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ZAGIER-HOFFMAN’S CONJECTURES IN POSITIVE

CHARACTERISTIC

BO-HAE IM, HOJIN KIM, KHAC NHUAN LE, TUAN NGO DAC, AND LAN HUONG PHAM

Abstract. Multiples zeta values and alternating multiple zeta values in pos-
itive characteristic were introduced by Thakur and Harada as analogues of

classical multiple zeta values of Euler and Euler sums. In this paper we de-

termine all linear relations among alternating multiple zeta values and settle
the main goals of these theories. As a consequence we completely establish

Zagier-Hoffman’s conjectures in positive characteristic formulated by Todd

and Thakur which predict the dimension and an explicit basis of the span of
multiple zeta values of Thakur of fixed weight.
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Introduction

0.1. Classical setting.

0.1.1. Multiple zeta values. Multiple zeta values of Euler (MZV’s for short) are real
positive numbers given by

ζ(n1, . . . , nr) =
∑

0<k1<···<kr

1

kn1
1 . . . knrr

, where ni ≥ 1, nr ≥ 2.

Here r is called the depth and w = n1 + · · · + nr is called the weight of the
presentation ζ(n1, . . . , nr). These values covers the special values ζ(n) for n ≥ 2
of the Riemann zeta function and have been studied intensively especially in the
last three decades with important and deep connections to different branches of

Date: May 13, 2022.
2010 Mathematics Subject Classification. Primary 11M32; Secondary 11G09, 11J93, 11M38,

11R58.
Key words and phrases. Anderson t-motives, Anderson-Brownawell-Papanikolas criterion, (al-

ternating) multiple zeta values, (alternating) Carlitz multiple polylogarithms.

1



2 BO-HAE IM, HOJIN KIM, KHAC NHUAN LE, TUAN NGO DAC, AND LAN HUONG PHAM

mathematics and physics, for example arithmetic geometry, knot theory and higher
energy physics. We refer the reader to [7, 39] for more details.

The main goal of this theory is to understand all Q-linear relations among MZV’s.
Goncharov conjectures that all Q-linear relations among MZV’s can be derived
from those among MZV’s of the same weight. As the next step, precise conjectures
formulated by Zagier [39] and Hoffman [21] predict the dimension and an explicit
basis for the Q-vector space Zk spanned by MZV’s of weight k for k ∈ N.

Conjecture 0.1 (Zagier’s conjecture). We define a Fibonacci-like sequence of in-
tegers dk as follows. Letting d0 = 1, d1 = 0 and d2 = 1 we define dk = dk−2 + dk−3

for k ≥ 3. Then for k ∈ N we have

dimQ Zk = dk.

Conjecture 0.2 (Hoffman’s conjecture). The Q-vector space Zk is generated by
the basis consisting of MZV’s of weight k of the form ζ(n1, . . . , nr) with ni ∈ {2, 3}.

The algebraic part of these conjectures which concerns upper bounds for dimQ Zk
was solved by Terasoma [30], Deligne-Goncharov [16] and Brown [5] using the theory
of mixed Tate motives.

Theorem 0.3 (Deligne-Goncharov, Terasoma). For k ∈ N we have dimQ Zk ≤ dk.

Theorem 0.4 (Brown). The Q-vector space Zk is generated by MZV’s of weight k
of the form ζ(n1, . . . , nr) with ni ∈ {2, 3}.

Unfortunately, the transcendental part which concerns lower bounds for dimQ Zk
is completely open. We refer the reader to [7, 15, 39] for more details and more
exhaustive references.

0.1.2. Alternating multiple zeta values. There exists a variant of MZV’s called the
alternating multiple zeta values (AMZV’s for short), also known as Euler sums.
They are real numbers given by

ζ

(
ε1 . . . εr
n1 . . . nr

)
=

∑
0<k1<···<kr

εk11 . . . εkrr
kn1

1 . . . knrr

where εi ∈ {±1}, ni ∈ N and (nr, εr) 6= (1, 1). Similar to MZV’s, these values have
been studied by Broadhurst, Deligne–Goncharov, Hoffman, Kaneko–Tsumura and
many others due to many connections in different contexts. We refer the reader to
[19, 22, 40] for more references.

As before, it is expected that all Q-linear relations among AMZV’s can be derived
from those among AMZV’s of the same weight. In particular, it is natural to ask
whether one could formulate similar conjectures to those of Zagier and Hoffman for
AMZV’s of fixed weight. By the work of Deligne-Goncharov [16], the sharp upper
bounds are achieved:

Theorem 0.5 (Deligne-Goncharov). For k ∈ N if we denote by Ak the Q-vector
space spanned by AMZV’s of weight k, then dimQ Ak ≤ Fk+1. Here Fn is the n-th
Fibonacci number defined by F1 = F2 = 1 and Fn+2 = Fn+1 + Fn for all n ≥ 1.

The fact that the previous upper bounds are sharp was also explained by Deligne
in [14] using a variant of a conjecture of Grothendieck. In the direction of extending
Brown’s theorem for AMZV’s, there exist several sets of generators for Ak (see
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for example [11, 14]). However, we mention that these generators are only linear
combinations of AMZV’s.

Finally, we know nothing about non trivial lower bounds for dimQ Ak.

0.2. Function field setting.

0.2.1. MZV’s of Thakur and analogues of Zagier-Hoffman’s conjectures. By anal-
ogy between number fields and function fields, based on the pioneering work of
Carlitz [8], Thakur [31] defined analogues of multiple zeta values in positive charac-
teristic. We now need to introduce some notations. Let A = Fq[θ] be the polynomial
ring in the variable θ over a finite field Fq of q elements of characteristic p > 0. We
denote by A+ the set of monic polynomials in A. Let K = Fq(θ) be the fraction
field of A equipped with the rational point ∞. Let K∞ be the completion of K at
∞ and C∞ be the completion of a fixed algebraic closure K of K at ∞. We denote
by v∞ the discrete valuation on K corresponding to the place ∞ normalized such
that v∞(θ) = −1, and by |·|∞ = q−v∞ the associated absolute value on K. The
unique valuation of C∞ which extends v∞ will still be denoted by v∞.

Let N = {1, 2, . . . } be the set of positive integers and Z≥0 = {0, 1, 2, . . . } be the
set of non-negative integers. In [8] Carlitz introduced the Carlitz zeta values ζA(n)
for n ∈ N given by

ζA(n) :=
∑
a∈A+

1

an
∈ K∞

which are analogues of classical special zeta values in the function field setting.
For any tuple of positive integers s = (s1, . . . , sr) ∈ Nr, Thakur [31] defined the
characteristic p multiple zeta value (MZV for short) ζA(s) or ζA(s1, . . . , sr) by

ζA(s) :=
∑ 1

as11 . . . asrr
∈ K∞

where the sum runs through the set of tuples (a1, . . . , ar) ∈ Ar+ with deg a1 > · · · >
deg ar. We call r the depth of ζA(s) and w(s) = s1 + · · · + sr the weight of ζA(s).
We note that Carlitz zeta values are exactly depth one MZV’s. Thakur [32] showed
that all the MZV’s do not vanish. We refer the reader to [3, 4, 17, 24, 25, 29, 31,
33, 34, 35, 36, 38] for more details about these objects.

As in the classical setting, the main goal of the theory is to understand all
linear relations over K among MZV’s. We now state analogues of Zagier-Hoffman’s
conjectures in positive characteristic formulated by Thakur in [35, §8] and by Todd
in [37].

For w ∈ N we denote by Zw the K-vector space spanned by the MZV’s of weight
w. We denote by Tw the set of ζA(s) where s = (s1, . . . , sr) ∈ Nr of weight w with
1 ≤ si ≤ q for 1 ≤ i ≤ r − 1 and sr < q.

Conjecture 0.6 (Zagier’s conjecture in positive characteristic). Letting

d(w) =


1 if w = 0,

2w−1 if 1 ≤ w ≤ q − 1,

2w−1 − 1 if w = q,

we put d(w) =
∑q
i=1 d(w − i) for w > q. Then for any w ∈ N, we have

dimK Zw = d(w).
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Conjecture 0.7 (Hoffman’s conjecture in positive characteristic). A K-basis for
Zw is given by Tw consisting of ζA(s1, . . . , sr) of weight w with si ≤ q for 1 ≤ i < r,
and sr < q.

In [27] one of the authors succeeded in proving the algebraic part of these con-
jectures (see [27, Theorem A]): for all w ∈ N, we have

dimK Zw ≤ d(w).

This part is based on shuffle relations for MZV’s due to Chen and Thakur and some
operations introduced by Todd. For the transcendental part, he used the Anderson-
Brownawell-Papanikolas criterion in [2] and proved sharp lower bounds for small
weights w ≤ 2q − 2 (see [27, Theorem D]). It was already noted that it is very
difficult to extend his method for general weights (see [27] for more details).

0.2.2. AMZV’s in positive characteristic. Recently, Harada [19] introduced the al-
ternating multiple zeta values in positive characteristic (AMZV’s) as follows. Let-
ting s = (s1, . . . , sr) ∈ Nn and ε = (ε1, . . . , εr) ∈ (F×q )n, we define

ζA

(
ε
s

)
=
∑ εdeg a1

1 . . . εdeg ar
r

as11 . . . asrr
∈ K∞

where the sum runs through the set of tuples (a1, . . . , ar) ∈ Ar+ with deg a1 >
· · · > deg ar. The numbers r and w(s) = s1 + · · · + sr are called the depth and

the weight of ζA

(
ε
s

)
, respectively. Harada [19] extended basic properties of MZV’s

to AMZV’s, i.e., non-vanishing, shuffle relations, period interpretation and linear
independence. Again the main goal of this theory is to determine all linear relations
over K among AMZV’s. It is natural to ask whether one could extend the previous
work on analogues of Zagier-Hoffman’s conjectures to this setting. More precisely, if
for w ∈ N we denote by AZw the K-vector space spanned by the AMZV’s of weight
w, then we would like to determine the dimensions of AZw and exhibit some nice
bases of these vector spaces.

0.3. Main results.

0.3.1. Statements of the main results. In this manuscript we present complete an-
swers to all the previous conjectures and problems raised in §0.2.

First, for all w we calculate the dimension of AZw and give an explicit basis in
the spirit of Hoffman.

Theorem A. We define a Fibonacci-like sequence s(w) as follows. We put

s(w) =

{
(q − 1)qw−1 if 1 ≤ w < q,

(q − 1)(qw−1 − 1) if w = q,

and for w > q, s(w) = (q − 1)
q−1∑
i=1

s(w − i) + s(w − q). Then for all w ∈ N,

dimK AZw = s(w).

Further, we can exhibit a Hoffman-like basis of AZw.

Second, we give a proof of both Conjectures 0.6 and 0.7 which generalizes the
previous work of the fourth author [27].
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Theorem B. For all w ∈ N, Tw is a K-basis for Zw. In particular,

dimK Zw = d(w).

We recall that analogues of Goncharov’s conjectures in positive characteristic
were proved in [9]. As a consequence, we completely determine all linear relations
over K among MZV’s and AMZV’s and settle the main goals of these theories.

0.3.2. Ingredients of the proofs.

Let us emphasize here that Theorem A is much harder than Theorem B and that
it is not enough to work inside the setting of AMZV’s. On the one hand, although
it is straightforward to extend the algeraic part for AMZV’s following the same line
in [27, §2 and §3], we only obtain a weak version of Brown’s theorem in this setting.
More precisely, we get a set of generators for AZw but it is too large to be a basis of
this vector space. For small weights, we find ad hoc arguments to produce a smaller
set of generators but it does not work for arbitrary weights (see §4.1.3). Roughly
speaking, in [27, §2 and §3] we have an algorithm which moves forward so that we
can express any AMZV’s as a linear combination of generators. But we lack some
precise controls on coefficients in these expressions so that we cannot go backward
and change bases. On the other hand, the transcendental part for AMZV’s shares
the same difficulties with the case of MZV’s as noted before.

In this paper we use a completely new approach which is based on the study of
alternating Carlitz multiple polylogarithms (ACMPL’s for short) defined as follows.

We put `0 := 1 and `d :=
∏d
i=1(θ−θqi) for all d ∈ N. For any tuple s = (s1, . . . , sr) ∈

Nr and ε = (ε1, . . . , εr) ∈ (F×q )r, we introduce the corresponding alternating Carlitz
multiple polygarithm by

Li

(
ε
s

)
:=

∑
d1>···>dr≥0

εd11 . . . εdrr
`s1d1 . . . `

sr
dr

∈ K∞.

The key result is establishing a non trivial connection among AMZV’s and
ACMPL’s which allows us to go back and forth among these objects (see Theo-
rem 4.3). To do so, following [27, §2 and §3] we use stuffle relations to develop an
algebraic theory for ACMPL’s and obtain a weak version of Brown’s theorem, i.e.,
a set of generators for the K-vector space ALw spanned by ACMPL’s of weight
w. We observe that this set of generators is exactly the same as that for AMZV’s.
Thus ALw = AZw, which provides a dictionary among AMZV’s and ACMPL’s.

We then determine all K-linear relations among ACMPL’s (see Theorem 3.6).
The proof we give here, although using similar tools as in [27], differs at some crucial
points and requires three new ingredients.

The first new ingredient is constructing a suitable Hoffman-like basis ASw of
ALw. In fact, our transcendental method dictates that we have to find a full system
of bases ASw of ALw indexed by weights w with strong constraints as given in
Theorem 2.4. The failure of finding such a system of bases is the main obstruction
for generalizing [27, Theorem D] (see §4.1 and [27, Remark 6.3] for more details).

