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Abstract

Let X m CXt,t>0] be a stationary stochastic process and suppose XQ

Uns a probability density f. Suppose the process X is observed at jump

tiines Cr^.i^l) of a point process [Nt,t>03. Nonpararaetric density

estimation of f based on the sampled data £X(r^),l<i<n3 is studied.

Asymptotic properties of estiinators of delta-family type for f based on

[X(Ti),l<i<n) are investigated.
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1. Introduction

Nonpuruinetric density estimation for stationary stochastic processes

lias been thu subject of investigation by several authors. For instance,

Roussas (1969), Rosenblatt (1970), and Prakasa Rao (1977, 1978) discusscd

density estimation for discrète tiuie stationary Markov processes. fianon

(1977) and Prakasa Rao (1979a) studied the problem for continuons time

stationary Markov processes. Results for continuons time stationary

processes which are rnixing tÿpe are obtained by Delecroix (1980) among

otours, For a compréhensive dicussion of tliesc results, see Prakasa Rao

(1983). In the case of continuous time processes, one of the basic

assumptions used in ail the above papers is that the process is completely

observable over any given period. Estimators of density based on the

complété path are construcLed. In practice, it is obvious that it is

impossible to observe the path continuously for various reasons, in

particular, précision of measuring instruments, unavailability of

observation at ail time points as in medical studies etc. In otherwords,

the problem of estimation of density front sampled data of the process is

of extreme interest in practical problems. Sampling instants for

observing the process may be of several types. They might be regularly

.spaced or irregularly spaced. Sampling may be done at determfnistic times

or random times. Random times of observation may dépend on the process or

may be independent of the process under observation.

Statistical inference for irregularly observed processes in time

sériés problems has been under study for quite some time and we will not

discuss this problem here. Masry (1983) discussed probability density

estimation from sampled data for classes of processes satisfying various

types of asymptotic independence conditions. It is not clear whether any
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condition of thc type of asymptotic indepcndcnce for a process is

inhcritcd by thc process obtained frein sarapling the original proccss at

random times. Soine aspects of this problem are discussed in Prakasa Rao

(1987b). In gcnerol, it is also not nccessury thut the "information"

obtained from thc suinpled datu gives complété "Information" on the

process.

Suppose X - (XLlt>0] is a stationary process and the process X is

sampled at times lrn,n>0) with rQ—0. The problem is to estimate the one-

dimensional marginal density of X (assuming that it exists) from

(Xr ,0<i<n). Ue do not assume that the values of the process are

observable. Example of such a situation in laser amemometry is given in

Durranti and Greated (1977). Another problera where our discussion might

hâve potential application is in studying cardiac potentiels on the chest

surface (Parisetti et. al. (1983)).

2. Prelirainaries

Let (0,7,P) be a complété probability space and (5t,t£0) be a right

continuous complété filtration defined on it. Supppose X - [Xt,t>0) is a

stationary process adapted to [7^1 and N — (Nt,t£0) is a point process

adapted to (7t) with stochastic intensity (At). Assume that Nq - 0 a.s.

and E[Nt] < «*> for t £ 0. Let (ri,i>l) be the jump times for the process

N and rQ - 0. ri dénotés the jump time for the i-th jump of the process

N. Note that

Nt “ •
in

Suppose the process is observed at times r0,...,rn. In other words

observations X- ....,X- are recorded on the process X. Note thatTo Tn
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Xr(w) - Xf(w)(w)

by définition. Assume that (X^l is a ptogressively mcasurable process. lu

particular, it follows that Xr is measurable. Infact Xj is 7f-measurable

where 1T is the a-algebru generated by sets A G J such that An[rSt] G Jt

for every t £ 0.

For more details about these concepts, see Bremaud (1981) or Prakasa

Rao (1987a).

Suppose XD has density f. The problem of interest is the estimation

of f based on X- ,...,Xr .
o n

Définition 2.1. A faraily of functions C6t(x),t>0) is said to be a family

of delta-type if it satisfies the following conditions:

CD

fi) J |fit(x)|dx < A < », t > 0,
.CD

(ii) J 6t(x)dx - 1, t > 0,
-00

(iii) 6t(x) > 0 as t ■* « uniformly in |x| > À for any X > 0,
and

(iv) J |5t(x)|dx > 0 as t -» » for any X > 0.
|t|>A

Remarks 2.1. An example of a family of delta-type is

fiL(x) - h^1 K(x h^) , t îs 0

where K( • ) is a bounded probability density such that x K(x) *♦ 0 as x ■* »,

ht, > 0, ht ■* 0 as t <*>. Density estimators based on delta-familics of

the type defined above are discussed in Watson and Leadbetter (1964) ,

Walter and Blum (1979) and Prakasa Rao (1978, 79a,b). A more general type

of delta-families is studied in Fôldes and Revész (1974). For a

complété discussion, see Prakasa Rao (1983). Assume that the following
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condition holds throughout this puper.

