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Abstract

Let X = [X.,t>0) be a stationary stochastic process and suppose Xg

has a probability density f. Suppose the process X is observed at jump

times {74,i=1) of a point process (N ,t=0}. Nouparametric density
cstimation of f based on the sampled data {X(ry),1l<i<n) is studied.

Asymptotic properties of estimators of delta-family type for f based on

{X(7i),1<i=n) are investigated.
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1. Introduction

Nonparumetric density estimation for stationary stochastic processes
has been the subject of Investigation by scverul authors. For instance,
Roussas (196Y), Rosenblatt (1970), and Prakasa Rao (1977, 1978) discussed
density estimation for discrete time stationary Markov processes. Banon
(1977) and Prakasa Rao (1979a) studied the problem for continuous time
stationary Markov processes. Results for continuous time stationary
processes which are mixing type aro obtained by Delecroix (1980) among
others,  For a comprehensive dicussion of these results, see Prakasa Ruo

(1983). In the case of continuous time processes, one of the basic

assunptions used in all the above papers is that the process is completely
observable over any given period. Estimators of density based on the
complete path are constructed. In practice, it is obvious that it is
impossible to observe the path continucusly for various reasons, in
particular, precision of measuring instruments, unavailability of
observation at all time points as in medical studies etc. In otherwords,
the problem of estimation of density from sampled data of the process is
of extreme interest in practical problems. Sampling instants for
observing the process may be of several types. They might be regularly
.spaced or irregularly spaced. Sampling may be done at deterministic times
or random times. Random times of observation may depend on the process or
may be independent of the process under observation.

Statistical inference for irregularly observed processes in time
series problems has been under study for quite some time and we will not
discuss this problem here. Masry (1983) discussed probability density
estimation from sampled data for classes of processes satisfying various

types of asymptotic independence conditions. It is not clear whether any
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condition of the type of asymptotic independence for a process is
inherited by the process obtained from sampling the original process at
random times. Some aspects of this problem are discussed in Prakasa Rao
(1987b). 1In general, it is also not necessary that the "information"
obtuined from the sumpled data gives complete "Information" on the
prucess.

Suppose X = [X.,t=0] is a stationary process and the process X is
sampled at times [r;,n20) with r,=0. The problem is to estimate the onc-
dimensional marginal density of X (assuming that it exists) from
{X,)_OsiSn]. We do not assume that the values of the process [ry] are
obscrvable. Example of such a situation in laser amemometry is given in
Durranti and Greated (1977). Another problem where our discussion might
have potential application is in studying cardiac potentials on the chest

surface (Parisetti et. al. (1983)).

2. Preliminaries

Let (0,3,P) be a complete probability spuce and (3,tz0] be a right
continuous complete filtration dcfined on it. Supppose X = [X.,t=0] is a
stationary process adapted to {7.:) and N = [N.,t20) is a point process
adapted to [7¢] with stochastic intensity [A¢}. Assume that Ng = 0 a.s.
and E[N¢] < = for t = 0. Let {rj,izl} be the jump times for the process

N and r5 = 0. rj denotes the jump time for the i-th Jump of the process

N. Note that
Neg = ¥ 1[rjst]
izl

Suppose the process is observed at times rg,...,7p. In other words

observations Xfo,...,KTn are recorded on the process X. Note that
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Xy (w) = Xp(w) (@)

by definition. Assume that {X{) is a progressively mecasurable process.
particular, it follows that X, is measurable. Infact X; is ¥,-measurable
where 3, is the o-algebra generated by sets A € ¥ such that An[rst] € ¥
for every t =z 0.

For more details about these coucepts, see Bremaud (198l) or Prakasa

Rao (1Y87a).

Suppose X, has density f. The problem of interest is the estimation

of £ based on X, ... X,
o

n

Definition 2.1. A family of functions (6 (x),t=0) is said to be a family

of delta-type if it satisfies the following conditions:

o

iy s ase, £l
-

@

AT RRN T s

(iii) Se(x) —> 0 jas €t -« uniformly in, |x]| >.Afor any X > 0,
and

(iv) [ 16¢(x)]dx —> 0 as t » = for any A > 0.
R ES)

Remarks 2.1. An example of a family of delta-type is
§¢(x) = hg! K(x hgl), t 2 0

where K(+) is a bounded probability density such that x K(x) » 0 as x 2 =,
hy >0, hy 2 0 as t » =. Density estimators based on delta-families of
the type defined above are discussed in Watson and Leadbetter (1964),
Walter and Blum (1979) and Prakasa Rao (1978, 79a,b). A more gencral typc
of delta-families is studied in Foldes and Revesz (1974).

