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Highlights  

- Maxillofacial geometry is shown to be associated with the risk of sleep apnea 

- Maxillofacial shape is first processed by geometric morphometrics 

- Machine learning analysis gives better results than traditional questionnaires 

- Digital medicine strategies for OSA diagnosis improve access to care 
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Abbreviations 

AASM: American Academy of Sleep Medicine 

AHI: Apnea-Hypopnea Index 

auROC: area under the Receiver Operating Characteristic curve 

BMI: Body Mass Index 

GPA: Generalized Procrustes Analysis 

HTA: Hypertension 

ICSD: International Classification of Sleep Disorders 

OSA: Obstructive Sleep Apnea 

PCA: Principal Component Analysis 

PCs: Principal components 

PSG: Polysomnography 
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Abstract  

Background. Obstructive sleep apnea (OSA) remains massively underdiagnosed, due to 

limited access to polysomnography (PSG), the highly complex gold standard for diagnosis. 

Performance scores in predicting OSA are evaluated for machine learning (ML) analysis 

applied to 3D maxillofacial shapes. 

Methods. The 3D maxillofacial shapes were scanned on 280 Caucasian men with suspected 

OSA. All participants underwent single night in-home or in-laboratory sleep testing with PSG 

(Nox A1, Resmed, Australia), with concomitant 3D scanning (Sense v2, 3D systems 

corporation, USA). Anthropometric data, comorbidities, medication, BERLIN, and NoSAS 

questionnaires were also collected at baseline. The PSG recordings were manually scored at 

the reference sleep center. The 3D craniofacial scans were processed by geometric 

morphometrics, and 13 different supervised algorithms, varying from simple to more 

advanced, were trained and tested. Results for OSAS recognition by ML models were then 

compared with scores for specificity and sensitivity obtained using BERLIN and NoSAS 

questionnaires.  

Results. All valid scans (n=267) were included in the analysis (patient mean age: 59±9 

years; BMI: 27±4 kg/m2). For PSG-derived AHI≥15 events/h, the 56% specificity obtained for 

ML analysis of 3D craniofacial shapes was higher than for the questionnaires (Berlin: 50%; 

NoSAS: 40%). A sensitivity of 80% was obtained using ML analysis, compared to nearly 90% 

for NoSAS and 61% for the BERLIN questionnaire. The auROC score was further improved 

when 3D geometric morphometrics were combined with patient anthropometrics 

(auROC=0.75). 

Conclusion. The combination of 3D geometric morphometrics with ML is proposed as a 

rapid, efficient, and inexpensive screening tool for OSA. 

Trial registration number: NCT03632382; Date of registration: 15-08-2018 
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1. Introduction 

Obstructive sleep apnea (OSA) is defined as recurrent episodes of upper airway obstruction 

during sleep [1]. Diagnosis of OSA is mainly based on respiratory indices, such as apneas 

and hypopneas, measured by full polysomnography (PSG). Considered as the gold 

standard, PSG remains a cumbersome diagnostic method, resulting in limited and therefore 

inequitable access to care. The PSG method requires scoring expertise, and data 

interpretation is time-consuming. Due to these limitations, the worldwide health system faces 

a challenging situation, with an OSA population of approximately 1 billion patients, and a still 

undiagnosed population, estimated at over 30 million in Europe alone [2-4]. The considerable 

social and economic impacts of OSA [5] create a pressing need to resolve this diagnostic 

bottleneck. 

The pathophysiology of OSA results from anatomical upper airway narrowing, and from 

reduced pharyngeal dilator muscle activity during sleep [6, 7]. Specific craniofacial profiles 

have been identified as being associated with reduced upper airway size, so that patient 

morphology may be considered a relevant predictor for OSA [8-10]. Abnormal maxillofacial 

characteristics typically linked to OSA are a long face [11, 12], together with mandibular 

prognathism or retrognathism [12-16]. Imaging techniques including cephalometry [13, 16], 

computed tomography [17,18], magnetic resonance imaging [9,19-21], and digital 

photography have been developed to map these craniofacial structures [22]. Recently, 2D 

and 3D scans have been used to characterize maxillofacial structure [23-25]. It has been 

shown that 3D photography allows the assessment of facial characteristics as an alternative 

to MRI [26]. Another study confirmed that 3D photography is strongly correlated with 3D 

computed tomography (CT) [25]. With the emergence of artificial intelligence, several tools 

have been developed to improve OSA prediction [27, 28]. Machine learning (ML) and deep 

learning models have been used to identify OSA patients based on 2D and 3D photographs 