(A0) The family of fonctions Ut(x),t£0) is such that the process l6c(x'xt>>

0<tsT) is yt-predictable for every x and for every T fc 0.

Lut

1 T
fT(x) - | J SjOitJis)dHs

0

for every real x. The intégral is well-defined since 4j(x-X^) is ïf

predictable and Nt is 7t-adapted. lt is easy to see that

fT<*> - | ï*S.t(x-XTi)
where 2* is the surn over i with junip time between [0,T].

Our aira is to study the properties of the estiiuator fj(x) as an

estimator of the density f(x).

The following properties are well known, for instance, see Castellana

and Leadbetter (1986) and Prakasa Rao (1983).

JO

Lemma 2.1. If g( • ) is contmuous at x - o and J |g(x)|dx < ®, then
• 00

J g(x)«t(x)dx | g(0) as t ®.
• 00

r® 2Lemma 2.2 It - | Æt-(x)dx < ®, then at -♦ «o and
-oo C

tIc 2

^t(x) * “t1* t > 0 forms a delta-fainily.

Leinm^i 2.3. If g(’»*) is a bounded and if g( • , • ) is continuous at (x,y),

then

00 00

J J 4t(u-x)$t(u-y) g(u,v) du dv •> g(x,y) as t -* <*>.
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3. Some properties of point processcs

Note that

*T<*> T | iff *T(x‘Xs> <®s
where CNt,t2:03 is a point process adapted to (7t3 with stochastic

intensity (At3. By ,the définition of [Nt,t2:03, [At3 is a non-negative 7 t

progressively ineasurable process such that for ail t 2: 0,

J As ds < « a.s.[PJ
o

and for ail non-negative 7t-predictable processus Ct,

E[ / ct d Nt ] - e[ / Ct At dt ]0 0 J

(cf. Bremaud (1981)).

Theorem '3.1. Suppose CN^,t^03 is a point process with stochastic

intensity {At3 such that

t

J As ds < « a.s. [P], t > ‘0.
0

Then

(i) Nt is P-nonexplosive, that is rn t « a.s.[P];
ft(ii) Mç — N^- - J As ds is an 7j.-loc,al martingale;

(iii) if Zt is an 7t-predictable process such that

co

e[ J |ZS|AS ds J < », t £ 0,0
then

t

J Zs dMs is an 7^-martingale ; and
0

(iv) if Zt is an 7t-predictable process such that
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t

J |ZS|AS ds < *. « * « • lp J » t- ^ U,
0

then

t

J Zs dMs an 7^-local luartingule.
0

For proof of Theorem 3.1, see liremaud (1981). In particular, under the

assumption E(Nt) < «>,

t

* J As ds

is a zero-mean 7^-martingale. Further more, if is an 7c-predictable

process such that

/ rT \E \ J0 Zt2 *t dt / < » .

then

U “ Â. zs <Ms , t £ 0

is a zero-mean square intégrable 7t-martingale satisfying the following

properties.

Theorem 3.2.

(i) E(It) - 0, equivalently, e{ f^Zs dNs } - e{ f Zs As ds }.
(ii) E(lt|7s) - ls , 0 < s < t.

(iii) E(It2 ) - e{ f Zs As ds }.
o

, rü
(iv) Define Jt - J Ws dMs where Wt is 7t-predictable such that

e{ J0W/ As ds } < ®. Then E[ltJt] - e[J* Zs Ws As ds] .

P(|Itl + p(L Zs2 ds > f,} for every e > 0 and ij > 0.£ 0
(v)
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For proof of Theorein 3.2, sue Liptccr and Sii'yayev (1978). A central limi

thcorem will be used later in this paper for obtaining asymptotic

properties of estimators. We now State this resuit. For proof, see

Kutoyants (1984).

Théorem 3.3. Let [Nt,t>0) be a point process ,with stochastic intensity

CAt,t£0) as defined abovu. Let Zj - \Zj(t),7t,te[0,T]} be 7t-predictable

and

H - f ZT(t) dMtl T 0
'0 i

where

Suppose that

and, for every c > 0,

J0 e[zt(s) x({lZx(s)I > c}) As] ds —> 0 as T -* «o

where X(A) dénotés the indicator function of set A. Then

4. Properties of estimators

Since

(4.0)

it follows that
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(4 .1) e[Ît{x)] - J e{ J* ST(x-Xs) dNs } .

Assume that

(Al) e{ Jl 6f(x-Xs) Asds } < • .

