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Initiated by Davis, Nelson, Petersen and Tenner (2018), the enumerative study of pinnacle sets of permutations has
attracted a fair amount of attention recently. In this article, we provide a recurrence that can be used to compute
efficiently the number |Sn(P )| of permutations of size n with a given pinnacle set P , with arithmetic complexity
O(k4 + k logn) for P of size k. A symbolic expression can also be computed in this way for pinnacle sets of fixed
size. A weighted sum qn(P ) of |Sn(P )| proposed in Davis, Nelson, Petersen and Tenner (2018) seems to have a
simple form, and a conjectural form is given recently by Flaque, Novelli and Thibon (2021+). We settle the problem
by providing and proving an alternative form of qn(P ), which has a strong combinatorial flavor. We also study
admissible orderings of a given pinnacle set, first considered by Rusu (2020) and characterized by Rusu and Tenner
(2021), and we give an efficient algorithm for their counting.

Keywords: permutation, pinnacle set, enumeration, recurrence

1 Introduction
Given a permutation π ∈ Sn in one-line notation π1π2 · · ·πn, we consider its local maxima, i.e., elements
πi for 2 ≤ i ≤ n − 1 such that πi−1 < πi > πi+1. In this case, the index i is called a peak of π,
and the element πi is called a pinnacle. We denote by [n] the set {1, 2, . . . , n}. The pinnacle set of a
permutation π, denoted by Pin(π), is the set of pinnacles of π. For P ⊆ [n], we denote by Sn(P ) the set
of permutations with pinnacle set P . Peaks of permutations have already been much studied, partly due
to its link to the algebraic aspect of the symmetric group through the peak algebra. Inspired by the studies
on peaks, pinnacle sets of permutations were first explored in Davis et al. (2018), and various results were
given there.

One of the main questions asked in Davis et al. (2018) is how to compute |Sn(P )| efficiently. Two
recurrences were proposed there, but both need super-exponential time in the number of pinnacles to
compute. In Diaz-Lopez et al. (2021), an improved formula was given, but it is still a sum of super-
exponentially many terms. A formula with only exponentially many terms was given recently in Do-
magalski et al. (2021) using the inclusion-exclusion principle. Then, a new and simpler recurrence was
proposed in Falque et al. (2021) that drastically improves the arithmetic complexity, i.e., the number of
arithmetic operations, to O(max(P )|P |2), but there is still a dependency on the values in P , thus not
polynomial in the bit-length of input. In this article, we again improve on the arithmetic complexity,
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giving a recurrence (see Theorem 4.1) that can be used to compute |Sn(P )| with polynomial arithmetic
complexity in the bit-length of input.

Proposition 1.1. There is an algorithm that computes |Sn(P )| with O(|P |2 log n + |P |4) arithmetic
operations.

Using the same recurrence in Theorem 4.1, through a computer algebra system, we also obtain general
symbolic expressions of |Sn(P )| for P of arbitrary fixed size, extending formulas given in Davis et al.
(2018) for |P | = 1, 2. However, these expressions are messy in general. In Davis et al. (2018), it was
suggested that the following weighted sum may have a simpler form:

qn(P ) =
∑
Q⊆P

2|Q||Sn(Q)|. (1)

It is also observed in Davis et al. (2018) that we may use qn(P ) to recover |Sn(P )| with the inclusion-
exclusion principle. In Falque et al. (2021), a general process of generating an expression of qn(P ) was
conjectured, with a few examples of such expressions for small |P |, which are indeed simpler. We settle
this problem by providing an alternative form of qn(P ) as a summation over some combinatorial objects.
Our formula is equivalent to the one conjectured in Falque et al. (2021) (see Remark 5.3).

For s ≤ k, letRk,s be the set of sequences r = (r0, r1, . . . , rk) with the conditions

• r0 = 0, rk = s, ri ≥ 0 for all 0 ≤ i ≤ k;

• ri = ri−1 ± 1 for all 1 ≤ i ≤ k.

We can interpret Rk,s as the set of y-coordinate sequences of Dyck meanders of length k terminating on
y = s. We defineRk = ∪ks=0Rk,s.
Theorem 1.2 (See also Conjecture 5.1 in Falque et al. (2021)). For n ≥ 1 and P = {p1 > p2 > · · · >
pk} ⊆ [n], we take the convention that p0 = n + 1 and pk+1 = 1. Given r ∈ Rk, we define its weight
wR(r) by

wR(r) =

k∏
m=0

(rm + 1)pm−pm+1 .

Then we have
qn(P ) = 2n−k−1

∑
r∈Rk

wR(r).

Although the statement of Theorem 1.2 is purely combinatorial, our proof uses heavy computations.
We thus ask naturally for a more satisfying combinatorial proof.

For permutations with the same pinnacle set, it is possible that their pinnacles appear in different orders,
and not all orders are possible. A pinnacle order is called admissible if there is a permutation in which
these pinnacles appear in that order. Given a pinnacle set P , we denote by O(P ) the set of all admissible
pinnacle orders of P (its formal definition is postponed to Section 6). Admissible pinnacle order was first
considered in (Rusu, 2020, Question 3). A characterization of O(P ) was given in Theorem 3.6 of Rusu
and Tenner (2021) using the language of interruptions. In the same paper, the authors asked for a function
that computes |O(P )|. As a response, a formula of |O(P )| was given in Domagalski et al. (2021), but it
involves exponentially many terms in the size of P . In the article, we provide an efficient way to compute
|O(P )| using a recurrence.
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Proposition 1.3. There is an algorithm that computes |O(P )| with O(|P |2) arithmetic operations.

This article is organized as follows. Section 2 reduces the counting of Sn(P ) to that of some weighted
Motzkin paths, using a variant of the Françon-Viennot bijection (Proposition 2.3). It is then further re-
duced in Section 3 to the counting of appropriately weighted Dyck paths by compressing horizontal steps
in the weighted Motzkin paths (Theorem 3.5). Given the formulation in Dyck paths, we provide in Sec-
tion 4 the main result of this article (Theorem 4.1), a recurrence that allows us to compute |Sn(P )|
efficiently, as in Proposition 1.1. Using a variant of this recurrence, we provide in Section 5 a proof of
Theorem 1.2. We then deal with the enumeration of admissible pinnacle orderings in Section 6.

Acknowledgment We would like to thank Jean-Christophe Novelli for bringing this subject to the atten-
tion of the author, for interesting discussions and for advice on the draft of this article. We would also like
to thank Éric Fusy for pointing out the link between the construction in Section 2 and the Françon-Viennot
bijection in Françon and Viennot (1979); Flajolet (1980). This work is not supported by any funding with
precise predefined goal, but it is supported by the publicly funded laboratory LIGM of Université Gustave
Eiffel.