The second new ingredient is formulating and proving (a strong version of)
Brown’s theorem for AMCPL’s (see Theorem 1.10). As mentioned before, the
method in [27] only yields a weak version of Brown’s theorem for ACMPL’s as
the set of generators is not a basis. Roughly speaking, given any ACMPL’s we
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can express it as a linear combination of generators. The fact that stuffle relations
for ACMPL’s are “simpler” than shuffle relations for AMZV’s give more precise
information on coefficients of these expressions. Consequently, we show that a cer-
tain transition matrix is invertible and obtain Brown’s theorem for ACMPL’s. This
settles the algebraic part for ACMPL’s.

The last new ingredient is proving the transcendental part for ACMPL’s in full
generality, i.e., the ACMPL’s in ASw are linearly independent over K (see Theorem
3.4). We emphasize that we do need the full strength of the algebraic part to prove
the transcendental part. The proof follows the same line in [27, §4 and §5] which
is formulated in a more general setting in §2. First, we have to consider not only
linear relations among ACMPL’s in ASw but also those among ACMPL’s in ASw
and the suitable power π̃w of the Carlitz period π̃. Second, starting from such a
non trivial relation we apply the Anderson-Brownawell-Papanikolas criterion in [2]
and reduce to solve a system of σ-linear equations. While in [27, §4 and §5] this
system does not have a non trivial solution which allows us to conclude, our system
has a unique solution for even w (i.e., q − 1 divides w). This means that for such
w up to a scalar there is a unique linear relation among ACMPL’s in ASw and π̃w.
The final step consists of showing that in this unique relation, the coefficient of π̃w

is non zero. Unexpectedly, this is a consequence of Brown’s theorem for AMCPL’s
mentioned above.

0.3.3. Plan of the paper. We briefly explain the organization of the manuscript.

• In §1 we recall the definition and basic properties of ACMPL’s. We then
develop an algebraic theory for these objects and obtain weak and strong
Brown’s theorems (see Proposition 1.9 and Theorem 1.10).
• In §2 we generalize some transcendental results in [27] and give statements

in a more general setting (see Theorem 2.4).
• In §3 we prove transcendental results for ACMPL’s and completely deter-

mine all linear relations among ACMPL’s (see Theorems 3.4 and 3.6).
• Finally, in §4 we present two applications and prove the main results, i.e.,

Theorems A and B. The first application is to prove the aforementioned
connection among ACMPL’s and AMZV’s and then to determine all linear
relations among AMZV’s in positive characteristic (see §4.1). The second
application is a proof of Zagier-Hoffman’s conjectures in positive character-
istic which generalizes the main results of [27] (see §4.2).
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1. Weak and strong Brown’s theorems for ACMPL’s

In this section we first extend the work of [27] and develop an algebraic theory
for ACMPL’s. Next we prove a weak version of Brown’s theorem for ACMPL’s (see
Theorem 1.9) which gives a set of generators for the K-vector space spanned by
ACMPL’s of weight w. The techniques of Sections 1.1-1.3 are similar to [27] and
the expert reader could skip the details.

Contrary to what happens in [27], it turns out that the previous set of generators
is too large to be a basis. Consequently, in §1.4 we introduce another set of gener-
ators and prove a strong version of Brown’s theorem for ACMPL’s (see Theorem
1.10).

1.1. Analogues of power sums.

1.1.1. We recall and introduce some notation in [27]. Letting s = (s1, . . . , sn) ∈ Nn
and ε = (ε1, . . . , εn) ∈ (F×q )n, we set s− := (s2, . . . , sn) and ε− := (ε2, . . . , εn). A

positive array

(
ε
s

)
is an array of the form(

ε
s

)
=

(
ε1 · · · εn
s1 · · · sn

)
.

For i ∈ N we define Ti(s) to be the tuple (s1 + · · ·+ si, si+1, . . . , sn). Further, for
tuples of positive integers s, t and for i ∈ N, if Ti(s) ≤ Ti(t), then Tk(s) ≤ Tk(t) for
all k ≥ i. This notion extends straightforward to positive arrays.

Let s = (s1, . . . , sr) be a tuple of positive integers. We denote by 0 ≤ i ≤ r the
biggest integer such that sj ≤ q for all 1 ≤ j ≤ i and define the initial tuple Init(s)
of s to be the tuple

Init(s) := (s1, . . . , si).

In particular, if s1 > q, then i = 0 and Init(s) is the empty tuple.

For two different tuples s and t, we consider the lexicographical order for initial
tuples and write Init(t) � Init(s) (resp. Init(t) ≺ Init(s), Init(t) � Init(s) and
Init(t) � Init(s)).

1.1.2. We recall the power sums studied by Thakur [34]. For d ∈ Z and for s =
(s1, . . . , sn) ∈ Nn we introduce

Sd(s) =
∑

a1,...,an∈A+

d=deg a1>···>deg an≥0

1

as11 . . . asnn
∈ K

and

S<d(s) =
∑

a1,...,an∈A+

d>deg a1>···>deg an≥0

1

as11 . . . asnn
∈ K.

We also recall `0 := 1 and `d :=
∏d
i=1(θ − θq

i

) for all d ∈ N. Letting s =
(s1, . . . , sn) ∈ Nn, for d ∈ Z, we define analogues of power sums by

Sid(s) =
∑

d=d1>···>dn≥0

1

`s1d1 . . . `
sn
dn

∈ K,



8 BO-HAE IM, HOJIN KIM, KHAC NHUAN LE, TUAN NGO DAC, AND LAN HUONG PHAM

and

Si<d(s) =
∑

d>d1>···>dn≥0

1

`s1d1 . . . `
sn
dn

∈ K.

Let

(
ε
s

)
=

(
ε1 . . . εn
s1 . . . sn

)
be a positive array. For d ∈ Z, we define

Sd

(
ε
s

)
=

∑
a1,...,an∈A+

d=deg a1>···>deg an≥0

εdeg a1
1 . . . εdeg an

n

as11 . . . asnn
∈ K

and

S<d

(
ε
s

)
=

∑
a1,...,an∈A+

d>deg a1>···>deg an≥0

εdeg a1
1 . . . εdeg an

n

as11 . . . asnn
∈ K.

We also introduce

Sid

(
ε
s

)
=

∑
d=d1>···>dn≥0

εd11 . . . εdnn
`s1d1 . . . `

sn
dn

∈ K,

and

Si<d

(
ε
s

)
=

∑
d>d1>···>dn≥0

εd11 . . . εdnn
`s1d1 . . . `

sn
dn

∈ K.

One verifies easily the following formulas:

Sid

(
ε
s

)
= εd Sid(s),

Sid

(
1 . . . 1
s1 . . . sn

)
= Sid(s1, . . . , sn),

Si<d

(
1 . . . 1
s1 . . . sn

)
= Si<d(s1, . . . , sn),

Sid

(
ε
s

)
= Sid

(
ε1

s1

)
Si<d

(
ε−
s−

)
.

Then we define the alternating Carlitz multiple polygarithm (ACMPL for short) as
follows

Li

(
ε
s

)
=
∑
d≥0

Sid

(
ε
s

)
=

∑
d1>···>dn≥0

εd11 . . . εdnn
`s1d1 . . . `

sn
dn

∈ K∞.

We agree also that Li

(
∅
∅

)
= 1. We call depth(s) = n the depth, w(s) = s1 + · · ·+sn

the weight and χ(ε) = ε1 . . . εn the character of Li

(
ε
s

)
.

Lemma 1.1. For all

(
ε
s

)
as above such that si ≤ q for all i, we have

Sd

(
ε
s

)
= Sid

(
ε
s

)
for all d ∈ Z.

Therefore,

ζA

(
ε
s

)
= Li

(
ε
s

)
.
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Proof. We denote by J the set of all positive arrays

(
ε
s

)
=

(
ε1 . . . εn
s1 . . . sn

)
for

some n such that s1, . . . , sn ≤ q.
The second statement follows at once from the first statement. We prove the first

statement by induction on depth(s). For depth(s) = 1, we let

(
ε
s

)
=

(
ε
s

)
with

s ≤ q. It follows from special cases of power sums in [33, §3.3] that for all d ∈ Z,

Sd

(
ε
s

)
=
εd

`sd
= Sid

(
ε
s

)
.

Suppose that the first statement holds for all arrays

(
ε
s

)
∈ J with depth(s) = n−1

and for all d ∈ Z. Let

(
ε
s

)
=

(
ε1 . . . εn
s1 . . . sn

)
be an element of J. Note that if(

ε
s

)
∈ J, then

(
ε−
s−

)
∈ J. It follows from induction hypothesis and the fact s1 ≤ q

that for all d ∈ Z

Sd

(
ε
s

)
= Sd

(
ε1

s1

)
S<d

(
ε−
s−

)
= Sid

(
ε1

s1

)
Si<d

(
ε−
s−

)
= Sid

(
ε
s

)
.

This proves the lemma. �

Let

(
ε
s

)
,

(
ε
t

)
be two positive arrays. We set si = 0 and εi = 1 for all i >

depth(s); ti = 0 and εi = 1 for all i > depth(t). We define the following operation(
ε
s

)
+

(
ε
t

)
:=

(
εε
s + t

)
,

where εε and s+t are defined by component multiplication and component addition,

respectively. We say that

(
ε
s

)
≤
(
ε
t

)
if the following conditions are satisfied:

(1) χ(ε) = χ(ε),
(2) w(s) = w(t),
(3) s1 + · · ·+ si ≤ t1 + · · ·+ ti for all i ∈ N.

1.1.3. We now consider some formulas related to analogues of power sums. It is
easily seen that

Sid

(
ε
s

)
Sid

(
ε
t

)
= Sid

(
εε
s+ t

)
,

hence, for t = (t1, . . . , tn),

(1.1) Sid

(
ε
s

)
Sid

(
ε
t

)
= Sid

(
εε1 ε−
s+ t1 t−

)
.

More generally, we deduce the following proposition which will be used frequently
later.

Proposition 1.2. Let

(
ε
s

)
,

(
ε
t

)
be two positive arrays. Then
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(1) There exist fi ∈ Fp and arrays

(
µi
ui

)
with

(
µi
ui

)
≤
(
ε
s

)
+

(
ε
t

)
and

depth(ui) ≤ depth(s) + depth(t) for all i such that

Sid

(
ε
s

)
Sid

(
ε
t

)
=
∑
i

fi Sid

(
µi
ui

)
for all d ∈ Z.

(2) There exist f ′i ∈ Fp and arrays

(
µ′i
u′i

)
with

(
µ′i
u′i

)
≤
(
ε
s

)
+

(
ε
t

)
and

depth(u′i) ≤ depth(s) + depth(t) for all i such that

Si<d

(
ε
s

)
Si<d

(
ε
t

)
=
∑
i

f ′i Si<d

(
µ′i
u′i

)
for all d ∈ Z.

(3) There exist f ′′i ∈ Fp and arrays

(
µ′′i
u′′i

)
with

(
µ′′i
u′′i

)
≤
(
ε
s

)
+

(
ε
t

)
and

depth(u′′i ) ≤ depth(s) + depth(t) for all i such that

Sid

(
ε
s

)
Si<d

(
ε
t

)
=
∑
i

f ′′i Sid

(
µ′′i
u′′i

)
for all d ∈ Z.

Proof. The proof follows the same line as in [27, Proposition 2.1]. We omit the
details. �

We denote by AL the K-vector space generated by the ACMPL’s and by ALw
the K-vector space generated by the ACMPL’s of weight w. It follows from Propo-
sition 1.2 that AL is a K-algebra under the multiplication of K∞.

1.2. Operators B∗, C and BC. In this section we define operators B∗ and C of
Todd [37] and the operator BC of Ngo Dac [27] in the case of ACMPL’s.

Definition 1.3. A binary relation is a K-linear combination of the form∑
i

ai Sid

(
εi
si

)
+
∑
i

bi Sid+1

(
εi
ti

)
= 0 for all d ∈ Z,

where ai, bi ∈ K and

(
εi
si

)
,

(
εi
ti

)
are positive arrays of the same weight.

A binary relation is called a fixed relation if bi = 0 for all i.

We denote by BRw the set of all binary relations of weight w. One verifies at
once that BRw is a K-vector space under the addition and multiplication of K. It
follows from the fundamental relation in [33, §3.4.6] and Lemma 1.1, an important
example of binary relations

Rε : Sid

(
ε
q

)
+ ε−1D1 Sid+1

(
ε 1
1 q − 1

)
= 0,

where D1 = θq − θ.
For later definitions, let R ∈ BRw be a binary relation of the form

R(d) :
∑
i

ai Sid

(
εi
si

)
+
∑
i

bi Sid+1

(
εi
ti

)
= 0,
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where ai, bi ∈ K and

(
εi
si

)
,

(
εi
ti

)
are positive arrays of the same weight. We now

define some operators on K-vector spaces of binary relations.

1.2.1. Operators B∗. Let

(
σ
v

)
be a positive array. We define an operator

B∗σ,v : BRw −→ BRw+v

as follows: for each R ∈ BRw, the image B∗σ,v(R) = Sid

(
σ
v

)∑
j<dR(j) is a fixed

relation of the form

0 = Sid

(
σ
v

)(∑
i

ai Si<d

(
εi
si

)
+
∑
i

bi Si<d+1

(
εi
ti

))

=
∑
i

ai Sid

(
σ
v

)
Si<d

(
εi
si

)
+
∑
i

bi Sid

(
σ
v

)
Si<d

(
εi
ti

)
+
∑
i

bi Sid

(
σ
v

)
Sid

(
εi
ti

)
=
∑
i

ai Sid

(
σ εi
v si

)
+
∑
i

bi Sid

(
σ εi
v ti

)
+
∑
i

bi Sid

(
σεi1 εi−
v + ti1 ti−

)
.