[28, 29]. 
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Here, taking as reference the results obtained by PSG, the primary objective was to 

investigate the reliability of OSA diagnosis obtained by the 3D geometric morphometric 

analysis of maxillofacial scans, combined with ML analysis. The novelty of this study is that 

the dataset consists of the entire 3D surface, not only the frontal and profile images, or depth 

maps. Another originality is that a data-driven approach based on ML analysis can be 

performed in 10 minutes, economizing both time and resources. The secondary objective 

was to compare these results with the performance scores obtained with two questionnaires: 

the Berlin [30, 31], and the NoSAS [32, 33]. 

 

2. Materials and methods 

 

2.1. Study Design 

The EPISAS monocentric prospective study was conducted at the Grenoble Alpes University 

Hospital from 2018 to 2020. The study was registered on Clinicaltrials.gov (NCT03632382). 

Consecutive adult Caucasian men (age≥40) with suspected OSA, referred for gold standard 

PSG, were invited to participate. Exclusion criteria were previous maxillofacial interventions 

or dental malocclusion, body mass index (BMI) ≥35 kg/m2, or a thick beard (impeding 

maxillofacial characterization). All participants signed written informed consent. 

 

2.2. Data collected at inclusion 

Patient anthropometric and comorbidity data were collected. Berlin and NoSAS 

questionnaires were also completed. Scores of at least two out of three for BERLIN [30, 31], 

and eight for NoSAS [32, 33], were considered as OSA predictors (e-Fig. 1 and e-Fig. 2). 

 

 

2.3. Polysomnography (PSG) 



8 

 

Nocturnal in-home or in-lab PSG was performed with a Nox A1 polygraph (ResMed, 

Australia). Sleep measurements were recorded using sensors for airflow, respiratory effort, 

snoring, SaO2, eye and leg movements, chin electromyography (EMG), the electrical activity 

of the heart (ECG) and brain (EEG), following American Academy of Sleep Medicine (AASM) 

recommendations for good practices [34]. The PSG signals were manually scored by experts 

from the Grenoble Alpes University Hospital, France, following the criteria recommended by 

the AASM [35]. Apnea was defined as a complete cessation of airflow lasting 10 s or longer 

and was classified as obstructive, central, or mixed, depending on the presence or absence 

of respiratory effort. Hypopnea was scored using the AASM definition, requiring at least a 

30% reduction in airflow lasting 10 s or longer, and associated with a decrease of at least 3% 

in oxygen saturation, as measured by pulse oximetry, or arousal [35, 36]. Diagnosis of OSA 

was established according to the International Classification of Sleep Disorders, 3rd edition 

[37]. The sleep apnea diagnostic threshold was set at 15 events/h. 

 

 

2.4. 3D geometric morphometrics of the craniofacial and submandibular structure 

 

2.4.1. Acquisition 

To characterize properly the geometry of the neck and the submandibular area, all 3D scans 

were acquired at the Grenoble Alpes Hospital by the same clinical research assistant, who 

was specifically trained for the present study. A hand-held commercial scanner, Sense v2 

(3D systems USA), was used to generate 3D maxillofacial models with a resolution and 

precision of 1-2 mm. Seven landmarks were established on the 3D models (Fig. 1). Four 

were easily identified: one at each earlobe (LM1, LM3), one at the nasal bridge (LM2), and 

one at the tip of the chin (LM4). As no obvious landmarks could systematically be identified 

to constrain the lower part of the area of interest, a colored target was placed on each 

acromioclavicular joint (LM5, LM7), with a final target on the sternal fork (LM6).  
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Figure 1: Position of the 7 landmarks on a typical 3D model. Colored targets are manually placed at LM5, LM6, 

and LM7 before scanning. 