For a

complete discussion, see Prakasa Rao (1983). Assume that the following

o
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condition holds throughout this paper.
(Ay) The family of functions [§y(x),t20) is such that the process (6¢(x-X(),
0<t<T) is ¥ -predictable for every x and for every T = 0.

Let
T
2 1
f1(x) = 3 fo S(x-Xg)dNg
for every real x. The integral is well-defined since 6p(x-X¢) is F¢-
predictable and Ny is 7 -adapted. It is easy to see that

Broo - 3 Porlxx,,)

where £* is the sum over i with jump time 7y between [0,T].
Our aim is to study the properties of the estimator %T(x) as an

estimator of the density f(x).

The following properties are well known, for instance, see Castellana

and Leadbetter (1986) and Prakasa Rao (1983).
0
Lemma 2.1. If g(-) is continuous at x = 0 and I |g(x)|dx < =, then
-0
%
[ g(x)6c(x)dx » g(0) as t.» =,
-0
22
Lenmma 2.2 1If ag = f §¢(x)dx < =, then ar * = and
- a0
*
bp(x) = Ji(x) ag!, t =20 forms a delta-family.

Lemma 2.3. I1f g(-,') is a bounded and if g(‘,‘) is continuous at (x,y),

then

JP Im §e(u-%)6¢(u-y) g(u,v) du dv —> g(x,y) as t =+ =,
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3. Some properties of point processes

Note that
A - 1 J.T
fr(x) - T o 6r(x-Xg) dNg

where (Ng,t=0) is a point process adapted to [¥,} with stochastic
intensity [A¢). By the definition of [N¢,t=0}, (A ) is a non-negative Ty-

progressively measurable process such that for all t =z 0

o
[ ¥xglae € « ~alElTP)
o]

and for all non-negative 7 -predictable processes Ceo

E[foctht]-E[IUCtALdt]

(cf. Bremaud (1981)).

Theorem 3.1. Suppose [N ,t=0} is a point process with stochastic

intensity {A ) such that

C
[ 728 &= 252107 ¥t
0

Then

i) Nt is P-nonexplosive, that is r; t = a.s.[P];
&

(il) Mg = Ng - IO Ag ds is an 3 -local martingale;

(iii) if Zg is an F.-predictable process such that
E[f [ [Ag d5]<oo, tzo0,

0
then

t
f Zg dMg 1is an 7¢-martingale; and
0

(iv) " 1f 7y dsian F-predictable process such that
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L
F Az depcm i 50 (P), "t 2 0,
0

then
&
I Zy dMg 1s an 7 -local wmartingale.
0

For proof of Theorem 3.1, see Bremaud (1981). 1I1n particular, under the

assumption E(Ngp) < =,
t
Mg = Ne - Io Ag ds

is a zero-mean J¢-martingale. Further more, if Z; is an 7 -predictable

process such that
T
B4 fo 2 e } =
then
t
Ip = jo Zgdig , £ 20

is a zero-mean square integrable 7 -martingale satisfying the following

properties.

Theorem 3.2.
(i)  E(Iy) = 0, equivalently, E{ f;zs dNg } - E{ fﬁzs ey ol s }.
(EL) E(Eel¥y) = 1., 0 %5 s kt.
(iii) E(12) =- E{ ftz§ T

(o}

t
(iv) Define J. = IO Wg dMg where Wy is J.-predictable such that

E{ j;ug Ay o} < Thia E[ItJt] - E[f; 2o My Ay ds].

@ Bljdel > 4] s b P[f; Z2 Ag ds > ) for every ¢ > 0 and 5 > 0.
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For proof of Thcorem 3.2,sce Liptcer and Siryayev (1978). A central limit
theorem will be used later in this paper for obtaining asymptotic
properties of estimators. We now state this result, For proof, see

Kutoyants (1984).

Theorem 3.3. Let (N¢,t20) be a point process with stochastic intensity
{A¢,t20] as defined above. Let Zp = {ZT(t),Jt,tG[O,T]} be 7 -predictable

and
T
Iy = j’o Zr(t) Mg, Tz 0
where
t
Mt-Nt-_fOAs ds ., t.z.0.
Suppose that
T 2
J'O Z7(t) Ap dt B> 02 a5 T 4 w
and, for every ¢ > 0,
dr
jo E[z-}(s) x{1zzes)1 > ¢)) ,\5] ds —> 0 as T2 =
where X(A) denotes the indicator function of set A. Then

T
I, 7xts) ang L5 N(O,02) as T + =.

