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Abstract

This paper deals with a probabilistic learning inference that allows for integrating data (target set) into predictive
models for which the target set is constituted of statistical moments of the quantity of interest (QoI) and for which the
training set is constituted of a small number of points. In a first part, we present a mathematical analysis of a general
methodology that allows for estimating a posterior probability model for a stochastic boundary value problem from
a prior probability model of a control parameter. The given targets are statistical moments of the QoI for which the
underlying realizations are not available. Under these conditions, the Kullback-Leibler minimum principle is used for
estimating the posterior probability measure. The constraints are represented by an implicit nonlinear mapping for
which a statistical surrogate model is introduced. The MCMC generator and the necessary numerical elements are
given to facilitate the implementation of the methodology. In a second part, an application is presented to illustrate
the proposed theory and is also, as such, a contribution to the three-dimensional stochastic homogenization of het-
erogeneous linear elastic media in the case of a non-separation of the microscale and macroscale. Consequently, the
macroscale is another mesoscale at larger scale with random effective/apparent elastic properties. For the construction
of the posterior probability measure by using the probabilistic learning inference, in addition to the constraints defined
by given statistical moments of the random effective/apparent elasticity tensor, the second-order moment of the ran-
dom normalized residue of the stochastic partial differential equation has been added as a constraint. This constraint
guarantees that the algorithm seeks to bring the statistical moments closer to their targets while preserving a small
residue.

Keywords: Probabilistic learning, statistical inverse problem, Kullback-Leibler divergence, implicit constraints,
stochastic homogenization, uncertainty quantification

1. Introduction

(i) Objective of the paper. This paper deals with a very important question related to probabilistic learning algo-
rithms that allow for integrating data (target set) into predictive models for which the training set is constituted of a
small number of points and for which the target set is made up of statistical moments of some quantities of interest
(QoI). The considered constraints are thus implicit. It is assumed that these statistical moments such as mean values,
second-order moments, have been estimated with realizations (samples) that are no longer available. This situation
occurs quite frequently when the data (the realizations/samples) have been lost, or deteriorated, or not commented on,
or no longer exist, or are not accessible, but for which the values of some statistical moments have been published or
are given in technical reports. As the experimental measurements remain very expensive, and many have been done in
the past decades in many fields of physics and engineering sciences, it is very interesting to integrate into the models
these experiments to which we know only statistical moments. Additional physics-based constraints can simultane-
ously considered. This is the case if we want the learning process to be also controlled by the model, that is to say,
that the learned probability measure minimizes, for instance, the mean-square norm of the random normalized residue
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of the stochastic partial differential equation of the boundary value problem (BVP); this type of constraint is thus
also implicit. We therefore consider a model driven by a stochastic BVP for which there are a vector-valued control
parameter and a vector-valued quantity of interest (QoI) that is defined by a given transformation of the solution of the
stochastic BVP. The graph of the functional dependence between the control parameter and the QoI defines a man-
ifold that is not explicitly described. We consider the statistical inverse problem consisting in identifying the control
parameter by giving the target set related to the QoI. A prior probabilistic model of the control parameter is intro-
duced, which induces a random QoI. A training set, constituted of independent realizations belonging to the manifold,
is constructed by solving the BVP. The framework of the developments presented is that for which the probabilistic
learning inference is made using a computational model of which a single evaluation is assumed very high. Thus it
is assumed that the training set consists of a small number of points as opposed to big data. The prior probability
measure on the manifold is estimated with the points of the training set. The probabilistic learning inference consists
in estimating the posterior probability model on the manifold, which is closest to the prior probability measure while
satisfying the constraints defined by an implicit function hc for which an algebraic representation is not available.

(ii) Ways for addressing the integration of data into the predictive models and methodology proposed in the paper.
The literature related to the field treated is so vast that it would not be reasonable to attempt a review of the state of the
art. We will therefore limit ourselves to mentioning the main statistical methods, which make it possible to integrate
data into the predictive models in order to allow the positioning of the method that is proposed in this paper.

(ii-1) The Bayesian method provides a rational and efficient framework for integrating data into the predictive
models. This statistical tool allows for estimating the posterior probability measure of the control parameter giving
its prior probability measure and a target set of realizations for the QoI. Consequently, the Bayesian inference is
certainly one of the most popular statistical tools to solve the statistical inverse problems in the context of parametric
or nonparametric statistics (see, for instance, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] for general aspects, [12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22] for specific aspects related to statistical inverse problems, [23, 24] for variational Bayesian methods,
[25] for Bayesian sequential inference, [26] for Bayesian inference for changepoint problems or [27] for Bayesian
numerical homogenization). Bayesian inferences have also been considered in the framework of machine learning
[28, 29] and probabilistic learning for small data sets and in high dimension [11]. Bayesian inference is therefore a
powerful statistical tool for integrating raw data but requires that targets be given in the form of realizations, which
is not the hypothesis introduced in this paper. Note also that Bayesian inference can remains tricky to use [30], in
particular for the high dimension.