 

 

Between-subject consistency for head position was ensured using a mount equipped with 

bubble levels (Fig. 2a) to maintain the horizontality of the plane passing through the upper 

part of the ears and the eyes (Fig. 2b). A slot in the eyeglass frame was used to align the 

eyes (Fig. 2c).  

 

 

Figure 2: The prototype ensuring the horizontality of the reference plane on both axes. A: the mount with bubble 

levels; B: an example of use; C: the slot on the side of the frame allows the eyes to be aligned. 

 

Each participant had to raise, lower, or incline his head until the horizontality of this plane 

was reached, and a neutral facial expression was required. At 18 different times during the 

entire period of data collection, a member of the technical staff was scanned to compare the 
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repeatability of the acquisition procedure with the naturally occurring variations observed 

within the patient cohort. The entire 3D scanning procedure lasted about 10 minutes. 

 

2.4.2. Data preparation 

The 3D scans were cleaned and repaired to eliminate any unreferenced vertices, non-

manifold edges, and small disconnected parts. The resulting models were saved in PLY 

format, which is a common polygon file format describing 3D objects as a collection of 

vertices, faces, and other associated elements, such as normal direction, color, etc. 

Structurally, it encompasses a file header, the vertex, the face lists, and the attached 

elements [38]. The seven landmarks (LM1 to LM7, Fig. 1) were manually positioned on the 

textured meshes. Their 3D coordinates were then used to align all patient meshes in a 

common space, using a Generalized Procrustes Analysis (GPA) [39], applying bilateral 

symmetry for LM1 and LM3, the pair located under the ears, and for LM5 and LM7, the pair 

on the acromioclavicular joints [40]. Note that size is eliminated at this step. A mesh close to 

the mean shape was used to build the atlas of semi-landmarks (n=500) on a surface 

constrained by the seven landmarks (Fig. 3a). This atlas was projected onto the surface of 

the other meshes using the seven landmarks as reference (Fig. 3b), to capture soft tissue 

geometry as accurately as possible [41], in particular for the neck, where no clear landmarks 

are present. To favor homology, the semi-landmarks were allowed to slide, minimizing the 

total bending energy of the thin plate splines, before being reprojected onto the mesh 

surfaces [42]. A GPA was then applied to re-align all meshes, using not only the seven 

original landmarks but also the 500 slid semi-landmarks. 
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Figure 3: Atlas production and projection onto the mesh surfaces. A: restriction of the area of interest using the 7 

landmarks, template for an atlas with 500 semi-landmarks; B: the atlas is projected onto all meshes (in red) and 

allowed to slide (in blue). 

 

2.4.3. Dimensionality reduction 

A total of 507 points was available to characterize each patient’s maxillofacial shape. To 

reduce the number of variables, while maintaining a proper description of between-individual 

geometric variation, a principal component analysis (PCA) was computed on the Procrustes-

aligned coordinates after their projection onto the space tangent to the mean shape. The first 

3 principal components (PCs) expressed over two-thirds of the total variance, while 95% of 

the total variance was captured with only 20 PCs. In the following, several tests are 

presented to assess the smallest number of PCs required for optimal OSA prediction. 

  

2.5. Machine learning algorithms and performance scores 

 

2.5.1. Underlying idea 

An AHI threshold of 15 events/h (measured by PSG) was used to define the presence or 

absence of OSA. The goal was to build a supervised mathematical model (i.e. a decision 

rule) where this binary condition (yc, with c ∈ [0,1] for negative OSA and positive OSA, 

respectively) must be predicted from x, a vector corresponding to the m shape descriptors 

retained, expressed in the form of PCs, x = {PC1,..., PCm}. A total of 11 classifiers was tested, 



12 

 

from the simplest to the most sophisticated: naive Bayes, linear and quadratic discriminant 

analyses (LDA & QDA), k-nearest neighbors (k-NN), support vector machine (SVM) with 

different kernel types (linear, polynomial, or using a radial basis function, namely rbf), extra 

trees, random forest (RF), artificial neural network (ANN), adaptative boosting (AdaBoost), 

and extreme gradient boosting (XGBoost). The underlying principles of these ML algorithms 

applied to binary classification can be found in many textbooks [43-45]. Note that other 

descriptors, such as anthropometric variables and symptoms, were later introduced into the 

analysis using XGBoost because this algorithm can also process categorical variables. 