Note that

(A2) E(NT) - e(Jq As ds) <

by assumption. In view of (Al) and (A2), an application of Cauchy-

Schwarz inequality implies that

(4.2) e{ Jq |6T(x-Xs)| As ds } < ®.

Let

(4.3) f$(x) “ | /J «t(x-Xs)As ds.
Note that

(4.4) E[fT(x)] - E[f|(x)]
by Theorem 3.2. Further more

(4.5) E[fT(x)] - E [fj(x)]
1 rT

- I J0 e[st(x-Xs)As] ds.
Let

(4.6) JT(x) - fT(x) - f$(x) - £ JT *T(x-Xs) dMs

Note that

(4.7) e[jt(x)] - 0,
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(A.8) e[jt(x)]2 - £ E[ So 6TCx-Xs) dMs] 3
"

Ta E{ 4 6T (x*Xs>As d}
“

fa J0 E[6T <x*Xs)As]ds
by Theorcra 3.2. Further tuore for any c > 0 and r/ > 0,

(4»-9> p(IJTI > c) “ || /T «T(x-Xs)dMs| > c)

72 + P{ — 6j (x-Xs)As ds > n }
by Thcorem 3.2. For any fixed x, let

ru
Lt.x^) ” J0 fiT(x-Xs)dMs, 0^u<T.

Then CLjx(u)t 7U, 0<u<T) is a zero-mean square-intégrable martingale and

hence

(4.10) e[ sup Lj x(u)] ^ A E l| X(T).

Further more

(4.11) e[lt>x(u)] - 0,

(4.12) Var[LT>x(u)] - e[J“ «T(x-Xs)Asds] ,

and

(4.13) Cov(LtiX(u), Lt.^u)) - E^ iT(x-Xs)*T(y-Xs)Asds]
As a conséquence of the last resuit, we hâve

(4.14) Cov(jT(x) ,JT(y)) - ^T(x-xs)5T(y-Xs)Asdsl

Proposition 4.1. If
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^2 J" ÆjÉX-Xjj) Ajjds 0 OS T ■* «W,

(4.16) fT(x) - f^(x) ^ > 0 os T -* «*.

Proof. This resuit follows from (4.9).

Proposition 4,2. If

(4.17) -^2 / E^6j(x-Xs)Asjds r* 0 as T •* »,

then

(4.18) iT(x) - fj(x) iJÎ> 0 as T •* «.

Proof. This resuit is an application of (4.8),

Proposition 4.3. Suppose there exists uj > 0 such that

»/2 T
(4.19) T?- JQ ^t(x"^s^s ^s ^ > °7 > 0 as T -* «°

and, for every c > 0,

i/2 T
(4.20) Jq e[6t(x-Xs)As *{|*T(x-Xs)| > c Tu^1} ] ds —> 0

as T -*«*>.

Then

(4.21) i/j (fj(x) -fj(x)] ——> A'(0,a2) as T -* ®.

Proof. Note that

(A.22) »/T(fT(x)-fx(x)]
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*t rT
"

Y J0 6T(^-Xs)dMs
T

"

J0 Zj(s)dMs
where

(A.23) ZT(s) - y «t(x-Xs). OsssT.

In view of conditions (4.19) and (4.20), it follows that

T v

J ZT(s)dMs —> N(0,o2)

as T -* ® by Theorein 3.3.

5. CAc) is non-random

Suppose the intensity process CAS3 is non-random function.

Note that

(5.1) E[fT(x)j - | f e[«t(x-Xs)]as ds

- e[jt(x-X0)] i J* is ds

by stationarity of the process X. In view of Lemma 2.1, the following

proposition can be proved.

Proposition 5.1. If the density f is continuous at x, then

(5.2) E[6t(x-X0)J —> f(x) as T - ».

Proposition 5.2. f*p(x) is an asyiuptutically unbiased estimator of

f(x) at continuity points x of f if and only if
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(5.3)
1 rT
— J Ac ds > 1 os T •*<*>.T J0

Proof. Follows from (5.1) and (5.2).

Proposition 5.3. Suppose the following conditions hold

(5.4) lim ij; F As ds < ®
T-*» T 0

and

(5.5)
r® 2

Qt - J ^t(x) dx < œ-
- CO

If f is continuous at x and at T*1 ■» 0 as T •* «, then

(5.6) fj(x) - ff(x) ^ ’ m> 0 as T •* ®,

Proof. Observe that, forra (4.8), we hâve

(5.7) E[fT(x)-fj(x)]2
“ £ fQ E[fiJ(x-Xs)As] ds
- ~ e[^(x-X0)] | As ds

by stationarity. Note that

(5.8) e[5t(x-x0)] - f 4<x-y) f(y) dy
-0°

- aT J «T(x-y) f(y) dy
-00

where

(5.9) 6x(x) “ QT ^x(x)•

Lemmas 2.1 and 2.2 and relation (5.8) imply that
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(5.10) oj1 e[6x(x-X0)J > £(x) as T -» «

at contlnulty point x of f. It ls clear that

(5.11) E[fT(x)-f$(x)]2 - y aT e[«T<x**o>] ï ds

and (5.6) follows frora (5.4), (5.10) and the fact that

c*t
— > 0 as T -* ».

