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Abstract

In this study, a microgrid with storage (battery, hot water tank) and solar panel is
considered. We benchmark two algorithms, MPC and SDDP, that yield online policies
to manage the microgrid, and compare them with a rule based policy. Model Predictive
Control (MPC) is a well-known algorithm which models the future uncertainties with
a deterministic forecast. By contrast, Stochastic Dual Dynamic Programming (SDDP)
models the future uncertainties as stagewise independent random variables with known
probability distributions. We present a scheme, based on out-of-sample validation, to
fairly compare the two online policies yielded by MPC and SDDP. Our numerical
studies put to light that MPC and SDDP achieve significant gains compared to the
rule based policy, and that SDDP overperforms MPC not only on average but on most
of the out-of-sample assessment scenarios.

1 Introduction

1.1 Background introduction

A microgrid is a local energy network that produces part of its energy and controls its own
demand. Such systems are complex to control because, on the one hand, of the different
stocks and interconnections, and, on the other hand, of electrical demands and weather
conditions (heat demand and renewable energy production) that are highly variable and hard
to predict at local scale (see [1, 2] for a panorama of the challenges faced when controlling
microgrids).
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†UMA, ENSTA Paris, Institut Polytechnique de Paris, Palaiseau, France
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Abbreviations

AR Auto-regressive
EMS Energy Management System
MPC Model Predictive Control
SDP Stochastic Dynamic Programming

SDDP Stochastic Dual Dynamic Programming

Physical variables

t Time
∆ Time step (15mn)
T0 Horizon (24h)
pet Electricity price (Euro e)
pdt Thermal comfort (virtual price)
Ap Surface of solar panel (m2)
ρc Battery charge rate
ρd Battery discharge rate
βh Conversion yield for hot water tank

Decision variables and uncertainties

(Ω,F ,P) Probability space
Bt Level of energy in battery (kWh)
Ht Level of energy in hot water tank (kWh)
Del
t Electrical demand (kW)

Dth
t Hot water demand (kW)

Φpv
t Production of the solar panel (kW)
θit Inner temperature (◦C)
θwt Walls temperature (◦C)
θet Outdoor temperature (◦C)
F b
t Energy exchanged with the battery (kW)

F w
t Energy injected in the hot water tank (kW)
F h
t Energy injected in the electrical heater (kW)

Ut = (F b
t ,F

w
t ,F

h
t ) Controls

Wt = (Del
t ,D

th
t ,Φ

pv
t ) Uncertainties

Xt = (Bt,Ht,θ
w
t ,θ

i
t) States

Mappings

ft : Xt × Ut ×Wt+1 → Xt+1 Linear dynamics
Lt : Xt × Ut ×Wt+1 → R Convex operational cost

K : XT → R Convex final cost
πt : Xt → Ut Control policy

Table 1: Nomenclature
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We consider here a domestic microgrid equipped with a battery, an electrical hot water
tank and a solar panel, as in Figure 1. The microgrid is connected to an external grid to
import electricity when needed. The battery stores energy when external grid prices are
low or when the production of the solar panel is above the electrical demand. The house’s
envelope also plays the role of heat storage. As a consequence, the system has four stocks to
store energy: a battery, a hot water tank, and two passive stocks being the house’s walls and
inner rooms. Two kinds of uncertainties affect the system: the electrical and domestic hot
water demands are not known in advance; the production of the solar panel is substantially
perturbed by the variable weather nebulosity.

We aim to compare two classes of algorithms to tackle uncertainties in a microgrid Energy
Management System (EMS). The Model Predictive Control (MPC) algorithm (or its stochas-
tic variant, Stochastic Model Predictive Control) relies on a mathematical representation of
the future uncertainties as deterministic forecasts; then, MPC computes decisions online
as solutions of a deterministic multistage optimization problem. Stochastic Dual Dynamic
Programming (SDDP) relies on a mathematical representation of the future uncertainties as
stagewise independent random variables with known probability distributions; then, SDDP
computes offline a set of value functions by backward induction, and computes online deci-
sions as solutions of a single stage stochastic optimization problem, using the value functions.
We present a fair comparison of these two algorithms, and highlight the pros and cons of
both methods.

1.2 Literature review

Optimization and energy management systems

EMS are integrated automated tools used to monitor and control energy systems. In [1], the
authors give an overview of the use of optimization methods in the design of EMS. The MPC
algorithm [3] and its stochastic variant, Stochastic Model Predictive Control (SMPC) [4],
have been widely used to control EMS. We refer the reader to [5] for applications of MPC
in buildings. In [6], the authors use MPC for the optimal control of a domestic microgrid,
and investigate how to balance the uncertainties of renewable energies with the microgrid.
In [7], the authors apply SMPC to the management of an isolated microgrid, and highlight
the benefit of this method; an application of SMPC in buildings is presented in [8]; a variant
based on robust optimization is proposed in [9].

Stochastic optimization

At local scale, electrical demand and production are highly variable, especially as microgrids
are expected to absorb renewable energies. This leads to pay attention to stochastic opti-
mization approaches [10]. Stochastic optimization has been widely applied to hydrovalleys
management [11]. Other applications have arisen recently, such as integration of wind energy
and storage [12] or insulated microgrids management [13, 14].