 

2.5.2. Model performance 

 A nested cross-validation method was used to evaluate model performance [46]. It divides 

the cohort into several parts (here 4), used for the outer loop. Sequentially, each of these 

parts is used for evaluation, with the remainder used for training. For training and 

hyperparameter tuning, the data are further divided into several parts (here also 4), used for 

the inner loop. All individuals are thus used alternately either for training or for evaluation, so 

that performance estimates are expected to be almost without bias [47]. The area under the 

receiver operating characteristic curve (auROC) was used as the main performance metric 

for classification, but specificity and sensitivity are also reported, for information. 

 

2.6. Practical implantation 

Morphometric data were prepared with the R v3.3 programming language (https://www.r-

project.org/), using mainly the Morpho [48] and geomorph packages [49]. The ML phase was 

carried out with a homemade snippet programmed under Python 3.7 

(https://www.python.org/), using the scikit-learn (https://scikit-learn.org) and XGBoost 

(https://xgboost.readthedocs.io/) libraries. Mesh cleaning was performed using the free 

Meshlab software (https://www.meshlab.net/). 

3. Results 



13 

 

3.1.  Study flow and population 

Of the 1251 patients screened, only 280 were suitable for inclusion in the study (e-Fig. 3). 

The poor quality of some 3D scans (under 4%) reduced the study cohort to 267 participants 

with valid data. Table 1 presents the characteristics of the study population. 

Table1. Description of the population at baseline (n=267). AHI: Apnea-Hypopnea Index; BMI: Body Mass index; 

COPD: Chronic Obstructive Pulmonary Disease; IDM: myocardial infarction; ESS: Epworth Sleepiness Scale. 

 

3.2. OSA prediction based on BERLIN and NoSAS questionnaires 

Variables 
 

n (%) 
mean [min; max] 

Sex: M 267 (100%) 
Age (yr) 59.2 [40-75] 
BMI (kg/m2) 27 [18.3-35.1] 
AHI (events/h) 23.7 [0.5-99.5] 
Mallampati Class 

1 
2 
3 
4 

 
26 (9.7%) 
96 (35.9%) 
95 (35.5%) 
50 (18.7%) 

Neck circumference (cm) 40.3 [34-48] 
Waist circumference (cm) 101.4 [71-182] 
Hip circumference (cm) 101.9 [78-131] 
AHI (events/h) 23.7 [0.5-99.3] 
BERLIN score ≥2 153 (57.3%) 
NoSAS score ≥8 63 (23.6%) 
ESS 
 

9 [0-24] 

Comorbidities 
Hypertension 
Coronary heart disease 
Stroke or transient ischemic attacks 
Heart failure 
IDM 
Arrhythmia 
Other cardiovascular disease 
Cancer 
Type 1 diabetes 
Type 2 diabetes 
Renal failure 
Chronic Obstructive Pulmonary Disease (COPD) 
 

 
107 (40.1%) 
20 (7.5%) 
49 (18.4%) 
23 (8.6%) 
37 (13.8%) 
24 (9%) 
10 (3.7%) 
10 (3.7%) 
6 (2.2%) 
35 (13.1%) 
8 (3%) 
13 (4.9%) 

Treatments 
Diabetic drugs (A10) 
Cardiovascular system agents (C01) 
Anti-hypertensives (C02) 
Diuretics 

 
46 (17.2%) 
14 (5.2%) 
8 (3%) 
39 (14.6%) 
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A BERLIN score ≥ 2 corresponded to a sensitivity of 61% and a specificity of 50%, with a 

positive predictive value of 0.57. A NoSAS score ≥ 8 was associated with an auROC of 0.7, 

with a sensitivity of nearly 90%, a specificity of less than 40%, and a high positive predictive 

value of 0.77. 

