Equation (2) admits the solution θ2 = 0, θ1 = −θ3 for all odd s. In other words,

a graph Γ with these eigenvalues is an s-SWRG for all odd s > 1, cf. [11, Proposition

4.2]. Using Theorem 2 and Theorem 1, this observation translates into a result that

is new in the context of s-sum sets:

Theorem 9. Assume that C(Ω)⊥ is of length n and has three nonzero weights w1 <

w2 = n(p− 1)pm−2 < w3, with w1 +w3 = 2n(p− 1)pm−2. Then Ω is an s-sum set for

all odd s > 1.

In [11, Theorem 4.4] it is essentially proven that if Equation (2) admits a solution

(θ1, θ2, θ3) with θ1 > θ2 > θ3 for two different values of s > 1, then θ2 = 0 and

θ1 = −θ3. This directly leads to:

Theorem 10. Assume that C(Ω)⊥ is of length n and has three nonzero weights

w1 < w2 < w3. If w2 6= n(p − 1)pm−2, or w1 + w3 6= 2n(p − 1)pm−2, then there is at

most one s > 1 such that Ω is an s-sum set.

If we are not in the situation of Theorem 9, then any given code can yield an

s-sum set for at most one value of s. There are other solutions of Equation (2), e.g.

(5, 1
2
(−3 +

√
281), 1

2
(−3 −

√
281)) for s = 5. However, the found solutions are non-

integral and no graph that is an s-SWRG and attains these eigenvalues is known, see

[11, p. 808]. Since the eigenvalues corresponding to an s-sum set are integral, we

state:
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Conjecture 1. Ω is an s-sum set for some s > 3 iff

(w1, w2, w3) = (w1, n(p− 1)pm−2, 2n(p− 1)pm−2 − w1),

for some 0 < w1 < n(p− 1)pm−2.

At least for the special case p = m = 2, i.e., Z4-codes, Conjecture 1 seems to be

true also for s = 3, see Conjecture 2 in Section 4. In [8] it has been shown that all

s-sum sets of a special type also have to be 3-sum sets.

4 Z4-codes

Here we consider Z4 linear codes and assume that the reader is familiar with [20].

When we say that C is an [n, k] code, where k = (k1, k2) is the shape, this means that

C is a linear code over Z4 of length n, which admits a generator matrix of the form

G =

(
Ik1 A B

0 2Ik2 2D

)
, (3)

where Ik1 and Ik2 denote the k1 × k1 and k2 × k2 identity matrices, respectively,

A and D are 0, 1 valued matrices , and B is a Z4 matrix. We assume that the

stated generator matrix consists of n columns (and k1 + k2 rows). We will say that

the length n is effective to mean that the generator matrix does not contain an all-

zero vector 0 as a column. The code size, i.e., the number of codewords, is given

by #C = 4k1 · 2k2 = 22k1+k2 . For Z4-codes we note that the homogeneous weight

coincides with the Lee weight.

We note the following compatibility between a Z4-code and its Gray image.

Proposition 1. If C is a Z4-code with three Lee weights satisfying the hypotheses of

Theorem 6, then its binary image CG satisfies the hypotheses of Theorem 6.

Proof. As is well-known, the Hamming weights of CG are the Lee weights of C. If n

is the length of C then CG is of length 2n. The third condition of Theorem 6 becomes

with p = m = 2,

w1 + w2 + w3 = 3
b+ n(p− 1)pm−1

p
= 3

b+ 2n

2
,

which is the same with p = 2,m = 1 and length 2n.
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By Ai we denote the number of codewords of C of homogeneous weight i and

by Bi we denote the number of codewords of homogeneous weight i of its dual code

C⊥. The cardinality of the dual code is #C⊥ = 22n−2k1−k2 . Since we assume that

a corresponding generator matrix does not have a zero column, we have B1 = 0 in

our context. As mentioned at the end of Subsection 2.1, every Z4 code has minimum

dual distance d⊥ ≥ 3 iff it is regular and projective. The numbers Ai can be encoded

in a weight enumerator of C:

HomC(X, Y ) =
∑
c∈C

X2n−whom(c)Y whom(c) =
2n∑
i=0

AiX
2n−wiY wi . (4)