Stochastic Dynamic Programming (SDP) [15] is a general method to solve stochastic
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optimal control problems. In energy applications, a variant of SDP, Stochastic Dual Dynamic
Programming (SDDP), has demonstrated its adequacy for large scale convex applications.
SDDP was first described in the seminal paper [11]; we refer to [16] for a generic description of
the algorithm and its application to the management of hydrovalleys; a proof of convergence
in the linear case is given in [17], and in the convex case in [18]. Recent articles have
applied SDDP to the management of energy systems. In [19], numerical experiments show
that SDDP yields better results than a myopic policy. In [20], SDDP is applied to the
dispatch of energy inside the German national grid, under time correlated uncertainties; the
authors observe that SDDP achieves better performances than those of a deterministic-based
policy. Other Approximate Dynamic Programming algorithms have been designed to tackle
different stochastic optimal control problems like, for instance, incorporating probability
constraints [21].

1.3 Main contributions and structure of the paper

We provide a rigorous mathematical formulation of the optimal management of a domestic
microgrid — equipped with a battery, an electrical hot water tank and a solar panel, and
connected to an external supply network — under stochasticity of demand and of renewable
energy production. To manage the microgrid, we design online policies using two different al-
gorithms, MPC and SDDP. Then, we develop a fair benchmark methodology to compare the
two algorithms, based on a realistic use case. The comparison reveals that SDDP overper-
forms MPC not only on average but, interestingly, on most of the out-of-sample assessment
scenarios.

The paper is organized as follows. In Sect. 2, we detail the modeling of a small residential
microgrid and formulate a mathematical multistage stochastic optimization problem. Then,
we outline the two algorithms, MPC and SDDP, in Sect. 3. Finally, in Sect. 4 we detail the
benchmark methodology and we provide numerical results on the systematic comparison of
MPC, SDDP and a rule based policy. Sect. 5 concludes and the Appendix 6 provides details
on the physical equations of the microgrid.

2 Optimization problem statement

We consider the optimal management of a microgrid which, as depicted in Figure 1, consists
of a single house equipped with a battery and an electrical hot water tank. An electrical
heater can produce heat in winter, and a solar panel can produce energy locally. The decision
maker aims at minimizing the energy bill — that is, the cost of the possible recourse energy
supplied by the external network — while satisfying the energy demands (hot water and
electricity), and ensuring a minimal thermal comfort.

In this section, we write up a multistage stochastic optimization problem. As decisions
are taken at discrete time steps, we start by discretizing the time interval in §2.1. Then, we
introduce the uncertainties in §2.2, the controls and the stocks in §2.3 and §2.4. We detail
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the nonanticipativity constraints in §2.5, the bounds constraints in §2.6 and the objective
function in §2.7. Finally, we formulate a multistage stochastic optimization problem in §2.8.

fh

f b del

fne

dhw

f t

φpv

ELECTRICAL
DEMAND

NETWORK

BATTERY

SOLAR PANEL

TANKTHERMAL
DEMAND

DOMESTIC
HOT WATER

Figure 1: Electrical microgrid

2.1 Decisions are taken at discrete time steps

The EMS takes decisions every 15 minutes to control the system. We consider a time inter-
val ∆ = 15mn, a time horizon T0=24h and a number T=T0/∆=96 of time steps. We adopt
the following convention for discrete time processes: for each time step t ∈ {0, 1, · · · , T}, xt
denotes the value of the variable x at the beginning of the interval [t∆, (t+ 1)∆). Otherwise
stated, we will denote by [t, t+ 1) the continuous time interval [t∆, (t+ 1)∆).1

2.2 Modeling uncertainties as random variables

Because of their unpredictable nature, the EMS cannot anticipate the values of electrical and
thermal demands, nor the production of the solar panel. We choose to model these quantities
as random variables over a probability space (Ω,F ,P). We adopt the following convention: a
random variable will be denoted by an uppercase bold letter Z , and its realization for a given
outcome ω ∈ Ω will be denoted in lowercase z = Z(ω). We denote by Del

t the electrical
demand, Dth

t the hot water demand and Φpv
t the production of the solar panel, all being

real-valued random variables. For each time step t = 1, . . . , T , we define the (uncertainty)

1Here, by using the notation [t, t + 1), we mean the time interval between t and t + 1, excluding t + 1.
Indeed, we denote a time interval between two decisions by [t, t + 1), and not by [t, t+1], to indicate that
a decision is taken at the beginning of the time interval [t, t + 1), and that a new one will be taken at the
beginning of the time interval [t+1, t+2), and that these two consecutive intervals do not overlap.
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random variable
W t = (Del

t ,D
th
t ,Φ

pv
t ) . (1)

The uncertainty W t is a multivariate random variable taking values in Wt = R3.

2.3 Modeling controls as random variables

As decisions depend on the previous uncertainties, controls are random variables. At the
beginning of the time interval [t, t+ 1), the EMS takes three decisions:

• F b
t , how much energy to charge in/discharge from the battery,

• F w
t , how much energy to store in the electrical hot water tank,

• F h
t , how much energy to inject in the electrical heater,

during the time interval [t, t + 1). For each time step t = 1, . . . , T , we define the decision
multivariate random variable, taking values in Ut = R3, as

U t = (F b
t ,F

w
t ,F

h
t ) . (2)

During the time interval [t, t+1), the EMS imports an energy quantity F ne
t+1 from the external

network in order to fulfill the load balance equation

F ne
t+1 + Φpv

t+1 = F b
t + F w

t + F h
t + Del

t+1 , (3)

whatever the demand Del
t+1 and the production of the solar panel Φpv

t+1, unknown at the
beginning of the time interval [t, t + 1). On the left-hand side of Equation (3), the load
consists of

• F ne
t+1, the energy surplus or shortage (when F ne

t+1 < 0, one wastes the surplus; when
F ne
t+1 > 0, one imports the shortage from the network),