 

3.3. OSA prediction from morphometric data alone 

 

3.3.1. Reproducibility of the procedure 

The 18 replicates for the member of the technical staff are well clustered in the PCA 

morphospace, by comparison with the shape variation observed in the cohort (Fig. 4). 

 

 

Figure 4: Projection onto the morphospace of the cohort (in blue) and of a member of the technical staff acquired 

18 times (in red); left: PC2 vs. PC1; right:  PC3 vs. PC1. 

 

3.3.2. Influence of the number of PCs retained 

A preliminary test involving LDA was undertaken with an increasing number of PCs (from 2 

to 49) as input data. Since this classifier is linear by nature, it might not be optimal for our 

case study, but it is nevertheless considered sufficient to examine the discriminating power of 

the PCs. A simple Leave-One-Out Cross-Validation (LOOCV) procedure was applied for 

model evaluation to preserve the headcount. For up to 10 PCs (Fig. 5), the auROC was 

about 0.69 (e.g. with a sensitivity of 74%, and a specificity of 54% when 4 PCs were 
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processed). After that point, the auROC decreased as more PCs were added; this is a 

classic cost of dimensionality in classification tasks based on morphometric data. 

 

 

Figure 5: Influence of the number of PCs retained on the auROC score. 

 

3.3.3. Algorithm testing 

Further tests were carried out with the first 2 to 5 PCs, by applying 13 different supervised 

algorithms, varying from simple to more advanced ML techniques (Table 2). Given the cost 

of dimensionality with LDA and the higher complexity of most of the other ML algorithms 

tested, a parsimonious strategy concerning the number of feature inputs was adopted. 

Further experiments therefore took into account only 5 PCs at most. Whatever the model and 

the number of PCs retained, the auROC values were within the 0.62-0.70 range (i.e. always 

clearly better than 0.5, corresponding to random classification). In more detail, the ANN and 

RF algorithms probably suffer from a lack of data to be fully effective. The most efficient were 

LDA, Adaboost, extra trees classifier, XGBoost, and LR, with from 3 to 5 PCs. The LR 

classifier (including the first 3 PCs as feature inputs) was preferred at this step because it is 
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faster to compute. Scores obtained by nested cross-validation yielded an auROC of 0.70, 

with a sensitivity of 74%, and a specificity of 60% (Fig. 6). 

 

 

 

 

 

 

 

 

 

 

Table 2. The auROC evaluated by nested cross-validation for various ML models, and incorporating from 2 to 5 

PCs as explanatory variables. In bold, the scores above 0.7. ANN: Artificial Neural Network; k-NN: k-nearest 

neighbors; LDA: Linear Discriminant Analysis; LR: Logistic Regression; poly.: polynomial; QDA: Quadratic 

Discriminant Analysis; rbf: Radial Basis Function; RF: Random Forest; SVM: Support Vector Machine 

 

  

 Number of PCs included 
 2 3 4 5 

 
Naive Bayes 0.689 0.668 0.660 0.664 
LDA 0.699 0.703 0.697 0.703 
QDA 0.690 0.671 0.645 0.629 
LR 0.699 0.704 0.697 0.703 
k-NN 0.694 0.673 0.674 0.655 
SVM     

rbf 0.690 0.651 0.655 0.617 
poly. 0.699 0.669 0.639 0.615 

linear 0.699 0.701 0.689 0.702 
RF 0.669 0.680 0.671 0.662 
Extra trees 0.694 0.701 0.688 0.673 
ANN 0.648 0.645 0.671 0.702 
Adaboost 0.699 0.700 0.703 0.695 
XGboost 0.691 0.697 0.682 0.675 
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Figure 6: The ROC curve and associated 95% confidence interval for the LR classifier, with nested cross-

validation, considering the first three PCs derived from the morphological data alone. The auROC scores are also 

reported. 