4. Properties of estimators

Since
A Tt
(4.0) fr(x) = 3 J'O ST(x-Xg) dNg ,

it follows that
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T

o ST(x-Xs) ang M

(4.1) E[%T(x)] - % e{ [

Assume that

iy
(A1) £{ fo 53Xy Ngds § < »
Note that
T
(A2) E(NT) = E[jb Ag ds) < w

by assumption. 1In view of (Al) and (A2), an application of Cauchy -

Schwarz inequality implies that

T
(4.2) E{ Io |6T(x-Xg) | Ag ds } < o,
Let
* 1 T
(4.3) £1(x) = 7 fo ST(x-Xg)Ag ds.
Note that

(4.64) E[ET(x)] - E[f%(x)]
by Theorem 3.2. Further more
(4.5) E[ET(x)] = E[E%(x)]
g8

- I Io E[éT(x—XS)AS] ds.
Let

" g £l
(4.6) Ipx) = fr(x) - £fx) - 3 Io ST(x-Xg) dMg .
Note that

(4.7) E[JT(x)] - 0,




60
(4.8) Efpreo]* - 3 k| jz brix-Xg) ay)?
i )
i E[é% (x-xs)As]ds
by Theorem 3.2. Further more for any ¢ > 0 and 5 > 0,

T
(4.9) P(19rl > ) = 2( [g J srx-xg)am,

> c)
it
s+ p{ %; e ghsaty)rgds suye)
0
by Theovrem 3.2, For any fixed x, let

u
Ly, x(u) = fo ST(x-Xg)dMg, Osu<T.

Then {LT,x(u)- 74, 0=u<T] is a zero-mecan square-integrable martingale and

hence

(4.10) E[oéﬂzr L%_x(u)] S 4 E L} (D).
Further more
(4.11) E[LTIx(u)] -0,
u
(4.12) Var[LT_x(u)] - s[jo 5§(x-xs)xsds] |

and

u
(4.13)  Cov(Lp x(w), Ly y(w) = E[jo BT(x-Xs)sT(y-Xs)Asds]
As a consequence of the last result, we have
el
(4.14)  Cov(Ig(0),J1(y) - 25 el 57(%-Xg)8T(y-Xg)Agds

Proposition 4.1. 1If
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T
%g IO 5%(x-xﬁ)ksds L 5 0as T w,

(4.16)  Ep(x) - £Fx) L>0 as T -+ .
Proof. This result follows from (4.9).

Proposition 4.2. If

(4.17) %; fz E[s%(x-xs)xs]ds 20 as T+ w,
then

(4.18)  Ip(x) - £5(x) 25 0 as T » =,

Proof. This result is an application of (4.8).

Proposition 4.3. Suppose there exists w7 > 0 such that

2
v x
Ghst i Io 53(x-X)Ag ds 2> 0?7 >0 as T +

and, for every € > 0,

2
ML

T ;
4.20) = [ E[&%(x-xs)xs X{IGT(x-XS)[ S e Twp' ) ] ds —> 0

ag T o,
Then
».21)  wp(tre0-g5x)) £ #(0,0?) as T -+ e.
Proof. Note that

(4.22)  wp(Ep(x)-£500)
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vy T
S
fT Zr(s)dd
- s
0 T s
where
¥T,
(6.23) Zr(s) = T dr{x-Xg), OsssT,.
In view of conditions (4.19) and (4.20), it follows that
T e
[, 2r(o)ang ——> n0,0%)

as T » = by Theorem 3.3.

5. [Ag) is non-random

Suppose the intensity process [A;) is non-random function .

Note that
5.1 E[fpo0] -2 jz E[s7(x-xg)]2g s
- E[GT(x—XO)] % f; g ds

by stationarity of the process X. In view of Lemma 2.1, the following

proposition can be proved.

Proposition 5.1. 1If the density f is continuous at x, then

(5.2) E[&T(X—XO)] —> fi(x) a8 T %«

Proposition 5.2. ET(x) is an asywptotically unbiased estimator of

f(x) at'continuicy points x of f if and only if
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1 T
(5.3) 3 Io Ag ds —> 1 as T = =,

Proof. Follows from (5.1) and (5.2).