2 Construction of permutations with a fixed pinnacle set
In the following, we consider cyclic permutations, which are equivalent classes of permutations under
the action of position-shifting π 7→ π′ with π′i = π(i mod n)+1 for π ∈ Sn. Cyclic permutations are
marked with a bar, and we write its one-line notation ending with the largest element. For instance, the
cyclic permutation π = 42135 is the equivalent class {42135, 21354, 13542, 35421, 54213}. We denote
by Sn+1 the set of cyclic permutations with n+ 1 elements.

The pinnacles of a cyclic permutation π is defined in the same way as for normal permutations, up to
cyclic index, and we also define Sn+1(P ) analogously. We observe that (n + 1) is always a pinnacle of
π ∈ Sn+1. We denote by cyc(π) the cyclic completion of π ∈ Sn, which is in Sn+1 and whose one-line
notation is obtained by adding (n + 1) at the end of that of π. For instance, cyc(2413) = 24135. It is
clear that cyc is a bijection between Sn and Sn+1. Furthermore, it also preserves Pin(π) in the following
sense.

Lemma 2.1 (Lemma 4.2 in Domagalski et al. (2021)). Given π ∈ Sn, we have Pin(cyc(π)) = Pin(π)∪
{n+ 1}. In other words, cyc is a bijection from Sn(P ) to Sn+1(P ∪ {n+ 1}).

Given π ∈ Sn+1 and 2 ≤ ` ≤ n + 1, we define the segment set S`(π) of level ` as the list of
maximal consecutive segments (in the cyclic sense) in π whose elements are at least `. We denote by
s`(π) = |S`(π)|. For instance, S4(435281679) consists of the segments 5, 8, 6794 with all elements at
least 4, and we thus have s4(435281679) = 3. It is clear that sn+1(π) = s2(π) = 1.

We now define the Motzkin type of π, denoted by M(π), as the lattice path of length n− 1 whose i-th
step is (1, sn+1−i(π)− sn+2−i(π)), for i ∈ [n− 1]. In other words, M(π) is the lattice path through the
points (i, sn+1−i(π) − 1) for 0 ≤ i ≤ n − 1. Figure 1 shows a cyclic permutation and its Motzkin type,
along with all S`(π).

We recall that a Motzkin path of length n is a lattice path starting at (0, 0), ending at (n, 0), composed
by up steps (1, 1), horizontal steps (1, 0) and down steps (1,−1), while always staying weakly above the
x-axis. We denote byMn−1 the set of Motzkin paths of length n− 1. The name “Motzkin type” comes
from the following lemma.
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π = 435281679

M(π)

8, 9
8, 79 8, 679

5, 8, 679 5, 8, 6794

8, 679435

679435289

Fig. 1: Example of a cyclic permutation, its Motzkin type and segment sets

Lemma 2.2. For π ∈ Sn+1, the lattice path M(π) is a Motzkin path. Furthermore, the i-th step of M(π)
is an up step if and only if n+ 1− i is a pinnacle of π.

Proof: We only need to show that sj(π)− sj+1(π) ∈ {−1, 0, 1} for j ≥ 2. The element j in π can only
be in three cases:

• j is not next to any element at least j + 1, in this case sj(π) − sj+1(π) = 1, as we have the new
segment j;

• j is next to only one element e at least j + 1, in this case sj(π) − sj+1(π) = 0, as j joins the
segment of e;

• j is next to two elements e1, e2 at least j + 1, in this case sj(π)− sj+1(π) = −1. It is because e1
and e2 come from two different segments, as j ≥ 2, and then j fusions these two segments.

We thus conclude that M(π) is a Motzkin path. For the second part, we observe that an up step means the
creation of a new segment, which is equivalent to the new element being a pinnacle.

Given a Motzkin path M , we define a weight on its steps. Up steps have weight 1, horizontal steps on
height ` have weight 2(`+1), and down steps from height ` to `− 1 have weight `(`+1). The weight of
M , denoted by wM(M), is the product of the weights of its steps.

Proposition 2.3. Given a Motzkin path M of length n− 1, the number of cyclic permutations π ∈ Sn+1

with M(π) =M is wM(M).

Proof: We construct π with M(π) = M step by step. We start from Sn+1 = {(n + 1)}, then we follow
M step by step, and construct the segment set Sn+1−i by adding the element n+ 1− i to Sn+2−i. There
are three possible cases.

• The i-th step of M is an up step. Thus, Sn+1−i has one more segment than Sn+2−i. The only way
to do is to add n+ 1− i as a new segment, that is, Sn+1−i = Sn+2−i ∪ {(n+ 1− i)}.

• The i-th step of M is a horizontal step of height h, meaning that n + 1 − i joins one of the h + 1
segments. There are 2(h + 1) such possibilities, as n + 1 − i can be attached to both ends of a
segment.

• The i-th step of M is a down step from height h to h − 1, meaning that n + 1− i joins two of the
h + 1 segments. There are h(h + 1) possibilities, (h + 1) for the left segment and h for the right
one.
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To see that each sequence of possible choices gives a unique permutation π, we observe that π is totally
determined by all the pairs (π(j), π(j +1)). In the i-th step, we see that each choice determines uniquely
the pairs containing n + 1 − i as the smaller element, and the sequence of choices thus determines π
uniquely. Furthermore, each such permutation can be constructed in this way by looking at its segment
sets. The number of choices for each step is exactly its weight. Thus, the number of permutations with
Motzkin type M is wM(M).

Given a set P ⊆ [n], we denote byMn−1,P the set of Motzkin paths M of length n− 1 such that, for
each p ∈ P , the (n + 1 − p)-th step of M is an up step, and these are the only up steps of M . We have
the following corollary.

Corollary 2.4. For a set P ⊆ [n], we have

|Sn(P )| =
∑

M∈Mn−1,P

wM(M).

Proof: Let P ′ = P ∪ {n+ 1}. From Lemma 2.1, we have |Sn(P )| = |Sn+1,P ′ |. We then conclude by
Lemma 2.2 and the definition ofMn−1,P .

As a corollary, we have a simple proof of the lower bound of |Sn(P )| for |P | = k.

Corollary 2.5 (Proposition 3.13 in Davis et al. (2018)). Given n ≥ 2k + 1, for every P ⊆ [n] with
|P | = k and Sn(P ) 6= ∅, we have

|Sn(P )| ≥ 2n−k−1.

The lower bound is reached by Pmin = {3, 5, 7, . . . , 2k + 1}.

Proof: As Sn(P ) 6= ∅, by Corollary 2.4, there is at least one Motzkin path M ∈ Mn−1,P . Now, there
are n − 2k − 1 horizontal step and k down steps in M , each contributing a factor at least 2. We thus
have |Sn(P )| ≥ wM(M) ≥ 2n−k−1. For Pmin, from the definition of Motzkin type, it is clear that
the only possible Motzkin type for π ∈ Sn+1 with Pin(π) = Pmin ∪ {n + 1} is the one starting with
2n−2k−1 horizontal steps, then ending with k pairs of up-and-down steps. This Motzkin path has exactly
the minimal weight.

