
HAL Id: hal-03667623
https://hal.science/hal-03667623

Submitted on 13 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automated Random Testing of Numerical Constrained
Types

Ghiles Ziat, Matthieu Dien, Vincent Botbol

To cite this version:
Ghiles Ziat, Matthieu Dien, Vincent Botbol. Automated Random Testing of Numerical Constrained
Types. 27th International Conference on Principles and Practice of Constraint Programming (CP
2021), Oct 2021, Montpellier, France. pp.59:1-59:19, �10.4230/LIPIcs.CP.2021.59�. �hal-03667623�

https://hal.science/hal-03667623
https://hal.archives-ouvertes.fr

Automated Random Testing of Numerical
Constrained Types
Ghiles Ziat #

ISAE-SUPAERO, Université de Toulouse, France

Matthieu Dien #

Université de Caen, France

Vincent Botbol #

Nomadic labs, Paris, France

Abstract
We propose an automated testing framework based on constraint programming techniques. Our
framework allows the developer to attach a numerical constraint to a type that restricts its set of
possible values. We use this constraint as a partial specification of the program, our goal being to
derive property-based tests on such annotated programs. To achieve this, we rely on the user-provided
constraints on the types of a program: for each function f present in the program, that returns a
constrained type, we generate a test. The tests consists of generating uniformly pseudo-random inputs
and checking whether f ’s output satisfies the constraint. We are able to automate this process by
providing a set of generators for primitive types and generator combinators for composite types. To
derive generators for constrained types, we present in this paper a technique that characterizes their
inhabitants as the solution set of a numerical CSP. This is done by combining abstract interpretation
and constraint solving techniques that allow us to efficiently and uniformly generate solutions of
numerical CSP. We validated our approach by implementing it as a syntax extension for the OCaml
language.

2012 ACM Subject Classification Software and its engineering → Dynamic analysis

Keywords and phrases Constraint Programming, Automated Random Testing, Abstract Domains,
Constrained Types

Digital Object Identifier 10.4230/LIPIcs.CP.2021.59

Supplementary Material Software (Source Code): https://github.com/ghilesZ/Testify
archived at swh:1:dir:e80146ce697a659919067f8125461a6c5c9d553c

Funding This work has been partially supported by the Defense Innovation Agency (AID) of the
French Ministry of Defense under Grant No.: 2018.60.0072.00.470.75.01 and the RIN ALENOR
project.

1 Introduction

In this article, we propose an automated testing framework that generates tests for a restricted
class of dependent types, that is constrained types. Constrained types attach a membership
predicate to a type and are used to restrict its set of possible values. For instance, to encode
rationals as a pair of integer (n, d), one could add the constraint d ̸= 0 to filter invalid
representations. Moreover, providing the constraint that n and d are coprime with d > 0
defines a canonical representation for this type. This is desirable when a given term has
several structurally different but semantically equivalent representations, e.g. 2

4 would violate
the constraint while 1

2 would be valid. However, type systems with constrained types are
generally undecidable making it hard to obtain strong static guarantees at compile-time [2].
Dynamic verification, on the other hand, while not preserving these strong formal guarantees,
makes the approach both feasible and practical. One instance of this is property-based
testing [9] that can potentially detect bugs in programs given a specification. Still, this

© Ghiles Ziat, Matthieu Dien, and Vincent Botbol;
licensed under Creative Commons License CC-BY 4.0

27th International Conference on Principles and Practice of Constraint Programming (CP 2021).
Editor: Laurent D. Michel; Article No. 59; pp. 59:1–59:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ghiles.ziat@gmail.com
mailto:matthieu.dien@gmail.com
mailto:vincent.botbol@nomadic-labs.com
https://doi.org/10.4230/LIPIcs.CP.2021.59
https://github.com/ghilesZ/Testify
https://archive.softwareheritage.org/swh:1:dir:e80146ce697a659919067f8125461a6c5c9d553c;origin=https://github.com/ghilesZ/Testify;visit=swh:1:snp:06fc21e1b2eb68c97d4c0e15cb8d941da46aac2f;anchor=swh:1:rev:df974be82c19702ebddef941f3666f52ac22377a
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

59:2 Automated Random Testing of Numerical Constrained Types

requires to manually provide tests that may be tedious and error-prone. For these reasons,
we focus on the development of an automated test system for constrained types. The goal of
our framework is to exhibit wrong behaviours in such programs by finding instances of a
constrained type that violate their predicates. We achieve this by automatically generating
tests for functions that manipulate constrained types. This requires from the developer to
input a constraint from which we extract a partial specification of the program. The resulting
generated tests consist in generating random inputs for the tested functions and checking
their output against the given specification. Therefore, the main challenge we face is the
automatic derivation of uniform value generators for constrained types. We address this by
combining two approaches: Constraint Programming [26] and Abstract Interpretation [11].
Abstract interpretation provides modular, efficient and precise abstractions, in particular, for
numerical values. Coupling it to standard constraint programming resolution scheme allows
us to provide fast and uniform input generators for our automatically generated tests.

Our implementation targets the OCaml [21] programming language, and the examples
we show are written in it. However, our approach is generic and could be ported to other
languages, hence, this paper voluntarily disregards some specificities of the OCaml language.

1.1 Example: Putting Constraints in Programming
Consider the following example:

1 type nat = int [@ satisfying (fun x -> x >= 0)]

This type declaration type nat = int is an alias of the primitive for machine-integers.
Adding the annotation [@satisfying (fun x -> x >= 0)] specifies the constraint that values x

of this type must respect the constraint x ≥ 0, that is the positive integers. We then generate
a test for each function whose return type is nat, as in the following example:

1 let add (x : nat) (y: nat) : nat = x * y

Compiling this program with our preprocessor will generate the following test:
1 let add_test () =
2 let x_rnd = range 0 max_int in
3 let y_rnd = range 0 max_int in
4 (multiply x y) >= 0

To achieve this, we have solved the constraint x ≥ 0 ∧ x ≤ 264 and determined the set
of its solution. This allowed us to define the generator for the nat type. Here, range is a
primitive of our framework that draws uniformly within an integer range.

Running this test will (usually) yield an error message stating that the return value of
add violates the predicate (fun x -> x >= 0) for some input. Indeed, when a random input
close to 264 is passed to the function, an overflow may occur which would cause the return
value to violate the constraint.

This example is designed to illustrate our testing framework process. Throughout the
paper, we will describe how to derive generators from more complex constraints.

1.2 Contributions
This article focuses on type-driven automated test generation. Our contribution is threefold:

Firstly, we propose an automated testing framework capable to derive a partial specifica-
tion of a program using a set of constraints given by the developer. We then run tests
against this specification.
Secondly, we present an abstract domain based solving technique able to characterize
constrained types in a way that enables the automatic derivation of uniform random
generators, i.e. each instance has the same probability to be drawn.

G. Ziat, M. Dien, and V. Botbol 59:3

Finally, we give abstract domains (i.e. boxes, polyhedra) and their associated operators
that permit generic random uniform generation.