• Φpv
t+1, the production of the solar panel,

all during the time interval [t, t + 1). On the right-hand side of Equation (3), the electrical
demand is the sum of

• F b
t , the energy exchanged with the battery,

• F w
t , the energy injected into the electrical hot water tank,

• F h
t , the energy injected in the electrical heater,

• Del
t+1, the electrical demands (lightning, cooking...), aggregated in a single demand,

all during the time interval [t, t+ 1).
Later, we will aggregate the solar panel production Φpv

t+1 with the demands Del
t+1 in

Equation (3), as these two quantities appear only by their difference.
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2.4 States and dynamics

The state is the multivariate random variable

X t = (Bt,Ht,θ
w
t ,θ

i
t) , (4)

which consists of the stocks Bt in the battery and Ht in the electrical hot water tank, plus
the two temperatures (θwt ,θ

i
t) of the thermal envelope. Thus, the state random variable X t

takes values in Xt = R4.
The discrete time dynamics ft : Xt × Ut ×Wt+1 → Xt+1 describes the time evolution

X t+1 = ft
(
X t,U t,W t+1

)
(5)

of the state, where ft is a piecewise linear function (a property that will prove important for
the SDDP algorithm), that corresponds to the integration of the continuous dynamics (21)-
(22)-(24) given in Appendix 6. We suppose that we start from a given state x0 ∈ X0 = R4,
thus adding the constraint X0 = x0.

2.5 Nonanticipativity constraints

The future realizations of uncertainties are unknown. Thus, decisions at time step t are
functions of previous history only, that is, the information collected between step 0 and
step t. Such a constraint is encoded as an algebraic constraint, using the tools of Probability
theory [22], in the so-called nonanticipativity constraints written as

σ(U t) ⊂ Ft , (6a)

where σ(U t) is the σ-algebra generated by the random variableU t and Ft = σ(W 1, · · · ,W t)
is the σ-algebra generated by the previous uncertainties (W 1, . . . ,W t). If Constraint (6a)
holds true, the Doob Lemma [22] ensures that there exists a measurable function πt : W1 ×
· · · ×Wt → Ut such that

U t = πt(W 1, . . . ,W t) . (6b)

This is how we turn an (abstract) algebraic constraint into a more practical functional
constraint. The function πt is called a policy.

2.6 Bounds constraints

The stocks Bt in the battery and Ht in the tank are bounded:

b ≤ Bt ≤ b , 0 ≤Ht ≤ h . (7)

At time step t, the control F b
t must ensure that the next state Bt+1 is admissible, that

is, satisfies b ≤ Bt+1 ≤ b, which, by time discretization of (21), is equivalent to the two
inequalities2

b ≤ Bt + ∆
[
ρc(F

b
t )+ +

1

ρd
(F b

t )−
]
≤ b , (8)

2We have used the notation f+ = max{0, f} and f− = max{0,−f}.
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with ρc and ρd being the charge and discharge efficiencies of the battery. Thus, the constraints
on F b

t depends on the stock Bt. The same reasoning applies for the tank energy F w
t and

the stock Ht. Furthermore, we set bound constraints on controls:

− f b ≤ F b
t ≤ f

b
, 0 ≤ F w

t ≤ f
w

t , 0 ≤ F h
t ≤ f

h

t . (9)

Finally, the load-balance equation (3) also acts as a constraint on the controls. We gather all
these constraints into an admissible subset Uadt (X t) of Ut = R3, depending on the current
state X t, giving the constraint3

U t ∈ Uadt (X t) . (10)

Note that we do not enforce any explicit bounds on the inner temperature. Instead, we
choose to add a penalization term in the objective function if the temperature is below a
given threshold, as explained below.

2.7 Objective function

At time step t, the instantaneous cost Lt : Xt × Ut ×Wt+1 → R aggregates two different
costs as in the formula

Lt(xt, ut, wt+1) = pet ×max{0, fnet+1}+ pdt ×max{0, θit − θit} , (11)

where fnet+1 is a function of (ut, wt+1) by (3), and θit is part of the state xt in (4).
First, one pays a unitary price pet to import electricity from the external network between

step t and t+1; hence, the electricity cost is equal to pet×max{0, fnet+1}. Second, if the indoor
temperature is below a given threshold, we penalize the induced discomfort with a cost
pdt ×max{0, θit − θit}, where pdt is a virtual price of discomfort (we choose not to penalize the
temperature in case it is above a given threshold, as we do not consider any air conditioning
in this study). The cost Lt is a convex piecewise linear function, a property that will prove
important for the SDDP algorithm. To ensure that stocks are not empty at the final time
step T , we add a convex piecewise linear final cost K : XT → R of the form

K(xT ) = κ×max{0, x0 − xT} , (12)

where κ is a positive penalization coefficient (calibrated by trial and error).
As decisions U t and states X t are random, the costs Lt(X t,U t,W t+1) and K(XT )

become also random variables. We choose to minimize the expected value of the daily
operational cost, that is,

E

[
T−1∑
t=0

Lt(X t,U t,W t+1) +K(XT )

]
, (13)

yielding the expected value of a convex piecewise linear cost.