Remark 2.6. The construction in Proposition 2.3 can be seen as a variant of the Françon-Viennot bijection
between permutations and weighted Motzkin paths, but we use a slightly different set of weights that
is more adapted to our analysis afterwards. It was also formulated in terms of increasing binary trees
in Flajolet (1980), which also provides a general theory to express the generating function of weighted
Motzkin paths by continued fractions. In the original bijection, reformulated in our terms here, segments
are already positioned in the permutation upon its creation, instead of free-floating. This leads to a weight
` + 1 on up steps starting at height `, while the weight of down steps starting at height ` is reduced to
`+ 1.

3 Motzkin path compression
A Dyck path is a Motzkin path without horizontal steps. It is clear that it has the same number of up steps
and down steps. We denote by Dn the set of Dyck paths of length 2n. Given a Motzkin path M , we
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define its Dyck compression, denoted by dc(M), the Dyck path obtained by removing all horizontal steps
in M . We define the Dyck type D(π) of a cyclic permutation π to be dc(M(π)). The following is a direct
consequence of Lemma 2.2.

Proposition 3.1. For π ∈ Sn, the length of D(cyc(π)) is 2|Pin(π)|.

Proof: We know from Lemma 2.1 and 2.2 that pinnacles in Pin(π) are in bijection with up steps in
M(cyc(π)), which are kept in D(cyc(π)).

Given n and P = {p1, p2, . . . , pk} ⊆ [n], we take the convention p0 = n + 1 and pk+1 = 1. We
define the gap sequence (g0, g1, . . . , gk) of (n, P ) by taking gi = pi−pi+1−1 for all i. The name comes
from the fact that gi is the number of steps between the i-th and the (i+ 1)-st up step of Motzkin paths in
Mn−1,P .

We start by a computational lemma. For k ≥ 1, we denote by hm(x1, x2, . . . , xk) the homogeneous
symmetric function of order m with k variables:

hm(x1, . . . , xk) =
∑

m1+m2+···+mk=m,mi≥0

xm1
1 xm2

2 · · ·x
mk

k . (2)

Readers are referred to (Stanley, 1999, Chapter 7) for more on symmetric functions. We have the follow-
ing computational lemma for hm.

Lemma 3.2. For m ∈ N, we have

hm(x1, . . . , xk) =
∑

1≤i≤k

xm+k−1
i∏

j 6=i(xi − xj)
.

Proof: We proceed by induction on k. The equality holds trivially for k = 1. Now, to pass from k to
k+1, first write hm(x1, . . . , xk+1) as a polynomial in xk+1 with coefficients hm′(x1, . . . , xk), then apply
the induction hypothesis on these coefficients. Comparing the resulting expression of hm(x1, . . . , xk+1)
with the claimed one, the induction step is reduced to the proof of the following equality:

∑
1≤i≤k

xk−1i ·

∏
1≤j≤k,j 6=i

(xk+1 − xj)∏
1≤j≤k,j 6=i

(xi − xj)
= xk−1k+1.

This equality holds by Lagrange interpolation.

Now, given Proposition 3.1, for each pair (P,D) with P ⊆ [n] with |P | = k, and D a Dyck path
of length 2k, we associate a weight wD(n, P,D) defined as follows. For 1 ≤ i ≤ k − 1, let di be the
number of down steps between the i-th and the (i+ 1)-st up steps of D, and we also take d0 = 0 and dk
the number of down steps at the end of D. We also suppose that, for 1 ≤ i ≤ k, the i-th up step of D
goes from height `i − 1 to `i, and we take `0 = 0. We thus have two tuples (d0, . . . , dk) and (`0, . . . , `k)
depending only on D. Let (g0, g1, . . . , gk) be the gap sequence of (n, P ). We then define wD(n, P,D)
by

wD(n, P,D) =
∏

0≤i≤k

f(di, `i, gi), (3)
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where f(d, `, g) is defined as follows: f(d, `, g) = 0 when d > g, otherwise

f(d, `, g) = ([` = 0] + `(`+ 1))hg−d(`+ 1, `, . . . , `− d+ 1)

= ([` = 0] + `(`+ 1))

d∑
m=0

(−1)m (`+ 1−m)g

m!(d−m)!
.

(4)

Here, [h = 0] is the Iverson bracket for the condition h = 0, taking the value 1 when h = 0, and 0
otherwise. We remark that di = `i − `i+1 + 1, but we choose the current notation for simplicity. The last
equality of (4) is from Lemma 3.2.

Proposition 3.3. Given P = {p1 > p2 > · · · > pk} ∈ [n] and a Dyck path D of length 2k, the number
of permutations π in Sn(P ) with Dyck type D is wD(n, P,D).

Proof: Let (d0, . . . , dk) and (`0, . . . , `k) be the two tuples used in (3), and (g0, . . . , gk) the gap sequence
of P . The length of D given P is imposed by Proposition 3.1. By Lemma 2.1 and Proposition 2.3, we
only need to show that

wD(n, P,D) =
∑

M∈Mn−1,P , dc(M)=D

wM(M).

By the definition of Mn−1,P , for each M ∈ Mn−1,P , the (n + 1 − pi)-th step is an up step for each
1 ≤ i ≤ k. We now consider the steps between the i-th and the (i + 1)-st up step in M . There are gi
such steps, di of them are down steps, so gi−di of them are horizontal. These horizontal steps come with
heights from `i to `i − di. The contribution of all possibilities is

∑
m1+···+mdi+1=gi−di

2gi−di
di+1∏
j=1

(`i − j + 1)mj = 2gi−dihgi−di(`i + 1, `i, . . . , `i − di + 1).

For steps after the last up step in M , the same formula applies. It also holds for the n − p1 = g0
horizontal steps that comes before the first up step in M by taking d0 = 0. For down steps, we transfer
their contribution to up steps of the same height in a Dyck path, as there are the same number of them.
As the heights of the ending point of up steps are exactly those `i except for `0 = 0, the contribution is
([`i = 0]+`i(`i+1)) for all i. Collecting all factors, we have our claim by noticing that

∑k
i=0(gi−di) =

n− 1− 2k.

Remark 3.4. In the definition of wD(n, P,D), it may sound more natural if f(di, hi, gi) accounts directly
the weights of the di down steps. However, the current form is simpler and faster to compute, and more
adapted to the proof of Theorem 1.2.

Theorem 3.5. For P ∈ [n], let k = |P |, and we have

|Sn(P )| =
∑
D∈Dk

wD(n, P,D).