1.3 Outline
This paper is organized as follows: Section 2 presents the related works. Section 3 introduces
the derivation of generators and specification for constrained types. Section 4 recalls
definitions of our abstract domains usage in constraint solving, and explains the relations
between Numerical Constraint Satisfaction Problems (NCSP) and constrained types. Section 5
discusses the problem of uniform random sampling within heterogeneous abstract values, in
particular for polyhedra and, related, the cardinality estimation problem with such domains.
Section 6 presents our implementation, its current limitations and gives some experimental
results. Finally, Section 7 summarizes our work and discusses its future continuations.

2 Related Works

Random testing has been thoroughly studied, for testing correctness [16, 28], exhaustive-
ness [33], complexity [5] etc. Several frameworks exist and relate more or less to our work.
For instance, American Fuzzy Lop [37] inspects the execution paths of the program and
apply mutations to each input to potentially discover new ones. This method increases the
coverage of the test but requires the binaries to be instrumented. In the OCaml ecosystem,
the ppx-inline-tests preprocessor makes it possible to inline tests in the source code. Also,
several testing libraries for OCaml programs exist, such as monolith [31], or QCheck [13],
inspired from Haskell’s QuickCheck library [9]. These property-based testing frameworks are
widely used [24, 23]. In particular, we re-use from QCheck some basic value generators for
our automatic test generation. However, these works require the developer to manually write
the tests, that is the generators and the properties to be checked. Our approach makes it
possible to define constrained types that will act as a partial specification of the program and
automatically extract the needed generators. Our framework automatically generates tests
and is, thus, less error-prone and is easily maintainable: a constrained type annotation is
sufficient to generate tests for all functions that return values of this type. This way, the test
suite is updated automatically each time a new function is added. Such as ppx_inline_tests,
our framework is implemented as a preprocessing mechanism that has no side-effects on the
execution of the original program.

Constrained types have been widely studied, for example, Dependant ML [36] enriches
the type system of ML with a restricted form of dependent types. Also, Cayenne [2] has
dependent types and is able to encode predicate logic at the type level allowing types to be
used as specifications of programs. However, this makes Cayenne’s type checking undecidable.
In [27], the authors presented a framework for a Hindley/Milner kind of type systems with
constraints as a set of formulas over a cylindric algebra. These approaches to constrained
types are either undecidable in the general case or do not support the same constraint
language as we do, that is numerical constraints. Closer to our work, the study of automatic
generator derivation for data types has already been studied in previous works. For example,
in [6], the authors adapt a Boltzmann model for random generation of algebraic data types,
in particular for inductive types. Our approach is similar but we handle constrained types.
In [15], the author explores the definition of generators for a class of dependent types.
However, the proposed techniques are not automatic and do not aim to be uniform.

There exists several uniform sampling tools for SAT [14, 8]. We aim for the same goal
but for NCSP instead. In [17], the authors focus on generating random uniform solutions
for CSP, however they target discrete problems, with very small domain size, which are

CP 2021

59:4 Automated Random Testing of Numerical Constrained Types

not adapted to numerical variables with large cardinalities (e.g. machine-integers). The ese
of CP techniques for test generation has already been explored in the CP literature. For
instance, the FocalTest framework[7] uses a constraint-based approach to build inputs for
property based testing. Another example is [18] in which the method proposed is used to
generate white box tests. Our approach differs from these in several way: our resolution
scheme is based on abstract domain instead of clp(FD). Also our constraints are extracted
from the types while theirs are derived from the statements of the program. Finally we aim
at producing uniform generators which is not the case in these works.

We also explore the problem of generators definition using numerical abstract domains.
In [34], the author proposes a way to quantify the precision of abstract values through a
measure of volumes, including an approximated measuring of polyhedra. Also, [19] proposes
an algorithm to solve boolean and linear constraints, and to randomly select values among
the set of solutions using rejection sampling. This is close from what we do in Section 5
except that we have additional hypothesis that allow us to compute an exact volume and
minimize the use of rejection sampling.

3 Testing Semantics

Random testing within a typed language requires the definition of pseudo-random generators
for types. These generators are used to provide inputs for the functions whose output is
checked against a given specification. A pseudo-random generator g for a data type τ is
a function g : S → τ , with S the type of random seeds, which is useful to make the tests
reproducible. Previous work, such as [6], has shown that the derivation of efficient uniform
random generators for algebraic data types can be made automatic, even in presence of
recursive types. However, this is more difficult for constrained types: a constrained type can
be seen as a pair ⟨τ, p⟩, composed by an algebraic type τ and a predicate p : τ → bool. The
set of its inhabitants is defined as S = {t ∈ τ | p(t) = true}. As a result, a generator for a
constrained type ⟨τ, p⟩ needs to produce a value of type τ that satisfies p.

3.1 Type Language and Semantics

Our framework aims at generating tests that verify that some function does not violate the
invariant attached to its return type. To do so, we provide to the developer the capability of
constraining a type τ with an arbitrary predicate i.e. a function of type τ → bool. Therefore,
our syntactic extension may be seen as a small but expressive annotation language. To be
able to reason on the types of the program, we will suppose that all the values that we
handle are explicitly typed. We consider a ML-like type language with constrained types.
Its Bachus-Naur form (BNF) grammar is given in Figure 1.

A type declaration is composed of an identifier and a type expression. Type expressions can
be: type identifiers, product types (tuples), sum types where each variant is differentiated by a
unique constructor, and constrained type which we add to the language via the [@satisfying]

annotation. Note that even if the syntax permits the definition of recursive types, these
are not handled by our framework yet. The constraint language used for the definition of
predicates over constrained types is relatively classic. Here, I and F are respectively the set
of integers and floating point values, and V is the set of variable identifiers.

Annotating a type τ with a predicate p defines a partial specification for the program:
all functions returning a value of type τ are expected to produce values that satisfy p. This
property being in the general case out of the reach of a type checker [2], we propose to test it.

G. Ziat, M. Dien, and V. Botbol 59:5

decl ::= ‘type’ ident ‘=’ type declaration

type ::= ident identifier
| type {‘*’ type } product
| ident ‘of’ type { ‘|’ ident ‘of’ type } sum
| type ‘[@satisfying’ constraint ‘]’ constrained

constraint ::= arith □ arith □ ∈ {≥,≤, =, ̸=}
| ‘not’ constraint negation
| constraint ‘||’ constraint disjunction
| constraint ‘&&’ constraint conjunction

arith ::= i i ∈ I
| f f ∈ F
| v v ∈ V
| arith ⋄ arith ⋄ ∈ {+,−, ∗, /, %}
| - arith opposite

Figure 1 Grammar of the constrained type language.

3.2 Constraints semantics
We introduce inference rules that enriches a standard type algebra with constrained types:
because types are composable, we need to define inference rules to propagate constraints
from atomic types to composite types. For example, when a type τ is product or a sum of
types that were constrained by a property, this property is lifted to τ accordingly.

▶ Example 1. Consider the following constrained types which define the type of positive
float and 2D circles:

1 type positive = float [@ satisfying (fun x -> x >= 0)]
2 type circle = (float * float) * positive }

Here, the type circle is not explicitly constrained, but as it depends on the type positive,
an implicit constraint will be attached to it. More generally, whenever a type τ is defined
using a constrained type τ ′, the constraint over τ is also inherited by τ ′. Here, circle is
implicitly constrained by the function: (fun ((cx,cy),radius) -> radius >= 0).