Proposition 5.3. Suppose the following conditions hold:

s T
(5:4)  lm g [ 2sds <o
and
(5.5) oy = §2(x) dx < w.
t =% t

If f is continuous at x and ap T°! 2 0 as T + =, then
(5.6) fr(x)-£5(x) 125 0 as T » =,
Proof. Observe that, form (4.8), we have
5.7 E[freo-gw]?
1 T 2
=5 Io E[&T(x—xs)ls] ds
1 2 1 (T
- E[ET(X-XO)] - fo Ag ds
by stationarity. Note that
2 SO
(5.8) E[JT(x-Xo)] - f S1(x-y) £(y) dy
-0
o
- ar [ #1cy) £0y) dy

where
(5.9) 6%(x) = ap’ E7(x).

Lemmas 2.1 and 2.2 and relation (5.8) imply that
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(5.10) ag’ E[ﬁ{(x-xo)] —> f(x) as T » =
at continuity point x of f. It is clear that

a & T
(5.11) s[fT(x)-f¥(x)]‘ - %g ar' E[&%(x-xo)] % jo g ds

and (5.6) follows from (5.4), (5.10) and the fact that

(=4
7% —> 0 .ag T -+ m

Proposition 5.4. 1If

T
S0 fo Ag ds —> 1 as T + =,
and
(5.13)  ar = [  §7(x) dx < =,

-0

then
(5.14) T ap’ E[ET(x)-f§(x)]’ > (X)) am ' TH »
at all continuity points x of f.

Proof. This result follows from (5.11) and the relations (5.10) and

E52A 290

Remarks 5.1. 1In view of Propositions 5.3 and 5.4, asymptotic behaviour
of the estimators ET(X) and f%(x) are the same if ap/T + 0 as T + «,

Note that
Jp(x) = %T(x) - fT(x) = %T(x) - E(frcx)) + E(f7(x)) - £7(x)

by (4.7) and hence asymptotic behaviour of the statistic
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Cr(x) = f(x) - E(f1(x))
is the same as that of
nr(x) = £1(x) - E(fF(x))
under the conditions of Propostion 5.3. Observe that

Cov (n7(x) . np(y)) = E[nT(X).nT(Y)]

2 ok
= g2 B[ [ S {sroexo-e spoex) Horoxo - sr0x0)} s A ds o]

¥ T
E %? Io Io {E[ET(x'X5)5T(Y'Xc)] s E[ST(X-XS)]E[GT(y-Xt)]} Ag Ap ds dt
T T
§ E% IO IO E[5T(X'Xs)5r(y-xt)] Ag Ap ds dt

- E[brx-%)] E[er(y-x0)] 22 jz j; Ag A ds dt

by stationarity of the process X. All the above equalities can be
justified under assumptions (Aj) and (Ap) by Cauchy-Schwarz inequality
and Fubini's Theorem. Let fs,t('-') denpte the joint density of (Xg,Xp)

and f(-) is the density of X,. Hence
(5.15)  Cov(nr(x),np(y))
E %3 fg IZ { ffm I: Sp(x-u)ép(y-v) fslc(u,v)dudv} Az Ap ds de
gz | srewt@an [ sp-vay j: j: %4 '%e s
1 %? ffm f: §T(x-u) &1(y-v) [ f: f: {fs't(u,v)-f(u)f(v)} Ag Ap ds dt|du dv
= 77 entew s10-v) grtuv) du av
where

3 b i
(5.16)  gr(u,v) = %; Io Io [f5|t(u,v)-f(u)f(v)] s Mgy s ik
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Proposition 5.5. Suppose gr(u,v) is as defined by (5.16) and there

exists pr > 0 such that

(5171 ﬂ;gT(u.v) + g(u,v) as T »* = uniformly in u,v and g(-,") is
bounded.

Then

(5.18) BT Cov(np(x) ,n7(y)) —> g(x.y) as T » =
at all continuity points (x,y) of g(-,-).

Proof. Note that, under the condition (5.17),

(5.19) Bt Cov(nr(x).nr(y)) = j_m f_m ST (x-u) JT(y—v)[g(u.v) + 0(1)] du dv
- Ip Ip §1(x-u) §p(y-v)g(u,v) du dv + o(l)

as T » » since the convergence in (5.17) is uniform in u,v and the class

{6¢(x),t20] is a family of delta-type. Hence, as T + =,
(5.20) BT Cov(nr(x).n1(y)) = g(x,y) + o(1)
at all continuity peoints of g(-,*) by Lemma 2.3,