Proof: This is a direct consequence of Proposition 3.3 by summing up all D ∈ Dk.

Our model here is conceptually simpler, and involves only positive terms (considering the functions
hm as counting combinatorial objects), in contrast to the approach in Domagalski et al. (2021) using the
principle of inclusion-exclusion.
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4 Recurrence for |Sn(P )|
A valley Dyck prefix is a prefix of a Dyck path such that the rest of the path does not start with a down step,
but can be empty. We can extend the definition of wD(n, P,D) to D being a valley Dyck prefix. Suppose
that there are k′ up steps in D, then we take wD(n, P,D) =

∏k′

i=0 f(di, `i, gi), with di, `i, gi defined as
in the case of Dyck paths, except dk′ being the number of down steps at the end of D. Let cn,P (i, j) be
the total weight wD(n, P,D) for valley Dyck prefixes with i up steps and j down steps. Then we have the
following recurrence.

Theorem 4.1. Given n and P = {p1 > p2 > · · · > pk} ⊆ [n] with k = |P |, let (g0, . . . , gk) the gap
sequence of P . For i < j, we take cn,P (i, j) = 0. For 0 ≤ j ≤ i ≤ k, we have

cn,P (0, 0) = f(0, 0, g0) = 1, (5)

cn,P (i+ 1, j) =

j∑
j′=0

f(j − j′, i− j′ + 1, gj+1)cn,P (i, j
′). (6)

The function f(d, h, g) is defined in (4). As a consequence, we have

|Sn(P )| = 2n−1−2k
∑
D∈Dk

wD(n, P,D) = 2n−1−2kcn,P (k, k).

Proof: The initial condition (5) stands for the empty valley Dyck prefix, and holds by definition. For the
recurrence (6), consider a valley Dyck prefix D with i + 1 up steps and j down steps, and D′ the valley
Dyck prefix of D before the last up step of D. It is clear that D′ has i up steps, and let j′ ≤ j be the
number of down steps in D′. There are thus j − j′ consecutive down steps at the end of D, starting at
height i − j′ + 1. Their contribution to the weight is f(j − j′, i − j′ + 1, gj+1). By summing over all
possibilities of j′, we have the recurrence. It is clear that cn,P (k, k) accounts for all Dyck paths, and we
have the expression of |Sn(P )| by Theorem 3.5.

The recurrence in Theorem 4.1 provides an efficient way to compute |Sn(P )|. Now we describe a
possible implementation as a proof of Proposition 1.1.

Proof of Proposition 1.1: Suppose that P ⊆ [n] with k = |P |. To compute |Sn(P )|, we use the recur-
rence in Theorem 4.1, which has O(k2) terms, and each term needs O(k) multiplications and evaluations
of f(d, `, g), and each f(d, `, g) is essentially a sum ofO(k) terms. We thus needO(k4) operations to sum
up these terms. We now see that theseO(k4) terms in f(d, `, g) have the form (`+1−m)g(m!(d−m)!)−1,
with 0 ≤ m ≤ d. Moreover, there are only k + 1 values of g that are used, precisely those in the gap
sequence, and we also have 1 ≤ ` + 1 − m ≤ k + 1. Thus, we can precompute all such powers with
O(k2 log n) operations using fast exponentiation, as gj ≤ n. The factorials can also be precomputed with
O(k) operations. With such precomputation, each of the O(k4) terms can be computed with a constant
number of operations. The total arithmetic complexity is thus O(k4 + k2 log n).

However, even without the optimizations in the proof of Proposition 1.1, the recurrence in Theorem 4.1
is fast enough for most practical use. For instance, for

P = {97, 94, 85, 79, 68, 67, 63, 48, 43, 38, 25, 24, 23, 18, 13, 8, 3}, n = 100,
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a naı̈ve implementation of the recurrence using Python gives the following result for |Sn(P )| in 18 mil-
liseconds on a low-end laptop with an 1.6GHz Intel Core i5-8250U: 2 056 053 437 771 952 757 776 669
166 927 111 145 600 807 102 338 938 271 866 967 172 893 700 954 435 942 350 990 874 234 585 088 000.
We also note that the algorithm works correctly even when |Sn(P )| = 0.

The recurrence in Theorem 4.1 can also be easily computed symbolically using a computer algebra
system, giving a closed-form, non-recursive formula for |Sn(P )| for each fixed size of P . This settles
Question 4.4 in Davis et al. (2018) for any fixed number of pinnacles. The cases |P | = 1, 2 have already
appeared in Proposition 3.6 of Davis et al. (2018) and reproved in Falque et al. (2021) in a much simpler
way.

Remark 4.2. Another use of Theorem 3.5 is the exhaustive generation of all permutations in Sn(P ),
which can be done in linear amortized time, i.e., each object generated in linear time on average. We first
use the recurrence to identify viable Dyck paths. Then we decompress each Dyck path into a family of
Motzkin paths by generating subsets of d down steps in the gap g for each contribution f(d, `, g). This
can be done by constant amortized time subset generators (see Chapter 7.2.1.3 of Knuth (2005)). For
each Motzkin path, we generate choices for each step in the construction in the proof of Proposition 2.3,
which takes constant amortized time, and then perform the construction, which takes linear time. It might
be possible to improve the complexity to constant amortized time, potentially by creating suitable data
structure to efficiently transpose changes of the choices for each step into the permutation.

5 A simple form of a weighted sum of |Sn(P )|
We will now prove our formula of qn(P ) in Theorem 1.2. It is equivalent to Conjecture 5.1 in Falque
et al. (2021), which will not be stated here (see Remark 5.3). We proceed as follows: we first propose a
recurrence similar to that in Theorem 4.1 and prove that it computes qn(P ), then we prove inductively a
general form for all terms in the recurrence, which implies our claim.

Proposition 5.1. For n ≥ 1 and P = p1 > p2 > · · · > pk ⊆ [n], we take the convention that p0 = n+1
and pk+1 = 1. We define an,P (i, j) for 0 ≤ i, j ≤ k as follows. When i < j, we have an,P (i, j) = 0, and
otherwise the following well-founded recurrence is satisfied:

an,P (0, 0) = f(0, 0, p0 − p1 − 1) = 1 (7)

an,P (i+ 1, j) = [i+ 1 = j]f(0, 0, p0 − pi+2 − 1)

+
1

2

i∑
i′=0

j−i+i′∑
j′=0

f(i′ − j′ − i+ j, i′ − j′ + 1, pi′+1 − pi+2 − 1)an,P (i
′, j′).

(8)

Here, [i+ 1 = j] is the Iverson bracket, which takes 1 when i+ 1 = j, and 0 otherwise. Then,

qn(P ) = 2n−1an,P (k, k).