Proposition 5.4. If

(5.12) J* As ds > A as T •*

and

(5.13) QT “ J dx <
- GO

then

(5.14) T Qx‘ E[fT(x)-fx(x)]2 > A f(x) as T -* »

at ail continuity points x of f.

Proof. This resuit follows from (5.11) and the relations (5.10) and

(5.12).

Remarks 5.1. In view of Propositions 5.3 and 5.4, asyinptotic bchaviour

of the estiinators fx(x) and fx(x) are the same if aj/T ■* 0 as T -* ».

Note that

JT(x) - fT(x) - f$(x) - fT(x) - E(fT(x)) + E(f$(x)) - fx(x)

by (4.7) and hence asyinptotic behaviour of the statistic
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rï(x> » îT(x) - E(fj(x>)
is the saine as that o£

UC*) - f}(x) • E(f$(x))

under the conditions of Propostion 5.3. Observe that

Cov(»?T(x) ,ijT(y)) - e[ijt(x) ,»?T(y)]
-

f2 E[ JQ {«T(x-Xs)-E *T(x-Xs)}{6T(y-Xt)-E iT(y-Xt)} As At ds dt]
"

fi Jq Jq {E[fiT(x-Xs)«T(y-Xt)] - E[iT(x-Xs>]EJ^6T(y-Xt)j/ As At ds dt
“

f2 IQ IQ E[«T(x-Xs)6T(y*Xt)] As At ds dt
- e[«t(x-Xo)] E[iT(y*X0)] Jq Jq As At d* dc

by stationarity of the process X. Ail the above equalities can be

justified under assumptions (A^) and (A2) by Cauchy-Schwarz inequality
and Fubini's Theorem. Let fs c(-,-) denpte the joint density of (Xs,Xt)

and f(*) is the density of XQ. Hence

(5.15) Cov(»jT(x) ,r;T(y))

rT rT 11 rA J r“ r00 , ,

0 0 1 » « 5TU-u)«T(y-v) fs, t(u,v)dudvj As At ds dt
lr*0 .00 TT

‘

^2 J 6x(x*u)f(u)du J «T(y-v)f(v)dv J J As At ds dt

X r°° r°°
"

t2 J - J_ ^t(x'u) fiT(y*v)- OO GO
f I {f',,t<û.v)-f<u)f<v)J xs xt di* dt

o o
du dv

-J f 6 j(ît-u) £T(y-v) ët(u, v) du dv
.00 -oo

where

(5 16) gT(u,v) - ^ J* J* [fs,t(u.v)-f(u)f(v)] As At ds dt .
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Proposition 5.5. Suppose gj(u,v) is as defined by (5.16) and thcre

exists > 0 such that

(5.17) "* as T ** « uniformly in u,v and g(*,-) ls

bounded.

Then

(5.18) Cov(ijt(x) ,»>T(y)) > g(x.y) as T -* «

at ail continulty points (x,y) of g(•,•)•

Proof. Note that, under the condition (5.17),

(5.19) p\ Cov(»;x(x) “J / 6x(x-u) $x(y*v) [g(u,v) + o(l)l du dv

r® r®
- J J 6j(x-u) 6T(y-v)g(u,v) du dv + o(l)

• co -co

as T •* • since the convergence in (5.17) is uniform in u,v and the class

*-s a of delta-type. Hence, as T -* «°,

(5.20) p\ Cov(»7T(x) ,»jx(y)) - g(x,y) + o(l)

at ail continulty points of g(*,*) by Lemma 2.3.

Proposition 5.6. Suppose that

2

(5.21) h(u) - lira JT /T ffs t(u,u)-f(u)f(u)l Xs At ds dtT-*œ A 0 0 L ' J

exists for every u and the limit is uniform in u. Further suppose that

h(*) is bounded. Then(5.22), Pt Var(»}x(x)). > h(x) as T -* ®

at ail continulty points of h(’).
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Proof. This resuit follows by arguments similar to chose

proving Proposition 5.5.

given in

Theorem 5.7. Suppose that (5.21) holds and

(5.23) | fT Afi ds —> 1 as T -* ®.T ■'o

Then

(5.24) E[ff(x)] > f(x) as T -» «

and

(5.25) Var(FT(x)j > h(x) as T -* «

at ail x which are continuity points of both h and f.