The corresponding MacWilliams identity is given by HomC(X, Y ) = 1
#C⊥
·HomC⊥(X+

Y,X − Y ), see e.g. [20]. Note that this formula equals the Hamming weight enumer-

ator for a linear code over F2 with cardinality #C = 2k if we replace n by 2n and k

by 2k1 + k2. As mentioned in the introduction and used in the proof of Lemma 1,

the same conclusion can be obtained via the Gray map. Thus, we can easily rewrite

the classical MacWilliams identities [34] or the Pless power moments [35] for the

Hamming weight over F2. Using A0 = B0 = 1 and B1 = 0 the first four (Pless) power

moments for the whom are given by:∑
i>0

Ai = 22k1+k2 − 1, (5)∑
i≥0

iAi = 22k1+k2n, (6)∑
i≥0

i2Ai = 22k1+k2−1(B2 + n(2n+ 1)), (7)∑
i≥0

i3Ai = 22k1+k2−2(3(B2n−B3) + 2n2(2n+ 3)). (8)

We remark, that the first three equations (including B1) can also be found in [41,

Theorem 3.1].

In this section we are interested in structural results for l-weight codes where l

is small. Mostly we will restrict our attention to projective codes only. In some

cases we will require additional constraints on the sum
∑l

i=1 wi of weights (which

are motivated by strongly walk regular graphs, see e.g. [11] and see also [39], which

studies the field case).
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4.1 Theoretical results for Z4-codes with few weights

In this section we give only very few results that are of interest for the remaining

part of this paper. For more information we refer the interested reader to e.g. [41, 40],

where one-Lee weight codes and projective two-Lee weight codes are studied. For

every pair (k1, k2) of non-negative integers there exists exactly one non-isomorphic

1-weight [n, (k1, k2)] code (for a unique length n depending on k1 and k2), see [7].

Lemma 1. Let C be an [n, (k1, k2)] code. By C2 we denote the subcode of C spanned

by the codewords of even weight. The cardinality of C2 is either 22k1+k2−1 or 22k1+k2

and all codewords of C2 have an even weight.

Proof. Let E be the code consisting of codewords of C of even Lee weight. This code

is linear as the dual of the code spanned by the all-2 vector, so that C2 = E ∩ C.

Thus C2 is linear and its size depends on whether 2 · 1 ∈ C⊥ or not.

We also call C2 the even-weight subcode of C.

Lemma 2. Let C be an [n, (k1, k2)] code with t ≥ 2 different nonzero weights. Then,

at most t− 1 weights can be odd.

Proof. Let c ∈ C be a codeword of odd weight, then 2c ∈ C is a codeword of even

weight.

Lemma 3. Let C be an [n, (k1, k2)] three-weight code with d⊥ ≥ 3 and weights w1,

w2, and w3 that occur A1, A2, and A3 times, respectively. Using the abbreviation

y = 22k1+k2−1 we have

A1 =
y · (2n2 − 2nw2 − 2nw3 + 2w2w3 + n)− w2w3

(w2 − w1)(w3 − w1)
(9)

A2 =
y · (2n2 − 2nw1 − 2nw3 + 2w1w3 + n)− w1w3

(w2 − w3)(w2 − w1)
(10)

A3 =
y · (2n2 − 2nw1 − 2nw2 + 2w1w2 + n)− w1w2

(w3 − w1)(w3 − w2)
(11)

and

3B3 = 2n2(2n+ 3)− (w1 + w2 + w3) 2n(2n+ 1)− 4w1w2w3

+2 (w1w2 + w1w3 + w2w3) 2n+
2w1w2w3

y

for the number of dual codewords of weight 3.
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Proof. Solving the first three power moment equations (5)-(7) for A1, A2, and A3

gives the first statement. Plugging into the fourth power moment equation (8) and

solving for 3B3 gives the last equation of the statement.

We remark that the integrality of B3 implies that the product of the three weights

w1w2w3 is divisible by y/2 = 22k1−k2−2. Now let us look at the first case of Theorem 6,

which is w1 + w2 + w3 = 3n in our situation. Our first observation is that the length

n has to be even.

Lemma 4. Let C be an [n, (k1, k2)] 3-weight code with d⊥ ≥ 3 and weights w1, w2,

and w3 satisfying w1 + w2 + w3 = 3n. Then, n ≡ 0 (mod 2).