In Figure 2, we give a formal definition of the semantics for constraints composition. We
define it by induction over the syntax while considering a predicate environment ρ that stores,
for each type identifier, the predicate that was attached to it. For clarity, we consider that
an unconstrained type is a constrained type who is attached a tautology. Also, we suppose
the initial environment ρ0 already equipped with tautological constraints for primitives
types: ρ0 = [unit 7→ λ().true, bool 7→ λb.true, int 7→ λi.true, float 7→ λf.true]. For each
rule, the conclusion gives the derivation formula of a constraint for a given type, using the
constraints derived in the premises. The constraint for product types is the conjunction of
constraints attached to the type sub-components. For sum types, we determine for each
variant the corresponding constraint and build a predicate based on pattern matching1 to
select a constructor using case by case reasoning. For type declarations, we use the notation
ρ[id 7→ pτ] to denote the setting of the constraint associated to the type identifer id to its
new value pτ .

1 function patterns is equivalent to fun x -> match x with patterns

CP 2021

59:6 Automated Random Testing of Numerical Constrained Types

(declaration)
ρ(τ)→ pτ

(type id = τ, ρ)→ (ρ[id 7→ pτ])

(constrained)
ρ(τ)→ pτ

(τ [@satisfying p], ρ)→ λx.p(x) ∧ pτ (x)

(identifier)
p = ρ(id)

(id, σ)→ p

(product)
ρ(τ1)→ p1 . . . ρ(τn)→ pn

(τ1 ∗ · · · ∗ τn, ρ)→ λ(x1, . . . , xn).p1(x1) ∧ · · · ∧ pn(xn)

(sum)
ρ(τ1)→ p1 . . . ρ(τn)→ pn

(c1 of τ1 | . . . | cn of τn, ρ)→ function c1(x1) 7→ p1(x1) | . . . | cn(xn) 7→ pn(xn)

Figure 2 Constraint semantics.

3.3 Generator semantics
The derivation of random generators for composite types given random generators for atomic
types, is made following the same inductive principle as in the previous section. To keep track
of which generator is associated to which type, we consider an environment σ which associates
to each type identifier its generator. We suppose an initial environment σ0 populated with
uniform random generators for primitive types. Figure 3 presents the derivation of uniform
random generators for constrained types.

(declaration)
σ(τ)→ gτ

(type id = τ, σ)→ (σ[id 7→ gτ])

(constrained)
(τ [@satisfying p], σ)→ solve(τ, p))

(identifier)
g = σ(id)

(id, σ)→ g

(product)
σ(τ1)→ g1 . . . σ(τn)→ gn

(τ1 ∗ · · · ∗ τn, σ)→ λi.(g1(i), . . . , gn(i))

(sum)
σ(τ1)→ λi.c1(g1(i)) . . . σ(τn)→ λi.cn(gn(i))

(c1 of τ1 | . . . | cn of τn, σ)→ weighted([(card(τ1), gn); . . . ; (card(τn), gn)])

Figure 3 Generator semantics.

For product types (similar to Cartesian product of sets), generators are obtained by
composing the generators obtained for their components. An important point of our work
is to derive random generators with uniform distribution: each inhabitants of the type has
the same probability to be drawn. Because uniform distributions do not compose so easily,
especially in the case of sum types (union of sets), we have to take care of the cardinal of
each type’s population. Hence for sum types, we decompose the uniform sampling of a value
in two steps: first choosing a constructor, and then drawing a value for this constructor. For
this to be uniform, the first step takes into account the cardinality of the components: the
more inhabitant one has, the more likely it has to be chosen. To achieve that, we introduce
two procedures: card and weighted.

G. Ziat, M. Dien, and V. Botbol 59:7

The procedure card gives the number of inhabitants of a given type. As we restrict
ourselves to non-recursive types, keeping track of the cardinality of an algebraic data type
is straightforward: cardinality for sum (resp. product) types is given by the sum (resp.
product) of the cardinalities of their components. Computing cardinalities of constrained
types is equivalent in our case to counting the solutions of a CSPs, which is a known hard
problem [30]. Hence, we use approximations to compute the cardinal of constrained types
which we present in the next section. The procedure weighted chooses a generator among
a list of generators. To choose uniformly, each generator has a probability of being chosen
equal to its associated weight.

Finally generators for constrained types are given by the procedure solve that, given a
type declaration and a predicate, builds the generator corresponding to the constrained type.
We give a definition of this procedure in the next section.

3.4 Test Generation

From the generators and the constraints we derived from the annotated program, we may
now produce tests. We retrieve value declarations in the program for which the return type
is a constrained one. If the value declaration is a constant c, we simply generate a test that
consists of applying the predicate to c. If the value declaration is a function f , we will first
retrieve, for each of its arguments, the associated generators to build the inputs. Equipped
with input generators, we then apply f to the uniformly drawn inputs and validate the
outputs using the constraint predicate.

4 Solving Constrained Types

We now study the derivation of generators and cardinality estimation for constrained types.
One way to automatically do this is to extensively compute the set of values of a type
and keep only those that satisfy a constraint. We may then randomly choose among those
whenever a generator is called. This approach however is not practical and does not scale.
Another possibility is to use a rejection sampling technique using the generator for τ and
checks its values against p. This should yield a uniform generator but present an important
flaw: when the cardinality of the constrained type ⟨τ, p⟩ is small compared to the cardinality
of the original type τ , this tends to be ineffective. Moreover, cardinality may only be an
estimation, not an exact result. Instead, our approach is to solve constrained types by
providing a measurable characterization of their inhabitants. We are then able to define
uniform random generators over it. To do so, we see a constrained type as a constraint
satisfaction problem, and its inhabitants as the solutions of this problem. We use for this
task a hybrid approach, that mixes both techniques from Abstract Interpretation [11] and
Constraint Programming [26], based on abstract domains. These are a key notion in abstract
interpretation as they implement an abstract semantic for which they provide data-structures
and define algorithmic aspects. They are designed to abstract program values and are thus
particularly well-suited for our needs. Moreover, many constructive and systematic methods
to design and compose such domains exist in the literature: numerical domains (intervals,
congruences, polyhedra, octagons, etc.), domain composition operators (products, powersets,
etc.).