Proof. This theorem follows from Propositions 5.6 and 5.2 since

E[fT(x)] - E[f}(x)] .

Remarks 5.2. Note that

f|(x) - f L «T(x*xs> Vds

and

/îT(f$(x)-Ef$(x)) - y Jq [«t(x-Xs)-e(6t(x-Xs))] As,ds.
One car» give sufficient conditions for asymptotic normality of the family

of randoin variables defined above as T •* ®. For instance, this was done

for stationary Markov processes X when As “ 1 in Praka^a Rao (1979a).

Castellana and Leadbet’ter (1986) studied the case when As ■ 1 and X is a

stationary process satisfying a mixing type of condition. We.will. not

I
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discuss these results hcre. Our interest is to study the asyinptotic
A

.

behaviour of f^(x) wheri coinpared to that of ff(x).

Theotem 5.8. Suppose conditions (5.4) and (5.5) hold. ,Then, for every

c > 0, es T •* »,

(5.26) P^T|fî(x)-fT(x)| > t) - 0(c'‘ax'2 T*1/2 /3T) .

Proof. Observe that, for any c > 0 and q > 0,

(5.27) p(0T|fT(x)-f$(x).| > c)

- p(|/T «T(x"xs) dMsl > c t)
O

T

P(|J0 «t(*-XsUs ds| > ,)
(by Théo rein 3.2)

S îî + i E^o ‘T(X'Xs)is ds/
- $ î? +• ; e(4<x-X„)) ds

(by stationarity of X)

Under the conditions (5.4) and (5.5), the second term on the right side of

(5.27) is of the order

f aT f(x) T
»?

and hence

(5.28) p(/?T|fT(x).-f$(x)| > c) - 0$. fl + ^ ûT T)
1/2 3/2 *1for every e > 0 and q > 0. Choosing q — c aj T fij , we hâve
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(5.29) p(/)T|fT(x)-f$(x)| > c) - 0 (c *1 aj2 T*l/2 0T) .

Corollary 5.9. Suppose that the conditions (5.4) and (5.5) hold and 0j > 0

is such that

(5.30) c*x/2 T'1/2 —> 0 as T -* «.

Then

(5.31) ^T(fT(x)-fj(x)) -2-> 0 as T -» «.

at ail continuity points x of f.

Proof. This resuit follows frora Theorem 5.8.

As, a conséquence of Corollary 5.9 and Proposition 5.6, we hâve the

following theorem. Note that E(fx(x)) - E(fx(x)].

Theorem 5.10. Suppose the conditions (5.4), (5.5) and (5.38) hold.

Further suppose that

(5.32) 0T(fx(x)-E(fx(x))) —> N(o ,h(x) ) as T •*<*>.

Then

(5.33) /9x(fx(x)"^^T(x))] N(o,h(x)) as T ■» «,

Remarks 5.3. Observe that h(x) is glven by (5.21) under some conditions

as stated earlier. Further, for the validity of the results in this

section, we do not need the fact that (Xç,t2:0} is a stationary process but.

that the finite-dimensional marginal densities of (Xt-} exist and the one-

dimensional marginal density of Xt is the same for every t > 0.
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6. [Xc3 is a rondoin process Indépendant of (X> 3

Suppose the intensity process (As,s^03 is random but independent ol

(Xs,sâ:03. Note the As is 7s-ineasurable for every s £ 0. Further more

(6.1) e[Ît<x)] - | Jo e[«t(x-Xs)*s] ds
- e[«t(x-X0)] | /J E(AS) ds

by independence of (As3 and [Xç3 and by stationarity of X process.

Proposition 6,1. f-p(x) is an asymptotically unbiased estimator of f(x)

at continuity points x of f if and only if

(6.2) ^ / E(AS) ds > 1 as T -* ®.T o

Proof. This resuit follows from (6.1) and Proposition 5.1

Proposition 6.2. Suppose the following conditions hold:

(6.4) lin», l f E(As)ds < ® ;
T-*» T 0

and

(6.5)
-°0 2

at ” J 6t(x)dx < « .
- 00

If f is continuous at x and aj T”1 -* 0 as T -* », then

(6.6) fl>(x) - f$(x) 0 as T -» ®.

Proof. Note that, from (4.8), we hâve

(6.7) E[fT(x)-f$(x)]2
"* Jq e[st(x-Xs)As] ds
- | E[fif(x-X0)] | J* E(As)ds
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by indepcndence of (Xt) and (As) and by stationarity of (Xt,t£0). The
rest of the proof is similar to that of Proposition 5.3 (by replacing Ab

by E(AS)). We omit the details.