Proposition 5.6. Suppose that

pt T T
2D hw = Uw g [ [ [£s, cCuw-£EW] Ag Ac s ae

exists for every u and the limit is uniform in u. Further suppose that

h(-) is_bounded. Then
(5.22) By Var(np(x)) —> h(x) as T + w

at all continuity points of h(-).
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Proof. This result follows by arguments similar to those given in

proving Proposition 5.5,
Theorem 5.7. Suppose that (5.21) holds and
(5.23) %J’Z Agds —> 1 as T » =,
Then
(5.24) E[f?(x)] —> f(x) as T 2 =
and
(5.25)  pr Var(Ff(x)) —> h(x) as T = =
at all x which are continuity points of both h and f.
Proof. This theorem follows from Propositions 5.6 and 5.2 since
E[%T(x)] - E[f%(x)]
Remarks 5.2. Note that
£5(x) = % IZ §T(x-Xg) Ag ds

and

pr(e300) -Eff(x)) = ? fz [ST(X-XS)-E[ST(X-}(s))] g ds.

One can give sufficient conditions for asymptotic normality of the family
of random variables defined above as T »® =, For instance, this was done
for stationary Markov processes X when Ag = 1 in Prakasa Rao (1979a).
Castellana and Leadbetter (1986) studied the case when Ag = 1 and X is a

stationary process satisfying a mixing type of condition. We will not
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discuss these results here. Our interest is to study the asymptotic

behaviour of ET(x) when compared to that of f%(x).

Theorem 5.8. Suppose conditions (5.4) and (5.5) hold. Then, for every

€c>0, as T + =,

(5.26) P(prifF()-fr(x)| > ¢) = 0(c *ap’? T7*? py)
Proof. Observe that, for any ¢ > 0 and 5 > 0,

(5.27)  P(prifp(x)-£5(x)| > )

T .
£ p[ijo s1(x-Xg) dMg| > ¢ B T)

IA
P
Itb

T
] TE + P(|Io s}(x-xs)xs ds| > q]

(by Theorem 3.2)

Bt 1 2 1
= f% gt f b7(x-Xg)Ag dsy
BT 1
T
- f% f? E [BT(X X )] f Ag ds

(by stationarity of X)

Under the conditions (5.4) and (5.5), the second term on the right side of

(5.27) is of the order

% ar f(x) T
and hence
ﬁd
(5.28)  P(prIfp(x)-££00)| > €] - o(% TI + % ar T)

for every ¢ > 0 and n > 0. Choosing n = ¢ a%’a TJI: ﬂil, we have
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(5.29)  PBriEpGo-gEx)| > ¢) = oc™t ap’? 1712 py)

Corollary 5.9. Suppose that the conditions (5.4) and (5.5) hold and Bt > 0

is such that

(5.30) ar’ TV B —> 0 as T + w.
Then

(5.31)  pr(Ep)-£f(x)) B> 0 as T + =,
at all continuity points x of f.

" Proof. This result follows from Theorem 5.8.

As a consequence of Corollary 5.9 and Proposition 5.6, we have the

following theorem. Note that E[ET(x)] - E[f{(x)].

Theorem 5.10. Suppose the conditions (5.4), (5.5) and (5.38) hold.

Further suppose that

(5.32)  pr(eR(x)-ECE%(x))) > N(o,h(x)) as T + =.

Then

(5.33)  pr(frx)-E(Er(x))) <> N(o,h(x)) as T » =.

Remarks 5.3. Observe that h(x) is given by (5.21) under some conditions
as stated earlier. Further, for the validity of the results in this
section, we do not need the fact that [X.,t=0) is a stationary process but
that the finite-dimensional marginal densities of [X;]} exist and the one-

dimensional marginal density of X is the same for every t = 0.
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6. [().) is a random process independent of [X,)

Suppose the intensity process [Ag,s20) is random but independent of

(Xg,520]. Note the Ag is ¥ -measurable for every s = 0. Further more
" 1 oL
(6.1) E[fT(x)] - I Io E[ST(x-Xs)AS] ds
1 fT :
- ElsntxXo) | 7 J EQ) as

by independence of [Ag) and (X} and by stationarity of X process.

Proposition 6.1. %T(x) is an asymptotically unbiased estimator of f(x)
at continuity points x of f if and only if
=T
(6.2) [ EQg) ds —> 1 as T+ =,
T o]
Proof. This result follows from (6.1) and Proposition 5.1.

Proposition 6.2. Suppose the following conditions hold:

Gh. &) Tia: o jT Eii=his < 6ls
T T Y0 £ y

and

(6.5) ag = jm 5:(x)dx e

If f is continuous at x and ap T°! » 0 as T =+ o, then
(6.6) fr(x) - £32(x) &850 as T+ =,
Proof. Note that, from (4.8), we have
6.7)  E[fro-ff0]?
w %; Iz E[&%(x-xs)xs] ds

T
- 1 E[stxx0)] 3 | ICWEE
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by independence of (X¢)} and {Ag) and by stationarity of (X¢,t20). The
rest of the proof is similar to that of Proposition 5.3 (by replacing Ay

by E(Ag)). We omit the details.