CP 2021

59:8 Automated Random Testing of Numerical Constrained Types

4.1 CSP extraction from a constrained type
A constraint-satisfaction problem can be defined as a triplet ⟨V,D, C⟩, where V = {v1, . . . , vn}
is a set of variables, D = {d1, . . . , dn} a set of interval domains, each one being associated to
a variable, and C = {c1, . . . , cm} is a set of constraints over the variables. A solution of a
CSP (V,D, C) is an instance i = {v1 → x1, ..., vn → xn} that satisfies all of the constraints
by substitution of the variables with their value in i, that is:

∀i, xi ∈ di ∧ ∀c ∈ C, c({v1 → x1, ..., vn → xn})

In our case, we want to solve CSPs that are extracted from constrained types, to obtain
an approximation of their sets of inhabitants. We can then tackle the problem of generating
uniformly within this approximation. Consider the following declaration:

1 type itv = (int * int) [@ satisfying (fun (inf ,sup) -> inf <= sup)]

This type defines a bounded two-dimensional space, where dimensions correspond
to the members of the tuple, named inf and sup in the predicate. These are con-
strained by the relation inf ≤ sup. From a constraint solving point of view, the set
of inhabitant of this type is the set of solutions of the CSP: ⟨V = {inf; sup} ,D ={

[−264; 264]; [−264; 264], C = {inf ≤ sup}
}
⟩

We have automated the process of CSP extraction for type definition by inlining their
declaration: we give an identifier to each of the value of the type and then work within a
simple numerical abstract element where each identifier corresponds to a variable. Doing
so builds a CSP that abstracts some information about the shape of the type and hence, in
parallel, we build a function that will reconstruct from the solutions of the CSP, a value with
the correct shape.

4.2 CSP solving
Solving a numerical CSP usually means finding one or all the solutions of the problem.
Because this is generally impossible when the domains of the variables are continuous (or just
very large), solvers generally compute a set of boxes, that is a Cartesian product of intervals,
that covers the solution space. The resolution of such problems works from above: given
an initial coarse approximation, several heuristics are used until a sufficiently good cover is
found. In order to build this cover, a constraint solver generally alternates two main steps:

Filtering: which reduces the variables domains by removing values that do not satisfy
the constraints.
Splitting: which duplicates the problem to create two (or more) complementary sub-
problems that are smaller, w.r.t. a certain measure, than the original one.

Repeating these two steps in turn does not necessarily terminate. Hence, this procedure
generally goes on until the search space contains: no solution, only solutions, or is smaller
than a given parameter. Producing such a cover can be sufficient for us if we are able to
compute its exact number of solutions, and select one of these uniformly. However, using
boxes poorly fits our need, in particular, when we are considering relational constraints,
which appear fairly commonly in constrained types. Therefore, we use the solving method
of [29], which is designed to be parameterized by any abstract domain. The algorithm
introduced in [29] builds a set of abstract elements S that covers the solution space, i.e. for
all instances i that satisfy all the constraints C, we have ∃e ∈ S, i ∈ γ(e). Here γ is the usual
concretization function for abstract values, that is the set of concrete instances abstracted by

G. Ziat, M. Dien, and V. Botbol 59:9

an element. The algorithm starts from an initial abstract element e built from the domains
of the variables. Then, e is filtered according to the set of constraints. If the filtered abstract
element e′ is not empty, three cases are possible:

e′ satisfies all the constraints, then it is added to the set of solutions.
there is at least one constraint c that e′ does not satisfy and its size is small enough with
respect to a given threshold, it is also added to the set of solutions.
otherwise, e′ is divided into sub-elements using the split operator and the process is
repeated with each of these sub-elements.

When all of the elements have been processed, the union of the element in S is a sound
over-approximation of the solution space. We propose a slightly modified version of this
algorithm, which, we believe, is better suited for our needs.

4.3 Solving Algorithm

Contrarily to the algorithm of [29], we distinguish inner elements from outer elements. Inner
elements are the ones that are guaranteed to only contain solutions while outer elements
may contain non-solutions. Our algorithm is defined in Figure 1.

Algorithm 1 Abstract solving for generator derivation.
1: function solve(D, C, ϵ, max)
2: I ← ∅
3: O ← ∅
4: e =init(D)
5: O ←insert(e, O)
6: while µ(I, O) > ϵ ∨ |I| < max do
7: e← biggest(O)
8: e′ ← ρ(e, C)
9: if e′ ̸= ⊥ then

10: if solution(e′, C) then
11: push e′ in I

12: else
13: push split (e) in O

14: return I, O

Our algorithm maintains two sets of elements: inner elements I, and outer elements O.
Here, I under-approximates the solution set and O is such that I ∪O over-approximates it.
It first initializes an abstract element e and inserts it in the set of outer elements O. Then,
the main loop proceeds repeating the steps: The biggest element of O is selected (which is
more likely to contains more solutions), filtered using the propagator ρ, and pushed in I if it
satisfies the constraints. Otherwise, it is split and the sub-elements are pushed back in O.

As we will see, the number of element in the cover is related to the size of the code
generated for the random samplers. Also their rejection rate is closely related to the
proportion of inner elements in the cover. Thus the tuning of the obtained generator may be
controlled by the max and ϵ parameters: max is needed to avoid an exponential growth of
the cover and ϵ fixes a rejection rate to reach. The next section gives insights about the code
generation and defines precisely µ(I, O).

CP 2021

59:10 Automated Random Testing of Numerical Constrained Types

4.4 From covers to generators
Once we have computed a cover (I, O) for a constrained type ⟨τ, p⟩, we have to compile it
into a generator for ⟨τ, p⟩. A cover is a set of inner elements and a set of outer elements.
Thus, to compile a cover into a generator we start by compiling each element e ∈ (I ∪ O)
into a generator. We then choose an element e of the cover, and generate an instance i using
the generator associated with e. If e belongs to I, then i is kept, but if it belongs to O, then
i must be checked against p to make sure that it is a valid member of the constrained type.
In that case, we are forced to rely on rejection sampling.

Hence, the generator for the whole cover is actually a dispatcher to the generators of
the elements: it randomly selects an element’s generator with a probability proportional to
the volume of the underlying set of solutions, then calls it. Note that this yields a uniform
generator because the split operator produces elements that do not overlap. Otherwise,
instances belonging to several elements would appear more often during the sampling.

To compute the cardinality of a constrained type ⟨τ, p⟩ we must reason on the number of
solutions of its associated cover. This exact number is given by:∑

e∈I

|γ(e)|+
∑
e∈O

| {i ∈ γ(e) | p(i)} |

However, as the number of solutions of an outer element e depends on the predicate p,
it is hard to compute exactly in the general case. Instead, we use an over-approximation
of this number that is |{i ∈ γ(e)}|. Our cardinality estimation for a cover (I, O), denoted
card(I, O), is given by:

card(I, O) =
∑
e∈I

|γ(e)|+
∑
e∈O

|γ(e)|

Despite of this over-approximation, our sampling method is uniform, thanks to rejection
sampling: rejecting erroneous solutions does not bias the uniform distribution. To ensure
the sampling of the uniform distribution in case of rejection, the whole sampling process is
restarted from the beginning i.e. an abstract element is drawn w.r.t. to its volume and so on.

One way to mitigate the occurrences of rejections, is to minimize the volume of O. Hence
the introduction of µ(I, 0) defined as

µ = 1− card(I, ∅)
card(I, O)

It measures the relative error between the over-approximation and the exact volume of an
abstract element. At the start of the algorithm process µ(I, O) = 1. Then it decreases at
each iteration until reaching the desired precision. Note that µ = 0 means that the abstract
element corresponds exactly to the set of solutions of the CSP and the random sampling will
be made without rejection.

5 Abstract Domains for Random Testing

The technique presented in the previous section relies on abstract domains to solve and
derive generators for constrained types. To use abstract domains in the context of constraint
resolution, the authors of [29] define several operators and requirements they must satisfy.
Our use-case requires the same operators, plus an additional one for the random sampling of
an element. The following definition gives these.