The maximum-likelihood method (see [4, 5, 3]) is also used for estimating the hyperparameters of probability
measure from a target set of realizations (see also [31, 32, 33, 34, 35] for improvements of the basis methodology).
This statistical tool also allows for solving statistical inverse problem in high dimension for non-Gaussian random
field (see [36, 37]). Similarly to the Bayesian inference, the maximum-likelihood method is also a very effective
statistical method for estimating hyperparameters of probability measures, but requires that targets be given in the
form of realizations.

All the parameterized functional representations of random quantities in finite or in infinite dimension, such as the
spectral approaches, allow for integrating data into predictive models by using the Bayesian inference, the maximum
likelihood, or the least-square approach for identifying the parameters of the representations. In this context, it should
be noted that a general parameterized representation of non-Gaussian second-order random quantities (vector-valued
random variables, stochastic processes, and random fields) is given by the polynomial chaos expansions (see [38, 39,
40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52]).

(ii-2) In Artificial Intelligence (see [53] for a remarkable synthesis of this field), Machine learning has taken a
considerable place in all fields of sciences and engineering and today provides an essential and very effective tool
for many applications. This tool is mainly based on the use of Artificial Neural Networks (ANNs), which allow
building an algebraic representation from data for both unsupervised and supervised cases. By construction, this
method makes it possible to integrate data. In this context, physics-informed machine learning has seen a growing
interest in recent years. Numerous works have been carried out in computational science and engineering [54], for
instance in the field of computational fluid dynamics [55, 56, 57, 58], for projection-based model reduction [59],
for hierarchical materials and their performance using multiresolution analysis and clustering discretization [60, 61].
Likewise, physics-informed machine learning has also been used in the context of linear [62], quasilinear [63], and
nonlinear partial differential equations [64, 65, 66]. It should be noted that the use of ANNs requires the availability
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of big data in order to be able to identify the network parameters by learning algorithms such as the deep learning
[67] and therefore, to obtain a predictive ANN. As we have previously explained, for the probabilistic learning that is
presented in this paper, it is assumed that the training set is made up of a small number of points and consequently,
these types of approaches are, in general, not available.

The statistical and probabilistic learning approaches deals with the problem of inferring a function based on
data. In particular for supervised learning, it consists in training from a set of data consisting of input-output pairs.
These methods have also been extensively developed (see for instance, [68, 69, 70, 71, 72, 73, 74, 75, 76, 77]) and
play an increasingly important role in computational physics and engineering science, in particular for problems
using large scale computational models. In this framework, statistical methods for supervised learning have been
developed in the form of surrogate models from which approximations of the expensive functions can be easily
evaluated [78, 79, 80, 81, 82, 83, 84, 85, 86]. The probabilistic learning is the framework of this paper as we have
explained in paragraph (i).

(ii-3) In the context of probabilistic learning and Information Theory, the Kullback-Leibler minimum principle
[87, 88, 89] is a method that allows for estimating the posterior probability measure on the manifold given its prior
probability measure and the constraints related to the statistical moments for which targets are given. This method
is the one that is used in the methodology presented in this paper. It should be noted that this principle has widely
been used in many fields (see for instance, [88, 90, 91, 92, 93]) in particular, for reinforcement learning [94] and for
probabilistic learning [95, 96]). The posterior probability measure is represented by an algebraic expression of the
prior probability measure and of a vector-valued Lagrange multiplier λ associated with the vector-valued function hc.
The optimal value λsol of the Lagrange multipliers is obtained as the limit of a sequence {λ i}i of Lagrange multipli-
ers allowing for constructing a sequence of probability measures whose limit, for λ = λsol is the searched posterior
probability measure. In this paper, we will call ”constrained learned set”, the set of realizations that results from the
learning process in taking into account the constraints. As the framework of the developments presented is that of the
high dimension with a small training set, for each value λ i of λ, the constrained learned set must be generated with a
MCMC algorithm. The MCMC generator is based on a nonlinear Itô stochastic differential equation (ISDE) associ-
ated with a nonlinear stochastic dissipative Hamiltonian dynamical system. The presence of a dissipative term makes
it possible to delete the transient part in order to quickly reach the stationary response associated with the invariant
measure. The evaluation of the drift vector of the ISDE requires to evaluate the gradient of function hc a large number
of times. In the framework of this work, there is not an available algebraic expression of this gradient. Furthermore, it
is not possible to do a direct numerical calculation of it, taking into account the high dimension (function hc is implicit
and for each evaluation of it, the BVP must be used). For instance, components of hc can be related to the norm of the
random normalized residue of the partial differential equation (including the boundary conditions) of the BVP and the
statistical moments of random observations. The construction of a surrogate model of implicit function hc by using a
deterministic approach, such as the meshless methods [97, 98, 99, 100, 101, 102], is not adapted taking into account a
possible high dimension of the space on which hc is defined. To circumvent this difficulty, we generalize the approach
proposed in [96], which consists in constructing a statistical surrogate model ĥN of hc, depending on the number N
of points generated in the constrained learned set, for which its gradient has an explicit algebraic representation.