3More formally, for each time step t = 1, . . . , T , Uad
t is a nonempty set-valued mapping Uad

t : Xt ⇒ Ut.
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2.8 Stochastic optimal control formulation

Finally, the EMS problem is written as a stochastic optimal control problem

min
X,U

E

[
T−1∑
t=0

Lt(X t,U t,W t+1) +K(XT )

]
, (14a)

s.t. X t+1 = ft
(
X t,U t,W t+1

)
, X0 = x0 , t = 0, . . . , T − 1 , (14b)

U t ∈ Uadt (X t) , t = 0, . . . , T − 1 , (14c)

σ(U t) ⊂ Ft , t = 0, . . . , T − 1 . (14d)

Problem (14) expresses that the microgrid manager aims to minimize the expected value
of the costs while satisfying the dynamics, the control bounds and the nonanticipativity
constraints.

3 Resolution methods

The exact resolution of Problem (14) is out of reach in general. We propose two different
algorithms that provide policies4 πt : W1 × · · · × Wt → Ut that map available informa-
tion w1, . . . , wt at step t to a decision ut.

In §3.1, we start by presenting how to design management policies with the MPC algo-
rithm. Then, we depict SDDP-based policies in §3.2. Both methods use the dynamics ft
in (5), the constraints sets Uadt (·) in (10), and the cost functions Lt in (11) and K in (12).

3.1 Model Predictive Control (MPC)

Be it ordinary or stochastic, MPC is a classical algorithm that is commonly used to solve
stochastic optimization problems. Regarding MPC, we follow [15]. At time step t, we
consider a deterministic forecast (wt+1, . . . , wT ) of the future uncertainties (W t+1, . . . ,W T )
(see §6.4 for more details) and we solve the following deterministic problem, where the
state xt is given:

min
(ut,··· ,uT−1)

T−1∑
j=t

Lj(xj, uj, wj+1) +K(xT ) , (15a)

s.t. xj+1 = fj
(
xj, uj, wj+1

)
, j = t, . . . , T − 1 , (15b)

uj ∈ Uadj (xj) , j = t, . . . , T − 1 . (15c)

Then, we retrieve the optimal decisions (u]t, . . . , u
]
T−1) and only keep the first decision u]t to

control the system at the beginning of the time interval [t, t + 1). This procedure is then
restarted at step t+ 1. Thus, MPC solves an optimization problem at each time step, with

4See §2.5 on how the algebraic nonanticipativity constraint (14d) can be turned into a more practical
functional constraint, making it possible to search for solutions that are policies.

9



a time span going from the current time step t to the final time step T . Then, at the next
time t+ 1, the optimizer updates the scenario (wt+1, . . . , wT ) to take into account the latest
observation made at t+ 1.

3.2 Stochastic Dual Dynamic Programming (SDDP)

As said in §1.2, SDDP is an algorithm widely used to optimize energy systems. The SDDP
algorithm provides, at each time step, a value function and an online control policy. Whereas
the value functions are computed offline (hence with offline data), online control policies are
computed taking into account an online probability distribution on the next period noise.

Dynamic Programming and Bellman principle

The Dynamic Programming method [23] provides solutions of Problem (14) as state feed-
backs πt : Xt → Ut (these feedbacks are optimal when the noise process is made of indepen-
dent random variables). Dynamic Programming makes use of a sequence of value functions,
obtained offline by setting VT (xT ) = K(xT ) and by solving backward in time the recursive
functional equations

Vt(xt) = min
u∈Uad

t (xt)

∫
Wt+1

[
Lt(xt, u, wt+1)+

Vt+1

(
ft(xt, u, wt+1)

)]
µoft+1(dwt+1) , (16)

where µoft+1 is a (offline) probability distribution on Wt+1. Once these functions obtained, we
compute a decision at time step t as a state feedback

πt(xt) ∈ arg min
u∈Uad

t (xt)

∫
Wt+1

[
Lt(xt, u, wt+1)+

Vt+1

(
ft(xt, u, wt+1)

)]
µont+1(dwt+1) , (17)

where µont+1 is an online probability distribution on Wt+1. This method proves to be optimal

when the random variables W 1, . . . ,W T are stagewise independent and when µont = µoft is
the probability distribution of W t.

Description of Stochastic Dual Dynamic Programming

Dynamic Programming suffers from the well-known curse of dimensionality [23]: its numer-
ical resolution fails for state dimension typically greater than 4 when value functions are
computed on a numerical grid. When uncertainties are stagewise independent random vari-
ables, costs Lt and K are convex and dynamics ft are linear, the SDDP algorithm provides
a solution to Problem (14) where the value functions are represented by convex polyhedral
functions [18]. Most achievements of SDDP have been obtained in the linear case — when
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all the costs are linear — as each subproblem (16) can be solved with the simplex algorithm.
However, the extension to the generic convex case has not been studied extensively.

SDDP provides an outer approximation of the value function Vt in (16). Provided a
bundle of k supporting hyperplanes {(λjt , β

j
t )}j=1,··· ,k (with, for each j = 1, · · · , k, λjt ∈ R4

and βjt ∈ R), the corresponding outer approximation V k
t is given by

V k
t (xt) = min

%t∈R
%t , (18a)

s.t.
〈
λjt , xt

〉
+ βjt ≤ %t , ∀j = 1, · · · , k . (18b)

SDDP takes as input an initial value function V 0
t+1 (usually −∞) and an initial state

x0. In the algorithm, we assume that the probability distributions have finite support
{w1

t+1, . . . , w
S
t+1}. The offline distribution µoft+1 is then written in the form µoft+1 =

∑S
s=1 p

s
t+1δws

t+1
,

where δws
t+1

is the Dirac measure at wst+1 and p1t+1, . . . , p
S
t+1 are probability weights. Then,

each iteration k of SDDP encompasses two passes.