Probosition 6.3. If

(6.8) l f E(A-)ds > A as T ■* «I 0

and

(6.9) at - J 6ç(x)dx < ® •
• CO

then

(6.10) T oj1 E[fT(x)-fx(x)]2 > A f(x) as T •* ®

at ail continu!ty points x of f.

Proof. Similar to that of Proposition 5.A.

Remarks 6.1. Let

(6.11) rT(x) - fT(x) - E(fT(x)) ,

and

(6.12) »7T(x) - f$(x) - E(f$(x)) .

Since

(6.13) E(fT(x)) - E(fx(x)) .

it follows that

(6.1A) JT(x) - fT(x) - f$(x)
- fT(x) - f|x(x>

and the asymptotic behaviour of fj(x) and are the same under the

conditions (6.A) and (6.5). Observe that
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(6.15) Cov(f;T(x) ,rjT(y)) - E(r/j(x)r>x(y))

(

-

fi E[Jq {fiT(^-Xs)As - E{{T(x-Xs)As)}ds J* {{T(y-Xt)At - E^y-Xt)At/dii dlJ
,

-

fi IQ Jq {E[«T(x-Xs)6T(y-Xt)AsAt] - E[*T(x-Xs)As]E[«T(y-Xt)At]}ds dt
(

“

^2 /q J0 {e££x(x'Xs)6x(y“xt)J e[*s*J * E [^t(x"^s)] e [^T^yEl ) El) fa dl

“ ^2 Jq Jq {E[6T(x-Xs)6T(y-Xt)] * e[«T(x-Xs)] E[iT(y-Xt)]} E[AsAt]ds dt <

+
^,2 /• / E ^6x(x*Xs^]E[^T^yj {E[^s^t] * E[ As]E[ At J/ds dt

“

fa JQ JQ {E[6T(x'Xs)6T(y-Xt)] - e[$t(x*xs>] E[«x(y-Xt)J} E^ASA tjds dt

+ E[sT(x-X0)]E[6T(y-X0)] ^ jf «|âi Cov(As,At)ds dt

- À f J” 6T(x-u)6T(y-v)[ f JT {fs,t(u«v>*f<u)f<v>} E[AsAt]ds dt] du dv-CO -00 L 0 0

T T
+ e[«t(x-X0)] E[5T(y-X0)J £ fo f0 Cov(as , At)ds dt

r® r® -
.

“J J ^T(x-u)6x(y*v)gx(uiV) du dv

T x
+ e[6t(x-X0)] E[fiT(y*Xo)] fï f0 f0 Cov(As,At)ds dt

where

(6.16) |T(u.v) - p /J Jq [fs t(u,v)-f(u)f(v)] s[lsXt]ds dt.

a

p

p

t|

p]

(<

e>

h<

(6

Th

(6

at

Pn
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Proposition 6.4. Suppose gj(u,v) is as deflned by (6.16) and there

exists pj > 0 such that

(6.17) p\ gi-(u,v) > g(u,v) as T •* « uniformly 1° u»v an<* 6(’.')

ls bounded; and

2û* T T
(6.18) J / Cov(As,At)ds dt > /3 as T •* *•

Then

(6.19) fi\ Cov(»jt(x) ,»7T(y)) > g(x,y) + P f(x)f^y^ as T

at ail continuity points (x,y) of g(*,*) wherç x an£* ^ are cph^-inuity

points of f.

Proof. This resuit follows from (6.15), (6.16) by arguments similar to

those given in proving Proposition 5.5.

Proposition 6.5. Suppose that

(6.20) h(u) - lira ~ / f [fs t(u,u)-f(u)f(u)] E[AsAt] ds dtT->® T00L’

exists for every u and the lirait is uniform in u. Further suppose that

h(') is bounded and

T X
(6.21) J^Cov(as, At] ds dt > p as T "•

Then

(6.22) p\ Var[»;i>(x)) > h(x) + p fa(x) as T •* ®°

at ail x which are continuity points of h and f.

Proof. This resuit follows frora Proposition 6.4.



Proposition 6.6. Suppose tlie following conditions hold

(6.23) lin | J
T-*» T jq

~ f E(As)ds < •

and

-00

Let x be a contlnuity point of f. Then, for every c > 0,

(6.25) p[0T|f$(x)-fT(x)| > c) - o(c"1 aj'2 T'l/2 fif) as T -* ».

Proof. Siniilar to that of Theorem 5.8.

Proposition 6.7. Suppose that the conditions (6.23) and (6.24) hold and

(6.26) aff7 T ,7 (if > 0 as T *♦ ».