Proof: Given M a Motzkin path, we denote by |M |up the number of up steps in M . By Lemma 2.2 and
Proposition 2.3, qn(P ) is the weighted sum of Motzkin pathsM of length n−1 whose up steps can occur
as the (n+1−pi)-th step for all 1 ≤ i ≤ k, but not necessarily, and the weight is given by 2|M |upwM(M).
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We denote this set of Motzkin paths by M̃n−1,P , which is exactly
⋃
P ′⊆PMn−1,P ′ , and we have

qn(P ) =
∑

M∈M̃n−1,P

2|M |upwM(M). (9)

We now propose an altered weight w̃M(M), where an up step has weight 1/2, a horizontal step on
height ` has weight `+ 1, and a down step from height ` to `− 1 has weight `(`+ 1). We observe that a
Motzkin pathM of length n−1 has n−1−2|M |up horizontal steps. Comparing step weights in wM(M)
and w̃M(M), we have

w̃M(M) = 21−n · 2|Mup|wM(M).

Combining with (9), we have
qn(P ) = 2n−1

∑
M∈M̃n−1,P

w̃M(M).

The proof of the recurrence is analogous to that of Theorem 4.1. This time, we consider valley Motzkin
prefixes, which are prefixes such that the rest of the path is empty or starts with an up step. The altered
weight w̃M(M) also extends to these prefixes. We now claim that an,P (i, j) is the weighted sum of valley
Motzkin prefixes of length n−pi+1, ending on height i−j, with the weight given by w̃M. In other words,
these are valley Motzkin prefixes of Motzkin paths in M̃n−1,P whose (n+1−pi+1)-th step is an up step.
We must have 0 ≤ j ≤ i, as there may be at most i up steps in the valley Motzkin prefixes accounted by
an,P (i, j) for any i.

We now prove our claim by induction on i. The initial case i = 0 is given by definition. Now suppose
that our claim holds for all i′ ≤ i. Consider a valley Motzkin prefix M of length n − pi+2 ending on
height i + 1 − j, which is supposed to contribute to an,P (i + 1, j). Either M has no up step, which can
only occur when i + 1 = j, and in this case its contribution is 1, the same as the Iverson bracket in (8);
or M as at least one up step. Let M ′ be the prefix of M before its last up step, which is also a valley
Motzkin prefix. Suppose that M ′ is of length n − pi′+1 and ending at height i′ − j′ for some i′ and j′.
It is clear that 0 ≤ i′ ≤ i, and we also have i′ − j′ ≥ i − j, as there is exactly one up step in M after
M ′. The segment of M after its last up step starts at height i′ − j′ + 1, contains pi′+1 − pi+2 − 1 steps,
i′ − j′ − i+ j of them are down steps by variation of height. Therefore, we have

w̃(M) =
1

2

i∑
i′=0

j−i+i′∑
j′=0

f(i′ − j′ − i+ j, i′ − j′ + 1, pi′+1 − pi+2 − 1)w̃(M ′),

where the factor 1/2 is for the last up step of M . Summing over all possible i′, j′ and M ′, we conclude
the induction. We then conclude the proof by observing that an,P (k, k) accounts for all Motzkin paths in
M̃n−1,P .

In the proof of Theorem 1.2, we need the following computational result.

Proposition 5.2. For n > 0 and P (x) a polynomial of degree strictly less than n, we have

n∑
k=0

(−1)k
(
n

k

)
P (k) = 0.
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Proof: By linearity, it suffices to prove for P (x) = x(x − 1) · · · (x − k + 1) for all k < n. This is done
by deriving k times by y the expansion of (1− y)n, then setting y = 1.

We recall thatRk,s is the set of y-coordinate sequences of Dyck meanders of length k ending at height
s, and Rk = ∪ks=0Rk,s. Given r ∈ Rk, we denote by r↑ (resp. r↓) the new sequence obtained by
appending rk+1 = rk + 1 (resp. rk+1 = rk − 1). We can now prove Theorem 1.2.

Proof of Theorem 1.2: We prove the following result for an,P (i, j) for 0 ≤ j ≤ i ≤ k:

an,P (i, j) = 2−i
i∑

s=i−j

s!

(s− i+ j)!

∑
r∈Ri,s

wR(r). (10)

It implies our claim, as qn(P ) = 2n−1an,P (k, k).
We proceed by induction on i. For i = 0, the sum in an,P (0, j) is empty except for j = 0, when we

have an,P (0, 0) = 1. Now assume that (10) holds for all i′ ≤ i, and we compute an,P (i+ 1, j) using the
induction hypothesis and (8). We first check the case i+1 6= j, where the Iverson bracket (8) is 0, leading
to

an,P (i+ 1, j) = 2−i−1
i∑

i′=0

j−i+i′∑
j′=0

i′∑
s=i′−j′

s!

(s− i′ + j′)!

∑
r∈Ri′,s

wR(r)

·

(i′ − j′ + 1)(i′ − j′ + 2)

i′−j′−i+j∑
t=0

(−1)t (i
′ − j′ + 2− t)pi′+1−pi+2−1

t!(i′ − j′ − i+ j − t)!


= 2−i−1

i∑
i′=0

i′∑
s=i−j

∑
r∈Ri′,s

wR(r)α(s, i− j, pi′+1 − pi+2 − 1), (11)

where

α(s, δ, u) =

s∑
δ′=δ

s!

(s− δ′)!
·

(−1)δ′(δ′ + 1)(δ′ + 2)

δ′∑
t=δ

(−1)t (t+ 2)u

(δ′ − t)!(t− δ)!


=

s∑
t=δ

(−1)t (t+ 2)us!

(s− t)!(t− δ)!

s∑
δ′=t

(−1)δ
′
(δ′ + 1)(δ′ + 2)

(
s− t
δ′ − t

)
.

(12)

Here, we used the generic expression without Iverson bracket of f(d, `, g) in (4), as we never have i′ −
j′ + 1 = 0 in the case i + 1 6= j. We can also assume δ ≥ 0. For s − t > 2, by Proposition 5.2, the
summation over δ′ is zero. Therefore, when s ≥ δ+2, the only non-zero terms are for t = s− 2, s− 1, s,
leading to

α(s, δ, u) =
(s+ 2)u+1(s+ 1)!

(s− δ)!
− 2(s+ 1)u+1s!

(s− δ − 1)!
+
su+1(s− 1)!

(s− δ − 2)!
. (13)

However, when s = δ + 1, we discard the last term, and when s = δ, only the first term exists.
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We now remark that we may extend the definition of wR to r− that may take −1 as the last element,
and we have wR(r−) = 0 in such cases. Recalling that gi+1 = pi+1 − pi+1 − 1, the contribution of
r ∈ Ri′,s to an,P (i+1, j) can thus be expressed by C+(r)−C−(r) from (13), where, for s ≥ i− j +2,

C+(r) = 2−i
′−1wR(r)

[
(s+ 2)pi′+1−pi+2(s+ 1)!