Proof. Assume that n is odd. Then, also w1 +w2 +w3 = 3n is odd. Using Lemma 2

we conclude that exactly one weight – say w2 – is odd. We consider the even weight

subcode C2 of C. Due to Lemma 1 C2 only contains codewords of even weight and

has cardinality #C2 = 22k1+k2−1, i.e., A2 = 22k1+k2−1. Since C is projective C2 has

effective length n′ ∈ {n− 1, n}. Equation (6) gives

w1A1 + w2A2 + w3A3 = 22k1+k2n

for C and

w1A1 + w3A3 = 22k1+k2−1n′

for C2. Taking the difference and dividing by A2 = 22k1+k2−1 yields w2 = n+(n− n′).
Since w2, n are odd and n− n′ ∈ {0, 1}, we have n′ = n and w2 = n. So, let us write

w1 = n− t and w3 = n+ t for some odd integer t (observe that w1 and w3 have to be

even). With this, Equation (10) and A2 = 22k1+k2−1 = y gives (y − 1)t2 = (y − n)n.

Note that t = 1 gives y = n+ 1 or n = 1. In the first case we have A1 = 0 and w1 = 0

in the second, so that we can assume t ≥ 3. Solving the above equations for n gives

n =
y

2
±
√
−4t2y + 4t2 + y2

2
.

So, we consider the diophantine equation

x2 = −4t2y + 4t2 + y2, (12)

where y is a power of 2 and all integers are positive.1 In our situation we have t ≥ 3,

so that y ≥ 64 = 26, since x2 would be negative for t ≥ 3 and y ≤ 32. Now let us set

1Note that Equation (12) has infinitely many solutions for t ∈ {−1, 0, 1}. Also if y is not a power

of 2 there are lots of solutions, e.g. (x, t, y) ∈ {(1, 2, 15), (11, 2, 21), (14, 3, 40), (17, 6, 145)}.
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x = 2z and y = 2r+1, i.e., r ≥ 5. With this we can rewrite Equation (12) to

(z − t)(z + t) = 22r − 2r+1t2. (13)

Since t is odd, z has to be odd too. We conclude that either z − t or z + t has to

be divisible by 2r from the fact that the greatest common divisor of z − t and z + t

divides 2t and r ≥ 5.

Assume that z = s2r − t for some nonzero integer s (this is the case that 2r

divides z+t). Plugging in into Equation (13), dividing by 2r+1, and simplifying gives

(2r−1s− t) · s = 2r−1 − t2, so that

2r−1 ·
(
s2 − 1

)
= t · (s− t).

Note that s2 ≥ 1. If s2 = 1, then s = t or t = 0, which contradicts t ≥ 3. Thus, the

left hand side is positive and s > t ≥ 3. This implies t(s− t) ≤ s(s− t) < 2r−1(s2−1)

– contradiction.

Assume that z = s2r + t for some nonzero integer s (this is the case that 2r

divides z-t). Plugging in into Equation (13), dividing by 2r+1, and simplifying gives

(2r−1s+ t) · s = 2r−1 − t2, so that

2r−1 ·
(
s2 − 1

)
= t · (−s− t).

Note that s2 ≥ 1. If s2 = 1, then s = −t or t = 0, which contradicts t ≥ 3. Thus, the

left hand side is positive and −s > t ≥ 3. This implies t(s−t) ≤ s(s−t) < 2r−1(s2−1)

– contradiction.

We remark that in the case where also C2 is projective the proof can be shortened

significantly since [4, Corollary 16] implies that 2t is a power of two. An example

where Lemma 4 excludes parameters of a code is given by n = 29, 2k1 + k2 = 8,

w = (24, 31, 32), and weight distribution 012476311283251. Applying the MacWilliams

transform gives B0 = 1, B1 = B2 = 0, B3 = 164, and indeed all Bi are non-negative

integers. Moreover, the number of even-weight codewords is 128, i.e., half the size of

the code.

Next we show that under the assumption of Theorem 10 the length and the three

weights all are divisible by large powers of 2 if the length is suitably large.

Proposition 2. Let C be an [n, (k1, k2)] 3-weight code with d⊥ ≥ 3 and weights

satisfying w1 + w2 + w3 = 3n and w2 = n. For each positive integer r there exists an

integer N(r) such that n ≥ N(r) implies that 2r divides n and 2r−1 divides all three

weights w1, w2, w3.