(iii) Organization and novelties of the paper. First of all, let us point out that a similar problem has been tackled
in [95] devoted to take into account constraints in the PLoM (probabilistic learning on manifolds) method [103, 104,
105]. However, in [95], function hc is explicit. In this work, hc is implicit (that is to say the use of the BVP is required
for evaluating its value in any given point). The presented methodology is novel and general (note that PLoM is not
used, but could be implemented if necessary, but this would be prejudicial to the clarity of the developments). In
addition, a mathematical analysis of the methodology is presented. This analysis is necessary because, due to the use
of the statistical surrogate model ĥN of hc, the constrained learned realizations of the posterior probability measure
on the manifold are generated with the MCMC generator that is the limit of a sequence of MCMC generators, each
generator of the sequence depending on ĥN instead of hc. This means that convergence properties with respect to N
must be studied. The organization of the paper is the following.

In Section 2, we set the problem and summarize the methodology of the probabilistic learning inference that is
proposed. The used hypotheses are discussed in order to expose the difficulties involved by the choice of a general
framework for the developments: small number of points in the training set, targets defined by statistical moments of
the observations, implicit description of function hc and the necessity to construct a statistical surrogate model.
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Section 3 deals with the mathematical analysis of the proposed methodology. Lemma 1 proves the convexity of
the admissible set Cad,λ ⊂ Rnc of the Lagrange multipliers λ and the integrability properties related to the sequence
of posterior probability measures indexed by λ. Proposition 1 gives the construction of λsol as the unique solution of
a convex optimization problem posed in Cad,λ. After building the statistical surrogate model ĥN of hc (Definition 3),
Proposition 2 proves the convergence of the sequence {ĥN}N towards hc and of its gradient for λ fixed in Cad,λ. Propo-
sition 3 proves the existence and uniqueness of the invariant measure of the ISDE for each fixed value of λ and gives
the generator of the constrained learned set depending on λ. Proposition 4 proves the mean-square convergence, as N
goes to infinity, of the stationary stochastic solution of the ISDE calculated with ĥN towards the one calculated with
hc. After having given the construction of the iteration algorithm for calculating the sequence {λ i}i that converges to
λsol, Proposition 5 gives the rate of convergence of the sequence of posterior probability measures indexed by λ.

In Section 4, a few numerical elements are given for implementing the methodology. The Störmer-Verlet scheme
that allows for solving the ISDE is detailed and the explicit expression of the gradient of ĥN is given. We present the
algorithm for calculating λsol and for generating the constrained learned setDHc .

Section 5 is devoted to stochastic homogenization that has given rise to a large number of works (see for instance
[106, 107, 108, 109, 110, 111, 112, 113]) and for which the analysis of the representative volume element (RVE) size
has received a particular attention (see [114, 115, 116, 117, 118, 119, 120, 121, 122]). In the context of the stochastic
homogenization of the three-dimensional elastic microstructures of materials, the effective quantities are sought at the
macroscopic scale by making a spatial average over a representative volume element (RVE). The effective quantities
are those of the macroscopic scale when the dimensions of the RVE in the three directions are taken sufficiently large
so that the statistical fluctuations of the effective quantities are negligible compared to the statistical mean value. In
this paper, we present an application related to the stochastic homogenization of a random linear elastic medium at
mesoscale posed on the domain Ω ⊂ R3 of the microstructure, which is not a RVE, which means that there is no scale
separation between the mesoscale and the ”macroscale”. Since there is no scale separation, the ”macroscale” is in
fact another mesoscale at a larger scale than the initial mesoscale, which is described by random effective/apparent
quantities. Consequently, the effective/apparent elasticity tensor at macroscale is not deterministic and has statistical
fluctuations. This case is obtained when the spatial correlation lengths of the random apparent elasticity field at
mesoscale are not sufficiently small with respect to the size of domain Ω. For instance, such a situation is encountered
when the size of an experimental specimen, which is measured with the objective to perform an inverse identification
of its effective properties, is not sufficiently large compared to the size of the heterogeneities. It is then interesting to
identify the probabilistic model of the random apparent elasticity field, without having a scale separation. One can then
estimate the effective properties using the identified random apparent elasticity field with a stochastic computational
model for which domain Ω is an RVE, that is to say, has a size that is largest than the one of the specimen. In order to
analyze the scale separation, we will consider several values of the spatial correlation lengths to cover three cases:

SC1: partial separation (separated for two directions but not in the third one).
SC2: not separated in the three directions.
SC3: strongly separated in the three directions.