Then

(6.27) (if (fj(x) -fj(x)) ^ > 0 as T -* »

at ail continuity points x of f.

Proof. This resuit follows from Proposition 6.6.

Theorem 6.8. Suppose the condition (6.23), (6.24) and (6.26) hold.

Further suppose that

Pf*E(fx(x)) > N(0,h(x)) as T •* ».

Then

(if (^t(x) - E ( fT (x) 3 > N(0,h(x)) as T -* ».

Proof. This resuit follows from Proposition 6.7 since E(fT(x)) - E(ff(x)).
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Romarks 6,2. Note that

h(x) - h(x) + P f2(x)

under soiue conditions where h(‘) and P are defined by (6.20) and (6.21).

If Cov(As,At) - 0 for ail s f* t, then P - 0 from (6.21) and h(x) - h(x).

In fact

T T r t

h(x) - lira f f [gs,t(x.x) - f(x)f(x)J E(As)E(At)ds dt .
T-*«o * 0 0 L J

The expression on the right side of the above équation, is the saine as the

asymptotic variance of the estimator ff(x) obtained from sarapling at

randoin times with nonrandom intensity process {e(At) , t2:0/. This can be

seen from (5.21). Observe that, if p < 0 then h(x) < h(x) and if p > 0

then h(x) > h(x).

7. [Ag] is a randora process asyraptotically uncorrelated with [Xr3

Suppose the intensity process (As,s£0) is asyraptotically

uncorrelated with the process (Xs,s>0) in the sense that for every delta-

family ££t(x),t^0).

(7.1) suP|e[5t(x-Xs)As] - e[*t(x-Xs)] E[a.]| > 0 as T - ».

Note that

(7.2) E[fT(x)] - | JT e[«t(x-Xs)As] ds

“

t i"0 E[4t(x*xs>] E[As] ds + | /_ ^T<s> ds
where

(7.3) |V*t(x)| S 7t > 0 as T -* «.

Hence
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(7.A) E[fT(x)] - | J* e[«t(x-Xb)] e[as] ds + o(l)

- E[fiT(x-X0)] | J* e[as] ds + o(l)

by stationarity of the process X.

Proposition 7.1. fx(x) is asymptotically unbiased estiraator of f(x) at

continuity points x of f if and only if

(7.5) f E(AS) ds > 1 as T -» ».
T Jo

Proof. This resuit follows frorn Proposition 5.1 and (7.4).

Proposition 7.2. Suppose the following conditions hold

(7.6) lim l JT E(As)ds < « ;
X-*® T 0

and

(7.7)
r® 2

“t “ J $t(x)dx < ® •
-GO

If f is continuons at x and qj T'1 ■* 0 as T -* then

(7.8) fT(x) - ff(x) 0 as T ■* «.

Proof. Note that

«$(X) - -f . T èï 0*

Q'p

is a delta-faraily under (7.7). Hence

sup | E^x(x-Xs)As] - e[«x(x-Xs)] E[As]| > 0 as I ■* «

Furthermore

E[fT(x)-ff(x)]2
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1
“

T2 f0 e[6t(x*Xs)As] ds

ÛJ rT r * . i1
"

T2 h E[6Î(x-Xs)Asj | ds
ÛT rT 1 . a. .

.1
“

T2 4 El«T(x-Xs)J E(As
QT i»T

where |Cs) I ^ 7T and 7j 0 as T •* ®. Hence

E[fT(x)-f$(x)]a - y {E[{î(x-X0)] | J* E(As)ds) + £ f V’T(s)ds) §

Under the conditions (7.6) and (7.7), it follows by arguments

similar to thosc given in proving Proposition 7.1, that

r.T ï 1 ,T
lim

Hence

e[<$(x-Xc)]{ | fQ E(As)ds} + | Jo tf(s)ds

E[fT(x)-fx(x)J3 > 0 as T

<

a-p
Y > 0 as T •+ <*> and f is continuous at x.

Remarks 7.1. Under the conditions (6.8) and (6.9), if f is continuous at

x, then

(7.9) e[It(x) -fx(x)]2 > A f(x) as T -» «.

This can be seen by arguments similar to those given in proving Proposition

5.4.

Remark 7.2. For obtaining analogues of Propositions 6.4 to 6.7 we need a

stronger condition than that given by (7.1). We will not discuss details

here.
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8. General [Afl

ln the general caseof intensity process CA13, no spécifie résulta can

be obtolncd. However, we can stlll obtaln information on the différence

between the estimator fj(x) obtained from the sampled data and the

estimator fj(x) as defined by (A.O) and (A.3). Let

JT(X) - fT(x) - f$(x) - | «T(x-Xs)dMs

be as defined in (A.6). The following proposition is a restatement of

results in Section A.