14



Proof. Let t be a positive integer with w1 = n − t and w3 = n + t. With this (and

y = 22k1+k2−1) the equations of Lemma 3 are equivalent to

A1 =
n(y − n− t)

2t2
(14)

A2 =
t2(2y − 1)− n(y − n)

t2
(15)

A3 =
n(y − n+ t)

2t2
(16)

and

3B3 =
2n(n− t)(n+ t)

y
. (17)

Since A3 − A1 = n
t

the effective length n has to be divisible by t. From A2 ∈ N we

conclude that t2 divides n(n − y). So, if pl divides t for some odd prime p, then p2l

has to divide n since y is a power of 2. As an abbreviation we set k = 2k1 + k2. Now

let us try to parameterize t = 2u · v and n = 2x · v2 · z for odd positive integers v, z

and non-negative integers u, x. Plugging in and simplifying gives

A1 =
z · (2k−u−1 − 2x−uv2z − v)

2u+1−x (18)

A2 = 22(x−u)v2z2 + 2k − 2x+k−2u−1z − 1 (19)

A3 =
z · (2k−u−1 − 2x−uv2z + v)

2u+1−x (20)

3B3 =
v4z · (2x−uvz − 1) · (2x−uvz + 1)

2k−x−2u−2
, (21)

where u ≤ x (t divides n) and x ≤ k − 1 (n ≤ 2k − 1 since C is projective).

If k − x − 2u − 2 ≥ 1 then B3 ∈ N and v, z ≡ 1 (mod 2) imply u = x. Since

gcd(vz − 1, vz + 1) = 2, we have that 2k−3u−3 either divides vz − 1 or vz + 1. So,

we use the parameterization vz = s ·
(
2k−3u−3

)
+ α for some positive integer s and

α ∈ {−1, 1}. With this A1 > 0 gives

2k−u−1 − v
(
s ·
(
2k−3u−3

)
+ α + 1

)
> 0,

so that vs < 22u+2, i.e., sv ≤ 22u+2− 1. Now A2 > 0 gives v2z2 + 2k > 2k−u−1z, which

is equivalent to

sv(vz)2 + 2ksv > s2k−u−1vz = s222k−4u−4 + αs2k−u−1 > s222k−4u−4 − s2k+2u+2. (22)
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Since sv ≤ 22u+2 − 1 the left hand side is at most

s222k−4u−4 − s222k−6u−6 + sα2k−u − sα2k−3u−2

+α222u+2 − α2 + 2k+2u+2 − 2k

≤ s222k−4u−4 − s222k−6u−6 + 2s2k−u + 22u+2 + 2k+2u+2

≤ s222k−4u−4 − s222k−6u−6 + 3s2k+2u+2.

Thus

4s · 2k+2u+2 > s222k−6u−6 (23)

has to be satisfied, so that k ≤ 8u+ 9 and

x = u ≥ k − 9

8
. (24)

Otherwise we have k ≤ x + 2u + 2. From A1 > 0 we conclude y − n > 0. Since

y − n is an integer and both y and n are divisible by 2x we have y − n ≥ 2x. Now

A2 > 0, Equation (15), and 2y − 1 ≤ 2k imply

v222u · 2k − 2xv2z · 2x > 0,

so that k + 2u > 2x, i.e.,

k ≥ 2x− 2u+ 1. (25)

Combined with k ≤ x+ 2u+ 2 we obtain x ≤ 4u+ 1 and k ≤ 6u+ 3, i.e.,

x ≥ u ≥ k − 3

6
. (26)

In both cases we can conclude x ≥ u ≥ k−9
8

, so that the result follows from

n < 2k.

Conjecture 2. Let C be an [n, (k1, k2)] 3-weight code with d⊥ ≥ 3 and weights sat-

isfying w1 + w2 + w3 = 3n and w1 < w2 < w3. Then, w2 = n.

We remark that in order to prove Conjecture 2 the Diophantine conditions of

Lemma 3, i.e., A1, A2, A3 ∈ N>0 and B3 ∈ N≥0 are not sufficient. Up to n = 50 we

have the following exceptional tuples (n,w1, w2, w3, y, A1, A2, A3, B3):

• (29, 24, 31, 32, 64, 76, 128, 51, 164)

• (33, 29, 32, 38, 64, 64, 111, 80, 157)
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• (34, 30, 32, 40, 128, 64, 299, 148, 36)

• (50, 46, 48, 56, 64, 32, 145, 78, 580)

So, from Lemma 4 we can conclude that Conjecture 2 is true for all n < 34. We

remark that the examples for n ∈ {29, 34, 50} satisfy Bi ∈ N≥0 for all 1 ≤ i ≤ n, i.e.,

the MacWilliams identities are not sufficient in order to conclude the non-existence

of the corresponding code.