Notations
x, η: lower-case Latin or Greek letters are deterministic real variables.
x, η: boldface lower-case Latin or Greek letters are deterministic vectors.
X: upper-case Latin letters are real-valued random variables.
X: boldface upper-case Latin letters are vector-valued random variables.
[x]: lower-case Latin letters between brackets are deterministic matrices.
[X]: boldface upper-case letters between brackets are matrix-valued random variables.
Cad,λ: admissible set of λ ∈ Rnc .
C: fourth-order tensor-valued random field.
Dd: training set.
DHc : constrained learned set at convergence for λ = λsol.
DHλ i : constrained learned set for λ i.
N: number of points in the constrained learned set.
Nd: number of points in the training set.
N, R: set of all the integers {0, 1, 2, . . .}, set of all the real numbers.
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Rn: Euclidean vector space on R of dimension n.
Mn,m: set of all the (n × m) real matrices.
Mn: set of all the square (n × n) real matrices.
M+

n : set of all the positive-definite symmetric (n × n) real matrices.
[In]: identity matrix in Mn.
x = (x1, . . . , xn): point in Rn.
〈x, y〉 = x1y1 + . . . + xnyn: inner product in Rn.
‖ x ‖: norm in Rn such that ‖ x ‖= 〈x, x〉.
[x]T : transpose of matrix [x].
tr{[x]}: trace of the square matrix [x].
‖ [x] ‖F : Frobenius norm of matrix [x].
δkk′ : Kronecker’s symbol.
δx0 : Dirac measure at point x0.
a.s.: almost surely.
BVP: boundary value problem.
det: determinant.
dof: degree of freedom.
E: mathematical expectation operator.
err: error function.
ISDE: Itô stochastic differential equation.
KDE: kernel density estimation.
pdf: probability density function.
PDE: partial differential equation.

2. Setting the problem and summarizing the methodology

In this paper, all the random variables are defined on a probability space (Θ,T ,P) in which Θ is the sample set,
T is the σ-field of Θ, and where P is a probability measure on the measurable space (Θ,T ). A ”sample” X(θ), θ ∈ Θ

of a random variable X defined on (Θ,T ,P) will also be called a ”realization” of X.

2.1. Framework of the developments presented in the paper

For instance, we consider a stochastic elliptic BVP on an open bounded domain Ω ⊂ Rd with d ≥ 1, whose partial
differential equation (PDE) is written as N(Y,G,W) = 0 a.s. The unknown is the non-Gaussian vector-valued field
{Y(ξ), ξ ∈ Ω} defined on (Θ,T ,P) and which satisfies the boundary conditions. The coefficients of the stochastic
elliptic operator depend on a non-Gaussian second-order vector-valued random field G defined on (Θ,T ,P) and on a
random vector-valued control parameter W also defined on (Θ,T ,P). It is assumed that the weak formulation of this
stochastic BVP admits a unique strong stochastic solution Y = f (G,W), which is a second-order random field. The
observation (quantity of interest) is, for instance, a second-order vector-valued random variable Q = O(Y,G,W) in
which O is a given measurable mapping.

The problem under consideration belongs to the class of the statistical inverse problems. A prior probability
model of {G,W} is given and we are interested in estimating a posterior model {Gc,Wc} of {G,W} in order that some
statistical moments of the posterior observations Qc = O(Yc,Gc,Wc) with Yc = f (Gc,Wc), are equal to some given
targets (the superscript ”c” is introduced to designate the solution with the constraints, which corresponds to the
posterior model). The statistical moments of Qc are globally written as E{Mc(Qc)} = bc in which bc ∈ Rnc is the
target, q 7→ Mc(q) is a given measurable mapping, and E is the mathematical expectation operator. As explained
in Section 1, the realizations that have allowed bc to be estimated are not available. Only bc is known (it can be the
case when one or several components of bc have been estimated with experimental realizations that are not available).
However, as we will see in Section 5, a component of the vector of statistical moments can also be related to the
random normalized residue of the PDE of the stochastic boundary value problem.
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2.2. Hypotheses concerning the problem to be solved

(i) Small dimension Nd of the training set. The subscript ”d” is introduced to designate the quantities related to
the training set that is constructed by using the Monte Carlo numerical simulation method. Let {g1

d, . . . , gNd
d } and

{w1
d, . . . ,w

Nd
d } be Nd independent realizations of random variable {G,W}, generated by using the prior probability

model of {G,W}. Each realization of the BVP defined as the PDE N(y j
d, g j

d,w
j
d) = 0 with its boundary conditions, is

solved. Consequently, Nd independent realizations {y j
d, j = 1, . . . ,Nd} of random field Y are computed and are such

that y j
d = f (g j

d,w
j
d). The Nd independent realizations {q j

d, j = 1, . . . ,Nd} of random observation Q are thus deduced
such that q j

d = O(y j
d, g j

d,w
j
d). The training set is then made up of a small number Nd of points x j

d = {y j
d, g j

d,w
j
d} for

j = 1, . . . ,Nd, which are Nd independent realizations of X = {Y,G,W}. Note that a strong hypothesis in the present
work is that the BVP can only be solved a small number of times. This means that the training set is a small data set
(as opposed to a big data set). Consequently, for constructing the posterior probability measure on the manifold, a
learning tool must be used for generating the constrained learned realizations of X without solving the BVP, but using
only the training set.