Proposition 8.1.«-

(i) e[jt(x)] - 0.

(ii) e[jt(x)]2 - ^ J* e[6t(x-Xs)As] ds .

(iii) For any c > 0 and tj > 0,

P(|JT(X)|>C) S fi + p{ ^ «T<x-Xs)As ds > t,} .

(iv) Suppose there exists j/j > 0 such that (A.19) and (A.20) hold.

Then

iz-j J^(x) ———> N(0,o2) as T -» •*>.

Remarks 8.1. Suppose py ^ (•,’•) is the joint density of (XS,AS) assuming
that it exists. Assume that the conditional densities in the following

computation are well-defined. Note that

e[*t<*-xs)aJ
“JJ *t(x-u) v px .a,(u»v) du dv

-CO -CO •

(8.1)
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-n c éï(x-u) v px IA (ulv) du) v PA.(v)dv .
-«o Q * ' • •

Frora the propcrty of delta-familles, it follows that

r“
(8.2) J fx(x*u)PX# | A, (ulv)du > PX.|A.Cx|v> as T -♦ «

at ail continuity points x of py |A.(*IV) by Lemma 2.1.

(A3) Suppose the limit exists in (8.2) for every x and is uniform in v.

Then

(8.3) e[*t(x-Xs)As] - J* [px.|A.(xlv) + o(1)] v PA,(v) dv

- PX..A,(x,v>v dv + \/0 v PA.(v)dv} o(l)
“ -C PX.(x) PX.|A.<v|x)v dv + 0(1)

- Px.(x) e(as|Xs-x) + o(l) .

Hence

(8.4) E[fT(x)] “ | Jq E[fiT(x-Xs)] ds
“ ? /T (pX (x) E(As|Xs-x] + o(l)} ds

- PX (x) { l JT E[As|Xs-x]} + o(l)O * 0

provided

(A^) sup E(AS) <®.
s

Proposition 8.2. Under the conditions (A3) and (A4)• fj^x) is an

asymptotically unbiased estimator of f(x) where x is a cotinulty point of

PX..A (*lv) for every v if and only if

f J E[As|Xs-x]ds > 1 as T - ».(8.6)
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We vlll not discuss other propertles of fj(x) under tho general

set up givcn here.

9. Remnrks

Rciimrks9.1 . Suppose (XjO ls a statlonary proccss such that, for any x,

(9.1) Cov[4T(x-Xs),6T(x-Xt)] - rT(|t-s|,x)

- rT(o,x) + ^(o,x) | t-s|°

+ 7T(X»Ic*sl>

where 0 < a ^ 2. Further suppose that (As) ls non*random as in Setion 9.

Thon, for tjx(x) - fx(x) “ E fx(*)t we

,T ,T
(9.2) Var [*j*rCx>] - fï f fQ Cov(6T(x-Xs) ,6x(x'xt)) AsAt ds dt

-

jfï S J. rT(x)|t-sJ)AsAt ds dt

X2 /q /q (rT(°.x) + *r(o,x)|t-s|° + 7X(X.IC*SI)} AsAt ds dc
1 T T

“ rT(°>x) Ÿ? JQ JQ As At ds dt
^r(°.x> rT rT Q

+
J2 Jq Jq I ~s I ASAt ds dt

+ ^ JQ J0 7x(x.|t-s|)AsAc ds dt.
If As ■ 1 (Poisson Sampling of the process)

(9.3) Var [»jx(x)] - rT(o,x) + V>j(o,x) ^ JQ /Q lt_sl
+ JT F 7X^x*It*s|)ds

ds dt

dt

Q-f 2
1 T

- rT(o,x) + Vt(°.x> fï 2 (q+1)(a+2)
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+ ^2 J0 fQ 7T<*.|t-s|)ds dt
T°

- rT(o,x> + 2 *i(o.x) (a+1)(o+2)

+
T* fe ^0 7T(X.|t-s|)ds dt.

Note that

(9.A) rT(o,x) - e[5t(x-Xd>] - {e[iT(x-X0)]}2 - aT f(x)

as T •* ». Relations (9.3) and (9.A) show that(9.5)qj1 Var[ijT(x)] « f(x)

provided

(9.6) Q-p Vt(o.x)Ta —> 0 as T *♦ «

and

. 1

(9.7) J* J* 7j(x, | t-s | )ds dt > 0 as T -* «.

Remarks 9.2. One can specialize the results obtained in Sections 3 to 8 for

kernel type estimators by choosing

Mx> Z htlR(htlx)
where K(-) is a bounded probability density such that t K(t) -» 0 as t ®,

ht > 0, ht t* 0 as t -* ®. We will not discuss this case here.
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