4.2 Classification of 3-weights Z4-codes with d⊥ ≥ 3 and short

length

Having Theorem 6 in mind we aim to classify 3-weights Z4-codes with d⊥ ≥ 3

and short length. Optimal linear codes over Z4 with length n ≤ 7 were classified in

[43]. Without the restriction to optimal codes, all linear codes over Z4 with length

n ≤ 10 and 2k1 + k2 ≤ 8 were classified in [15] for the homogeneous weight. The

corresponding tables at http://www.algorithm.uni-bayreuth.de/en/research/

Coding_Theory/CanonicalForm/Classification/index.html contain the complete

counts for n ≤ 10. E.g. for n = 10 and (k1, k2) = (5, 0) there are exactly 8 848 026

non-isomorphic codes. For each given n our approach is to loop over all 1 ≤ w1 <

w2 < w3 ≤ 2n such that A1, A2, A3, B3, as specified in Lemma 3, are integers with

A1, A2, A3 ≥ 1 and B3 ≥ 0. Since 22k1+k2−2 has to divide w1w2w3, which is due to

B3 ∈ N, we obtain a finite list of possibilities for each length n. Note that d⊥ ≥ 3

implies k1 ≥ 1. With respect to Theorem 6 we consider all remaining tuples where

w1 +w2 +w3 ≥ 3n and w1 +w2 +w3 ≡ 0 (mod 3). In Table 1 we list the parameters

that can be attained by a Z4 codes and refer to a corresponding generator matrix. As

abbreviations we use w = (w1, w2, w3), S = w1 +w2 +w3, and A = (A1, A2, A3). The

parameters of computationally excluded codes are listed in Table 2 and Table 3. For

the latter we perform an exhaustive search using the given restrictions on the weights

wi, the length n, and the shape (k1, k2).

G1
6,1 =

101112

010331

002200

, G1
6,2 =

100122

010212

001331

, G1
6,3 =


101112

011121

002002

000220
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n w A (k1, k2)→ G

6 (4,6,8) (6,16,9) (2, 1)→ G1
6,1

6 (4,6,8) (18,24,21) (3, 0)→ G1
6,2, (2, 2)→ G1

6,3

8 (4,8,12) (1,27,3) (2, 1)→ G1
8,1

8 (4,8,12) (5,51,7) (3, 0)→ G1
8,2, (2, 2)→ G1

8,3

3 (2,4,6) (15,15,1) (2, 1)→ G2
3,1

5 (4,6,8) (16,12,3) (2, 1)→ G2
5,1

7 (6,8,10) (42,7,14) (3, 0)→ G2
7,1

9 (8,10,12) (15,12,4) (2, 1)→ G2
9,1

10 (8,12,16) (62,64,1) (3, 1)→ G2
10,1

10 (8,12,16) (130,120,5) (4, 0)→ G2
10,2

Table 1: Attainable parameters for S ≡ 0 (mod 3)

G1
8,1 =

10101122

01112311

00220202

, G1
8,2 =

10001222

01022111

00110013

, G1
8,3 =


10111112

01112331

00200020

00020020



G2
3,1 =

101

011

002

, G2
5,1 =

10122

01111

00202

, G2
7,1 =

1001112

0101231

0012133



G2
9,1 =

101111122

011223311

002020202

, G2
10,1 =


1000211111

0101223010

0010111233

0002220222

, G2
10,2 =


1000212110

0100031232

0010132012

0001210231


We remark that more examples can be found for the parameters:

• n = 15, k = 9, w = (12, 16, 20), A = (190, 255, 66);

• n = 18, k = 8, w = (16, 20, 24), A = (153, 72, 30);

• n = 22, k = 7, w = (20, 24, 28), A = (71, 43, 13).
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n 2k1 + k2 w A (k1, k2)

2 3 (1,2,3) (1,3,3) (1,1)

4 4 (2,4,6) (1,11,3) (2,0), (1,2)

4 5 (2,4,6) (5,19,7) (2,1), (1,3)

4 6 (2,4,6) (13,35,15) (3,0), (2,2), (1,4)

6 5 (4,6,8) (6,16,9) (1,3)

6 6 (4,6,8) (18,24,21) (1,4)

8 5 (6,8,10) (6,15,10) (2,1), (1,3)

8 6 (6,8,10) (22,15,26) (3,0), (2,2), (1,4)