The last equality follows from (1.1).

Let

(
Σ
V

)
=

(
σ1 . . . σn
v1 . . . vn

)
be a positive array. We define an operator B∗Σ,V (R)

by

B∗Σ,V (R) = B∗σ1,v1 ◦ · · · ◦B
∗
σn,vn(R).

Lemma 1.4. Let

(
Σ
V

)
=

(
σ1 . . . σn
v1 . . . vn

)
be a positive array. Then B∗Σ,V (R) is of

the form∑
i

ai Sid

(
Σ εi
V si

)
+
∑
i

bi Sid

(
Σ εi
V ti

)
+
∑
i

bi Sid

(
σ1 . . . σn−1 σnεi1 εi−
v1 . . . vn−1 vn + ti1 ti−

)
= 0.

Proof. The proof is straightforward. We omit this proof. �

1.2.2. Operators C. Let

(
Σ
V

)
be a positive array of weight v. We define an operator

CΣ,V (R) : BRw −→ BRw+v

as follows: for each R ∈ BRw, the image CΣ,V (R) = R(d) Si<d+1

(
Σ
V

)
is a binary

relation of the form

0 =

(∑
i

ai Sid

(
εi
si

)
+
∑
i

bi Sid+1

(
εi
ti

))
Si<d+1

(
Σ
V

)
=
∑
i

ai Sid

(
εi
si

)
Sid

(
Σ
V

)
+
∑
i

ai Sid

(
εi
si

)
Si<d

(
Σ
V

)
+
∑
i

bi Sid+1

(
εi
ti

)
Si<d+1

(
Σ
V

)
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=
∑
i

fi Sid

(
µi
ui

)
+
∑
i

f ′i Sid+1

(
µ′i
u′i

)
.

The last equality follows from Proposition 1.2.

In particular, the following proposition gives the form of CΣ,V (Rε).

Proposition 1.5. Let

(
Σ
V

)
be a positive array with V = (v1, V−) and Σ =

(σ1,Σ−). Then CΣ,V (Rε) is of the form

Sid

(
εσ1 Σ−
q + v1 V−

)
+ Sid

(
ε Σ
q V

)
+
∑
i

bi Sid+1

(
ε εi
1 ti

)
= 0,

where bi ∈ K and

(
εi
ti

)
are positive arrays satisfying

(
εi
ti

)
≤
(

1
q − 1

)
+

(
Σ
V

)
for

all i.

Proof. We see that CΣ,V (Rε) is of the form

Sid

(
ε
q

)
Sid

(
Σ
V

)
+ Sid

(
ε
q

)
Si<d

(
Σ
V

)
+ ε−1D1 Sid+1

(
ε 1
1 q − 1

)
Si<d+1

(
Σ
V

)
= 0.

It follows from (1.1) and Proposition 1.2 that

Sid

(
ε
q

)
Sid

(
Σ
V

)
+ Sid

(
ε
q

)
Si<d

(
Σ
V

)
= Sid

(
εσ1 Σ−
q + v1 V−

)
+ Sid

(
ε Σ
q V

)
,

ε−1D1 Sid+1

(
ε 1
1 q − 1

)
Si<d+1

(
Σ
V

)
=
∑
i

bi Sid+1

(
ε εi
1 ti

)
,

where bi ∈ K and

(
εi
ti

)
are positive arrays satisfying

(
εi
ti

)
≤
(

1
q − 1

)
+

(
Σ
V

)
for

all i. This proves the proposition. �

1.2.3. Operators BC. Let ε ∈ F×q . We define an operator

BCε,q : BRw −→ BRw+q

as follows: for each R ∈ BRw, the image BCε,q(R) is a binary relation given by

BCε,q(R) = B∗ε,q(R)−
∑
i

biCεi,ti(Rε).

Let us clarify the definition of BCε,q. We know that B∗ε,q(R) is of the form∑
i

ai Sid

(
ε εi
q si

)
+
∑
i

bi Sid

(
ε εi
q ti

)
+
∑
i

bi Sid

(
εεi1 εi−
q + ti1 ti−

)
= 0.

Moreover, Cεi,ti(Rε) is of the form

Sid

(
ε εi
q ti

)
+Sid

(
εεi1 εi−
q + ti1 ti−

)
+ε−1D1 Sid+1

(
ε
1

)
Si<d+1

(
1

q − 1

)
Si<d+1

(
εi
ti

)
= 0.

Combining with Proposition 1.2 (2), we have that BCε,q(R) is of the form∑
i

ai Sid

(
ε εi
q si

)
+
∑
i,j

bij Sid+1

(
ε εij
1 tij

)
= 0,
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where bij ∈ K and

(
εij
tij

)
are positive arrays satisfying

(
εij
tij

)
≤
(

1
q − 1

)
+

(
εi
ti

)
for all j.

1.3. A weak version of Brown’s theorem for ACMP’s.

1.3.1. Preparatory results.

Proposition 1.6. 1) Let

(
ε
s

)
=

(
ε1 . . . εn
s1 . . . sn

)
be a positive array such that

Init(s) = (s1, . . . , sk−1) for some 1 ≤ k ≤ n, and let ε be an element in F×q . Then

Li

(
ε
s

)
can be decomposed as follows

Li

(
ε
s

)
= −Li

(
ε′

s′

)
︸ ︷︷ ︸

type 1

+
∑
i

bi Li

(
ε′i
t′i

)
︸ ︷︷ ︸

type 2

+
∑
i

ci Li

(
µi
ui

)
︸ ︷︷ ︸

type 3

,

where bi, ci ∈ A divisible by D1 such that for all i, the following properties are
satisfied:

• For all arrays

(
ε
t

)
appearing on the right hand side,

depth(t) ≥ depth(s) and Tk(t) ≤ Tk(s).

• For the array

(
ε′

s′

)
of type 1 with respect to

(
ε
s

)
, we have(

ε′

s′

)
=

(
ε1 . . . εk−1 ε ε−1εk εk+1 . . . εn
s1 . . . sk−1 q sk − q sk+1 . . . sn

)
.

Moreover, for all k ≤ ` ≤ n,

s′1 + · · ·+ s′` < s1 + · · ·+ s`.

• For the array

(
ε′

t′

)
of type 2 with respect to

(
ε
s

)
, for all k ≤ ` ≤ n,

t′1 + · · ·+ t′` < s1 + · · ·+ s`.

• For the array

(
µ
u

)
of type 3 with respect to

(
ε
s

)
, we have Init(s) ≺ Init(u).

2) Let

(
ε
s

)
=

(
ε1 . . . εk
s1 . . . sk

)
be a positive array such that Init(s) = s and sk = q.

Then Li

(
ε
s

)
can be decomposed as follows:

Li

(
ε
s

)
=
∑
i

bi Li

(
ε′i
t′i

)
︸ ︷︷ ︸

type 2

+
∑
i

ci Li

(
µi
ui

)
︸ ︷︷ ︸

type 3

,

where bi, ci ∈ A divisible by D1 such that for all i, the following properties are
satisfied:
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• For all arrays

(
ε
t

)
appearing on the right hand side,

depth(t) ≥ depth(s) and Tk(t) ≤ Tk(s).

• For the array

(
ε′

t′

)
of type 2 with respect to

(
ε
s

)
,

t′1 + · · ·+ t′k < s1 + · · ·+ sk.

• For the array

(
µ
u

)
of type 3 with respect to

(
ε
s

)
, we have Init(s) ≺ Init(u).

Proof. For Part 1, since Init(s) = (s1, . . . , sk−1), we get sk > q. Set

(
Σ
V

)
=(

ε−1εk εk+1 . . . εn
sk − q sk+1 . . . sn

)
. By Proposition 1.5, CΣ,V (Rε) is of the form

(1.2)

Sid

(
εk . . . εn
sk . . . sn

)
+ Sid

(
ε ε−1εk εk+1 . . . εn
q sk − q sk+1 . . . sn

)
+
∑
i

bi Sid+1

(
ε εi
1 ti

)
= 0,

where bi ∈ A divisible by D1 and

(
εi
ti

)
are positive arrays satisfying for all i,

(
εi
ti

)
≤
(

1
q − 1

)
+

(
Σ
V

)
=

(
ε−1εk εk+1 . . . εn
sk − 1 sk+1 . . . sn

)
.

For m ∈ N, we denote by q{m} the sequence of length m with all terms equal to
q. We agree by convention that q{0} is the empty sequence. Setting s0 = 0, we may
assume that there exists a maximal index j with 0 ≤ j ≤ k − 1 such that sj < q,

hence Init(s) = (s1, . . . , sj , q
{k−j−1}).

Then the operator BCεj+1,q ◦ · · · ◦BCεk−1,q applied to the relation (1.2) gives

Sid

(
εj+1 . . . εk−1 εk . . . εn
q . . . q sk . . . sn

)
+ Sid

(
εj+1 . . . εk−1 ε ε−1εk εk+1 . . . εn
q . . . q q sk − q sk+1 . . . sn

)
+
∑
i

bi1...ik−j Sid+1

(
εj+1 εi1...ik−j

1 ti1...ik−j

)
= 0,

where bi1...ik−j ∈ A are divisible by D1 and for 2 ≤ l ≤ k− j,
(
εi1...il
ti1...il

)
are positive

arrays satisfying(
εi1...il
ti1...il

)
≤
(

1
q − 1

)
+

(
εk−l+2 εi1...il−1

1 ti1...il−1

)
=

(
εk−l+2 εi1...il−1

q ti1...il−1

)
.

Thus (
εi1...ik−j
ti1...ik−j

)
≤
(
εj+2 . . . εk−1 ε ε−1εk εk+1 . . . εn
q . . . q q sk − 1 sk+1 . . . sn

)
.
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Letting

(
Σ′

V ′

)
=

(
ε1 . . . εj
s1 . . . sj

)
, by Proposition 1.4, we continue to apply B∗Σ′,V ′

to the above relation and get

Sid

(
ε
s

)
+ Sid

(
ε1 . . . εk−1 ε ε−1εk εk+1 . . . εn
s1 . . . sk−1 q sk − q sk+1 . . . sn

)
+
∑
i

bi1...ik−j Sid

(
ε1 . . . εj εj+1 εi1...ik−j
s1 . . . sj 1 ti1...ik−j

)
+
∑
i

bi1...ik−j Sid+1

(
ε1 . . . εj−1 εjεj+1 εi1...ik−j
s1 . . . sj−1 sj + 1 ti1...ik−j

)
= 0.

Hence

Li

(
ε
s

)
+ Li

(
ε1 . . . εk−1 ε ε−1εk εk+1 . . . εn
s1 . . . sk−1 q sk − q sk+1 . . . sn

)
+
∑
i

bi1...ik−j Li

(
ε1 . . . εj εj+1 εi1...ik−j
s1 . . . sj 1 ti1...ik−j

)
+
∑
i

bi1...ik−j Li

(
ε1 . . . εj−1 εjεj+1 εi1...ik−j
s1 . . . sj−1 sj + 1 ti1...ik−j

)
= 0.

The verification of positive arrays of type 1, type 2, type 3 with respect to

(
ε
s

)
follows the same line as in [27]. We omit the details.

For Part 2, the proof follows the same line as in Part 1. We omit this proof. �

We recall the following definition of [27] (see [27, Definition 3.1]):

Definition 1.7. Let k ∈ N and s be a tuple of positive integers. We say that s is
k-admissible if it satisfies the following two conditions:

1) s1, . . . , sk ≤ q.
2) s is not of the form (s1, . . . , sr) with r ≤ k, s1, . . . , sr−1 ≤ q, and sr = q.

Here we recall si = 0 for i > depth(s).

A positive array is k-admissible if the corresponding tuple is k-admissible.

Proposition 1.8. For all k ∈ N and for all arrays

(
ε
s

)
, Li

(
ε
s

)
can be expressed as

a K-linear combination of Li

(
ε
t

)
’s of the same weight such that t is k-admissible.

Proof. The proof follow the same line as that of [27, Theorem A]. �

1.3.2. A set of generators ATw for ACMPL’s. We recall that ALw is the K-
vector space generated by ACMPL’s of weight w. We denote by ATw the set of

all ACMPL’s Li

(
ε
s

)
= Li

(
ε1 . . . εn
s1 . . . sn

)
of weight w such that s1, . . . , sn−1 ≤ q

and sn < q.

We put t(w) = |ATw|. Then one verifies that

t(w) =

{
(q − 1)qw−1 if 1 ≤ w < q,

(q − 1)(qw−1 − 1) if w = q,
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and for w > q,

t(w) = (q − 1)

q∑
i=1

t(w − i).

We are ready to state a weak version of Brown’s theorem for ACMPL’s.

Proposition 1.9. The set of all elements Li

(
ε
s

)
such that Li

(
ε
s

)
∈ ATw forms

a set of generators for ALw.

Proof. The result follows immediately from Proposition 1.8 in the case of k = w. �

1.4. A strong version of Brown’s theorem for ACMPL’s.

1.4.1. Another set of generators ASw for ACMPL’s. We consider the set Jw con-
sisting of positive tuples s = (s1, . . . , sn) of weight w such that s1, . . . , sn−1 ≤ q
and sn < q, together with the set J′w consisting of positive tuples s = (s1, . . . , sn)
of weight w such that q - si for all i. Then there is a bijection

ι : J′w −→ Jw

given as follows: for each tuple s = (s1, . . . , sn) ∈ J′w, since q - si, we can write
si = hiq + ri where 0 < ri < q and hi ∈ Z≥0. The image ι(s) is the tuple

ι(s) = (q, . . . , q︸ ︷︷ ︸
h1 times

, r1, . . . , q, . . . , q︸ ︷︷ ︸
hn times

, rn).