 

 

3.4. OSA prediction from morphometric data, including questionnaires and anthropometric 

data 

Using simple descriptive statistics (Student’s t-test or Mann-Whitney U test, depending on 

the nature of the variables), ten anthropometric variables and symptoms were identified as 

significantly discriminating for OSA: hip, neck, and waist circumferences, age, BMI, 

Mallampati class, hypertension (HTA), witnessed apnea, and sleepiness while driving. These 

features were therefore processed together with the probability of belonging to the OSA risk 

group, provided by the LR model previously built from morphometric data alone. An XGBoost 

algorithm was applied at this step since it accepts both categorical and numerical variables 

as feature inputs. The inclusion of the above-mentioned variables in the model slightly 

boosted performance scores: the auROC reached 0.75, with a sensitivity of 80% and a 

specificity of 56% (Fig. 7). 
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Figure 7: The ROC curve and associated 95% confidence interval for the XGBoost classifier, with nested cross-

validation, considering the probabilities provided by the LR model together with a set of selected variables. The 

auROC scores are also reported. 

 

 

3.5. Visual prediction of OSA 

Shape differences between OSA and non-OSA groups were visualized using the linear 

discriminant function computed on 5 PCs. Predicted means for the two groups were 

unscaled and back-transformed on the coordinate scale. The reference mesh used to build 

the template was warped accordingly, using TPS. Shape changes predicted by the LDA (Fig. 

8) show that, on average, people belonging to the OSA group have relatively shorter and 

thicker necks, together with stronger retrognathism than those in the non-OSA group. This 

result is in conformity with the classical physical characteristics of OSA patients observed by 

clinicians [7, 50]. 
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Figure 8: Predicted shape changes along the linear discriminant function between the OSA and non-OSA groups. 

A) Predicted shapes for OSA and B) Non-OSA groups. C) Colors represent the distances from the predicted OSA 

shape and the non-OSA shape. 

 

 

4. Discussion 

4.1. Overall evaluation 

Several studies have previously assessed the performance of screening tools and scales, 

including the Epworth sleepiness scale (ESS), and the Berlin and NoSAS questionnaires [51-

53]. Although these methods are widely used nowadays for OSA identification, their low 

specificity leads to a high burden of subsequent negative PSG [53-55]. The accuracy of 

questionnaires depends on population characteristics [56, 57]. In a recent meta-analysis 

evaluating the Berlin questionnaire in different settings (n= 8222), pooled specificity varied 
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from 33% to 47% [51], a range consistent with our findings. Interestingly, the present study 

demonstrates that 3D geometric morphometrics, combined with an appropriate ML algorithm, 

exhibits a predictive performance for OSA diagnosis similar to that obtained from 

questionnaires and data routinely collected in sleep centers. When a selected set of 

anthropometric characteristics and symptoms complement the 3D maxillofacial data, the 

performance scores surpass those of the BERLIN questionnaire and advantageously 

complete those of the NoSAS questionnaire. Both these traditional methods present too low 

a specificity to be fully operational. This new screening tool therefore possesses the potential 

to bypass the complexity of current OSA diagnostic procedures, thus improving access to 

care, and reducing medical misclassifications. Another strength of our diagnostic tool is its 

accessibility; 3D scanning can be conducted in a few minutes during the daytime, in different 

settings, and even at home, at low cost. Data acquisition does not require a high level of 

expertise, and the analysis is fully automated. Note that the entire process can easily be 

implemented as an end-to-end digital solution. 

Existing studies have essentially been based on 2D analyses and/or photographs [58-60]. To 

the best of our knowledge, only one study has assessed anthropometrics combined with 

questionnaires and 3D scanning, reporting a sensitivity of 74% and a specificity of 63% [28]. 

Our study consistently improved performance, by 10 to 15%, by implementing 3D scans 

together with ML compared to BERLIN and NoSAS questionnaires. Future developments 

should explore the most effective combination of items to be included to diagnose different 

OSA phenotypes. 