(ii) Statistical inverse problem. The available information consists of the targets of statistical moments related to
observation Qc and represented by bc. As we have explained in Section 1, the realizations that have been used for
estimating bc are not available. This is the second strong hypothesis used in this work. Consequently the classical
statistical tools such as the Bayesian inference or the maximum likelihood method cannot easily be used for solving
the statistical inverse problem under consideration.

(iii) Finite reduced-order representation. The second-order random variable X = {Y,G,W}, defined on (Θ,T ,P),
is assumed to be with values in a real Hilbert space X equipped with the inner product 〈X , X′〉X and its associated norm
‖ X ‖X= 〈X , X〉1/2X . Consequently, X belongs the Hilbert space L2(Θ,X) of the equivalent class of all the second-order
random variables with values in X, equipped with the inner product 〈〈X , X′〉〉 = E{〈X , X′〉X} for which the square of
the associated norm is ||| X |||2= E{‖ X ‖2X} =

∫
Θ
‖ X(θ) ‖2X dP(θ). Since the problem is in infinite dimension, in order

to implement the probabilistic learning inference that we propose, we need to introduce a finite representation X(ν)

of dimension ν of random variable X in L2(Θ,X). Assuming that the covariance operator is a Hilbert-Schmidt [123],
symmetric, positive operator in X, X(ν) can be represented using the truncated Karhunen-Loève expansion [124, 125]
of X,

X(ν) = x +

ν∑
α=1

√
κα ϕ

α Hα , (2.1)

in which the eigenvalues of the covariance operator are κ1 ≥ . . . ≥ κν ≥ . . . = 0 with
∑+∞
α=1 κ

2
α < +∞, where the family

of the eigenfunctions {ϕα}α is a Hilbertian basis of X, where x = E{X}, and where H = (H1, . . . ,Hν) is a second-order,
centered, Rν-valued random variable whose covariance matrix is the identity matrix [Iν] in Mν. It should be noted that
the covariance operator of X is not positive definite but only positive (its kernel is not reduced to zero) and therefore,
there is a zero eigenvalue with a finite multiplicity, which is not taken into account in the truncated representation
of X, defined by Eq. (2.1), in which κν > 0. The following heuristic argument can be given for explaining why the
covariance operator of X is only positive. Since the deterministic mappingN relates the random quantities Y, G, and
W, the ”functional components” of X are not ”independent”, and so the covariance operator is not positive definite.
For α ∈ {1, . . . , ν}, the component Hα is written as Hα = κ−1/2

α 〈X − x ,ϕα〉X. The training set Dd related to H is
made up of the Nd independent realizations {η j

d, j = 1, . . . ,Nd} such that η j
d = κ−1/2

α 〈x j
d − x ,ϕα〉X. If the kernel of

the covariance operator was explicitly known, then ν would be chosen in order that ||| X − X(ν) ||| ≤ ε for a sufficiently
small value of ε. In this paper, we assume that the kernel of the covariance operator is unknown. Therefore, we
can only obtain an approximation of the covariance operator using an empirical estimator built with the Nd points
{x j

d, j = 1, . . . ,Nd} (for instance, see Section 5.6). Under these conditions the largest value of ν will be Nd − 1 and the
discretization of Eq. (2.1) will simply correspond to a normalization of the points that constitute the training setDd.

2.3. Formulation using the Kullback-Leibler divergence minimum principle

Taking into account Section 2.2-(ii), we use the Kullback-Leibler divergence minimum principle [87, 88, 89] for
estimating the posterior probability measure PHc (dη) = pHc (η) dη on Rν of the Rν-valued random variable Hc =

(Hc
1, . . . ,H

c
ν). This estimation of PHc is performed (1) using the prior probability measure PH(dη) = pH(η) dη on Rν
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in which pH is estimated with the Gaussian KDE method using the points {η1
d, . . . , η

Nd
d } of the training setDd, and (2)

using the constraint defined by the given statistical moments,

E{hc(Hc)} = bc ∈ Rnc . (2.2)

In Eq. (2.2), η 7→ hc(η) is a function from Rν into Rnc with nc > 1, such that hc(Hc) is a random variable equal to
M

c(Qc) that is expressed as a function of Hc. We recall that the Kullback-Leibler divergence between two proba-
bility measures p(η) dη and pH(η) dη on Rν is defined by D(p, pH) =

∫
Rν p(η) log(p(η)/pH(η)) dη, and is such that

D(p, pH) ≥ 0 (that can be proven by applying the Jensen inequality [126, 127]) and D(p, pH) = 0 if and only if
p = pH. Note that (p, pH) 7→ D(p, pH) is not a distance because the symmetry property and the triangle inequality
are not verified. It can easily be seen that the cross entropy S (p, pH) = −

∫
Rν p(η) log(pH(η)) dη and the entropy

S (p) = −
∫

Rν p(η) log(p(η)) dη are related to D(p, pH) by S (p, pH) = S (p) + D(p, pH). Finally, it can be proven (see
for instance [89]) that (p, pH) 7→ D(p, pH) is a convex function in the pair (p, pH). The probability density func-
tion pHc on Rν, which satisfies the constraint defined by Eq. (2.2) and which is closest to pH, is the solution of the
optimization problem (see for instance [88, 89, 95]),

pHc = arg min
p∈Cad,p

∫
Rν

p(η) log
(

p(η)
pH(η)

)
dη , (2.3)

in which the admissible set Cad,p is defined by

Cad,p =

{
η 7→ p(η) : Rν → R+ ,

∫
Rν

p(η) dη = 1 ,
∫

Rν

hc(η) p(η) dη = bc
}
. (2.4)

It should be noted that, since we are interested in divergence (from pH(η) dη) of probability measure p(η) dη that
satisfies the constraints expressed in Cad,p, we are in fact interested in the divergence and therefore, the symmetry
condition is irrelevant in this case.