Let ASw denote the set of ACMPL’s Li

(
ε
s

)
such that s ∈ J′w. We note that in

general, ASw is much smaller than ATw. The only exceptions are when q = 2 or
w < q.

1.4.2. Cardinality of ASw. We now compute s(w) = |ASw|. To do so we denote by

AJw the set consisting of positive arrays

(
ε1 . . . εn
s1 . . . sn

)
of weight w such that q - si

for all i and by AJ1
w the set consisting of positive arrays

(
ε1 . . . εn
s1 . . . sn

)
of weight w

such that s1, . . . , sn−1 ≤ q, sn < q and εi = 1 whenever si = q for 1 ≤ i ≤ n. We
construct a map

ϕ : AJw −→ AJ1
w

as follows: for each array

(
ε
s

)
=

(
ε1 . . . εn
s1 . . . sn

)
∈ AJw, since q - si, we can write

si = hiq + ri where 0 < ri < q and hi ∈ Z≥0. The image ϕ

(
ε
s

)
is the array

ϕ

(
ε
s

)
=

((
1 . . . 1
q . . . q

)
︸ ︷︷ ︸

h1 times

(
ε1

r1

)
. . .

(
1 . . . 1
q . . . q

)
︸ ︷︷ ︸

hn times

(
εn
rn

))
.

It is easily seen that ϕ is a bijection, hence |ASw| = |AJw| = |AJ1
w|. Thus s(w) =

|AJ1
w|. One verifies that

s(w) =

{
(q − 1)qw−1 if 1 ≤ w < q,

(q − 1)(qw−1 − 1) if w = q,
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and for w > q,

s(w) = (q − 1)

q−1∑
i=1

s(w − i) + s(w − q).

1.4.3. We state a strong version of Brown’s theorem for ACMPL’s.

Theorem 1.10. The set ASw forms a set of generators for ALw. In particular,

dimK ALw ≤ s(w).

Proof. For each Li

(
ε
s

)
∈ ATw, since s ∈ Jw and ι : J′w → Jw is a bijection, there

exists a tuple s′ ∈ J′w such that s = ι(s′). By Proposition 1.6 and Proposition

1.9, it follows that there exists a tuple ε′ ∈ (F×q )depth(s′) such that Li

(
ε′

s′

)
can be

expressed as follows

Li

(
ε′

s′

)
=
∑

aε
′,s′

ε,t Li

(
ε
t

)
,

where

(
ε
t

)
ranges over all elements of AJw and aε

′,s′

ε,t ∈ A satisfying

aε
′,s′

ε,t ≡

±1 (mod D1) if

(
ε

t

)
=

(
ε

s

)
,

0 (mod D1) otherwise.

Note that Li

(
ε′

s′

)
∈ ASw. Thus the transition matrix from the set consisting of

such Li

(
ε′

s′

)
as above (we allow repeated elements) to the set consisting of Li

(
ε
s

)
with

(
ε
s

)
∈ AJw is invertible. It then follows again from Proposition 1.9 that ASw

is a set of generators for ALw, as desired. �

2. Dual t-motives and linear independence

We continue with the notation given in the Introduction. Further, letting t be
another independent variable, we denote by T the Tate algebra in the variable t
with coefficients in C∞ equipped with the Gauss norm ‖.‖∞, and by L the fraction
field of T.

2.1. Dual t-motives.

We recall the notion of dual t-motives due to Anderson (see [6, §4] and [20, §5]
for more details). We refer the reader to [1] for the related notion of t-motives.

For i ∈ Z we consider the i-fold twisting of C∞((t)) defined by

C∞((t))→ C∞((t))

f =
∑
j

ajt
j 7→ f (i) :=

∑
j

aq
i

j t
j .

We extend i-fold twisting to matrices with entries in C∞((t)) by twisting entry-wise.
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Let K[t, σ] be the non-commutative K[t]-algebra generated by the new variable
σ subject to the relation σf = f (−1)σ for all f ∈ K[t].

Definition 2.1. An effective dual t-motive is a K[t, σ]-module M′ which is free
and finitely generated over K[t] such that for `� 0 we have

(t− θ)`(M′/σM′) = {0}.

We mention that effective dual t-motives are called Frobenius modules in [10,
13, 19, 23]. Note that Hartl and Juschka [20, §4] introduced a more general notion
of dual t-motives. In particular, effective dual t-motives are always dual t-motives.

Throughout this paper we will always work with effective dual t-motives. There-
fore, we will sometimes drop the word “effective” where there is no confusion.

Let M and M′ be two effective dual t-motives. Then a morphism of effective dual
t-motives M → M′ is just a homomorphism of left K[t, σ]-modules. We denote by
F the category of effective dual t-motives equipped with the trivial object 1.

We say that an object M of F is given by a matrix Φ ∈ Matr(K[t]) if M is a
K[t]-module free of rank r and the action of σ is represented by the matrix Φ on
a given K[t]-basis for M. We say that an object M of F is uniformizable or rigid
analytically trivial if there exists a matrix Ψ ∈ GLr(T) satisfying Ψ(−1) = ΦΨ. The
matrix Ψ is called a rigid analytic trivialization of M.

We now recall the Anderson-Brownawell-Papanikolas criterion which is crucial
in the sequel (see [2, Theorem 3.1.1]).

Theorem 2.2 (Anderson-Brownawell-Papanikolas). Let Φ ∈ Mat`(K[t]) be a ma-
trix such that det Φ = c(t − θ)s for some c ∈ K and s ∈ Z≥0. Let ψ ∈ Mat`×1(E)
be a vector satisfying ψ(−1) = Φψ and ρ ∈ Mat1×`(K) such that ρψ(θ) = 0. Then
there exists a vector P ∈ Mat1×`(K[t]) such that

Pψ = 0 and P (θ) = ρ.

2.2. Some constructions of dual t-motives.

2.2.1. General case. We briefly review some constructions of dual t-motives intro-
duced in [10] (see also [9, 13, 19]). Let s = (s1, . . . , sr) ∈ Nr be a tuple of positive
integers and Q = (Q1, . . . , Qr) ∈ K[t]r satisfying the condition

(2.1) (‖Q1‖∞/|θ|
qs1
q−1
∞ )q

i1
. . . (‖Qr‖∞/|θ|

qsr
q−1
∞ )q

ir → 0

as 0 ≤ ir < · · · < i1 and i1 →∞.

We consider the dual t-motives Ms,Q and M′s,Q attached to (s,Q) given by the
matrices

Φs,Q =



(t− θ)s1+···+sr 0 0 . . . 0

Q
(−1)
1 (t− θ)s1+···+sr (t− θ)s2+···+sr 0 . . . 0

0 Q
(−1)
2 (t− θ)s2+···+sr . . .

...
...

. . . (t− θ)sr 0

0 . . . 0 Q
(−1)
r (t− θ)sr 1


∈ Matr+1(K[t]),

and Φ′s,Q ∈ Matr(K[t]) is the upper left r × r sub-matrix of Φs,Q.



ZAGIER-HOFFMAN’S CONJECTURES IN POSITIVE CHARACTERISTIC 19

Throughout this paper, we work with the Carlitz period π̃ which is a fundamental
period of the Carlitz module (see [18, 31]). We fix a choice of (q− 1)st root of (−θ)
and set

Ω(t) := (−θ)−q/(q−1)
∏
i≥1

(
1− t

θqi

)
∈ T×

so that

Ω(−1) = (t− θ)Ω and
1

Ω(θ)
= π̃.

Given (s,Q) as above, Chang introduced the following series (see [9, Lemma 5.3.1]
and also [10, Eq. (2.3.2)])

L(s;Q) = L(s1, . . . , sr;Q1, . . . , Qr) :=
∑

i1>···>ir≥0

(ΩsrQr)
(ir) . . . (Ωs1Q1)(i1).(2.2)

If we denote E the ring of series
∑
n≥0 ant

n ∈ K[[t]] such that limn→+∞
n
√
|an|∞ =

0 and [K∞(a0, a1, . . .) : K∞] <∞, then any f ∈ E is an entire function. It is proved
that L(s,Q) ∈ E (see [9, Lemma 5.3.1]). In the sequel, we will use the following
crucial property of this series (see [9, Lemma 5.3.5] and [10, Proposition 2.3.3]): for
all j ∈ Z≥0, we have

(2.3) L(s;Q)
(
θq
j
)

= (L(s;Q)(θ))
qj
.

Then the matrix given by

Ψs,Q =



Ωs1+···+sr 0 0 . . . 0
L(s1;Q1)Ωs2+···+sr Ωs2+···+sr 0 . . . 0

... L(s2;Q2)Ωs3+···+sr . . .
...

...
. . .

. . .
...

L(s1, . . . , sr−1;Q1, . . . , Qr−1)Ωsr L(s2, . . . , sr−1;Q2, . . . , Qr−1)Ωsr . . . Ωsr 0
L(s1, . . . , sr;Q1, . . . , Qr) L(s2, . . . , sr;Q2, . . . , Qr) . . . L(sr;Qr) 1


∈ GLr+1(T)

satisfies

Ψ
(−1)
s,Q = Φs,QΨs,Q.

Thus Ψs,Q is a rigid analytic trivialization associated to the dual t-motive Ms,Q.

We also denote by Ψ′s,Q the upper r × r sub-matrix of Ψs,Q. It is clear that Ψ′s
is a rigid analytic trivialization associated to the dual t-motive M′s,Q.

Further, combined with Eq. (2.3), the above construction of dual t-motives im-
plies that π̃wL(s;Q)(θ) where w = s1 + · · · + sr has the MZ (multizeta) property
in the sense of [9, Definition 3.4.1]. By [9, Proposition 4.3.1], we get

Proposition 2.3. Let (si;Qi) as before for 1 ≤ i ≤ m. We suppose that all the
tuples of positive integers si have the same weight, says w. Then the following
assertions are equivalent:

i) L(s1;Q1)(θ), . . . ,L(sm;Qm)(θ) are K-linearly independent.
ii) L(s1;Q1)(θ), . . . ,L(sm;Qm)(θ) are K-linearly independent.

We end this section by mentionning that Chang [9] also proved analogue of
Goncharov’s conjecture in this setting.
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2.2.2. Dual t-motives connected to MZV’s and AMZV’s.

Following Anderson and Thakur [4] we introduce dual t-motives connected to
MZV’s and AMZV’s. We briefly review Anderson-Thakur polynomials introduced

in [3]. For k ≥ 0, we set [k] := θq
k − θ and Dk :=

∏k
`=1[`]q

k−`
. For n ∈ N we write

n− 1 =
∑
j≥0 njq

j with 0 ≤ nj ≤ q − 1 and define

Γn :=
∏
j≥0

D
nj
j .

We set γ0(t) := 1 and γj(t) :=
∏j
`=1(θq

j − tq`) for j ≥ 1. Then Anderson-Thakur
polynomials αn(t) ∈ A[t] are given by the generating series

∑
n≥1

αn(t)

Γn
xn := x

1−
∑
j≥0

γj(t)

Dj
xq

j

−1

.

Finally, we define Hn(t) by switching θ and t

Hn(t) = αn(t)
∣∣
t=θ, θ=t

.

By [3, Eq. (3.7.3)] we get

(2.4) degθHn ≤
(n− 1)q

q − 1
<

nq

q − 1
.

Let s = (s1, . . . , sr) ∈ Nr be a tuple and ε = (ε1, . . . , εr) ∈ (F×q )r. For all

1 ≤ i ≤ r we fix a fixed (q − 1)-th root γi of εi ∈ F×q and set Qsi,εi := γiHsi .
Then we set Qs,ε := (Qs1,ε1 , . . . , Qsr,εr ) and put L(s; ε) := L(s;Qs,ε). By (2.4) we

know that ‖Hn‖∞ < |θ|
nq
q−1
∞ for all n ∈ N, thus Qs,ε satisfies Condition (2.1). Thus

we can define the dual t-motives Ms,ε = Ms,Qs,ε and M′s,ε = M′s,Qs,ε
attached to

s whose matrices and rigid analytic trivializations will be denoted by (Φs,ε,Ψs,ε)
and (Φ′s,ε,Ψ

′
s,ε), respectively. These dual t-motives are connected to MZV’s and

AMZV’s by the following result (see [13, Proposition 2.12] for more details):

(2.5) L(s; ε)(θ) =

γ1 . . . γrΓs1 . . .ΓsrζA

(
ε
s

)
π̃w(s)

.

By a result of Thakur [33], one can show (see [19, Theorem 2.1]) that ζA

(
ε
s

)
6= 0.

Thus L(s; ε)(θ) 6= 0.

2.2.3. Dual t-motives connected to CMPL’s and ACMPL’s.

We keep the notation as above. Let s = (s1, . . . , sr) ∈ Nr be a tuple and ε =
(ε1, . . . , εr) ∈ (F×q )r. For all 1 ≤ i ≤ r we have a fixed (q − 1)-th root γi of εi ∈ F×q
and set Q′si,εi := γi. Then we set Q′s,ε := (Q′s1,ε1 , . . . , Q

′
sr,εr ) and put

Li(s; ε) = L(s;Q′s,ε) =
∑

i1>···>ir≥0

(γirΩ
sr )(ir) . . . (γi1Ωs1)(i1).(2.6)

Thus we can define the dual t-motives Ns,ε = Ns,Q′s,ε
and N′s,ε = N′s,Q′s,ε

attached

to (s, ε). These dual t-motives are connected to CMPL’s and ACMPL’s by the
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following result (see [9, Lemma 5.3.5] and [10, Prop. 2.3.3]):

(2.7) Li(s; ε)(θ) =

γ1 . . . γr Li

(
ε
s

)
π̃w(s)

.