G. Ziat, M. Dien, and V. Botbol 59:11

−264

−264

264

2640

0

inf

sup

(a) Graphical resolution of the CSP.

♯inner 32
♯outer 32

µ 0.1
rate: 234k/s

(b) Metrics over the resulting generator.

Figure 4 Solving the itv constrained type with boxes.

▶ Definition 2. Abstract domains for constraint solving are given by
a partial order ⟨D,⊑⟩ and the usual abstract set operators and values ⟨⊤,⊥,⊓,⊔⟩
an abstraction α and a concretization function γ

a size function card: D → N+

a split function split: D → P (D),
a constraint filtering operator ρ : D × C → D ∪ {⊥}, which given an abstract value e and
a constraint c computes the smallest abstract value (possibly empty) entailed by c and e.
a generation function uniform: D → Rn

For sake of concision, we will not detail the compilation of abstract elements into
expressions. Instead we define random generation functions on abstract elements.

5.1 Boxes

A very studied abstract domain in continuous constraint solving is the abstract domain
of boxes. Its main operators rely on interval arithmetic [1] and were already introduced
in previous work [35]. In our case, the cardinality of a box b = [a1, b1] × · · · × [an, bn] is
its volume (defined as its Lebesgue measure) i.e. card(b) =

∏n
i=1(bi − ai). For the split

operation, we use standard bisection of a variable with the so-called largest-first heuristic
which chooses the variable with the biggest range as a variable selection strategy. Also, for
the filtering operation we use the HC4 constraint propagation algorithm [3]. Finally, the
uniform distribution over a n-dimensional box is sampled using n uniform (over [0, 1]) and
independant random variables (ri)i≤n with the formula (ai + ri ∗ (bi − ai))i≤n.

Defining these operators is sufficient to embed this domain within our testing framework.
Using boxes, it is possible to derive efficient generators for constrained type that use non
relational constraints, that are constraints that involve a single variable. However, producing
fast generators in presence of relational constraints is harder e.g. the itv type of Example 4.1.
Figure 4 shows graphically the approximation we obtain and the corresponding generated
OCaml code is given in Appendix A.1. Filled elements correspond to inner elements, and
empty elements correspond to outer elements. The Table 4b gives some metrics over the
cover and the resulting generator: the row ♯inner (resp. ♯outer) gives the number of inner
(resp. outer) elements, the third row gives the µ-score and the last line gives the generation
rate of the obtained generator, which is measured experimentally and is given in number of
calls per seconds.

CP 2021

59:12 Automated Random Testing of Numerical Constrained Types

We can see that when dealing with an affine constraint, the use of boxes misfits our
needs: the precision needed to avoid rejections during the sampling leads to a high number of
elements in the cover of the solution space and so a very large (in term of code size) and slow
sampler. To solve this issue, we focus in the next subsection on a relational abstract domain.

5.2 Polyhedra
The polyhedra abstract domain [12] is a numerical relational abstract domain that approx-
imates sets of points as convex closed polyhedra. Modern implementations [20] generally
follow the “double description approach” and maintain two dual representations for each
polyhedron: a set of linear constraints and a set of vertices. The constraint representation
of the polyhedron is the intersection of the half-spaces defined by the linear constraints.
The vertex representation is the convex hull of a set of points. These dual descriptions
are very useful in practice as polyhedra operators [20] are generally easier to define on one
representation rather than the other. We use both to define the filtering, splitting, measure
and random sampling functions. Constraint filtering for polyhedra generally consists in
building a sound linear approximation of a constraint (different approximations can be used
e.g. quasi-linearization [25] or linearization for polynomial constraints [22]), and then adding
it to the representation of a given polyhedron.

Volume computation and uniform random sampling within a polyhedron are notoriously
hard tasks. The first problem is ♯P-hard (see [4] for example). For the sampling, the
fastest algorithm (to our knowledge) has an expected (time) complexity in O⋆

(
n3)2 (see

Theorem 3.1.3 of [10]) whose result validity and running time are probabilistic.
We mitigate these problems by systematically considering a simpler case: simplices. A

simplex is the most simple polyhedron with a non null volume, obtainable in an n-dimensional
space as it is the convex hull of n + 1 vertices. Instead of stopping the split and filtering
procedure when an inner polyhedron is found, we continue to split elements until all are
simplices. To do so, we use a split operator that favors the creation of simplices that can be
summarized as follows. Suppose a polyhedron P lives in a n-dimensional space and is not
already a simplex, i.e. it is defined using at least n + 2 vertices:

pick n + 1 arbitrary vertices, {v0, . . . , vn}
compute Q the smallest polyhedron that encompasses {v0, . . . , vn}
return Q ∪ (P ⊖Q)

Here, the difference operator (⊖) used in the last step corresponds to the set difference of
two polyhedra. This operator, illustrated by Figure 5, uses the constraint representation:
the polyhedron Q is a space defined by the conjunction of a set of constraints CQ, where
each constraint is a linear inequality over the variables of the polyhedron. It is defined as:

P ⊖Q ≜
{⋃

P ∩ ¬c | c ∈ CQ

}

Our simplex split allows us to decompose a polyhedron while performing the resolution,
which allows us to define both the volume estimation and the uniform random sampling on
simplices. The way to compute the volume of a simplex is well known and not discussed here.

In order to sample a point of a simplex, we first consider its mirror parallelotope:
given a simplex polyhedron P defined by the set of vertices V = {v1, . . . , vn}, we build
its mirror parallelotope P ′ by adding one vertex t to V , obtained by translation of v1 by

2 The ⋆ in O⋆
(
n3

)
hides logarithmic factor.

G. Ziat, M. Dien, and V. Botbol 59:13

P

Q
c1

c2 c3

p1

p2

Figure 5 Difference operator: P ⊖ Q.

v1

v2

v3

t

r

(a) r is inside P , we keep it.

v1

v2

v3

t

rr′
b

(b) r is not inside P , we take r′ its reflection point
according to b.

Figure 6 Simplex uniform generation procedure.

the vector δ = −−→v1v2 + −−→v1v3 + . . . + −−→v1vn. Then, a point r of P ′ is uniformly drawn by
sampling n− 1 independent and uniform random variables (ri)i≤n−1 over [0, 1], such that
r = r1 · −−→v1v2 + r2 · −−→v1v3 + . . . + rn−1 · −−→v1vn.

If r is inside P we keep it.

Else, r is outside P , we keep r′ its symmetrical according to b.

Where b is the barycenter of the opposite face to v1, i.e. the n− 2 dimensional face of
corners {v2, . . . , vn}. Figure 6 illustrates this procedure for a 2D-simplex. Note that every
point in P has exactly two ways of being chosen, that is directly or by symmetry, which makes
this procedure uniform. Equipped with this relational abstract domain, we can compare
the result obtained for the CSP of the itv type, illustrated by Figure 7. The corresponding
code, given in Appendix A.2, is approximately three times faster than the one obtained with
boxes, thanks to the null rejection rate (µ = 0).