 

4.2. Perspectives and limitations 

4.2.1. Potential sources of error and their influence  

It should be kept in mind that, as with any physical measurement, the 3D landmarks 

introduced in the ML algorithms are potentially flawed. These errors may occur during 

acquisition, mainly due to patient movements, but also due to the accuracy/resolution of the 

scanning device itself. Even without any patient movement, there may be homology defects 
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between patients. Finally, the manual placement by the operator of the seven landmarks is 

also subject to minor errors of interpretation. Nevertheless, the acquisition procedure 

appears fairly reproducible with respect to the variability observed within the cohort (Fig. 4). 

As a result, although all these sources of error coexist, any impact on the problem at hand 

should be minor. 

 

4.2.2. The impact of established models 

Special attention should be paid to the learning curve of the model established from shape 

data combined with anthropometric data and questionnaire responses (Fig. 9), which depicts 

both training and cross-validation scores (together with their 95% confidence interval) as a 

function of the size of the training dataset. Once 75 to 90 patients have been included during 

the learning phase, the training scores are high, with an auROC of about 0.95, whereas 

cross-validation scores are much lower, around 0.68.  

 

 

Figure 9: The learning curve of the XGBoost model established from morphological data combined with 

questionnaire responses, and anthropometric data; the training auROC score (in red) and cross-validation auROC 

score (in blue). 

 

This result is not surprising, as the model overfits this relatively small learning dataset, while 

instances are lacking to produce high validation scores and appropriate generalization 
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capabilities for unseen instances. As expected, as the training set increases in size, the 

training score decreases (the model starts to underfit the dataset), while the validation score 

increases. Ultimately, both curves are supposed to converge when there are enough data to 

train the model optimally. From that point on, adding more data should no longer be 

beneficial, but better model performance might eventually be obtained by implementing new 

engineering features, or by building another, more complex model. This point of convergence 

may be associated with the limit of irreducible error, which is intrinsically linked to the 

problem at hand. What is important here is that the convergence point is currently far from 

being attained, suggesting great opportunities for improvement in the prediction of OSA risk. 

It is difficult to estimate the number of patients that would be required to reach this 

convergence point, but it is reasonable to assume that the inclusion of more than a thousand 

patients would be necessary. In any case, a learning curve obtained by the XGBoost model, 

established from morphological data combined with questionnaire responses and 

anthropometric data (Fig. 9) is slightly superior to the best models computed from the 

morphological data alone (e-Fig. 4 in the Supplementary Material), either because these later 

models quickly reached a limit auROC score of ca. 0.7 or less, or because the room for 

improvement when including more patients seems to be smaller. 

 

As this study was limited to Caucasian men only, further studies should investigate 

differences in upper airway and craniofacial structures in relation to sex and ethnicity [61, 

62]. As obesity is one of the main risk factors for OSA, due to fat deposits around the upper 

airways that narrow the airway during sleep [63], obese patients (BMI≥35 kg/m2) were 

excluded from our study, so as to focus more specifically on maxillofacial characteristics. It 

would be interesting in future studies to include different BMI profiles. 

A cohort suitable for such studies is realistic, despite its impressive size, as the epidemiology 

of sleep apnea concerns over one billion people worldwide. 
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5. Conclusion 

The present study clearly demonstrates a link between maxillofacial geometry and the risk of 

sleep apnea. Although the cohort under study is large (almost 300 patients), it is not 

sufficient to encompass the entire range of maxillofacial shape diversity, so that model 

outputs will only be partially successful in predicting a syndrome as complex as sleep apnea. 

Nevertheless, the tool proposed in this study (combining the 3D geometry of patient scans 

processed by geometric morphometrics with machine learning) already presents a capacity 

for discrimination beyond that of the tools currently available (i.e. NoSAS and BERLIN 

questionnaires), an encouraging result on which to base further studies. 

The informative morphometric data retained here is contained in the first 2-5 PCs (i.e. the 

overall geometry observable in Fig. 8). With a larger cohort, three further gains become 

possible. Substantial improvement should be observed in predictive performance, as 

suggested by the training curves. More PCs capturing finer details of maxillofacial shape can 

be included and their influence comprehensively evaluated. As the OSA / non-OSA groups 

are probably not linearly separable, more complex algorithms (such as artificial neural 

networks or random forests) are potentially better adapted, as greater quantities of data 

become available. 
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