• During the forward pass, we draw a scenario wk1 , . . . , w
k
T of uncertainties, and obtain a

state trajectory
{
xkt
}
t=0···T along this scenario as follows. Starting from initial state x0,

we compute xkt+1 from xkt in an iterative fashion: i) we obtain a control ukt at time step t,
using the available V k

t+1 function, by

ukt ∈ arg min
u∈Uad

t (xt)

S∑
i=1

pit+1

[
Lt(x

k
t , u, w

i
t+1) + V k

t+1

(
ft(x

k
t , u, w

i
t+1)
)]

, (19a)

and ii), we set xkt+1 = ft(x
k
t , u

k
t , w

k
t+1) where ft is the piecewise linear dynamics in (5).

• During the backward pass, we update the approximated value functions
{
V k
t

}
t=0,··· ,T

backward in time along the trajectory
{
xkt
}
t=0,··· ,T . At time step t, we solve the problem

%k+1
t = min

u∈Uad
t (xt)

S∑
i=1

pit+1

[
Lt(x

k
t , u, w

i
t+1) + V k+1

t+1

(
ft(x

k
t , u, w

i
t+1)
)]

, (19b)

and we obtain a new cut (λk+1
t , βk+1

t ) where λk+1
t is a subgradient of the optimal cost

function (19b) evaluated at the point xt = xkt ,

λk+1
t ∈

S∑
i=1

pit+1

[
∂xLt(x

k
t , u

k+1
t , wit+1) + ∂xV

k+1
t+1

(
ft(x

k
t , u

k+1
t wit+1)

)]
,

and where βk+1
t = %k+1

t −
〈
λk+1
t , xkt

〉
. This new cut makes it possible to update the

function V k+1
t by the formula V k+1

t = max{V k
t ,
〈
λk+1
t , .

〉
+ βk+1

t }.

We use the stopping criterion introduced in [16] to stop SDDP once the gap between the
upper and lower bounds is lower than 0.1 %. In practice, the subproblems (19a) and (19b)
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are linear, and can be solved efficiently with any linear programming solver. At iteration
k, the lower bound is given directly by V 0(x0). The upper bound is computed by running
Nsim forward passes of SDDP on a fixed set of scenarios w1, · · · , wNsim ; the costs associated
with each scenario are then averaged to get the upper bound (the method is thus akin to
a Monte Carlo simulation). We obtain a sequence {V t}t=0,··· ,T of functions, that are lower
approximations of the original Bellman functions.

Obtaining online controls with SDDP

We obtain an online policy by means of the following procedure:

• approximated value functions
{
V t

}
are computed offline with the SDDP algorithm

(see §3.2),

• the approximated value functions
{
V t

}
are then used to compute online a decision at

any time step t for any state xt as follows.

We compute the SDDP policy πsddpt by

πsddpt (xt) ∈ arg min
u∈Uad

t (xt)

S∑
i=1

pit+1

[
Lt(xt, u, wt+1) + V t+1

(
ft(xt, u, wt+1)

)]
, (20)

which corresponds to replacing the value function Vt+1 in Equation (17) with its approxima-
tion V t+1. The decision πsddpt (xt) is used to control the system between steps t and t + 1.
Then, we solve Problem (20) at step t+ 1.

3.3 Discussion

In this section, we have introduced two methods to design management policies, the first
one based on MPC, the second on SDDP. Both methods differ on how they model the future
uncertainties. In SDDP, one represents the future as a sequence of independent random
variables, whereas in MPC it is with a deterministic forecast. It remains now to compare
the policy πsdpp with the policy πmpc.

In the next Sect. 4, we compare the performances of πmpc and πsddp on a set of assess-
ment scenarios, using a simulator. We depict in Figure 2 the flow chart of the simulation
procedure. The devised policies are used to compute a decision ut at each time step t, using
the information already available at step t. Then, by comparing the total costs obtained and
repeating the procedure on a bundle of scenarios, we are able to draw conclusions about the
respective performances of each policy.

4 Numerical results

In §4.1, we describe a case study. In §4.2, we develop a protocol to fairly compare the
MPC and SDDP algorithms altogether with a rule based policy, then discuss the results
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xt+1 = ft(xt, ut, wt+1)
Xt Xt+1
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ut = πt(xt)
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• Uncertainty model at time t

ut

xt

xt xt+1

wt+1

Figure 2: Flow chart of the simulation procedure

obtained. In §4.3, we quantify the robustness of MPC and SDDP with respect to the level
of uncertainty.

4.1 Case study

Settings We aim to solve the stochastic optimization problem (14) over one day, with 96
time steps. The battery size is 3 kWh, and the hot water tank has a capacity of 120 l. We
suppose that the house has a surface Ap = 20 m2 of solar panel at disposal, oriented south,
and with a yield of 15%. We penalize the recourse variable Fne

t+1 in (11) with on-peak and

off-peak tariff, corresponding to Électricité de France’s (EDF) individual tariffs. The house’s
thermal envelope corresponds to the French RT2012 specifications [24]. Meteorological data
comes from Météo France measurements corresponding to the year 2015.

Implementing the algorithms We implement MPC and SDDP in Julia 0.6, using JuMP [25]
as a modeler, StochDynamicProgramming.jl as a SDDP solver, and Gurobi 7.02 [26] as a
LP solver. All computations run on a Core i7 2.5 GHz processor, with 16GB RAM.

Rule based method We choose to compare the MPC and SDDP algorithms with the
following basic decision rule: the battery is charged whenever the solar production Φpv is
available, and discharged to fulfill the demand if there remains enough energy in the battery;
the tank is charged (F w

t > 0) if the tank energy Ht is lower than H0, the heater F h
t is

switched on when the temperature is below the setpoint θit, and switched off whenever the
temperature is above the setpoint plus a given margin.