2.3. A result for linear independence.

2.3.1. Setup.

Let w ∈ N be a positive integer. Let {(si;Qi)}1≤i≤n be a collection of pairs satis-
fying Condition (2.1) such that si always has weight w. We write si = (si1, . . . , si`i) ∈
N`i and Qi = (Qi1, . . . , Qi`i) ∈ (F×q )`i so that si1 + · · · + si`i = w. We introduce
the set of tuples

I(si;Qi) := {∅, (si1;Qi1), . . . , (si1, . . . , si(`i−1);Qi1, . . . , Qi(`i−1))},

and set

I := ∪iI(si;Qi).

For all (t;Q) ∈ I, we set

(2.8) ft,Q :=
∑
i

ai(t)L(si(k+1), . . . , si`i ;Qi(k+1), . . . , Qi`i),

where the sum runs through the set of indices i such that (t;Q) = (si1, . . . , sik;Qi1, . . . , Qik)
for some 0 ≤ k ≤ `i − 1. In particular, f∅ =

∑
i ai(t)L(si;Qi).

2.3.2. Linear independence.

We are now ready to state the main result of this section.

Theorem 2.4. We keep the above notation. We suppose further that {(si;Qi)}1≤i≤n
satisfies the following conditions:

(LW) For any weight w′ < w, the values L(t;Q)(θ) with (t;Q) ∈ I and w(t) = w′

are all K-linearly independent. In particular, L(t;Q)(θ) is always nonzero.
(LD) There exist a ∈ A and ai ∈ A for 1 ≤ i ≤ n which are not all zero such that

a+

n∑
i=1

aiL(si;Qi)(θ) = 0.

Then for all (t;Q) ∈ I, ft,Q(θ) belongs to K where ft,Q is given as in (2.8).

Remark 2.5. 1) Here we note that LW stands for Lower Weights and LD for
Linear Dependence.

2) In fact, we improve [27, Theorem B] in two directions. First, we lift the
restriction on the Anderson-Thakur polynomials and tuples si. Second and more
important, we allow an extra term a which is crucial in the sequel. More precisely,
in the case of MZV’s, while [27, Theorem B] investigates linear relations amongs
MZV’s of weight w, Theorem 2.4 studies linear relations amongs MZV’s of weight
w and suitable powers of the Carlitz period π̃w.

Proof. The proof will be divided into two steps.

Step 1. We first construct a dual t-motive to which we will apply the Anderson-
Brownawell-Papanikolas criterion. In what follows we set ai(t) := ai|θ=t ∈ Fq[t].
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For each pair (si;Qi) we have attached to it a matrix Φsi,Qi . For si = (si1, . . . , si`i) ∈
N`i and Qi = (Qi1, . . . , Qi`i) ∈ (F×q )`i we recall

I(si;Qi) = {∅, (si1;Qi1), . . . , (si1, . . . , si(`i−1);Qi1, . . . , Q(`i−1))},

and I := ∪iI(si;Qi).

We now construct a new matrix Φ′ by merging the same rows of Φ′s1,Q1
, . . . ,Φ′sn,Qn

as follows. Then the matrix Φ′ will be a matrix indexed by elements of I, says

Φ′ =
(

Φ′(t;Q),(t′;Q′)

)
(t;Q),(t′;Q′)∈I

∈ Mat|I|(K[t]). For the row which corresponds to

the empty pair ∅ we put

Φ′∅,(t′;Q′) =

{
(t− θ)w if (t′;Q′) = ∅,
0 otherwise.

For the row indexed by (t;Q) = (si1, . . . , sij ;Qi1, . . . , Qij) for some i and 1 ≤ j ≤
`i − 1 we put

Φ′(t;Q),(t′;Q′) =


(t− θ)w−w(t′) if (t′;Q′) = (t;Q),

Q
(−1)
ij (t− θ)w−w(t′) if (t′;Q′) = (si1, . . . , si(j−1);Qi1, . . . , Qi(j−1)),

0 otherwise.

Note that Φ′si,Qi =
(

Φ′(t;Q),(t′;Q′)

)
(t;Q),(t′;Q′)∈I(si;Qi)

for all i.

We define Φ ∈ Mat|I|+1(K[t]) by

Φ =

(
Φ′ 0
v 1

)
∈ Mat|I|+1(K[t]), v = (vt,Q)(t;Q)∈I ∈ Mat1×|I|(K[t]),

where

vt,Q =

{
ai(t)Q

(−1)
i`i

(t− θ)w−w(t) if (t;Q) = (si1, . . . , si(`i−1);Qi1, . . . , Qi(`i−1)),

0 otherwise.

We now introduce a rigid analytic trivialization matrix Ψ for Φ. We define Ψ′ =(
Ψ′(t;Q),(t′;Q′)

)
(t;Q),(t′;Q′)∈I

∈ GL|I|(T) as follows. For the row which corresponds

to the empty pair ∅ we define

Ψ′∅,(t′;Q′) =

{
Ωw if (t′;Q′) = ∅,
0 otherwise.

For the row indexed by (t;Q) = (si1, . . . , sij ;Qi1, . . . , Qij) for some i and 1 ≤ j ≤
`i − 1 we put

Ψ′(t;Q),(t′;Q′) =
L(t;Q)Ωw−w(t) if (t′;Q′) = ∅,
L(si(k+1), . . . , sij ;Qi(k+1), . . . , Qij)Ω

w−w(t) if (t′;Q′) = (si1, . . . , sik;Qi1, . . . , Qik) for some 1 ≤ k ≤ j,
0 otherwise.

Note that Ψ′si,Qi =
(

Ψ′(t;Q),(t′;Q′)

)
(t;Q),(t′;Q′)∈I(si;Qi)

for all i.
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We define Ψ ∈ GL|I|+1(T) by

Ψ =

(
Ψ′ 0
f 1

)
∈ GL|I|+1(T), f = (ft,Q)t∈I ∈ Mat1×|I|(T).

Here we recall (see Eq. (2.8))

ft,Q =
∑
i

ai(t)L(si(k+1), . . . , si`i ;Qi(k+1), . . . , Qi`i)

where the sum runs through the set of indices i such that (t;Q) = (si1, . . . , sik;Qi1, . . . , Qik)
for some 0 ≤ k ≤ `i − 1. In particular, f∅ =

∑
i ai(t)L(si;Qi).

By construction and by §2.2, we get Ψ(−1) = ΦΨ, that means Ψ is a rigid analytic
trivialization for Φ.

Step 2. Next we apply the Anderson-Brownawell-Papanikolas criterion (see Theo-
rem 2.2) to prove Theorem 2.4.

In fact, we define

Φ̃ =

(
1 0
0 Φ

)
∈ Mat|I|+2(K[t])

and consider the vector constructed from the first column vector of Ψ

ψ̃ =

 1
Ψ′(t;Q),∅
f∅


(t;Q)∈I

.

Then we have ψ̃(−1) = Φ̃ψ̃.

We also observe that for all (t;Q) ∈ I we have Ψ′(t;Q),∅ = L(t;Q)Ωw−w(t). Fur-

ther,

a+ f∅(θ) = a+
∑
i

aiL(si;Qi)(θ) = 0.

By Theorem 2.2 with ρ = (a, 0, . . . , 0, 1) we deduce that there exists h = (g0, gt,Q, g) ∈
Mat1×(|I|+2)(K[t]) such that hψ = 0, and that gt,Q(θ) = 0 for (t,Q) ∈ I, g0(θ) = a

and g(θ) = 1 6= 0. If we put g := (1/g)h ∈ Mat1×(|I|+2)(K(t)), then all the entries
of g are regular at t = θ.

Now we have

(g − g(−1)Φ̃)ψ̃ = gψ̃ − (gψ̃)(−1) = 0.(2.9)

We write g − g(−1)Φ̃ = (B0, Bt, 0)t∈I . We claim that B0 = 0 and Bt,Q = 0 for all
(t;Q) ∈ I. In fact, expanding (2.9) we obtain

(2.10) B0 +
∑
t∈I

Bt,QL(t;Q)Ωw−w(t) = 0.

By (2.3) we see that for (t;Q) ∈ I and j ∈ N,

L(t;Q)(θq
j

) = (L(t;Q)(θ))q
j

which is nonzero by Condition (LW ).

First, as the function Ω has a simple zero at t = θq
k

for k ∈ N, specializing (2.10)

at t = θq
j

yields B0(θq
j

) = 0 for j ≥ 1. Since B0 belongs to K(t), it follows that
B0 = 0.
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Next, we put w0 := max(t;Q)∈I w(t) and denote by I(w0) the set of (t;Q) ∈ I
such that w(t) = w0. Then dividing (2.10) by Ωw−w0 yields
(2.11)∑
(t;Q)∈I

Bt,QL(t;Q)Ωw0−w(t) =
∑

(t;Q)∈I(w0)

Bt,QL(t;Q)+
∑

(t;Q)∈I\I(w0)

Bt,QL(t;Q)Ωw0−w(t) = 0.

Since each Bt,Q belongs to K(t), they are defined at t = θq
j

for j � 1. Note that

the function Ω has a simple zero at t = θq
k

for k ∈ N. Specializing (2.11) at t = θq
j

and using (2.3) yields ∑
(t;Q)∈I(w0)

Bt,Q(θq
j

)(L(t;Q)(θ))q
j

= 0

for j � 1.

We claim that Bt,Q(θq
j

) = 0 for j � 1 and for all (t;Q) ∈ I(w0). Otherwise,

we get a non trivial K-linear relation among L(t;Q)(θ) with (t;Q) ∈ I of weight
w0. By Proposition 2.3 we deduce a non trivial K-linear relation among L(t;Q)(θ)
with (t;Q) ∈ I(w0), which contradicts with Condition (LW ). Now we know that

Bt,Q(θq
j

) = 0 for j � 1 and for all (t;Q) ∈ I(w0). Since each Bt,Q belongs to K(t),
it follows that Bt,Q = 0 for all (t;Q) ∈ I(w0).

Next, we put w1 := max(t;Q)∈I\I(w0) w(t) and denote by I(w1) the set of (t;Q) ∈
I such that w(t) = w1. Dividing (2.10) by Ωw−w1 and specializing at t = θq

j

yields∑
(t;Q)∈I(w1)

Bt,Q(θq
j

)(L(t;Q)(θ))q
j

= 0

for j � 1. Since w1 < w, by Proposition 2.3 and Condition (LW ) again we deduce

that Bt,Q(θq
j

) = 0 for j � 1 and for all (t;Q) ∈ I(w1). Since each Bt,Q belongs

to K(t), it follows that Bt,Q = 0 for all (t;Q) ∈ I(w1). Repeating the previous
arguments we deduce that Bt,Q = 0 for all (t;Q) ∈ I as required.

We have proved that g − g(−1)Φ̃ = 0. Thus 1 0 0
0 Id 0

g0/g (gt,Q/g)(t;Q)∈I 1

(−1)(
1 0
0 Φ

)
=

1 0 0
0 Φ′ 0
0 0 1

 1 0 0
0 Id 0

g0/g (gt,Q/g)(t;Q)∈I 1

 .

By [10, Prop. 2.2.1] we see that the common denominator b of g0/g and gt,Q/g
for (t,Q) ∈ I belongs to Fq[t] \ {0}. If we put δ0 = bg0/g and δt,Q = bgt,Q/g for

(t,Q) ∈ I which belong to K[t] and δ := (δt,Q)t∈I ∈ Mat1×|I|(K[t]), then δ
(−1)
0 = δ0

and (
Id 0
δ 1

)(−1)(
Φ′ 0
bv 1

)
=

(
Φ′ 0
0 1

)(
Id 0
δ 1

)
.(2.12)

If we put X :=

(
Id 0
δ 1

)(
Ψ′ 0
bf 1

)
, then X(−1) =

(
Φ′ 0
0 1

)
X. By [28, §4.1.6]

there exist νt,Q ∈ Fq(t) for (t,Q) ∈ I such that if we set ν = (νt,Q)(t,Q)∈I ∈
Mat1×|I|(Fq(t)),

X =

(
Ψ′ 0
0 1

)(
Id 0
ν 1

)
.



ZAGIER-HOFFMAN’S CONJECTURES IN POSITIVE CHARACTERISTIC 25

Thus the equation

(
Id 0
δ 1

)(
Ψ′ 0
bf 1

)
=

(
Ψ′ 0
0 1

)(
Id 0
ν 1

)
implies

(2.13) δΨ′ + bf = ν.

The left-hand side belongs to T, so does the right-hand side. Thus ν = (νt,Q)(t,Q)∈I ∈
Mat1×|I|(Fq[t]). For any j ∈ N, by specializing (2.13) at t = θq

j

and using (2.3) and

the fact that Ω has a simple zero at t = θq
j

we deduce that

f(θ) = ν(θ)/b(θ).

Thus for all (t,Q) ∈ I, ft,Q(θ) given as in (2.8) belongs to K. The proof is complete.
�

3. Linear relations among ACMPL’s

In this section we use freely the notation of §1 and §2.2.3.

3.1. Preliminaries.

We begin this section by proving several auxiliary lemmas which will be useful
in the sequel.