2.4. Methodology used for solving the optimization problem and MCMC generator
The constraints, which are defined in admissible set Cad,p, are taken into account by introducing the Lagrange

multipliers λ0 − 1 with λ0 ∈ R+, which is associated with the normalization condition, and λ ∈ Cad,λ ⊂ Rnc , which is
associated with the moments constraints. The admissible set Cad,λ of λ is a subset of Rnc , which is completely defined
by Definition 2 in Section 3. The Lagrange multiplier λ0 is eliminated as a function of λ. In Eq. (2.3), the posterior pdf
pHc is constructed as the limit of a sequence {pHλ

}λ of probability density functions of a Rν-valued random variable
Hλ = (Hλ,1, . . . ,Hλ,ν) that depends on λ. The construction of {pHλ

}λ requires to generate with a MCMC algorithm
a constrained learned set DHλ

= {η1
λ, . . . η

N
λ } constituted of N � Nd independent realizations {η`λ, ` = 1, . . . ,N} of

Hλ. When the convergence is reached with respect to λ, the constrained learned set DHc = {η1
c , . . . , η

N
c } is generated.

This set is made up of N independent realizations {η`c, ` = 1, . . . ,N} of Hc whose probability measure is pHc (η) dη
(subscript or superscript ”c” is introduced to designate the quantities related to the constrained learned set (posterior
model)). For λ fixed in Cad,λ,DHλ

is generated using a MCMC generator based on a nonlinear Itô stochastic differential
equation (ISDE) associated with the nonlinear stochastic dissipative Hamiltonian dynamical system proposed in [128]
and based on [129]. This MCMC generator allows for deleting the transient part to rapidly reach the stationary
response associated with the invariant measure for which measure pHc (η) dη is a marginal measure of this invariant
measure. The ISDE is solved by using the Störmer-Verlet algorithm, which yields an efficient and accurate MCMC
algorithm. Using an ergodicity property, obtaining a portion of the realization of the stationary process of the ISDE,
which corresponds to its invariant measure, is computed by integrating the ISDE over a long period of time. Snapshots
are taken on this portion. The successive snapshots are taken sufficiently far apart to guarantee a quasi statistical
independence. This approach is efficient but is numerically ”recursive” and therefore cannot be parallelized. The
proposed MCMC algorithm, which is detailed in Section 4.1, makes it possible to reach the stationary solution very
quickly thanks to the introduction of the dissipation term. For each realization of the initial condition and of the
Wiener process, we very quickly obtain a realization associated with the invariant measure. By generating independent
realizations of the initial condition and of the Wiener process, independent realizations are thus calculated and these
calculations can therefore be parallelized for strongly decreasing the elapsed time on a multicore computer. The
independent realizations of the initial condition are generated by scanning all the points of the training set. The
parallel loops are explicitly defined in Algorithm 1, which is detailed in Section 4.4).

7



2.5. Formal construction of the optimal solution using the sequence {pHλ
}λ

Let us assumed that the optimization problem defined by Eq. (2.3) has almost one solution pHc and that p = pHc

is a regular point of the continuously differentiable functional p 7→
∫

Rν hc(η) p(η) dη − bc. For λ0 ∈ R+ and λ ∈ Cad,λ,
we define the Lagrangian,

Lag(p, λ0, λ) =

∫
Rν

p(η) log
(

p(η)
pH(η)

)
dη + (λ0 − 1) (

∫
Rν

p(η) dη − 1) + 〈λ ,

∫
Rν

hc(η) p(η) dη − bc〉 .

For all η in Rν, the pdf of H is written as pH(η) = cν ζ(η) in which the positive-valued function ζ is integrable on Rν,
is such that supp ζ = Rν, and where the positive constant cν is such that c−1

ν =
∫

Rν ζ(η) dη. We define the sequence
{pHλ
}λ of pdf η 7→ pHλ

(η ; λ) on Rν, indexed by λ, such that pHλ
(. ; λ) is an extremum of functional p 7→ Lag(p, λ0, λ).