−264

−264

264

2640

0

inf

sup

♯ inner 1
♯ outer 0

µ 0
rate: 627k/s

Figure 7 Approximation of the itv type with polyhedra.

CP 2021

59:14 Automated Random Testing of Numerical Constrained Types

6 Current Implementation and Benchmarks

Our implementation is built as a syntax extension for OCaml based on a preprocessing
mechanism. We use OCaml’s attributes to allow the user to annotate its types with
constraints. Attributes are placeholders in the syntax tree which are ignored by the com-
piler but can be used by external tools such as ours. We have developed a prototype
to demonstrate the interest of our technique. It is open-source and available at the url
https://github.com/ghilesZ/Testify. It currently implements the work we have presen-
ted in Sections 3 and 4 plus some other features we describe briefly here. Our main focus
is the constraint solving of constrained types to automatically derive generators. How-
ever for a more practical use, we provide the programmer two other ways of specifying
a generator for a given type. The first one is using the rejection keyword, for example
type even = int [@satisfying rejection(fun x -> x mod 2 = 0)]. Constraints tagged as re-
jected will not be handled by the constraint solver but will simply be treated a posteriori
after the generation to keep or discard generated values. The second one is by manual
annotation of functions: the developer can tag one of its own function of type S → τ as a
custom generator for the type τ . This will overload the generator automatically derived by
our framework. Also we have presented a type language with tuples and sum types but our
actual implementation also handles polymorphic and record types. We have not detailed
those here as they do not represent a specific challenge from a constraint solving perspective.

Also, as the numerical values we manipulate in our CSPs correspond to sets of machine
integers and floating point numbers, the computation we perform are likely to produce round-
off errors if made using standard precision. To bypass this issue, all of our computations
are made using arbitrary precision integers and rationals. Moreover, our uniformity metrics
are valid in R but not necessarily for floating point numbers. We believe that this is a
reasonable approximation. Finally our current implementation suffers from some limitations,
for example: we handle explicitly typed values only and do not enjoy the capabilities of
OCaml’s type inference mechanism. Also, we do not have a generator derivation mechanism
for recursive types and further work will be needed to lift these restrictions.

We have applied our testing framework on some open source OCaml libraries where
we have identified and annotated some constrained types. These types use quite simple
constraints that are mainly bound constraints, linear constraints of the form xi ≤ xj , and
some disjunctions of such constraints. This reflects the fact that when writing code, the
developer keeps in mind a relatively simple representation of the set of possible values of
its type. Table 1 presents some metrics over the tests we have generated using different
configurations. The first two columns give some information about the constrained type
from which we derive the CSP. The first column specifies the kind of constraints attached
to the type: bc for bound constraints, lin for linear constraints, and dis, for disjunctions of
linear constraints. The second column indicates the number of variables appearing in the
corresponding CSP. The next columns give some quality metrics over the generators: the
generation speed and uniformity. The column B8 (resp. B64) gives the measures for the
boxes abstract domain with a cover size limited to 8, (resp. 64), the column P gives these
values for polyhedra (with a cover size limited to 64). For comparison purposes, we add
a supplementary column RS that gives the statistics we obtain using rejection sampling.
The row µ shows the value of µ(I, O) at the end of Algorithm 1 and the last row gives the
generation rate, i.e. the number of generated values (in thousands) per seconds. The results
of Table 1 validates our intuition: constraint solving of constrained types helps producing
efficient generators. All of our abstract domain based configurations outperform the rejection

https://github.com/ghilesZ/Testify

G. Ziat, M. Dien, and V. Botbol 59:15

Table 1 Generation rate and value of µ per configuration.

CSP B8 B64 P RS
kind ♯var rate µ rate µ rate µ rate µ

bc 2 10075 0 10059 0 2604 0 816 0
bc 2 9860 0 9996 0 2586 0 842 0
lin 2 2551 0.6 3312 0.35 3262 0 1333 0
bc 1 26055 0 26146 0 7870 0 1922 0
lin 2 2602 0.6 3200 0.35 3358 0 1337 0
lin 2 2594 0.6 3166 0.35 3366 0 1080 0
lin 2 2622 0.6 3312 0.35 3234 0 428 0
bc 2 10246 0 10436 0 2768 0 1449 0
lin 2 2066 0.82 2812 0.44 6394 0 115 0
lin 3 615 1 716 1 1362 0 403 0
lin 2 2213 0.6 2750 0.35 6146 0 2278 0
dis 5 462 1 523 0.85 1189 0 452 0

sampling approach by one order of magnitude. In columns B8 and B64 the size limit for the
cover varies and as expected, it decreases µ. Moreover, on the benchmarks it almost always
increases the generation rate. This indicates that the execution time benefits more from
reducing the rejection rate than from increasing the size of the cover. However, it is slower
on most examples using bound constraints than the boxes due to the relative complexity
of the simplex generation procedure compared to the one of boxes. For the examples with
linear relational constraints, the samplers produced with polyhedrons are faster.

7 Conclusion

We have proposed in this paper an automated type-driven testing framework for programs
that manipulate constrained types. We have defined an automated technique to derive
efficient random uniform generators for numerical constrained types. To do so, we have
proposed several abstract domains, both relational and non-relational, with the addition of
random value generator. The strength of our method lies in its genericity: it allows us to
shift the problem of uniform random sampling of CSP solution to the definition of a uniform
generation operator for abstract domains. Further works include the study of such operators
for some popular domains of abstract interpretation such as congruences, products, octagons,
etc. Another idea would be to couple our methods with Boltzmann generation techniques
(like in [6]) in order to build generators for recursive types with constraints.

Our techniques were implemented in a prototype that can be used as a preprocessor for
OCaml programs. Even though we targeted OCaml and although we have taken advantage
of its generic syntax extension mechanism, the process we have presented could be adapted
to most programming languages. The tests we are able to generate are not made to be as
pertinent as some hand written tests and our goal is not to replace those. However our
approach being fully automatic and fast, it can be used on the fly, while programming, to
find bugs quickly. We believe that random uniform generators for abstract domain open
the way for hybrid techniques at the border between sound static analysis approaches and
complete testing techniques. For example, one could imagine a backward analysis able to
derive necessary preconditions (as in [32]) that exhibit bugs in a program and then uniformly
generating tests within the corresponding abstract element to find actual bugs.

CP 2021

59:16 Automated Random Testing of Numerical Constrained Types

References
1 Ignacio Araya, Gilles Trombettoni, and Bertrand Neveu. Exploiting Monotonicity in Interval

Constraint Propagation. In Association for the Advancement of Artificial Intelligence, editor,
Twenty-Fourth AAAI Conference on Artificial Intelligence, pages 9–14, Atlanta, United
States, July 2010. http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1699.
URL: https://hal-enpc.archives-ouvertes.fr/hal-00654400.

2 Lennart Augustsson. Cayenne – a language with dependent types. In S. Doaitse Swierstra,
José N. Oliveira, and Pedro R. Henriques, editors, Advanced Functional Programming, pages
240–267, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

3 Frédéric Benhamou, Frédéric Goualard, Laurent Granvilliers, and Jean-Francois Puget. Revis-
ing hull and box consistency. In Logic Programming: Proceedings of the 1999 International
Conference on Logic Programming, pages 230–244, January 1999.