Proposition 6.3. 1If

1 (T L/
(6.8) = Io E(Ag)ds —> A as T » «
and
-]
(6.9) ag = [ Si()dx <=,
then

6.10)  Toi' E[fro0-tf0]? —> A £(x) as T
at all continuity points x of £.
Proof. Similar to that of Proposition 5.4.

Remarks 6.1, Let

(6.11)  ¢r(x) = fp(x) - E(Ep(x)) .
and

(6.12)  np(x) = £f(x) - E(£F(x))
Since

(6.13)  E(fp(x)) = E(£F(0))

it follows that

(6.14)  Jp(x) = fr(x) - £f(x)

- ¢r(x) - nr(x)

and the asymptotic behaviour of ¢{r(x) and nr(x) are the same under the

conditions (6.4) and (6.5). Observe that
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(6.15)  Cov(nr(x),nr(y)) = E(nr(x)nz(y)
- 35 e[ {srnxans - Boroexong) s IZ {srv-x0ne - E{sr0-xoaas o
- jz jz {E[JT(X-XS)ST(y-Xt)ASAc] k E[ET(x-Xs)As]E[6T(y-xt)At]}ds de
- & IZ fz {e[sroxrs10-%0] E[xare] - E[sroexo]E[srir-x0nc B IE e 4
. S i) arelel ol

4 %? j; fz E[&T(x-xs)]E[ST(y-Xt)] {E[Asat] - ElilelAc]}ds de
- % 1T efsreexosnoxo)] - efireexo] Efiroexo]) eades a

+ E[spexo) |E[sr(y-x0] & jﬁ jﬁ cov(rg,A¢)ds dt
- I: I: s7(x-wbr(y-v) [ jﬁ fz {ts cuv-£EMW) ) E[xsAc]as at] du av

+ E[&T(x-xo)] E[&T(y-xo)] %; j; fz Cov(Ag,A¢)ds dt

. Im f:‘sT(x-u)aT(y—v)gT(u,v) du dv

- E[ST(X-XQ)] E[ST(y~X°)] %; jz jz‘COV(As,At]ds dt

where

= X =T
(6.16)  gr(u,v) = %; Io jﬁ [fs't(u,v)-f(u)f(v)] E[Asxt]ds dt.

(!

at
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Proposition 6.4. Suppose ET(u,v) is as defined by (6.16) and there

exists fr > 0 such that

(6.17) ﬂ% ET(U,V) —> g(u,v) as T » = uniformly in u,v and g(',")

is bounded; and
T 2
(5.1 =2 fo Io Cov(Ag,At)ds dt —> f as T =+ =,
Then
(6.19) BT Cov(nr(x),np(y)) —> g(x,y) + B £(x)f(y) as T + =

at all continuity points (x,y) of g(:,*) where x and y are continuity

points of f.

Proof. This result follows from (6.15), (6.16) by arguments similar to

those given in proving Proposition 5.5.

Proposition 6.5. Suppose that

g5 LT T
(6.20)  h(w - lim E% fo fo [fs_t(u,u)-f(u)f(u)] E[Asxt] ds dt

exists for every u and the limit is uniform in u. Further suppose that

h(-) is bounded and

FiE
6.21) © = [ Jeovisac)ds de —> p as T+ e,
Then
(6.22) BT Varnp(x)) —> h(x) + f £3(x) as T + =
at all x which are continuity points of h and f.

Proof. This result follows from Proposition 6.4,
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Proposition 6.6. Suppose the following conditions hold

(6:23y,  ~1im = jI E(Ag)ds < = ;
] Tw 2 & %0 gepr '
and
o0
(6.26)  ag = [m §2(x)dx < = .
Let x be a continuity point of f. Then, for every ¢ > 0,

(6.25)  P(ArIfF(x)-Er(x)| > ¢) = o(c™! ap’? T7'?

ﬂT] as T * o,
Proof. Similar to that of Theorem 5.8.

Proposition 6.7. Suppose that the conditions (6.23) and (6.24) hold and

ap’2 T2 fp—>0 as T + =

(6.26)
Then
6.27)  pr(fr(x)-£5(x)) B> 0 as T
at all continuity points x of £.

Proof. This result follows from Proposition 6.6.