4.2 Benchmark

Demand scenarios

Scenarios of electrical and domestic hot water demands, at time steps evenly spaced ev-
ery ∆ = 15 minutes, are generated with the software StRoBe [27]. In Figure 3, 100 scenarios
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of electrical and hot water demands are displayed. We observe almost null demand during the
night, and demand peaks around midday and 8 pm; peaks in hot water demand correspond
to showers. We aggregate the electrical demand Del minus the production Φpv of the solar
panel in a single variable Del, so that we consider only two uncertainties W t = (Del

t ,D
th
t ).
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Figure 3: Electrical (left) and domestic hot water (right) demand scenarios

Building offline probability distributions for SDDP

We use the optimization scenarios to build marginal probability distributions µoft that will
feed the SDDP procedure in (19a)-(19b). In order to obtain a discrete probability distribution
at each time t, we use a Lloyd-Max quantization scheme [28] to compute S representative
points from the Nopt optimization scenarios.

Out of sample assessment of policies

To obtain a fair comparison between SDDP and MPC, we use an out-of-sample validation.
We generate 2,000 scenarios of electrical and hot water demands, and we split these scenarios
in two distinct parts: the first Nopt = 1, 000 scenarios are called optimization scenarios, and
the remaining Nsim = 1, 000 scenarios are called assessment scenarios.

First, during the offline phase, we use the optimization scenarios to build models for
the uncertainties, under the mathematical form required by each algorithm (see Sect. 3).
Second, during the online phase, we use the assessment scenarios to compare the policies
produced by these algorithms. At time step t during the assessment, the algorithms cannot
use the future values of the assessment scenarios, but can take advantage of the observed
values up to t to update their statistical models of future uncertainties. Our method differs
from [19, 20] where scenarios serve to fit a probability distribution which is used, on the one
hand, to design the SDDP algorithm and, on the other hand, to generate new scenarios to
assess the performances of SDDP.

MPC procedure

Electrical and thermal demands are naturally correlated in time [29]. To take into ac-
count such a dependence across the different time steps, we choose to model the pro-
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cess W 1, . . . ,W T with an auto-regressive (AR) model and use the deterministic trend to
yield the forecast in (15). We detail the overall procedure in §6.4.

SDDP procedure

Computing value functions offline We fit a sequence of finite probability distribu-
tions {µoft }t=0,··· ,T using only the optimization scenarios. Then we compute a set of value
functions with the procedure described in §3.2.

Using value functions online Once the value functions have been obtained by SDDP,
we compute online decisions at step t with Equation (20), using a finite online probability
distribution µont , fitted with both the optimization scenarios and the past of the current
assessment scenario (respecting thus the nonanticipativity constraint).

Assessing on different meteorological conditions

We assess the algorithms on three different days, with different meteorological conditions (see
Table 2). Therefore, we use three distinct sets of Nopt + Nsim scenarios for demands (with
Nopt the number of optimization scenarios and Nsim the number of assessment scenarios),
one for each typical day.

Date Temp. (◦C) PV Production (kWh)
Winter Day February, 19th 3.3 8.4
Spring Day April, 1st 10.1 14.8
Summer Day May, 31st 14.1 23.3

Table 2: Different meteorological conditions

These three different days correspond to different heating needs. During Winter day, the
heating is maximal, whereas it is medium during Spring day and null during Summer day.
The production of the solar panel varies accordingly.

Comparing the algorithms performances

During assessment, we use MPC (see (15)) and SDDP (see (20)) policies to compute online
decisions along Nsim assessment scenarios. Then, we compare the average electricity bill
obtained with these two policies and with the rule based policy. The assessment results are
given in Table 3, where means and standard deviation σ are computed with the Nsim = 1, 000

scenarios; the notation ± corresponds to the 95% confidence interval ±1.96
σ√
Nsim

.

Regarding mean electricity bills, we observe, on the three last rows in Table 3, that MPC
and SDDP yield much better results than the rule based policy. On Winter day, SDDP is
slightly better than MPC; on Spring day, they are equivalent; on Summer day, SDDP is able
to almost halve the mean costs yielded by MPC (in both case, these costs are low).
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SDDP MPC rule based policy

Offline time 50 s 0 s 0 s
Online time 1.5 ms 0.5 ms 0.005 ms

Electricity bill (e)

Winter day 4.38 ± 0.02 4.59 ± 0.02 5.55 ± 0.02
Spring day 1.46 ± 0.01 1.45 ± 0.01 2.83 ± 0.01
Summer day 0.10 ± 0.01 0.18 ± 0.01 0.33 ± 0.02

Table 3: Comparison of SDDP, MPC and rule based policies

Figure 4 displays the histogram of the difference between SDDP and MPC total costs
during Summer day. In this way, for each scenario (and not only in the mean), we can
measure the discrepancy between SDDP and MPC performances. We observe that SDDP
is better than MPC for about 93% of the scenarios. The distribution in Figure 4 exhibits
a heavy tail that reveals the superiority of SDDP on extreme scenarios. Thus, not only
SDDP achieves better performance than MPC in the mean, but also for the vast majority
of scenarios. Similar analyses hold for Winter and Spring days.