(s− i+ j)!
+
spi′+1−pi+2(s− 1)!

(s− i+ j − 2)!

]
,

C−(r) = 2−i
′
wR(r)

(s+ 1)pi′+1−pi+2s!

(s− i+ j − 1)!
.

(14)

For s = i−j+1, the last term in (13) is discarded, and we only have the first term of C+(r), while C−(r)
remains unchanged. For s = i− j, not only C+(r) has only one term, but the term in (13) corresponding
to C−(r) is also discarded, leaving C−(r) = 0. For s < i− j, we have C+(r) = C−(r) = 0.

We may also extend the definition of C+ and C− to r− that may take−1 as the last element, and in this
case, C+(r−) = C−(r−) = 0, aswR(r−) = 0. The value of an,P (i+1, j) is the sum of all contributions:

an,P (i+ 1, j) =

i∑
i′=0

i′∑
s=i−j

∑
r∈Ri′,s

(C+(r)− C−(r)).

For s ≥ i − j + 2 and r ∈ Ri′,s, we have wR(r↑) = wR(r)(s + 2)pi′+1−pi′+2 and wR(r
↓) =

wR(r)s
pi′+1−pi′+2 . With this fact, we have C+(r) − C−(r↑) − C−(r↓) = 0 by checking carefully that,

in (14), the first term of C+(r) is exactly C−(r↑), and the second is C−(r↓). When s = i − j + 1 or
s = i− j, we only have the first term in C+(r), but in this case C−(r↓) = 0, and the same still holds.

Therefore, summing over all paths, the only contribution terms C+(r) that is left is when r ∈ Ri,s with
s ≥ i− j, and the only C−(r) left is for r ∈ Ri−j,i−j , and we have C−(r) = 0 for such r. Using the fact
that C−(r) = 0 for r ∈ Ri+1,i−j , we have

an,P (i+ 1, j) =

i∑
s=i−j

∑
r∈Ri,s

C+(r) =

i+1∑
s=i−j+1

∑
r∈Ri+1,s

C−(r)

= 2−i−1
i+1∑

s=i+1−j

∑
r∈Ri+1,s

wR(r)
s!

(s− i+ j − 1)!

For the case i+ 1 = j, there are several differences that compensate each other. First, in this case, not
all the i′ and j′ in the recurrence (8) are valid. More precisely, when j′ = i′ + 1, which is possible when
i+1 = j, we have an,P (i′, j′) = 0. Therefore, we should discard the term linked with j′ = i′+1, which
also means that we can continue to use the generic expression without Iverson bracket of f(d, `, g) in (4).

For terms being discarded, firstly, we may only sum over s from 0 to i′ in (11). Therefore, we always
have s ≥ 0 in α(s, δ, u). Furthermore, in α(s,−1, u), we discard the terms with δ = −1 in (12), but
not those with t = −1. When s ≥ 1, this has no effect. When s = 0, we discard the last term on the
right-hand side of (13). The effect on C+(r) and C−(r) is the same as the general case, and the whole
reasoning holds, except that we didn’t account for the negative contribution term C−((0)) = 1. However,
it compensates with the Iverson bracket in (8), and the same result holds. We thus complete the induction
on all cases.
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Remark 5.3. Conjecture 5.1 in Falque et al. (2021) involves a relatively simple but non-trivial iterative
procedure to generate an expression of qn(P ). However, it is equivalent to Theorem 1.2. We only briefly
describe the reason here, without a detailed proof. In the procedure in Falque et al. (2021), there are two
operators fe and fo, one used for even number of pinnacles, the other for the odd case. In our model of
lattice paths, both operators “extend” the path by one step, up or down. The apparent difference between
fe and fo is due to the fact that, when paths are extended to odd height (so even weight for horizontal
steps), a power of 2 is collected somewhere else.

Theorem 1.2 also explains the phenomenon observed in Falque et al. (2021) that, in the computation of
qn(P ), we may have 2 in P , although it cannot be a pinnacle. For P ⊆ [n] \ {1, 2}, let k = |P |. It is clear
that qn(P ) = qn(P ∪{2}), as Sn(P

′) = ∅ for any P ′ containing 2. We check that, for each r ∈ Rk, the
contribution of r↑ and r↓ to qn(P ∪{2}) is exactly twice that of r to qn(P ), which is compensated by the
increment of number of pinnacles.

In Davis et al. (2018), it was proposed that, as qn(P ) may have a simpler form, it may be easier to com-
pute |Sn(P )| using qn(P ) and the principle of inclusion-exclusion. However, the arithmetic complexity
of such computation is exponential in |P |, in contrast to Proposition 1.1 here.

Although the statement of Theorem 1.2 has a strong combinatorial flavor, its proof here is mainly
computational, which is not quite satisfying. We thus have the following natural question:

Open question 1. Is there a combinatorial or even bijective proof of Theorem 1.2?

If such a proof exists, it might lead us to a better understanding why the form of qn(P ) is much simpler
than that of |Sn(P )|.

6 Counting pinnacle orders
Given P = {p1 > p2 > · · · > pk}, for some π ∈ Sn(P ) for n ≥ p1, the pinnacle ordering of π, denoted
by ord(π), is a permutation σ ∈ Sk such that p1, . . . , pk appear in π in the order pσ(1), pσ(2), . . . , pσ(k).
For instance, for the permutation π = 46352817, its pinnacle set is Pin(π) = {8, 6, 5}, and we have
ord(π) = 231, as the pinnacles in Pin(π) appear in π in the order 6, 5, 8.

A permutation σ ∈ Sk is an admissible pinnacle ordering (or simply admissible ordering) of P if there
is π ∈ Sn(P ) with ord(π) = σ. We denote by O(P ) the set of admissible pinnacle ordering of P . Note
that O(P ) does not depend on n, as in every π ∈ Sn(P ), any element greater than p1 cannot be a peak,
and they must thus be located at the two ends of π. Hence, taking any n > p1 will not lead to more
admissible orderings than taking n = p1.

Given σ ∈ Sk, we want to know whether σ is in O(P ). We have the following characterization
of possible pinnacle orders σ for cyc(π) of a given Dyck type, using the Motzkin type of cyc(σ). To
simplify the proof, for σ ∈ Sk, we define its complement, denoted by σ̂, by σ̂(i) = k + 1 − σ(i). We
recall that, for a cyclic permutation π, its segment set of level `, denoted by S`(π), is the set of maximal
consecutive segments formed by elements at least ` in π, and we define s`(π) = |S`(π)|.