Theorem 6.8. Suppose the condition (6.23), (6.24) and (6.26) hold.

Further suppose that

Br(E5(x)-E(£E(x)) > N(0,R(x)) as T » =.
Then

pr(Erx)-EEr(x)) £ N(O.E()) as T » =.

Proof. This result follows from Proposition 6.7 since E(%T(x)) - E(ff(x)y
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Remarks 6.2, Note that
h(x) = h(x) + B £2(x)

under some conditions where h(:) and g are defined by (6.20) and (6.21).
If Cov[As,At] = 0 for all s » t, then 8 = 0 from (6.21) and E(x) = h(x).
In fact

-
h(x) = Um fo Io [gsl:(x,x) : f(x)f(x)] E(Ag)E(Ag)ds dt .
The exp;ession on the right side of the above equation.is the same as the
asymptotic variance of the estimator %T(x) obtained from sampling at
random times with nonrandom intensity process {E(Ac),taﬂ}. This can be

seen from (5.21). Observe that, if f < 0 then h(x) < h(x) and if 8 > 0

then h(x) > h(x).

7. ().) is a random process asymptotically uncorrelated with [X;]

Suppose the intensity process [Ag,s20] is asymptotically

uncorrelated with the process [Xg,s20] in the sense that for every delta-

family {6(x),t=0}.

(7.1) sgpIE[ET(x-XS)As] - E[s(x-xg)] E[AS]I —30 as T+ =,
Note that
$7:2) E[%T(x)] - % ji E[ST(x-XS)AS] ds
- % fz E[&T(x-xs)] E[As] ds + % IZ ¥r(s) ds
where
(7.3) [Yr(x)] S 97 —> 0 as T » =,

Hence



(7.4) E[ET(x)] - % §

by stationarity of the process X.

Proposition 7.1. %T(x) i{s asymptotically unbiased estimator of f(x) at

continuity points x of f if and only if

T
(7.5) % fo E(Ag) ds —> 1 as T + =,

Proof. This result follows from Proposition 5.1 and (7.4).

Proposition 7.2. Suppose the following conditions hold:

(7.6) leE(A)ds<m-
i sl i
and
(.7 ap = | fp(x)dx < = .
-

If f is continuous at x and ag T-1 20 as T = =, then
(7.8) fr(x) - £5(x) L5 0 as T » .
Proof. Note that
2
sr(x)
* —
ST(x) g T2 0
is a delta-family under (7.7). Hence

s:p|x-:[.s$(x-xsns] . E[s—f(x~x5)] EDgl| —> 0 as T » =,

Furthermore

E[%T(x) -f%(x)] i




7

1
= T2 I

E[&%(x-xs)as] ds

5 o =

- ;% Il E[&%(x-xs)zs] ds

H o

a a 24
i E% L E[&%(x-xs)] E[Ag)ds + §§ jo Vi(s)ds

o

where |w¥(s)i =< 1% and 1% + 0 as T #» =, Hence
a[% (x)-£3( )]’ | {E[&*(x-x )] 1 jT EfAg)dn) & = jT X(s)ds )
T(x¥)-£1(x T Tx-%)] 7 )y s T Jg ¥1 Jo

Under the conditions (7.6) and (7.7), it follows by arguments

similar to those given in proving Proposition 7.1, that

T
Io ¥i(s)ds| < =.

==

T

i i 1T \
1im [E[&}(x-xo)]\ -~ Io E(Ag)ds) +
Hence

E[%T(x)-f§(x)]’ —>0 asT ==
if
at

T —>0 as T *« and f is continuous at x.

Remarks 7.1. Under the conditions (6.8) and (6.9), if f is continuous at

X, then
(7.9) f% E[ET(x)-f§(x)]’ —> ) f(x) as T+ =,

This can be seen by arguments similar to those given in proving Proposition

B4,

Remark 7.2. For obtaining analogues of Propositions 6.4 to 6.7 we need a

stronger condition than that given by (7.1). We will not discuss details

here.
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B. General [(),)

In the general caseof intensity process [A.), no specific results can
be obtained. However, we can still obtain information on the difference
between the estimator %T(x) obtained from the sampled data and the

estimator ff(x) as defined by (4.0) and (4.3). Let
A “ 1 oI
IT(X) = fr(x) - £1(x) = 3 Io ST(x-Xg)dM

be as defined in (4.6). The following proposition is a restatement of

results in Section 4.

Proposition 8.1,

(1) E[irmo] - o.
T
(ii) E[JT(x)]? & %; Io 5[5%(x-xs)zs] ds
(iil) For any ¢ > 0 and > O,

T
P(lare)1>e) = 5% + »{ %; Io 3 (x-%g)2y 45 > ) .