Using the calculus of variations yields

pHλ
(η ; λ) = c0(λ) ζ(η) exp{−〈λ , hc(η)〉} , ∀ η ∈ Rν , (2.5)

in which c0(λ) is the constant of normalization that depends on λ (note that λ0 is eliminated and we have c0(λ) =

cν exp{−λ0}). The existence of a unique solution requires that the constraints be algebraically independent in the
following sense: given any bounded positive measure P(dη) on Rν with support Rν, there exists a bounded set B in Rν

with P(B) > 0 such that

∀ v ∈ Rnc , ‖ v ‖6= 0 ,
∫
B

〈hc(η) , v〉2P(dη) > 0 . (2.6)

Under the condition defined by Eq. (2.6), there exists (see [130]) λsol in Cad,λ such that the functional (p, λ0, λ) 7→
Lag(p, λ0, λ) is stationary at point p = pHc for λ = λsol and λ0 = − log(c0(λsol)/cν). Consequently, pHc = pHλ sol (. ; λsol)
and Eq. (2.5) yield

pHc (η) = c0(λsol) ζ(η) exp{−〈λsol, hc(η)〉} , ∀ η ∈ Rν . (2.7)

Taking into account the introduced hypotheses, pHc is the unique solution of the optimization problem defined by
Eq. (2.3), in which λsol is the unique solution of a convex optimization problem that will be defined by Proposition 1
in Section 3) and which will be, under required hypotheses, the solution of the following nonlinear algebraic equation
in λ,

∫
Rν hc(η) pHλ

(η ; λ) dη = bc.

2.6. Implicit definition of function hc, resulting difficulties, and necessity to construct a statistical surrogate model

Using the methodology presented in Section 2.4, the drift vector of the ISDE will involve the matrix [∇ηhc(η)] ∈
Mν,nc (the transpose of the Jacobian matrix of hc). As we have explained in Section 1, an additional strong assumption
used in this paper is that function η 7→ hc(η) from Rν into Rnc is not explicitly defined by an algebraic expression. It
is assumed that we can only compute a` = hc(η`) ∈ Rnc for any point η` given in Rν (for instance and as previously
underlined, a component of hc can be related to the square of a norm of the random normalized residue of the stochastic
PDE). The MCMC generator requires the evaluation of [∇ηhc(η)] for a large number of values of η. Consequently, a
statistical surrogate model ĥN of hc is constructed and allows for deducing an algebraic representation η 7→ [∇η ĥNη)]
of function η 7→ [∇ηhc(η)] from Rν into Mν,nc . Such statistical surrogate model is an approximation whose convergence
with respect to N will be given by Proposition 2 in Section 3.

3. Mathematical analysis of the proposed methodology

In this section, there are some repetitions with respect to Section 2, but we have preferred to do them so that
Section 3 be mathematically coherent and self contained.

Definition 1 (Training setDd and probability measure of H). Let ν and Nd be integers such that Nd > ν. Let Dd

be the set of Nd points η1
d, . . . , η

Nd
d given in Rν such that

η̂ =
1

Nd

Nd∑
j=1

η j
d = 0ν , [ĈH] =

1
Nd − 1

Nd∑
j=1

(η j
d − η̂) ⊗ (η j

d − η̂) = [Iν] . (3.1)
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Let H = (H1, . . . ,Hν) be the Rν-valued random variable defined on the probability space (Θ,T ,P) whose probability
measure PH(dη) = pH(η) dη is defined by the probability density function η 7→ pH(η) : Rν → R+ with respect to the
Lebesgue measure dη on Rν,

pH(η) = cν ζ(η) , ∀η ∈ Rν , cν = (
√

2π ŝ)−ν , (3.2)

in which ŝ = s
(
s2 + (Nd − 1)/Nd

)−1/2
with s = (4/(Nd(2 + ν)))1/(ν+4), and where η 7→ ζ(η) : Rν → R+ is written as

ζ(η) =
1

Nd

Nd∑
j=1

exp
{
−

1
2ŝ2 ‖

ŝ
s
η j

d − η ‖
2
}
. (3.3)

We define the potential function η 7→ φ(η) : Rν → R, related to pH, such that

ζ(η) = exp{−φ(η)} . (3.4)

Remark 1. Definition 1 of pH corresponds to a Gaussian kernel-density estimation (KDE) using the training setDd,
involving the modification proposed in [47] of the classical formulation [131] for which s is the Silverman bandwidth.
With such a modification, the normalization of H is preserved for any value of Nd,

E{H} =

∫
Rν

η pH(η) dη =
1

2ŝ2 η̂ = 0ν , (3.5)

E{H ⊗ H} =

∫
Rν

η ⊗ η pH(η) dη = ŝ2 [Iν] +
ŝ2

s2

(Nd − 1)
Nd

[ĈH] = [Iν] . (3.6)

Theorem 3.1 in [104] proves that, for all η fixed in Rν, Eq. (3.2) with Eq. (3.3) is a consistent estimation of the
sequence {pH}Nd for Nd → +∞.