Proposition 6.1. Given P ⊆ [n] with |P | = k, we fix D a Dyck path of length 2k such that there is some
π∗ ∈ Sn(P ) with D(cyc(π∗)) = D. For a permutation σ ∈ Sk, we let M be the Motzkin type of cyc(σ),
that is, M = M(cyc(σ)). We have the following equivalence:

(i) There exists π ∈ Sn(P ) with D(cyc(π)) = D and ord(π) = σ̂;
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(ii) The Motzkin path M is compatible with the Dyck path D, that is, for all 1 ≤ i ≤ k− 1, the starting
height of the i-th step of M never exceeds that of the i-th up step of D.

Proof: For simplicity, we take π = cyc(π) and σ = cyc(σ), and we suppose that P = {p1 > p2 > · · · >
pk}. By construction, the pinnacles of π are exactly n + 1, p1, p2, . . . , pi−1, corresponding to elements
k+1, k, . . . , k− i+2 in σ, as ord(π) = σ̂ and n+1 is always a pinnacle in π. By the definition of M, the
starting height of the i-th step of M is sk+2−i(σ)−1. Similarly, from Lemma 2.2 and the definition of D,
we know that the i-th up step of D corresponds to the pinnacle pi, and its starting height is spi+1(π)− 1.
Hence, in the following, we may replace (ii) by

(ii)’ For all 1 ≤ i ≤ k − 1, we have sk+2−i(σ) ≤ spi+1(π).

We start by proving (i)⇒ (ii)’. The elements in each segment in Sk+2−i(σ) correspond to pinnacles in
π. However, if two elements j, j′ are not in the same segment of Sk+2−i(σ), then there are two elements
m,m′ < k+ 2− i that separate j and j′ in σ, which transposes to two pinnacles pk−m+1, pk−m′+1 ≤ pi
that separate pk−j+1 and pk−j′+1 in π. It means that pk−j+1 and pk−j′+1 are not in the same segment in
Spi+1(π). The restriction of segments in Spi+1(π) to pinnacles is thus a refinement of Sk+2−i(σ) as set
partition, and we have sk+2−i(σ) ≤ spi+1(π) to conclude (i)⇒ (ii)’.

To show (ii) ⇒ (i), we only need to show a way to construct π satisfying (i). Knowing that there is
π∗ ∈ Sn(P ) such that D(cyc(π∗)) = D, as in the proof of Proposition 2.3, we may alter any choices in
the procedure to construct cyc(π∗) from its Motzkin type M(cyc(π∗)) to construct π of the same Motzkin
type, thus also with the same Dyck type. We leave choices for horizontal steps unchanged, focusing only
on down steps. We now read each step of M and its choice in the construction of σ from M , and translate
them to choices of down steps in M(cyc(π∗)), which are just down steps inD. With an abuse of language
that will be justified later, given an element or a segment in σ, we say that its corresponding segment in π
is the one containing the corresponding pinnacles. There are three possible steps in M :

• Up step: do nothing;

• Horizontal step: suppose that it joins a new element i to an existing segment w in Si+1(σ), then the
next down step in D should join the corresponding segments of i and of w in the same way;

• Down steps: suppose that it joins a new element i with two segments w and w′, forming wiw′, then
we take the next two down steps in D to join the corresponding segments of i, w and w′ in the same
way, with arbitrary order.

The procedure above is well-defined, as we mimic in π how segments join in σ, meaning that the corre-
sponding pinnacles of elements in the same segment of σ, once it comes to existence during the reading of
M , are also in the same segment of π after the translated steps. The only way that the process above fails
is when it is about to deal with a new element in σ for the i-th step of M , but the corresponding pinnacle
pi is not yet introduced by the i-th up step of M(π) (thus also that of D). Suppose that the starting height
of the i-th step of M is `i and that of the i-th up step of D is `′i. Steps in M for elements larger than i
correspond by the process above to i− 1− `i down steps in D, as a step in M with height increment 1, 0,
−1 consumes 0, 1, 2 down steps inD respectively. Then, for the i-th up step ofD, there are i−1−`′i down
steps before it. Therefore, our process fails for the i-th step of M when the first i− 1 steps in M produces
strictly less down steps than those before the i-th up step in D, that is, when i − 1 − `i < i − 1 − `′i.
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But this is impossible due to (ii). Therefore, our process never fails, and it produces a permutation π with
ord(π) = σ̂.

Given a pinnacle set P , a Dyck path D is a admissible Dyck type of P if there is some π ∈ Sn(P ) such
that D(cyc(π)) = D. By Proposition 6.1, to obtain |O(P )|, we only need to compute all Motzkin paths
of length k − 1 that is compatible with any of the admissible Dyck types. The following characterization
of admissible Dyck types of P allows us to focus on only one of them, instead of all, when computing
|O(P )|.
Proposition 6.2. Let P = {p1 > p2 > · · · > pk} ⊆ [n] and D an admissible Dyck type of P . Let `i be
the starting height of the i-th up step of D. Then for all 2 ≤ i ≤ k, we have

`i ≤ min (`i−1 + 1, pi − 3− 2(k − i)) .

Proof: It is clear that `i ≤ `i−1 + 1, as there is no up step between the (i − 1)-st and the i-th up step.
Now for the other inequality, as D is admissible, there is some π ∈ Sn(P ) such that D(cyc(π)) = D.
Consider all the steps of D after the i-th up step (itself included), among them k− i+ 1 are up steps, and
thus `i + k − i + 1 are down steps, as D is a Dyck path. By the definition of D and M, these steps are
from distinct elements from pi down to 2. Hence, we must have more elements than down steps, meaning
that `i + 2(k − i+ 1) ≤ pi − 1, thus `i ≤ pi − 3− 2(k − i).

As a simple corollary, we recover the characterization of admissible pinnacle sets (i.e., pinnacle sets P
such that Sn(P ) is not empty) in Davis et al. (2018), here stated and strengthened for our need.

Corollary 6.3 (See Proposition 2.3 in Davis et al. (2018)). Let P = {p1 > p2 > · · · > pk} ⊆ [n]. Then
Sn(P ) is not empty if and only if pi ≥ 3 + 2(k − i) for all 2 ≤ i ≤ k.

Furthermore, when this condition is satisfied, there is an admissible Dyck type DP for P , with all `i
reaching the maximum. DP can be constructed as follows: for each 2 ≤ i ≤ k, we put max(0, `i−1−pi+
2+2(k− i)) down steps between the (i−1)-st up step and the i-th one, and we add the correct number of
down steps at the end to makeDP a Dyck path. ForDP , we have `i = min (`i−1 + 1, pi − 3− 2(k − i)).

Proof: For the “only if” part, suppose that there is an index i with pi < 3 + 2(k − i). If Sn(P ) contains
some π, we take D = D(cyc(π)), and by Proposition 6.2, the starting height `i of the i-th step of D
satisfies `i ≤ pi − 3− 2(k − i) < 0, which is impossible. Therefore, such an index i cannot exist.