Comparing the algorithms running times

In terms of numerical performance, it takes less than one minute to compute approximated
Bellman functions V t as in §3.2 with SDDP on a particular day. Then, the online compu-
tation of a single decision takes 1.5 ms on average, compared to 0.5 ms for MPC. Indeed,
MPC is favored by the linearity of the optimization Problem (15), whereas, for SDDP, the
higher the quantization size S of the online probability distribution µont , the slower is the
online resolution of Problem (20), but the more accurate µont is. MPC’s offline resolution
time is equal to 0s, as MPC is not an algorithm based on cost-to-go functions, and as we do
not include the offline time devoted to find coefficients of an AR process. As we are not in a
distributed setting, the computation time is not a challenge here, and computing the value
functions or the online decisions is a doable task for a central controller.

Analyzing the use of storage capacities

We analyze now the trajectories of stocks in assessment during Summer day, where heating
is off and production of the solar panel is nominal at midday.

Figure 5 displays the state of charge of the battery along a subset of assessment scenarios,
for SDDP and MPC. We observe that SDDP charges earlier the battery at its maximum.
On the contrary, MPC charges the battery later and does not use the full potential of the
battery5. The two algorithms discharge the battery to fulfill the evening demands. We notice

5In Figure 5, we observe that SDDP charges the battery to its maximum level during day-time, when the
solar panels are producing electricity. Then, the battery is fully discharged during the evening to satisfy the
local demand when the energy prices are high (evening peak). On the contrary, MPC does not charge the
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Figure 4: SDDP total costs minus MPC total costs during Summer day

that each trajectory exhibits a single cycle of charge/discharge, thus preserving the battery’s
aging.

Figure 6 displays the charge of the domestic hot water tank along the same subset of
assessment scenarios. We observe a similar behavior as for the battery trajectories: SDDP
uses more the electrical hot water tank to store the excess of PV energy, and the level of the
tank is greater at the end of the day than in MPC.
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Figure 5: Battery charge trajectories for SDDP (left) and MPC (right) during Summer day

This analysis suggests that SDDP makes a better use of storage capacities than MPC.

battery to its maximum level. Indeed, its forecast only comprises the average energy demand; the algorithm
is filling the battery only to satisfy this average demand (in a sense, we are ”overfitting” the average scenario).
Hence, MPC is unable to anticipate a demand higher than usual, leading to an increase use of the recourse
variable (the importation from the external grid) when MPC encounters an unexpected scenario. SDDP
does not fall into this pitfall, as it considers a broader range of demands at each time step with its quantized
probability laws (and not just the average demand). This pushes SDDP to fill the battery to its maximum
level, in anticipation of potential high demands during the evening.
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Figure 6: Hot water tank trajectories for SDDP (left) and MPC (right) during Summer day

4.3 Quantifying the sensitivity of MPC and SDDP with respect
to the level of uncertainty

Here, we compare the performances of the two algorithms (MPC and SDDP) when the level
of uncertainty increases.

Uncertainty model We suppose that, at each time step t, the random variable Φpv
t

(the photovoltaic production in Equation (1)) is given by Φpv
t = µt × (1 + εt), where µt is

deterministic (it corresponds to the forecasted value of Φpv
t ) and where εt is a zero-mean

Gaussian random variable, with standard-deviation σt = σ0+(σT−σ0)t/T increasing linearly
over time (where σ0 is the initial standard-deviation and σT the final standard-deviation).
We define the level of uncertainty through the value of σT : the greater it is, the more difficult
it becomes to predict the value of the random variable Φpv

t . With this setting, we have that
E(Φpv

t ) = µt and Var(Φpv
t ) = µ2

tσ
2
t . In Figure 7, we display scenarios that are realizations of

sequences Φpv
0 , . . . ,Φ

pv
T .
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Figure 7: Confidence interval (a) and generation of corresponding assessment scenarios (b)
for production of solar panel Φpv. These scenarios are generated with σ0 = 0 and σT = 0.2.
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Results We assess SDDP and MPC with different level of uncertainties, that is, with in-
creasing values of σT . The costs correspond to the management costs to operate the microgrid
during a particular day in Summer, where the production of the solar panel is nominal. The
detailed results are given in Figure 8, which shows the evolution of the performance of the
two algorithms as a function of the level σT of uncertainty. The costs of each algorithm are
obtained via Monte-Carlo simulation, with 10,000 assessment scenarios. We observe that
MPC’s cost increases quicker than SDDP’s cost when the level of uncertainty increases.
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Figure 8: Evolution of the performance of MPC and SDDP as a function of the level σT of
uncertainty

This second use case allows to quantify the sensitivity of the algorithms with respect to
the level of uncertainty. It seems that SDDP behaves better than MPC when facing high
uncertainties.

5 Conclusion

We have presented the optimal management of a domestic microgrid, and have compared
different management policies (the core of an Energy Management System) under uncertain-
ties. Our results show that the two optimization-based policies (MPC and SDDP) outperform
the proposed rule based policy in terms of money savings. Furthermore, SDDP outperforms
MPC during Winter and Summer days — and displays similar performance as MPC during
Spring day. Even when SDDP and MPC exhibit close average performances, a comparison
scenario by scenario shows that SDDP beats MPC most of the time (more than 90% of sce-
narios during Summer day). Thus, SDDP proves better than MPC to manage uncertainties
in our study, although MPC displays also good performances. SDDP makes better use of
storage capacities too.

What if we had compared SDDP not only with “ordinary” MPC but with its stochastic
variant, Stochastic Model Predictive Control (SMPC)? A systematic analysis done in [30],
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using a large dataset of microgrids, reveals that our conclusions remain valid: algorithms
based on the offline computation of cost-to-go functions (SDP, SDDP) outperform lookahead
algorithms (MPC, SMPC).