4 G. Brightwell and P. Winkler. Counting linear extensions is ♯p-complete. In STOC ’91, 1991.
5 Jacob Burnim, Sudeep Juvekar, and Koushik Sen. Wise: Automated test generation for worst-

case complexity. In Proceedings of the 31st International Conference on Software Engineering,
ICSE ’09, page 463–473, New York, NY, USA, 2009. Association for Computing Machinery.
doi:10.1109/ICSE.2009.5070545.

6 Benjamin Canou and Alexis Darrasse. Fast and sound random generation for automated
testing and benchmarking in objective caml. In Proceedings of the 2009 ACM SIGPLAN
Workshop on ML, ML ’09, page 61–70, New York, NY, USA, 2009. Association for Computing
Machinery. doi:10.1145/1596627.1596637.

7 Matthieu Carlier, Catherine Dubois, and Arnaud Gotlieb. Focaltest: A constraint programming
approach for property-based testing. In José Cordeiro, Maria Virvou, and Boris Shishkov,
editors, Software and Data Technologies, pages 140–155, Berlin, Heidelberg, 2013. Springer
Berlin Heidelberg.

8 Supratik Chakraborty, Kuldeep S. Meel, and Moshe Y. Vardi. A scalable and nearly uniform
generator of sat witnesses. In Natasha Sharygina and Helmut Veith, editors, Computer Aided
Verification, pages 608–623, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

9 Koen Claessen and John Hughes. Quickcheck: A lightweight tool for random testing of haskell
programs. In Proceedings of the Fifth ACM SIGPLAN International Conference on Functional
Programming, ICFP ’00, page 268–279, New York, NY, USA, 2000. Association for Computing
Machinery. doi:10.1145/351240.351266.

10 Benjamin Cousins. Efficient high-dimensional sampling and integration. PhD thesis, Georgia
Institute of Technology, 2017.

11 Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Conference Record
of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 238–252, 1977.

12 Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear restraints among
variables of a program. In Proceedings of the 5th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages, pages 84–96, 1978.

13 Simon Cruanes. QuickCheck inspired property-based testing for OCaml. URL: https://github.
com/c-cube/qcheck.

14 Rafael Dutra, Kevin Laeufer, Jonathan Bachrach, and Koushik Sen. Efficient sampling of
sat solutions for testing. In 2018 IEEE/ACM 40th International Conference on Software
Engineering (ICSE), ICSE ’18, page 549–559, New York, NY, USA, 2018. Association for
Computing Machinery. doi:10.1145/3180155.3180248.

15 Peter Dybjer, Qiao Haiyan, and Makoto Takeyama. Random generators for dependent types.
In Zhiming Liu and Keijiro Araki, editors, Theoretical Aspects of Computing - ICTAC 2004,
pages 341–355, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

16 Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart: Directed automated random testing.
SIGPLAN Not., 40(6):213–223, 2005. doi:10.1145/1064978.1065036.

http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1699
https://hal-enpc.archives-ouvertes.fr/hal-00654400
https://doi.org/10.1109/ICSE.2009.5070545
https://doi.org/10.1145/1596627.1596637
https://doi.org/10.1145/351240.351266
https://github.com/c-cube/qcheck
https://github.com/c-cube/qcheck
https://doi.org/10.1145/3180155.3180248
https://doi.org/10.1145/1064978.1065036

G. Ziat, M. Dien, and V. Botbol 59:17

17 Vibhav Gogate and Rina Dechter. A new algorithm for sampling csp solutions uniformly at
random. In Frédéric Benhamou, editor, Principles and Practice of Constraint Programming -
CP 2006, pages 711–715, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

18 A. Gotlieb, B. Botella, and M. Watel. Inka: Ten years after the first ideas. In 19th International
Conference on Software & Systems Engineering and their Applications (ICSSEA’06), Paris,
France, December 2006.

19 Erwan Jahier and Pascal Raymond. Generating random values using Binary Decision Diagrams
and Convex Polyhedra. In Frédéric Benhamou, Narendra Jussien, and Barry O’Sullivan,
editors, Trends in Constraint Programming, page 416 pp. ISTE, 2007. URL: https://hal.
archives-ouvertes.fr/hal-00389766.

20 Bertrand Jeannet and Antoine Miné. Apron: A library of numerical abstract domains for static
analysis. In Proceedings of the 21th International Conference Computer Aided Verification
(CAV 2009), 2009.

21 Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier Rémy, and Jérôme
Vouillon. The ocaml system release 4.02. Institut National de Recherche en Informatique et
en Automatique, 54, 2014.

22 Alexandre Maréchal, Alexis Fouilhé, Tim King, David Monniaux, and Michaël Périn. Polyhed-
ral approximation of multivariate polynomials using handelman’s theorem. In 17th International
Conference on Verification, Model Checking, and Abstract Interpretation, pages 166–184, 2016.

23 Jan Midtgaard. Quickchecking patricia trees. In Meng Wang and Scott Owens, editors, Trends
in Functional Programming, pages 59–78, Cham, 2018. Springer International Publishing.

24 Jan Midtgaard, Mathias Justesen, Patrick Kasting, Flemming Nielson, and Hanne Nielson.
Effect-driven quickchecking of compilers. Proceedings of the ACM on Programming Languages,
1:1–23, August 2017. doi:10.1145/3110259.

25 Antoine Miné. Symbolic methods to enhance the precision of numerical abstract domains. In
7th International Conference on Verification, Model Checking, and Abstract Interpretation,
2006.

26 Ugo Montanari. Networks of constraints: Fundamental properties and applications to picture
processing. Information Science, 7(2):95–132, 1974.

27 Martin Odersky, Martin Sulzmann, and Martin Wehr. Type inference with constrained
types. TAPOS, 5:35–55, January 1999. doi:10.1002/(SICI)1096-9942(199901/03)5:1<35::
AID-TAPO4>3.0.CO;2-4.

28 Michal Palka, Koen Claessen, Alejandro Russo, and John Hughes. Testing an optimising
compiler by generating random lambda terms. Proceedings - International Conference on
Software Engineering, January 2011. doi:10.1145/1982595.1982615.

29 Marie Pelleau, Antoine Miné, Charlotte Truchet, and Frédéric Benhamou. A constraint solver
based on abstract domains. In Proceedings of the 14th International Conference on Verification,
Model Checking, and Abstract Interpretation (VMCAI 2013), 2013.

30 G. Pesant. Counting solutions of csps: A structural approach. In IJCAI, 2005.
31 F. Pottier. Strong automated testing of ocaml libraries. In JFLA 2021 - 32es Journées

Francophones des Langages Applicatifs, 2020.
32 Xavier Rival. Understanding the origin of alarms in astrée. In Chris Hankin and Igor Siveroni,

editors, Static Analysis, pages 303–319, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.
33 Colin Runciman, Matthew Naylor, and Fredrik Lindblad. Smallcheck and lazy smallcheck

automatic exhaustive testing for small values. In Proceedings of the First ACM SIGPLAN
Symposium on Haskell, volume 44, pages 37–48, January 2008.