8 7 (6,8,10) (54,15,58) (3,1), (2,3), (1,5)

8 5 (4,8,12) (1,27,3) (1,3)

8 6 (4,8,12) (5,51,7) (1,4)

8 7 (4,8,12) (13,99,15) (3,1), (2,3), (1,5)

10 5 (8,10,12) (5,16,10) (2,1), (1,3)

10 6 (8,10,12) (25,8,30) (3,0), (2,2), (1,4)

Table 2: Computationally excluded cases for S = 3n

n 2k1 + k2 w A (k1, k2)

3 5 (2,4,6) (15,15,1) (1,3)

5 5 (4,6,8) (16,12,3) (1,3)

7 5 (6,8,10) (16,11,4) (2,1), (1,3)

7 6 (6,8,10) (42,7,14) (2,2), (1,4)

7 7 (4,8,12) (31,95,1) (3,1), (2,3), (1,5)

7 8 (4,8,12) (65,187,3) (4,0), (3,2), (2,4), (1,6)

9 5 (8,10,12) (15,12,4) (1,3)

9 6 (8,11,14) (43,16,4) (3,0), (2,2), (1,4)

10 7 (8,12,16) (62,64,1) (2,3), (1,5)

10 8 (8,12,16) (130,120,5) (3,2), (2,4), (1,6)

Table 3: Computationally excluded cases for S > 3n, S ≡ 0 (mod 3)
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4.3 Cyclic Kerdock code

The Kerdock code K of length 2s with s ≥ 3 odd over Z4 can be expressed as

K = Z4j⊕Q,

where j denotes the all-one vector. The code Q is a free code of size 4s with weight

spectrum

2s, 2s ± 2
s−1
2 .

By puncturing on the first coordinate we obtain a cyclic code of length n = 2s − 1

that was used in [42] to generate low correlation quadriphase sequences. This code is

called K− in [20] and has the same weights as Q. It can be shown to be projective

by the same type of arguments as in [20, §3.3]. The sum of these weights being

3 · 2s = 3(n + 1), we see that, by Theorem 6 with b = 2, the syndrome graph of K−

with a double loop at each vertex is a 3-SWRG. It can be easily checked that the

parameters of K− go in line with our results the previous subsection.

We observe that the binary images have a length congruent to 2 (mod 4), which

is enough to show they are not linear, since by [27, Corollary 1], we should have a

length multiple of 4. This is an alternative proof that Kerdock codes cannot be linear.

The classical proof builds on the fact that the Preparata code, or any code with the

same weight distribution is nonlinear [16].

5 Extension to chain rings

In this section, we briefly indicate how the preceding work extends when replacing

Zm
p by a finite chain ring R of depth r ≥ 2, say, and residue field Fq, for some prime

power q. Recall that such a ring is a local ring whose lattice of ideals form a chain

of length r. In particular, the maximal ideal is principal, generated by an element

γ, a nilpotent element of nilpotency index r [36, Chap. 3]. An example is Zm
p , when

r = m, and q = p. The definition of the homogeneous weight becomes

whom(x) =


0 if x = 0,

qr−1 if 0 6= x ∈ (γe−1),

(q − 1)qr−2 otherwise.

20



The definition of the syndrome graph in Subsection 2.3 to this generalized situation

only needs the obvious modifications. Also the proof of [37, Theorem 4.1] can be

generalized to conclude the connection between coset graph eigenvalues and weights:

Theorem 11. Suppose that C is a regular, projective linear code over R with homoge-

neous weights wi and corresponding weight distribution Ai = |{x ∈ C; whom(x) = wi}|.
Then the eigenvalues of Γ(C⊥) are n(q − 1)qr−1 − qwi with multiplicity Ai.

In particular, for the coset graph with loops, we have the following result.

Corollary 2. If C is an R-code, of minimum distance at least three, with dual weight

distribution [〈wi, Ai〉], then the spectrum of Γ(C)b is {(b + n(q − 1)qr−1 − qwi)
Ai}.

Thus Ai is the frequency of the homogeneous weight wi in C⊥ and the multiplicity of

the eigenvalue b+ n(q − 1)qr−1 − qwi.

From there, upon observing that Theorem 2 is valid for any finite commutative

ring, the main condition for the existence of a TSS becomes

Theorem 12. Assume that C(Ω)⊥ is of length n and has three nonzero weights

w1 < w2 < w3. Let b be any integer.