(iv) Suppose there exists vy > 0 such that (4.19) and (4.20) hold.

Then

vp Jp(x) —==> N(0,0?) as T +=.

Remarks 8.1. Suppose py A, (") 1s the joint density of (Xg,Ag) assuming
T e e—— ] L]
that it exists. Assume that the conditional densities in the following

computation are well-defined. Note that
(8.1) E[ST(x-XS)AS]

-] O
- I I §7(x-u) v px . (u,v) du dv
-0 = s ' 72
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- L spxewy v (ulv) du} v py (v)dv
Tl Yo i PX, | A, PXS .
From the property of delta-families, it follows that

(8.2) Io ST(x-u)px_ |2, (ulv)du —> px |y (x|v) as T +=

at all continuity points x of px-|1_(nlv) by Lemma 2.1.

(A3) Suppose the limit exists in (8.2) for every x and is uniform in v.

Then
(8.3) E[éT(x-Xs)As] - I: [pX.lA.(x]v) + 0(1)] v pa, (V) dv
- I: px‘_A.(x,V)V dv + {f: v pA.(v)dv} o(l)
- f: Px, (x) Px_ |2, (VIX)V dv + o(1)
- px, (x) E(As|Xg=x) + o(1)
Hence

i
L

(=T |

(8.4) E[ET(x)] - E[6T(x-xs)] ds

I
|

- [

{ox, 0 ErgIXg=x) + o(1)} ds

(=]

1 ¢l
- px, 00 { § [ B X1} + 0(1)
provided
(Ag) sup E(Ag) <=.
s

Proposition 8.2, Under the conditions (A3) and (Ag), ET(x) is an

asymptotically unbiased estimator of f(x) where x is a cotinuity point of

PX‘,A.('IV) for every v if and only if

T
(8.6) % jo E[Ag|Xg=x]ds —> 1 as T - =.
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We will not discuss other properties of f1(x) under the general

set up given here,

9. Remarks
Rewarks9.1., Suppose [X¢) 1s a stationary process such that, for any x,
(9.1) Cuv[&T(x-Xs),éT(x-Xt)] = rp(lt-s],x)
= ry(o,x) + wT(o,x)|t-s|a
+ p1(x,|t-5])
where 0 < @ < 2, Further suppose that {As] is non-random as In Setion 5.

Then, for np(x) = £3(x) - E £3(x), we have

A 1
(9.2) Var[nr(x)] -T2 f Cov[ﬁT(x-xs).ﬁT(x.xt)] Aghp ds dt
070
1 oL L
=17 fo Jb rr(x) [t-s[)AgAe ds dt
Ty T
STz Io 0 {fT(° x) + ¥p(o,x) | t-5]% + yp(x, |t- sl); Agh ds de

1 T T
= rr(o,x) =5 Ac Ap ds dt
T T2 Jh J6 5 ‘t
¢(0 ®) [T
r j f Jt-s|® Aghe ds dt
L Emap
¥ig jo jo ¥1(x, |t-s[)AgAe ds dt.
If A\g = 1 (Poisson Sampling of the process)
1 T T a
(9.3) Uar[qT(x)] - rr(o,x) + ¥r(o,x) 73 [0 Io [t-s]% ds dt

1 A =k
+ = (x,|t-s])ds dt
7z [, [, mxaessp

1 Tn+2

= rrle,x) + #rloir) 57 2 oy
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Ry Sy
+ = T7(x,|t-s|)ds dt
T2 IO J-O 'F | |

Tﬂ

= rp(o,x) + 2 y¥r(o,x) IE:ISTE;ES
+ %; jz IE yr(x,|t-s|)ds dt.
Note that
(9.4) rr(o,x) = E[s%(x-xo)] : {E[&T(x-xo)]}’ = ar £(x)

as T + =, Relations (9.3) and (9.4) show that

(9.5) ag’ Uar[qT(x)] = £(x)
provided
§9.6) a%l wT(o,x)Ta =30 as T * e«
and
-1
a Y L
(9.7) - i Io yT(x,|t-5])ds dt —> 0 as T + =,

Remarks 9.2. One can specialize the results obtained in Sections 3 to 8 for

kernel type estimators by choosing
=1 i b
§¢(x) = b 'K(he'x]

where K(:) is a bounded probability density such that t K(t) » 0 as t = =,

hy > 0, hy + 0 as t » ., We will not discuss this case here.
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