Lemma 3.1. Let εi ∈ F×q be different elements. We denote by γi ∈ Fq a (q − 1)-th
root of εi. Then γi are all Fq-linearly independent.

Proof. We know that F×q is cyclic as a multiplicative group. Let ε be a generating

element of F×q so that F×q = 〈ε〉. Let γ be the associated (q − 1)-th root of ε. Then

for all 1 ≤ i ≤ q − 1 it follows that γi is a (q − 1)-th root of εi. Thus it suffices to
show that the polynomial P (X) = Xq−1 − ε is irreducible in Fq[X]. Suppose that
this is not the case, write P (X) = P1(X)P2(X) with 1 ≤ degP1 < q − 1. Since the
roots of P (X) are of the form αγ with α ∈ F×q , those of P1(X) are also of this form.

Looking at the constant term of P1(X), we deduce that γdegP1 ∈ F×q . If we put

m = pgcd(degP1, q− 1), then 1 ≤ m < q− 1 and γm ∈ F×q . Letting β := γm ∈ F×q ,

we get β
q−1
m = γq−1 = ε. Since 1 ≤ m < q − 1, we get a contradiction with the fact

that F×q = 〈ε〉. The proof is finished. �

Lemma 3.2. Let Li

(
εi
si

)
∈ ALw and ai ∈ K satisfying∑

i

aiLi(si; εi)(θ) = 0.

For ε ∈ F×q we denote by I(ε) = {i : χ(εi) = ε} the set of pairs such that the

corresponding character equals ε. Then for all ε ∈ F×q ,∑
i∈I(ε)

aiLi(si; εi)(θ) = 0.

Proof. We keep the notation of Lemma 3.1. Suppose that we have a relation∑
i

γiai = 0

with ai ∈ K∞. By Lemma 3.1 and the fact that K∞ = Fq((1/θ)), we deduce that
ai = 0 for all i.
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By (2.5) the relation
∑
i aiLi(si; εi)(θ) = 0 is equivalent to the following one∑
i

aiγi1 . . . γi`i Li

(
εi
si

)
= 0.

By the previous discussion, for all ε ∈ F×q ,∑
i∈I(ε)

aiγi1 . . . γi`i Li

(
εi
si

)
= 0.

By (2.5) again we deduce the desired relation∑
i∈I(ε)

aiLi(si; εi)(θ) = 0.

�

Lemma 3.3. Let m ∈ N, ε ∈ F×q , δ ∈ K[t] and F (t, θ) ∈ Fq[t, θ] (resp. F (t, θ) ∈
Fq[t, θ]) satisfying

εδ = δ(−1)(t− θ)m + F (−1)(t, θ).

Then δ ∈ Fq[t, θ] (resp. δ ∈ Fq[t, θ]) and

degθ δ ≤ max

{
qm

q − 1
,

degθ F (t, θ)

q

}
.

Proof. The proof follows the same line as that of [23, Theorem 2] where it is shown
that if F (t, θ) ∈ Fq[t, θ] and ε = 1, then δ ∈ Fq[t, θ]. We write down the proof for

the case F (t, θ) ∈ Fq[t, θ] for the convenience of the reader.

By twisting once the equality εδ = δ(−1)(t− θ)m + F (−1)(t, θ) and the fact that
εq = ε, we get

εδ(1) = δ(t− θq)m + F (t, θ).

We put n = degt δ and express

δ = ant
n + · · ·+ a1t+ a0 ∈ K[t]

with a0, . . . , an ∈ K. For i < 0 we put ai = 0.

Since degt δ
(1) = degt δ = n < δ(t− θq)m = n+m, it follows that degt F (t, θ) =

n+m. Thus we write F (t, θ) = bn+mt
n+m+ · · ·+b1t+b0 with b0, . . . , bn+m ∈ Fq[θ].

Plugging into the previous equation, we obtain

ε(aqnt
n + · · ·+ aq0) = (ant

n + · · ·+ a0)(t− θq)m + bn+mt
n+m + · · ·+ b0.

Comparing the coefficients tj for n+ 1 ≤ j ≤ n+m yields

aj−m +

n∑
i=j−m+1

(
m

j − i

)
(−θq)m−j+iai + bj = 0.

Since bj ∈ Fq[θ] for all n + 1 ≤ j ≤ n + m, we can show by descending induction

that aj ∈ Fq[θ] for all n+ 1−m ≤ j ≤ n.

If n+ 1−m ≤ 0, then we are done. Otherwise, comparing the coefficients tj for
m ≤ j ≤ n yields

aj−m +

n∑
i=j−m+1

(
m

j − i

)
(−θq)m−j+iai + bj − εaqj = 0.
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Since bj ∈ Fq[θ] for all m ≤ j ≤ n and aj ∈ Fq[θ] for all n+ 1−m ≤ j ≤ n, we can

show by descending induction that aj ∈ Fq[θ] for all 0 ≤ j ≤ n −m. We conclude

that δ ∈ Fq[t, θ].
We now show that degθ δ ≤ max{ qmq−1 ,

degθ F (t,θ)
q }. Otherwise, suppose that

degθ δ > max{ qmq−1 ,
degθ F (t,θ)

q }. Then degθ δ
(1) = q degθ δ. It implies that degθ δ

(1) >

degθ(δ(t− θq)m) = degθ δ + qm and degθ δ
(1) > degθ F (t, θ). Hence we get

degθ(εδ
(1)) = degθ δ

(1) > degθ(δ(t− θq)m + F (t, θ)),

which is a contradiction. �

3.2. Linear relations: statement of the main result.

Theorem 3.4. Let w ∈ N. We recall that the set J′w consists of positive tuples
s = (s1, . . . , sn) of weight w such that q - si for all i. Suppose that we have a non
trivial relation

a+
∑

si∈J′w

aiLi(si; εi)(θ) = 0, for a, ai ∈ K.

Then q − 1 | w and a 6= 0.

Further, if q − 1 | w, then there is a unique relation

1 +
∑

si∈J′w

aiLi(si; εi)(θ) = 0, for ai ∈ K.

In particular, the ACMPL’s in ASw are linearly independent over K.

Remark 3.5. We stress that although Theorem 3.4 is purely a transcendental
result, it is crucial that we do need the full strength of the algebraic theory for
ACMPL’s (i.e., Theorem 1.10) to conclude (see the last step of the proof).

As a direct consequence of Theorem 3.4, we obtain:

Theorem 3.6. Let w ∈ N. Then the ACMPL’s in ASw form a basis for ALw. In
particular,

dimK ALw = s(w).

Proof. By Theorem 3.4 the ACMPL’s in ASw are all linearly independent over K.
Then by Theorem 1.10 we deduce that the ACMPL’s in ASw form a basis for ALw.
Hence dimK ALw = |ALw| = s(w) as required. �

3.3. Proof of Theorem 3.4. It is clear that if q − 1 - w, then any linear relation

a+
∑

si∈J′w

aiLi(si; εi)(θ) = 0

with a, ai ∈ K implies that a = 0.

The proof is by induction on the weight w ∈ N. For w = 1, by the previous
remark it suffices to show that if

a+
∑
i

aiLi(1; εi)(θ) = 0,
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then ai = 0 for all i. In fact, it follows immediately from Lemma 3.2. Suppose that
Theorem 3.4 holds for all w′ < w. We now prove that it holds for w. Suppose that
we have a linear relation

(3.1) a+
∑
i

aiLi(si; εi)(θ) = 0.

By Lemma 3.2 we can suppose further that εi has the same character, i.e., there
exists ε ∈ F×q such that for all i,

(3.2) χ(εi) = εi1 . . . εi`i = ε.

We now apply Theorem 2.4 to our setting of ACMPL’s. We know that the
hypothesis are verified:

(LW) By the induction hypothesis, for any weight w′ < w, the values Li(t; ε)(θ)
with (t; ε) ∈ I and w(t) = w′ are all K-linearly independent.

(LD) By (3.1), there exist a ∈ A and ai ∈ A for 1 ≤ i ≤ n which are not all zero
such that

a+

n∑
i=1

aiLi(si; εi)(θ) = 0.

Thus Theorem 2.4 implies that for all (t; ε) ∈ I, ft,ε(θ) belongs to K where ft,ε is
given by

ft;ε :=
∑
i

ai(t)Li(si(k+1), . . . , si`i ; εi(k+1), . . . , εi`i).

Here, the sum runs through the set of indices i such that (t; ε) = (si1, . . . , sik; εi1, . . . , εik)
for some 0 ≤ k ≤ `i − 1.

We derive a direct consequence of the previous rationality result. Let (t; ε) ∈ I
and t 6= ∅. Then (t; ε) = (si1, . . . , sik; εi1, . . . , εik) for some i and 1 ≤ k ≤ `i− 1. We
denote by J(t; ε) the set of all such i. We know that there exists b ∈ K such that

b+ ft;ε = 0,

or equivalently,

b+
∑

i∈J(t;ε)

ai(t)Li(si(k+1), . . . , si`i ; εi(k+1), . . . , εi`i) = 0.

The ACMPL’s appearing in the above equality belong to ASw−w(t). By the in-
duction hypothesis, we can suppose that εi(k+1) = · · · = εi`i = 1. Further, if
q − 1 - w − w(t), then ai(t) = 0 for all i ∈ J(t; ε). Therefore, letting si =
(si1, . . . , si`i ; εi1, . . . , εi`i) we can suppose that si2, . . . , si`i are all divisible by q− 1
and εi2 = · · · = εi`i = 1. In particular, for all i, εi1 = χ(εi) = ε.

Now we want to solve (2.12) and we can assume that b = 1. We define

J := I ∪ {(si; εi)}

For (t; ε) ∈ J we denote by J0(t; ε) consisting of (t′; ε′) ∈ I such that there
exist i and 0 ≤ j < `i so that (t; ε) = (si1, si2, . . . , sij ; ε, 1, . . . , 1) and t′ =
(si1, si2, . . . , si(j+1); ε, 1, . . . , 1). In particular, for (t; ε) = (si; εi), J0(t; ε) is the
empty set. For (t; ε) ∈ J \ ∅, we also put

mt :=
w − w(t)

q − 1
∈ Z≥0.
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Then it is clear that (2.12) is equivalent finding (δt,ε)(t;ε)∈J ∈ Mat1×|J|(K[t]) such
that
(3.3)

δt,ε = δ
(−1)
t,ε (t− θ)w−w(t) +

∑
(t′,ε′)∈J0(t,ε)

δ
(−1)
t′,ε′ (t− θ)w−w(t), for all (t, ε) ∈ J \ ∅,

and

(3.4) δt,ε = δ
(−1)
t,ε (t−θ)w−w(t)+

∑
(t′,ε′)∈J0(t,ε)

δ
(−1)
t′,ε′ γ

(−1)(t−θ)w−w(t), for (t, ε) = ∅.

Here γq−1 = ε. In fact, for (t, ε) = (si, εi), the corresponding equation becomes

δsi,εi = δ
(−1)
si,εi . Thus δsi,εi = ai(t) ∈ Fq[t].

Letting y be a variable, we denote by vy the valuation associated to the place y
of the field Fq(y). We put

T := t− tq, X := tq − θq.

We claim that

1) For all (t, ε) ∈ J \ ∅, the polynomial δt,ε is of the form

δt,ε = ft

(
Xmt +

mt−1∑
i=0

Pt,i(T )Xi

)
where

– ft ∈ Fq[t],
– for all 0 ≤ i ≤ mt − 1, Pt,i(y) belongs to Fq(y) with vy(Pt,i) ≥ 1.

2) For all t ∈ J \ ∅ and all t′ ∈ J0(t), there exists Pt,t′ ∈ Fq(y) such that

ft′ = ftPt,t′(T ).

In particular, if ft = 0, then ft′ = 0.

The proof is by induction on mt. We start with mt = 0. Then t = si and ε = εi
for some i. We have observed that δsi,εi = ai(t) ∈ Fq[t]. Thus we are done.

Suppose that the claim holds for all (t, ε) ∈ J \ ∅ with mt < m. We now prove
the claim for all (t, ε) ∈ J \ ∅ with mt = m. In fact, we fix such t and want to find
δt,ε ∈ K[t] such that

(3.5) δt,ε = δ
(−1)
t,ε (t− θ)(q−1)m +

∑
(t′,ε′)∈J0(t;ε)

δ
(−1)
t′,ε′ (t− θ)(q−1)m.

By the induction hypothesis, for all (t′, ε′) ∈ J0(t; ε), we know that

δt′,ε′ = ft′

(
Xmt′ +

mt′−1∑
i=0

Pt′,i(T )Xi

)
where

• ft′ ∈ Fq[t],
• for all 0 ≤ i ≤ mt′ − 1, Pt′,i(y) ∈ Fq(y) with vy(Pt,i) ≥ 1.
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For (t′, ε′) ∈ J0(t; ε), we write t′ = (t, (m − k)(q − 1)) with 0 ≤ k < m and k 6≡ m
(mod q), in particular mt′ = k. We put fk = ft′ and Pt′,i = Pk,i so that

(3.6) δt′,ε′ = fk

(
Xk +

k−1∑
i=0

Pk,i(T )Xi

)
∈ Fq[t, θq].

By Lemma 3.3, δt,ε belongs to K[t], and degθ δt,ε ≤ mq. Further, since δt,ε
is divisible by (t − θ)(q−1)m, we write δt,ε = F (t − θ)(q−1)m with F ∈ K[t] and

degθ F ≤ m. Dividing (3.5) by (t− θ)(q−1)m and twisting once yields

(3.7) F (1) = F (t− θ)(q−1)m +
∑

(t′,ε′)∈J0(t,ε)

δt′,ε′ .