34 Pascal Sotin. Quantifying the precision of numerical abstract domains, 2010. URL: https:
//hal.inria.fr/inria-00457324.

35 Charlotte Truchet, Marie Pelleau, and Frédéric Benhamou. Abstract domains for constraint
programming, with the example of octagons. International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing, pages 72–79, 2010. doi:10.1109/SYNASC.2010.
69.

CP 2021

https://hal.archives-ouvertes.fr/hal-00389766
https://hal.archives-ouvertes.fr/hal-00389766
https://doi.org/10.1145/3110259
https://doi.org/10.1002/(SICI)1096-9942(199901/03)5:1<35::AID-TAPO4>3.0.CO;2-4
https://doi.org/10.1002/(SICI)1096-9942(199901/03)5:1<35::AID-TAPO4>3.0.CO;2-4
https://doi.org/10.1145/1982595.1982615
https://hal.inria.fr/inria-00457324
https://hal.inria.fr/inria-00457324
https://doi.org/10.1109/SYNASC.2010.69
https://doi.org/10.1109/SYNASC.2010.69

59:18 Automated Random Testing of Numerical Constrained Types

36 H. Xi. Dependent ml an approach to practical programming with dependent types. J. Funct.
Program., 17:215–286, 2007.

37 M Zalewski. American fuzzy lop. URL: https://lcamtuf.coredump.cx/afl/.

A Generated code for generators

A.1 Generated code using the boxes abstract domain
The following code gives the generator for the itv type we derived using the boxes abstract
domain. The weighted procedure chooses a generator w.r.t. their probability. To perform
quickly on average the list is sorted in decreasing order of probabilities, first elements being
bigger, and thus more likely to be chosen. The function is more thus likely to stop quickly in
average without harming uniformity.

1 weighted
2 [(0.400000000001 ,
3 ((fun x ->
4 (fun i -> (((get_int "x") i), ((get_int "y") i)))
5 ((fun rs ->
6 [("y", ((mk_int_range 0 0 x3fffffffffffffff) rs));
7 ("x", ((mk_int_range 0 x4000000000000000 (-1)) rs))]) x))));
8 (0.100000000001 ,
9 (reject (fun (x, y) -> x <= y)

10 (fun x ->
11 (fun i -> (((get_int "x") i), ((get_int "y") i)))
12 ((fun rs ->
13 [("y",
14 ((mk_int_range 0 x2000000000000000 0 x3fffffffffffffff) rs));
15 ("x", ((mk_int_range 0 0 x1fffffffffffffff) rs))]) x))));
16 (0.100000000001 ,
17 (reject (fun (x, y) -> x <= y)
18 (fun x ->
19 (fun i -> (((get_int "x") i), ((get_int "y") i)))
20 ((fun rs ->
21 [("y", ((mk_int_range 0 0 x1fffffffffffffff) rs));
22 ("x", ((mk_int_range 0 0 x1fffffffffffffff) rs))]) x))));
23 (0.100000000001 ,
24 (reject (fun (x, y) -> x <= y)
25 (fun x ->
26 (fun i -> (((get_int "x") i), ((get_int "y") i)))
27 ((fun rs ->
28 [("y", ((mk_int_range 0 x6000000000000000 (-1)) rs));
29 ("x",
30 ((mk_int_range 0 x4000000000000000 0 x5fffffffffffffff) rs))])
31 x))));
32 (0.100000000001 ,
33 (reject (fun (x, y) -> x <= y)
34 (fun x ->
35 (fun i -> (((get_int "x") i), ((get_int "y") i)))
36 ((fun rs ->
37 [("y",
38 ((mk_int_range 0 x4000000000000000 0 x5fffffffffffffff) rs));
39 ("x",
40 ((mk_int_range 0 x4000000000000000 0 x5fffffffffffffff) rs))])
41 x))));
42 (0.0500000000001 ,
43 (reject (fun (x, y) -> x <= y)
44 (fun x ->
45 (fun i -> (((get_int "x") i), ((get_int "y") i)))
46 ((fun rs ->
47 [("y",
48 ((mk_int_range 0 x2000000000000000 0 x3fffffffffffffff) rs));
49 ("x",
50 ((mk_int_range 0 x3000000000000000 0 x3fffffffffffffff) rs))])
51 x))));
52 (0.0500000000001 ,
53 (reject (fun (x, y) -> x <= y)
54 (fun x ->
55 (fun i -> (((get_int "x") i), ((get_int "y") i)))
56 ((fun rs ->
57 [("y",
58 ((mk_int_range 0 x2000000000000000 0 x3fffffffffffffff) rs));

https://lcamtuf.coredump.cx/afl/

G. Ziat, M. Dien, and V. Botbol 59:19

59 ("x",
60 ((mk_int_range 0 x2000000000000000 0 x2fffffffffffffff) rs))])
61 x))));
62 (0.0500000000001 ,
63 (reject (fun (x, y) -> x <= y)
64 (fun x ->
65 (fun i -> (((get_int "x") i), ((get_int "y") i)))
66 ((fun rs ->
67 [("y", ((mk_int_range 0 x6000000000000000 (-1)) rs));
68 ("x", ((mk_int_range 0 x7000000000000000 (-1)) rs))]) x))));
69 (0.0500000000001 ,
70 (reject (fun (x, y) -> x <= y)
71 (fun x ->
72 (fun i -> (((get_int "x") i), ((get_int "y") i)))
73 ((fun rs ->
74 [("y", ((mk_int_range 0 x6000000000000000 (-1)) rs));
75 ("x",
76 ((mk_int_range 0 x6000000000000000 0 x6fffffffffffffff) rs))])
77 x))))]
78

A.2 Generated code using the polyhedra abstract domain
The following code was generated by our framework as a generator for the itv type using the
polyhedra abstract domain. The simplex procedure corresponds to drawing method given
in section 5.2.

1 fun x ->
2 (fun i -> (((get_int "x") i), ((get_int "y") i)))
3 ((simplex
4 [((mk_int 0 x4000000000000000), "y");
5 ((mk_int 0 x4000000000000000), "x")]
6 [[((mk_int 0 x3ffffffffffffe00), "y");
7 ((mk_int 0 x4000000000000000), "x")];
8 [((mk_int 0 x3ffffffffffffe00), "y");
9 ((mk_int 0 x3ffffffffffffe00), "x")]]

10 [((mk_int 0 x3ffffffffffffe00), "y"); ((mk_int 0), "x")]) x)

CP 2021

	1 Introduction
	1.1 Example: Putting Constraints in Programming
	1.2 Contributions
	1.3 Outline

	2 Related Works
	3 Testing Semantics
	3.1 Type Language and Semantics
	3.2 Constraints semantics
	3.3 Generator semantics
	3.4 Test Generation

	4 Solving Constrained Types
	4.1 CSP extraction from a constrained type
	4.2 CSP solving
	4.3 Solving Algorithm
	4.4 From covers to generators

	5 Abstract Domains for Random Testing
	5.1 Boxes
	5.2 Polyhedra

	6 Current Implementation and Benchmarks
	7 Conclusion
	A Generated code for generators
	A.1 Generated code using the boxes abstract domain
	A.2 Generated code using the polyhedra abstract domain