Our study can be extended in different directions. First, we could mix SDDP and MPC
to grasp the benefits of these two algorithms. Indeed, SDDP is designed to handle the
uncertainties variability but fails to capture the time correlation (as it relies on an assumption
of stagewise independence), whereas ordinary MPC ignores the uncertainties variability, but
considers time correlation by means of a future scenario. Second, we have extended this
study in [31], where we applied decomposition methods to optimize microgrids comprising
several buildings connected together. Finally, a comparison of MPC and SDDP with novel
methods based on reinforcement learning could also be of interest.
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6 Appendix

In this Appendix, we depict physical equations of the energy system in Figure 1. These
equations are naturally written in continuous time t. We model the battery and the hot
water tank with stock dynamics, and the dynamics of the house’s temperatures with an
electrical analogy.
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6.1 Energy storage

We consider a battery, whose state of charge at time t is denoted by b(t). The battery
dynamics is given by the differential equation

db

dt
= ρc(f

b(t))+ − 1

ρd
(f b(t))− , (21)

with ρc and ρd being the charge and discharge efficiency and f b(t) denoting the energy
exchange with the battery.

6.2 Electrical hot water tank

We use a simple linear model for the electrical hot water tank dynamics. The enthalpy
balance equation writes

dh

dt
= βhf

w(t)− dth(t) , (22)

where

• fh(t) is the electrical energy used to heat the tank, satisfying

0 ≤ fw(t) ≤ f
w
, (23)

• dth(t) is the domestic hot water demand,

• βh is a conversion yield.

6.3 Thermal envelope

We model the evolution of the temperatures inside the house with an electrical analogy: we
view temperatures as voltages, walls as capacitors, and thermal flows as currents. A model
with 6 resistances and 2 capacitors (R6C2) proves to be accurate to describe small buildings
[32]. The model takes into account two temperatures:

• the wall’s temperature θw(t),

• the inner temperature θi(t).

Their evolution is governed by the two following differential equations

cm
dθw

dt
=
θi(t)− θw(t)

Ri +Rs︸ ︷︷ ︸
Exchange
Indoor/Wall

+
θe(t)− θw(t)

Rm +Re︸ ︷︷ ︸
Exchange

Outdoor/Wall

+ γf t(t)︸ ︷︷ ︸
Heater

+
Ri

Ri +Rs

Φint(t)︸ ︷︷ ︸
Radiation

through windows

+
Re

Re +Rm

Φext(t)︸ ︷︷ ︸
Radiation

through wall

, (24a)
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ci
dθi

dt
=
θw(t)− θi(t)
Ri +Rs︸ ︷︷ ︸
Exchange
Indoor/Wall

+
θe(t)− θi(t)

Rv︸ ︷︷ ︸
Ventilation

+
θe(t)− θi(t)

Rf︸ ︷︷ ︸
Windows

+ (1− γ)f t(t)︸ ︷︷ ︸
Heater

+
Rs

Ri +Rs

Φint(t)︸ ︷︷ ︸
Radiation

through windows

, (24b)

where we denote

• the energy injected in the heater by fh(t),

• the external temperature by θe(t),

• the radiation through the wall by Φext(t),

• the radiation through the windows by Φint(t).

The time-varying quantities θe(t), Φint(t) and Φext(t) are exogenous. We denote byRi, Rs, Rm, Re, Rv, Rf

the different resistances of the R6C2 model, and by ci, cm the capacities of the inner rooms
and the walls. We denote by γ the proportion of heating dissipated in the wall through
conduction, and by (1 − γ) the proportion of heating dissipated in the inner room through
convection. We detail the numerical values in Table 4.

Ri 4.81× 10−4 SI
Rs 2.94× 10−4 SI
Rm 4.51× 10−3 SI
Re 1.48× 10−4 SI
Rv 4.51× 10−3 SI
Rf 2.00× 10−2 SI
ci 8.30× 107 SI
cm 5.85× 106 SI

Table 4: Numerical values for the electrical analogy

6.4 MPC

Building offline an AR model for MPC We fit an AR(1) model using the optimization
scenarios (we do not consider higher order lags for the sake of simplicity). For i ∈ {el, hw},
the AR model writes

dit+1 = αitd
i
t + βit + εit , (25a)

where the nonstationary coefficients (αit, β
i
t) are, for any time step t, solutions of the least-

square problem

(αit, β
i
t) = arg min

a,b

Nopt∑
s=1

∥∥di,st+1 − ad
i,s
t − b

∥∥2
2
. (25b)
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The points (di,1t , . . . d
i,Nopt

t ) correspond to the optimization scenarios. The AR residuals
(εelt , ε

hw
t ) are a white noise process.

Updating the forecast online Once the AR model is calibrated, we use it to update the
forecast during assessment (see §3.1). The update procedure is threefold:

i) we observe the demands wt = (delt , d
hw
t ) between time steps t− 1 and t,

ii) we update the forecast wt+1 at time step t+ 1 with the AR model

wt+1 =
(
d
el

t+1, d
hw

t+1

)
=
(
αelt d

el
t + βelt , α

hw
t dhwt + βhwt

)
,

iii) we set the forecast between time steps t+ 2 and T by using the mean values

wτ =
1

Nopt

Nopt∑
i=1

wiτ ∀τ = t+ 2, · · · , T

of the optimization scenarios

Once the forecast (wt+1, . . . , wT ) is available, it serves as input into the optimization Prob-
lem (15) (the MPC algorithm).
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