As δt′,ε′ ∈ Fq[t, θq] for all (t′, ε′) ∈ J0(t; ε), it follows that F (t− θ)(q−1)m ∈ Fq[t, θq].
As degθ F ≤ m, we get

F =
∑

0≤i≤m/q

fm−iq(t− θ)m−iq, for fm−iq ∈ Fq[t].

Thus

F (t− θ)(q−1)m =
∑

0≤i≤m/q

fm−iq(t− θ)mq−iq =
∑

0≤i≤m/q

fm−iqX
m−i,

F (1) =
∑

0≤i≤m/q

fm−iq(t− θq)m−iq =
∑

0≤i≤m/q

fm−iq(T +X)m−iq.

Putting these and (3.6) into (3.7) gets∑
0≤i≤m/q

fm−iq(T +X)m−iq

=
∑

0≤i≤m/q

fm−iqX
m−i +

∑
0≤k<m

k 6≡m (mod q)

fk

(
Xk +

k−1∑
i=0

Pk,i(T )Xi

)
.

Comparing the coefficients of powers of X yields the following linear system in the
variables f0, . . . , fm−1:

B∣∣y=T

fm−1

...
f0

 = fm

Qm−1

...
Q0

∣∣y=T

.

Here for 0 ≤ i ≤ m − 1, Qi =
(
m
i

)
ym−i ∈ yFq[y] and B = (Bij)0≤i,j≤m−1 ∈

Matm(Fq(y)) such that

• vy(Bij) ≥ 1 if i > j,
• vy(Bij) ≥ 0 if i < j,
• vy(Bii) = 0 as Bii = ±1.

The above properties follow from the fact that Pk,i ∈ Fq(y) and vy(Pk,i) ≥ 1. Thus
vy(detB) = 0 so that detB 6= 0. It follows that for all 0 ≤ i ≤ m−1, fi = fmPi(T )
with Pi ∈ Fq(y) and vy(Pi) ≥ 1 and we are done.
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To conclude, we have to solve (3.3) for (t; ε) = ∅. We have some extra work as
we have a factor γ(−1) on the right hand side of (3.4). We use γ(−1) = γ/ε and put
δ := δ∅,∅/γ ∈ K[t]. Then we have to solve

(3.8) εδ = δ(−1)(t− θ)w +
∑

(t′,ε′)∈J0(∅)

δ
(−1)
t′,ε′ (t− θ)w.

We distinguish two cases.

3.3.1. Case 1: q − 1 - w, says w = m(q − 1) + r with 0 < r < q − 1.

We know that for all (t′, ε′) ∈ J0(∅), says t′ = ((m−k)(q−1)+r) with 0 ≤ k ≤ m
and k 6≡ m− r (mod q),

(3.9) δt′,ε′ = fk

(
Xk +

k−1∑
i=0

Pk,i(T )Xi

)
∈ Fq[t, θq]

where

• fk ∈ Fq[t],
• for all 0 ≤ i ≤ k − 1, Pk,i(y) belongs to Fq(y) with vy(Pk,i) ≥ 1.

By Lemma 3.3, δ belongs to K[t]. We claim that degθ δ ≤ mq. Otherwise, we
have degθ δ∅ > mq. Twisting (3.8) once gets

εδ(1) = δ(t− θq)w +
∑

(t′;ε′)∈J0(∅)

δt′,ε′(t− θq)w.

As degθ δ > mq, we compare the degrees of θ on both sides and obtain

q degθ δ = degθ δ + wq.

Thus q − 1 | w, which is a contradiction. We conclude that degθ δ ≤ mq.
From (3.8) we see that δ is divisible by (t − θ)w. Thus we write δ = F (t − θ)w

with F ∈ K[t] and degθ F ≤ mq − w = m − r. Dividing (3.8) by (t − θ)w and
twisting once yields

(3.10) εF (1) = F (t− θ)w +
∑

(t′;ε′)∈J0(∅)

δt′ .

Since δt′;ε′ ∈ Fq[t, θq] for all (t′; ε′) ∈ J0(∅), it follows that F (t− θ)w ∈ Fq[t, θq]. As
degθ F ≤ m− r, we write

F =
∑

0≤i≤(m−r)/q

fm−r−iq(t− θ)m−r−iq, for fm−r−iq ∈ Fq[t].

It follows that

F (t− θ)w =
∑

0≤i≤(m−r)/q

fm−r−iq(t− θ)mq−iq =
∑

0≤i≤(m−r)/q

fm−r−iqX
m−i,

F (1) =
∑

0≤i≤(m−r)/q

fm−r−iq(t− θq)m−r−iq =
∑

0≤i≤(m−r)/q

fm−r−iq(T +X)m−r−iq.

Putting these and (3.9) into (3.10) yields

ε
∑

0≤i≤(m−r)/q

fm−r−iq(T +X)m−r−iq
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=
∑

0≤i≤(m−r)/q

fm−r−iqX
m−i +

∑
0≤k≤m

k 6≡m−r (mod q)

fk

(
Xk +

k−1∑
i=0

Pk,i(T )Xi

)
.

Comparing the coefficients of powers of X yields the following linear system in the
variables f0, . . . , fm:

B∣∣y=T

fm...
f0

 = 0.

Here B = (Bij)0≤i,j≤m ∈ Matm+1(Fq(y)) such that

• vy(Bij) ≥ 1 if i > j,
• vy(Bij) ≥ 0 if i < j,
• vy(Bii) = 0 as Bii ∈ F×q .

The above properties follow from the fact that Pk,i ∈ Fq(y) and vy(Pk,i) ≥ 1. Thus
vy(detB) = 0. Hence f0 = · · · = fm = 0. It follows that δ∅;∅ = 0 as δ = 0 and
δt′,ε′ = 0 for all (t′; ε′) ∈ J0(∅). We conclude that δt,ε = 0 for all (t, ε) ∈ J . In
particular, for all i, ai(t) = δsi,εi = 0, which is a contradiction. Thus this case can
never happen.

3.3.2. Case 2: q − 1 | w, says w = m(q − 1).

By similar arguments as above, we show that δ = F (t− θ)(q−1)m with F ∈ K[t]
of the form

F =
∑

0≤i≤m/q

fm−iq(t− θ)m−iq, for fm−iq ∈ Fq[t].

Thus

F (t− θ)(q−1)m =
∑

0≤i≤m/q

fm−iq(t− θ)mq−iq =
∑

0≤i≤m/q

fm−iqX
m−i,

F (1) =
∑

0≤i≤m/q

fm−iq(t− θq)m−iq =
∑

0≤i≤m/q

fm−iq(T +X)m−iq.

Putting these and (3.6) into (3.8) gets

ε
∑

0≤i≤m/q

fm−iq(T +X)m−iq

=
∑

0≤i≤m/q

fm−iqX
m−i +

∑
0≤k<m

k 6≡m (mod q)

fk

(
Xk +

k−1∑
i=0

Pk,i(T )Xi

)
.

Comparing the coefficients of powers of X yields

εfm = fm

and the following linear system in the variables f0, . . . , fm−1:

B∣∣y=T

fm−1

...
f0

 = fm

Qm−1

...
Q0

∣∣y=T

.
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Here for 0 ≤ i ≤ m − 1, Qi =
(
m
i

)
ym−i ∈ yFq[y] and B = (Bij)0≤i,j≤m−1 ∈

Matm(Fq(y)) such that

• vy(Bij) ≥ 1 if i > j,
• vy(Bij) ≥ 0 if i < j,
• vy(Bii) = 0 as Bii ∈ F×q .

The above properties follow from the fact that Pk,i ∈ Fq(y) and vy(Pk,i) ≥ 1. Thus
vy(detB) = 0 so that detB 6= 0.

We distinguish two subcases.

Subcase 1: ε 6= 1.

It follows that fm = 0. Then f0 = · · · = fm−1 = 0. Thus δt,ε = 0 for all (t, ε) ∈ J .
In particular, for all i, ai(t) = δsi,εi = 0. This is a contradiction and we conclude
that this case can never happen.

Subcase 2: ε = 1.

It follows that γ ∈ F×q and thus

1) The polynomial δ∅;∅ = δγ is of the form

δ∅;∅ = f∅

(
Xm +

m−1∑
i=0

P∅,i(T )Xi

)
with

– f∅ ∈ Fq[t],
– for all 0 ≤ i ≤ m− 1, P∅,i(y) ∈ Fq(y) with vy(P∅,i) ≥ 1.

2) For all (t′, ε′) ∈ J0(∅), there exists P∅,t′ ∈ Fq(y) such that

ft′ = f∅P∅,t′(T ).

Hence there exists a unique solution (δt,ε)(t,ε)∈J ∈ Mat1×|J|(K[t]) of (3.3) up to a

factor in Fq(t). Recall that for all i, ai(t) = δsi,εi . Therefore, up to a scalar in K×,
there exists at most one non trivial relation

aπ̃w +
∑
i

ai Li

(
εi
si

)
= 0

with ai ∈ K and Li

(
εi
si

)
∈ ASw. Further, we must have εi = (1, . . . , 1) for all i.

To conclude, it suffices to exhibit such a relation with a 6= 0. In fact, we recall

w = (q−1)m and then express Li(q−1)m = Li

(
1

q − 1

)m
as a K-linear combination

of ACMPL’s of weight w. By Theorem 1.9, we can write

Li(q − 1)m = Li

(
1

q − 1

)m
=
∑
i

ai Li

(
εi
si

)
= 0, where ai ∈ K, Li

(
εi
si

)
∈ ASw.

We note that Li(q − 1) = ζA(q − 1) = −D−1
1 π̃q−1. Thus

(−D1)mπ̃w −
∑
i

ai Li

(
εi
si

)
= 0,

which is the desired relation. Hence we are done.
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4. Applications on AMZV’s and Zagier-Hoffman’s conjectures in
positive characteristic

In this section we give two applications of the study of ACMPL’s.

First we apply Theorem 3.6 to prove Theorem A which calculates the dimensions
of the vector space AZw of alternating multiple zeta values in positive characteristic
(AMZV’s) of fixed weight introduced by Harada [19]. Consequently we determine
all linear relations for AMZV’s. To do so we develop an algebraic theory to obtain
a weak version of Brown’s theorem for AMZV’s. Then we deduce that AZw and
ALw are the same and conclude. Contrary to the setting of MZV’s, although the
results are neat, we are unable to obtain neither sharp upper bounds nor sharp
lower bounds for AZw for general w without the theory of ACMPL’s.

Second we restrict our attention to MZV’s and determine all linear relations
among MZV’s. In particular, we obtain a proof of Zagier-Hoffman’s conjectures in
positive characteristic in full generality (i.e., Theorem B) and generalize the work
of one of the authors [27].

4.1. Linear relations among AMZV’s.

4.1.1. Preliminaries. For d ∈ Z and for s = (s1, . . . , sn) ∈ Nn, recalling Sd(s) and

S<d(s) given in §1.1.2, and further letting

(
ε
s

)
=

(
ε1 . . . εn
s1 . . . sn

)
be a positive

array, we recall (see §1.1.2)

Sd

(
ε
s

)
=

∑
a1,...,an∈A+

d=deg a1>···>deg an≥0

εdeg a1
1 . . . εdeg an

n

as11 . . . asnn
∈ K

and

S<d

(
ε
s

)
=

∑
a1,...,an∈A+

d>deg a1>···>deg an≥0

εdeg a1
1 . . . εdeg an

n

as11 . . . asnn
∈ K.

One verifies easily the following formulas:

Sd

(
ε
s

)
= εdSd(s),

Sd

(
1 . . . 1
s1 . . . sn

)
= Sd(s1, . . . , sn),

S<d

(
1 . . . 1
s1 . . . sn

)
= S<d(s1, . . . , sn),

Sd

(
ε
s

)
= Sd

(
ε1

s1

)
S<d

(
ε−
s−

)
.

Harada [19] introduced the alternating multiple zeta value (AMZV) as follows;

ζA

(
ε
s

)
=
∑
d≥0

Sd

(
ε
s

)
=

∑
a1,...,an∈A+

deg a1>···>deg an≥0

εdeg a1
1 . . . εdeg an

n

as11 . . . asnn
∈ K∞.
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Using Chen’s formula (see [12]), Harada proved that for s, t ∈ N and ε, ε ∈ F×q ,
we have

Sd

(
ε
s

)
Sd

(
ε
t

)
= Sd

(
εε
s+ t

)
+
∑
i

∆i
s,tSd

(
εε 1

s+ t− i i

)
,

where

(4.1) ∆i
s,t =

{
(−1)s−1

(
i−1
s−1

)
+ (−1)t−1

(
i−1
t−1

)
if q − 1 | i and 0 < i < s+ t,

0 otherwise.

He then proved similar results for products of AMZV’s (see [19]):

Proposition 4.1. Let

(
ε
s

)
,

(
ε
t

)
be two positive arrays. Then

(1) There exist fi ∈ Fp and arrays

(
µi
ui

)
with

(
µi
ui

)
≤
(
ε
s

)
+

(
ε
t

)
and

depth(ui) ≤ depth(s) + depth(t) for all i such that

Sd

(
ε
s

)
Sd

(
ε
t

)
=
∑
i

fiSd

(
µi
ui

)
for all d ∈ Z.

(2) There exist f ′i ∈ Fp and arrays

(
µ′i
u′i

)
with

(
µ′i
u′i

)
≤
(
ε
s

)
+

(
ε
t

)
and

depth(u′i) ≤ depth(s) + depth(t) for all i such that

S<d

(
ε
s

)
S<d

(
ε
t

)
=
∑
i

f ′iS<d

(
µ′i
u′i

)
for all d ∈ Z.