• Ω is a TSS iff w1 + w2 + w3 = 3n(q − 1)qr−2;

• Ω ∪ 0 is a TSS iff w1 + w2 + w3 = 31+n(q−1)qr−1

q
;

• Γb
C(Ω) is a 3-SWRG iff w1 + w2 + w3 = 3 b+n(q−1)qr−1

q
;

We remark that r ≥ 2 and q not being divisible by 3 the second case is impossible

and b has to be divisible by q in the third case.

5.1 Trace codes over chain rings

Consider the chain ring Fp + uFp, with u2 = 0. This is a chain ring with r = 2

and q = p. The codes C(m, p) of length p2m−pm
2

with m singly even in [38, §5.1] are

defined as

{(Tr(ax))x∈L| a ∈ R},

where L = Q+uFm
p , Q is the set of squares of Fpm , and R = Fpm +uFpm . Note that,

since m is even, we have F×p ⊆ Q. This implies that these codes are replications by a
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factor p− 1 of projective codes P (m, p) say of length n = p2m−pm
2(p−1)

. These latter codes

have weights

p2m−1 − pm−1, p2m−1 − pm−1 − pm−1(pm/2 + 1), p2m−1 − pm−1 + pm−1(pm/2 − 1),

and so satisfy the relation

w1 + w2 + w3 = 3(1− 1/p)n,

for the weight of the Gray map in [38], normalized by a factor 2. This shows, by the

first condition of Theorem 12, that the coset graph Γ(C) is a 3-SWRG, or, equiva-

lently, that the Ω such that C(Ω) = C is a TSS.

5.2 Generalized Teichmüller codes

Let q = 2r and R = GR(4, r) the Galois ring of characteristic 4 and residue field

F2r . The order of R is q2. For integers k ≥ 2 and

s ∈

{0, 2, 4, . . . , (k − 1)r} if k odd;

{r, r + 2, r + 4, . . . , (k − 1)r} if k even,

the generalized Teichmüller codes Tq,k,s are constructed in [25, Sec. 3.1], [26], gen-

eralizing the Teichmüller codes in [28]. They are regular projective R-linear codes

of length n = 2s · qk−1
q−1

and with three non-zero homogeneous weights, scaled by the

factor 1/qr−2,2

w =
(
2sqk − 2s/2q(k−1)/2, 2sqk, 2sqk + 2s/2q(k−1)/2

)
of frequencies

A =

(
1

2
(qk − 1)(qk + 2s/2q(k+1)/2), qk − 1,

1

2
(qk − 1)(qk − 2s/2q(k+1)/2)

)
.

From the length we get 2sqk = n(q − 1). Thus, the sum of the weights is S =

3 ·2sqkqr−2 = 3(n(q−1)+2s)qr−2 = 3
q
(b+n(q−1)qr−1) for b = 2sqr−1. By Theorem 12

we see that the coset graph with b loops on each vertices is a 3-SWRG.

We remark that in [28] and [25], more projective three-weight-codes over Galois

rings are found, among them the dualized extended Kerdock codes K̂∗k+1 and the

dualized generalized Teichmüller codes T ∗q,k,s. However, they are either not regular

or the sum of the weights does not satisfy the divisibility conditions needed in the

context of this paper.

2The scaling of the homogeneous weight in [25] and [28] differs by ours by the factor qr−2.
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5.3 Classification of 3-weights codes over F2 +uF2 with d⊥ ≥ 3

and short length

In a similar manner as what we did over Z4, we classify 3-weight codes with

dual weight d⊥ ≥ 3 over the other proper chain ring of order 4, which is the ring

R = F2 + uF2 of dual numbers over F2. The Gray image of such a code is always a

linear binary code, and a linear binary code is the Gray image of an R-linear code

if and only if it has a fixed-point free automorphism of order 2 [22]. We classify the

codes in the same range of parameters as in the Z4-case, that is n ≤ 10, S ≥ 3n and

S ≡ 0 mod 3. Since the MacWilliams identities for R-linear codes are the same as

for Z4-linear codes (and up to doubling the length, the same as the MacWillimans

identities for the linear Gray image), we can start with the same list of feasable

parameters we computed for Z4-linear codes.

The feasable parameters, together with the weight distribution and the value

S−3n ≥ 0, are listed in Table 4. The column (k1, k2) lists the shapes of the realizable

codes. An entry “−” indicates that no R-linear code with the given parameters does

exist.

A list of suitable generator matrices for the realizable parameters is given in Ta-

ble 5.