For the “if” part, we first show that DP constructed above is an admissible Dyck type. As pi ≥
3+2(k− i), the number of down steps between the (i−1)-st and the i-th up steps is at most `i−1+1, and
accounting for the (i − 1)-st up step, we have `i ≥ 0, showing that DP is indeed a Dyck path. To show
that DP is admissible, we expand DP into a Motzkin path M that satisfies the condition in Lemma 2.2.
This is always possible, as pi ≥ 3 + 2(k − i) implies that there are enough elements for down steps at
each time, as in the proof of Proposition 6.2. With M a valid Motzkin type, by Proposition 2.3, we see
that Sn(P ) is not empty.

The equality for `i holds by construction. Now, let D′ be an admissible Dyck type of P , with `′i the
starting height of its i-th step. We show by induction that `′i ≤ `i. This holds for i = 1 as `′i = `i = 0.
Suppose that `′i−1 ≤ `i−1, then by Proposition 6.2,

`′i ≤ min
(
`′i−1 + 1, pi − 3− 2(k − i)

)
≤ min (`i−1 + 1, pi − 3− 2(k − i)) = `i.
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We thus conclude the maximality of DP .

Given P ⊆ [n] with Sn(P ) not empty, we call the Dyck path DP defined in Corollary 6.3 to be the
maximal Dyck type of P . We can now characterize permutations in O(P ) in a simple way.

Theorem 6.4. Given P ⊆ [n] with |P | = k. A permutation σ is inO(P ) if and only if the Motzkin type of
cyc(σ̂) is compatible (as defined in Proposition 6.1) with the maximal Dyck type DP of P . We thus have

|O(P )| =
∑

M∈Mk−1

M compatible withDP

wM(M).

Proof: The “if” part follows directly from Proposition 6.1 by taking D = DP therein, as σ 7→ σ̂ is
involutive. For the “only if” part, as σ ∈ O(P ), there exists π ∈ Sn(P ) such that ord(π) = σ. By
Proposition 6.1, the Motzkin type of cyc(σ̂) is compatible with the Dyck type of cyc(π), meaning that it
is also compatible with DP , according to Corollary 6.3 and the definition of compatibility. By accounting
for all possible M , using Proposition 2.3, we have the formula of |O(P )|.

Following Rusu and Tenner (2021), we say that a pinnacle set P with k = |P | is maximally admissible
if O(P ) = Sk. The following corollary recovers a result in Rusu and Tenner (2021).

Corollary 6.5 (Corollary 4.6 in Rusu and Tenner (2021)). A pinnacle set P = {p1 > p2 > · · · > pk} ⊆
[n] is maximally admissible if and only if pi ≥ min(2k − i+ 2, 3(k + 1− i)) for all 2 ≤ i ≤ k − 1.

Proof: From Theorem 6.4, we know that P is maximally admissible if and only if DP is compatible with
all possible Motzkin paths of length k−1. By definition, it is equivalent to DP being compatible with the
Motzkin path that starts with bk−12 c up steps and ends with bk−12 c down steps. This is equivalent to say
that `i ≥ min(i− 1, k − i) for `i for DP defined in Corollary 6.3.

For the “only if” part, it is clear that, for 2 ≤ i ≤ k− 1, we have pi− 3− 2(k− i) ≥ min(i− 1, k− i),
which implies what we want. For the “if” part, we proceed by induction on i. The case i = 1 is trivial, as
we have `1 = 0 ≥ min(0, k). Suppose that `i−1 ≥ min(i − 2, k − i + 1), then by Corollary 6.3 and the
condition on pi, we have

`i = min(`i−1 + 1, pi − 3− 2(k − i)) ≥ min(min(i− 1, k − i+ 2),min(i− 1, k − i)).

We thus have `i ≥ min(i− 1, k − i) to conclude the induction.

Using Theorem 6.4, we propose the following recurrence for |O(P )| that avoids the enumeration of the
exponentially many Motzkin paths.

Proposition 6.6. Given P = {p1 > p2 > · · · > pk} ⊆ [n], we define `1 = 0 and `i = min(`i−1 +
1, pi − 3− 2(k− i)) for 2 ≤ i ≤ k. We then define bP (i, j) for −1 ≤ i, j ≤ k as follows. When j > `i−1
or j < 0, we have bP (i, j) = 0. Otherwise, we have

bP (0, 0) = 1,

bP (i+ 1, j) = bP (i, j − 1) + 2(j + 1)bP (i, j) + (j + 1)(j + 2)bP (i, j + 1).

Then we have |O(P )| = bP (k − 1, 0).
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Proof: The proof is similar to that of Theorem 4.1 and Proposition 5.1. We first extend the weight wM to
prefixes of Motzkin paths. Then, the quantity bP (i, j) stands for the total weight of prefixes of Motzkin
paths compatible with DP ending at (i, j), where DP is defined in Corollary 6.3. At bP (k − 1, 0), we
thus have the total weights of Motzkin paths compatible with DP , and we conclude by Theorem 6.4.

The recurrence in Proposition 6.6 gives a concrete algorithm for Proposition 1.3.

Proof of Proposition 1.3: Let k = |P |. Computing |O(P )| using the recurrence in Proposition 6.6 needs
two steps: computing `i for i ∈ [k], which takesO(k) operations; computing bP (i, j) for i, j ∈ [k], which
takes O(k2) operations.

Using the algorithm above, we are able to compute |O(P )| for most practical purposes. We observe
that, for fixed k = |P |, there is a finite number of possible non-zero values for |O(P )|. We denote this
number by αk. A natural bound of αk is the (k−1)-st Motzkin number, as the restriction imposed by DP

essentially means summing over the weights of all Motzkin paths of length k− 1 below a given “ceiling”,
which is also a Motzkin path, when computing |O(P )|. However, this bound is not tight. For instance,
a Motzkin path and its mirror, as ceilings, lead to the same weighted sum. An exhaustive computation
shows that, for k from 1 to 19, the values of αk are:

1, 1, 2, 3, 6, 10, 21, 38, 86, 173, 412, 926, 2331, 5713, 14981, 38750, 104907, 279344, 769429

At the time of writing, this sequence is not yet on the Online Encyclopedia of Integer Sequences OEIS
Foundation Inc.. It may thus be interesting to study (αk)k≥1. A precise description of αk may be compli-
cated, as it involves various symmetries and coincidences due to explicit values of the weights. However,
we may expect (αk)k≥1 to have the same asymptotic behavior as Motzkin numbers.

Open question 2. Does (αk)k≥1 grow exponentially with the growth constant 3, the same as that of
Motzkin numbers?

For a Sagemath worksheet containing simple implementations of the algorithms in this article, see
https://igm.univ-mlv.fr/˜wfang/code/Pinnacle-Code.ipynb.
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