(3) There exist f ′′i ∈ Fp and arrays

(
µ′′i
u′′i

)
with

(
µ′′i
u′′i

)
≤
(
ε
s

)
+

(
ε
t

)
and

depth(u′′i ) ≤ depth(s) + depth(t) for all i such that

Sd

(
ε
s

)
S<d

(
ε
t

)
=
∑
i

f ′′i Sd

(
µ′′i
u′′i

)
for all d ∈ Z.

We denote by AZ the K-vector space generated by the AMZV’s and AZw the K-
vector space generated by the AMZV’s of weight w. It follows from Proposition 4.1
that AZ is a K-algebra under the multiplication of K∞.

4.1.2. Proof of Theorem A. We can extend an algebraic theory for AMZV’s which
follow the same line as that in §1. In particular, we can for Todd’s operations B∗Σ,V
and CΣ,V for the setting of AMZV’s.

Consequently, we obtain a weak version of Brown’s theorem for AMZV’s as
follows.

Proposition 4.2. The set of all elements ζA

(
ε
s

)
such that ζA

(
ε
s

)
∈ ATw forms

a set of generators for AZw. Here we recall that ATw is the set of all AMZV’s

ζA

(
ε
s

)
= Li

(
ε1 . . . εn
s1 . . . sn

)
of weight w such that s1, . . . , sn−1 ≤ q and sn < q

introduced in the paragraph preceding Proposition 1.9.

As a direct consequence, we get
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Theorem 4.3. The K-vector space AZw of AMZV’s of weight w and the K-vector
space ALw of ACMPL’s of weight w are the same.

By this identification we apply Theorem 3.6 to obtain Theorem A.

4.1.3. Sharp bounds without ACMPL’s. To end this section we mention that with-
out the theory of ACMPL’s it seems very hard to obtain for arbitrary weight w

• either the sharp upper bound dimK AZw ≤ s(w),
• or the sharp lower bound dimK AZw ≥ s(w).

We are only able to do so for small weights by ad hoc arguments. We collect the
results below, sketch some ideas of the proofs and omit long computations.

Proposition 4.4. Let w ≤ 2q − 2. Then dimK AZw ≤ s(w).

Proof. We denote by AT1
w the subset of AMZV’s ζA

(
ε
s

)
of ATw such that εi = 1

whenever si = q (i.e., the character corresponding to q is always 1) and by 〈AT1
w〉

the K-vector space spanned by the AMZV’s in AT1
w. We see that |AT1

w| = s(w).

Thus it suffices to prove that 〈AT1
w〉 = AZw.

Recall that for any ε ∈ F×q , we recall the relation

Rε : Sd

(
ε
q

)
+ ε−1D1Sd+1

(
ε 1
1 q − 1

)
= 0,

where D1 = θq − θ.
We recall that the coefficients ∆i

s,t are given in (4.1). Let U = (u1, . . . , un)
and W = (w1, . . . , wr) be tuples of positive integers such that un ≤ q − 1 and
w1, . . . , wr ≤ q. Let ε = (ε1, . . . , εn) ∈ (F×q )n and λ = (λ1, . . . , λr) ∈ (F×q )r. By
direct calculations, we show that Bε,UCλ,W (Rε) can be written as

Sd

(
ε ε λ
U q W

)
+ Sd

(
ε ελ1 λ−
U q + w1 W−

)
+ ∆q−1

q,w1
Sd

(
ε ελ1 1 λ−
U w1 + 1 q − 1 W−

)
+ ∆q−1

q,w1
Sd

(
ε ελ1 λ2 λ3 . . . λr
U w1 + 1 q + w2 − 1 w3 . . . wr

)
+ ∆q−1

q,w1

r−1∑
i=2

i∏
j=2

(∆q−1
q−1,wj

+ 1)Sd

(
ε ελ1 λ2 . . . λi λi+1 λi+2 . . . λr
U w1 + 1 w2 . . . wi q + wi+1 − 1 wi+2 . . . wr

)

+ ∆q−1
q,w1

r∑
i=2

i∏
j=2

(∆q−1
q−1,wj

+ 1)Sd

(
ε ελ1 λ2 . . . λi 1 λi+1 . . . λr
U w1 + 1 w2 . . . wi q − 1 wi+1 . . . wr

)

+ ε−1D1Sd

(
ε ε 1 λ
U 1 q − 1 W

)
+ ε−1D1Sd

(
ε ε λ1 λ−
U 1 q + w1 − 1 W−

)
+ ε−1D1Sd

(
ε1 . . . εn−1 εnε 1 λ
u1 . . . un−1 un + 1 q − 1 W

)
+ ε−1D1Sd

(
ε1 . . . εn−1 εnε λ1 λ−
u1 . . . un−1 un + 1 q + w1 − 1 W−

)
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+ ε−1D1

r−1∑
i=1

i∏
j=1

(∆q−1
q−1,wj

+ 1)Sd

(
ε ε λ1 . . . λi λi+1 λi+2 . . . λr
U 1 w1 . . . wi q + wi+1 − 1 wi+2 . . . wr

)

+ ε−1D1

r∑
i=1

i∏
j=1

(∆q−1
q−1,wj

+ 1)Sd

(
ε ε λ1 . . . λi 1 λi+1 . . . λr
U 1 w1 . . . wi q − 1 wi+1 . . . wr

)

+ ε−1D1

r∑
i=1

i∏
j=1

(∆q−1
q−1,wj

+ 1)Sd

(
ε1 . . . εn−1 εnε λ1 . . . λi 1 λi+1 . . . λr
u1 . . . un−1 un + 1 w1 . . . wi q − 1 wi+1 . . . wr

)

+ε−1D1

r−1∑
i=1

i∏
j=1

(∆q−1
q−1,wj

+ 1)Sd

(
ε1 . . . εn−1 εnε λ1 . . . λi λi+1 λi+2 . . . λr
u1 . . . un−1 un + 1 w1 . . . wi q + wi+1 − 1 wi+2 . . . wr

)
= 0.

We denote by (∗) this formula.

We denote by Hr the following claim: for any tuples of positive integers U and
W = (w1, . . . , wr) of depth r, ε ∈ (F×q )depthU of any depth, λ = (λ1, . . . , λr) ∈

(F×q )r, and ε ∈ F×q such that w(U) +w(W ) + q = w, the AMZV’s ζA

(
ε ε λ
U q W

)
and ζA

(
ε ε λ−
U q + w1 W−

)
belong to 〈AT1

w〉.

We claim that Hr holds for any r ≥ 0. The proof is by induction on r. For r = 0,
we know that W = ∅. Letting U = (u1, . . . , un) and ε = (ε1, . . . , εn) we apply the
formula (∗) to get an explicit expression for Bε,U (Rε) given by

Sd

(
ε ε
U q

)
+ ε−1D1Sd

(
ε ε 1
U 1 q − 1

)
+ ε−1D1Sd

(
ε1 . . . εn−1 εnε 1
u1 . . . un−1 un + 1 q − 1

)
= 0.

Since ui ≤ w(U) = w− q ≤ q− 2, we deduce that ζA

(
ε ε
U q

)
∈ 〈AT1

w〉 as required.

Suppose that Hr′ holds for any r′ < r. We now show that Hr holds. We proceed
again by induction on w1. For w1 = 1, letting U = (u1, . . . , un) and ε = (ε1, . . . , εn)
we apply the formula (∗) to get an explicit expression for Bε,UCλ,W (Rε). As w(U)+
w(W ) = w − q ≤ q − 2, by induction we deduce that all the terms except the first

two ones in this expression belong to 〈AT1
w〉. Thus for any ε ∈ F×q ,

(4.2) ζA

(
ε ε λ
U q W

)
+ ζA

(
ε ελ1 λ−
U q + 1 W−

)
∈ 〈AT1

w〉.

We take ε = 1. As the first term lies in AT1
w by definition, we deduce that

ζA

(
ε λ1 λ−
U q + 1 W−

)
∈ 〈AT1

w〉.

Thus in (4.2) we now know that the second term lies in 〈AT1
w〉, which implies that

ζA

(
ε ε λ
U q W

)
∈ 〈AT1

w〉.

We suppose that Hr holds for all W ′ = (w′1, . . . , w
′
r) such that w′1 < w1. We have

to show that Hr holds for all W = (w1, . . . , wr). The proof follows the same line as
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before. Letting U = (u1, . . . , un) and ε = (ε1, . . . , εn) we apply the formula (∗) to
get an explicit expression for Bε,UCλ,W (Rε). As w(U) +w(W ) = w− q ≤ q− 2, by
induction we deduce that all the terms except the first two ones in this expression
belong to 〈AT1

w〉. Thus for any ε ∈ F×q ,

(4.3) ζA

(
ε ε λ
U q W

)
+ ζA

(
ε ελ1 λ−
U q + w1 W−

)
∈ 〈AT1

w〉.

We take ε = 1 and deduce

ζA

(
ε λ1 λ−
U q + w1 W−

)
∈ 〈AT1

w〉.

Thus in (4.3) the second term lies in 〈AT1
w〉, which implies

ζA

(
ε ε λ
U q W

)
∈ 〈AT1

w〉.

The proof is complete. �

Remark 4.5. The condition w ≤ 2q − 2 is essential in the previous proof as it
allows us to significantly simplify the expression of Bε,UCλ,W (Rε) (see Eq. (4.3)).
For w = 2q − 1 the situation is already complicated but we can manage to prove
Proposition 4.4. Unfortunately, we are not be able to extend it to w = 2q.

Proposition 4.6. Let w ≤ 3q − 2. Then dimK AZw ≥ s(w).

Proof. We denote by AT′w the subset of AMZV’s as follows.

• For 1 ≤ w ≤ 2q − 2, AT′w consists of ζA

(
ε
s

)
of weight w such that if we

write s = (s1, . . . , sr), then q − 1 - si.
• For 2q − 1 ≤ w ≤ 3q − 2, we consider Iw the set of tuples s = (s1, . . . , sr)

of weight w where si 6= q, 2q − 1, 2q, 3q − 2 for all i satisfying
– if si+1 = q or 2q − 1 for some i = 1, 2, . . . , r − 1, then q − 1|si,
– si 6= (q − 1, q − 1, q) when w = 3q − 2,

and define

AT′w :=

{
ζA

(
ε
s

)
: s ∈ Iw, and εi = 1 whenever si = q

}
.

Then for w ≤ 3q − 2, one shows that

|AT′w| = s(w).

Further, by construction, for any (s; ε) = (s1, . . . , sr; ε1, . . . , εr) ∈ Nr × (F×q )r, if

ζA

(
ε
s

)
∈ AT′w, then ζA

(
s1 . . . sr−1

ε1 . . . εr−1

)
belongs to AT′w−sr . This property allows

us to apply Theorem 2.4 and show by induction on w ≤ 3q− 2 that the AMZV’s in
AT′w are all linearly independent overK. The proof is similar to that of Theorem 3.4.
We apply Theorem 2.4 and reduce to solve a system of σ-linear equations. By direct
but complicated calculations, we show that there does not exist non trivial solutions
and we are done. �

Remark 4.7. 1) We note that the MZV’s ζA(1, 2q − 2) and ζA(2q − 1) (resp.
ζA(1, 3q − 3) and ζA(3q − 2)) are linearly dependent over K. This explains the
above ad hoc construction of AT′w.
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2) Despite extensive numerical experiments, we cannot find a suitable basis AT′w
for the case w = 3q − 1.

Consequently, by combining the previous results we obtain

• for w ≤ 2q − 1 a basis AT1
w of AZw consisting of AMZV’s of weight w (see

Remark 4.5);
• for w ≤ 3q−2 another basis AT′w of AZw consisting of AMZV’s of weight w;
• a direct proof of Theorem A for w ≤ 2q − 1, which generalizes [27, Theo-

rem D].

4.2. Zagier-Hoffman’s conjectures in positive characteristic.

4.2.1. Known results. We use freely the notation introduced in §0.2.1. We recall
that for w ∈ N, Zw denotes the K-vector space spanned by the MZV’s of weight w
and Tw denotes the set of ζA(s) where s = (s1, . . . , sr) ∈ Nr of weight w with
1 ≤ si ≤ q for 1 ≤ i ≤ r − 1 and sr < q.

Recall that the main results of [27] states that

• For all w ∈ N we always have dimK Zw ≤ d(w) (see [27, Theorem A]).
• For w ≤ 2q − 2 we have dimK Zw ≥ d(w) (see [27, Theorem B]). In partic-

ular, Conjecture 0.7 holds for w ≤ 2q − 2 (see [27, Theorem D]).

However, as stated in [27, Remark 6.3] it would be very difficult to extend the
method of [27] for general weights.

As an application of our main results, we present a proof of Theorem B which
settles both Conjectures 0.6 and 0.7.

4.2.2. Proof of Theorem B. As we have already known the sharp upper bound
for Zw (see [27, Theorem A]), Theorem B follows immediately from the following
proposition.

Proposition 4.8. For all w ∈ N we have dimK Zw ≥ d(w).

Proof. We denote by Sw the set of MZV’s consisting of Li(s1, . . . , sr) of weight w
with q - si for all i. Then Sw is a subset of ASw and belong to Zw by Theorem 4.3.
Further, by §1.4.1, |Sw| = d(w). By Theorem 3.4 we deduce that elements in Sw
are all linearly independent over K. Therefore, dimK Zw ≥ |Sw| = d(w). �
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