We remark that we found further examples of R-linear three-weight codes with

d⊥ ≥ 3, S − 3n ≥ 0 and 3 | S. Their parameters are displayed in Table 6

6 Conclusion and open problems

In this work we have generalized from fields to rings the constructions of SWRGs

from [39]. The rings considered here are Zpm , and more generally finite chain rings.

The weight playing the role of the Hamming in this generalization is the homogeneous

weight. This weight can defined in general over finite Frobenius rings. It would be of

theoretical interest to consider three-weight codes over those rings.

We have classified short length three-weight Z4-codes leading to SWRGs. To

undertake such a classification for higher lengths and other rings is a challenging

open problem, both theoretically and computationally. The polynomial analogues of

Zm
p , namely the rings Fp[x]/(xm), are worth considering.
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n 2k1 + k2 weights S − 3n (k1, k2)

2 3 112333 0 −
4 4 2141163 0 −
4 5 2541967 0 −
4 6 213435615 0 −
6 5 4661689 0 (2, 1)

6 6 418624821 0 (3, 0), (2, 2)

8 5 668151010 0 −
8 6 6228151026 0 −
8 7 6548151058 0 −
8 5 41827123 0 (2, 1)

8 6 45851127 0 (3, 0), (2, 2)

8 7 4138991215 0 −
10 5 8510161210 0 −
10 6 8251081230 0 −
3 5 21541561 3 (2, 1)

5 5 41661283 3 (2, 1)

7 5 616811104 3 −
7 6 642871014 3 −
7 7 431895121 3 −
7 8 4658187123 3 −
9 5 8151012124 3 (2, 1)

9 6 8431116144 6 −
10 7 8621264161 6 (3, 1)

10 8 813012120165 6 (4, 0)

Table 4: Classification for R = F2[X]/(X2), S ≥ 3n, n ≤ 10
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n k weights S − 3n (k1, k2) G

3 5 21541561 3 (2, 1)
(

1 0 1
0 1 1
0 0 X

)
5 5 41661283 3 (2, 1)

(
1 0 1 0 X
0 1 1 1 1
0 0 0 X X

)
6 5 4661689 0 (2, 1)

(
1 0 X X+1 1 1
0 1 1 1 1 X
0 0 0 0 X X

)
6 6 418624821 0 (3, 0)

(
1 0 0 1 1 X+1
0 1 0 1 X 0
0 0 1 1 1 1

)
6 6 418624821 0 (2, 2)

(
1 0 1 1 0 1
0 1 1 X 1 X+1
0 0 X X 0 0
0 0 0 0 X X

)
8 5 41827123 0 (2, 1)

(
1 0 X 1 0 1 X 1
0 1 1 X 1 1 1 X+1
0 0 0 0 X X X X

)
8 6 45851127 0 (3, 0)

(
1 0 0 X X 0 1 X
0 1 0 0 1 1 0 1
0 0 1 1 1 X X X+1

)
8 6 45851127 0 (2, 2)

(
1 0 X 1 1 1 1 X+1
0 1 1 1 0 0 0 1
0 0 0 X X 0 X X
0 0 0 0 0 X X 0

)
9 5 8151012124 3 (2, 1)

(
1 0 1 X 0 1 1 1 X+1
0 1 1 1 1 X 1 0 1
0 0 0 0 X X X X 0

)
10 7 8621264161 6 (3, 1)

(
1 0 0 1 X 1 X 0 1 0
0 1 0 1 X 0 1 1 X+1 X+1
0 0 1 1 1 0 1 X 1 1
0 0 0 X X X X X 0 X

)
10 8 813012120165 6 (4, 0)

(
1 0 0 0 1 0 X X X+1 1
0 1 0 0 X X 0 1 X+1 1
0 0 1 0 0 X 1 X 1 1
0 0 0 1 X 1 X 0 1 1

)
Table 5: Generator matrices for R = F2[X]/(X2), S ≥ 3n, n ≤ 10

n k weights S − 3n

11 9 8162123121637 3

11 10 8330126161677 3

13 6 12451617201 9

15 9 12190162552066 3

18 8 1615320722430 6

26 8 2417228323251 6

42 8 401894863563 18

49 7 48915228568 9

54 11 4872456110464219 6

61 11 569806484772220 9

63 13 562556644095721540 3

Table 6: Further projective three-weight-codes over R = F2[X]/(X2) with S ≥ 3n
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