Hypothesis 1 (Concerning function hc). Let nc be the integer such that 1 ≤ nc ≤ ν. It is assumed that η 7→ hc(η)
verifies the property defined by Eq. (2.6), is continuously differentiable from Rν into Rnc ,

hc ∈ C1(Rν,Rnc ) , (3.7)

and there exist constants α > 0, β > 0, cα > 0, and cβ > 0, independent of η, such that for ‖ η ‖→ +∞,

‖ hc(η) ‖ ≤ cα ‖ η ‖α , ‖ [∇ηhc(η)] ‖F ≤ cβ ‖ η ‖ β , (3.8)

in which [∇ηhc(η)] ∈ Mν,nc with [∇ηhc(η)]αk = ∂hc
k(η)/∂ηα, and where ‖ . ‖F is the Frobenius norm.

Definition 2 (Admissible subset Cad,λ of Rnc ). Under Hypothesis 1, the admissible set Cad,λ of Lagrange multiplier λ
is defined as the open subset of Rnc such that

Cad,λ =
{
λ ∈ Rnc | 0 < E{ exp{−〈λ , hc(H)〉}

}
< +∞ , (3.9)

in which the pdf of the Rν-valued random variable H is defined by Eq. (3.2). It is also assumed that hc is such that
Cad,λ is not reduced to the empty set,

Cad,λ 6= ∅ . (3.10)

Lemma 1 (Convexity of Cad,λ and integrability properties). Under Hypothesis 1 and with Definition 2,
(a) Cad,λ defined by Eq. (3.9) is a convex open subset of Rnc .
(b) ∀λ ∈ Cad,λ, let η 7→ Vλ(η) : Rν → R be the function defined by

Vλ(η) = φ(η) + 〈λ , hc(η)〉 , (3.11)

in which φ(η) = − log ζ(η) (see Eq. (3.4)). One then has

0 <
∫

Rν

exp{−Vλ(η)} dη < +∞ . (3.12)
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(c) The pdf η 7→ pHλ
(η ; λ) with respect to dη, defined by Eq. (2.5), which can be written as

pHλ
(η ; λ) = c0(λ) exp{−Vλ(η)} , ∀η ∈ Rν , (3.13)

is such that the constant c0(λ) of normalization verifies

0 < c0(λ) < +∞ , ∀λ ∈ Cad,λ . (3.14)

(d) ∀λ ∈ Cad,λ, we haveVλ(η)→ +∞ if ‖ η ‖→ +∞, and we have,∫
Rν

‖ hc(η) ‖2 exp{−Vλ(η)} dη < +∞ ,

∫
Rν

‖ [∇ηhc(η)] ‖F exp{−Vλ(η)} dη < +∞ . (3.15)

PROOF. (Lemma 1).
(a) Cad,λ is a convex subset if ∀µ ∈ [0, 1], ∀λ and λ′ in Cad,λ, µλ + (1 − µ)λ′ ∈ Cad,λ. Let A = exp{−〈λ , hc(H)〉}
and B = exp{−〈λ′ , hc(H)〉} be R+-valued random variables. Since λ and λ′ are in Cad,λ, we have E{A} < +∞ and
E{B} < +∞. We have to prove that E{ exp{−〈µλ + (1 − µ)λ′ , hc(H)〉} } < +∞, that is to say, E{Aµ B1−µ} < +∞. For
µ = 0 and µ = 1, it is verified. For µ ∈]0, 1[, since A and B are almost-surely positive and using the Hölder inequality
yield E{Aµ B1−µ} ≤ (E{A}) µ × (E{B})1−µ < +∞, which finishes the proof of the convexity of Cad,λ.
(b) Using Eqs. (3.2), (3.4), and (3.11), yields

∫
Rν exp{−Vλ(η)} dη = 1

cν

∫
Rν exp{−〈λ , hc(η)〉} pH(η) dη = 1

cν
E{ exp{−〈λ ,

hc(η)〉} }, which is positive and finite due to Eq. (3.9) and to 0 < cν < +∞. We have thus proven Eq. (3.12).
(c) Using Eqs. (3.12) and (3.13), and since we must have

∫
Rν pHλ

(η) dη = 1, we deduce Eq. (3.14).
(d) Since hc is continuous on Rν, (see Eq. (3.7)), ∀λ ∈ Cad,λ, η 7→ exp{−Vλ(η)} is continuous on Rν and then is
locally integrable on Rν. Eq. (3.12) implies the integrability at infinity of η 7→ exp{−Vλ(η)}. Since η 7→ Vλ(η) is
continuous on Rν, it can be deduced that Vλ(η) → +∞ if ‖ η ‖→ +∞. Using Eq. (3.8), for ‖ η ‖→ +∞, one has
‖ hc(η) ‖2 exp{−Vλ(η)} ≤ c2

α ‖ η ‖
2α exp{−Vλ(η)} and ‖ [∇ηhc(η)] ‖F exp{−Vλ(η)} ≤ cβ ‖ η ‖β exp{−Vλ(η)}, which allow

for proving the integrability at infinity and then proving Eq. (3.15).

Proposition 1 (Construction of the probability measure of Hλ). We consider Hypothesis 1 and Definition 2. For
all λ in Cad,λ, let

pHλ
(η ; λ) = c0(λ) ζ(λ) exp{−〈λ , hc(η)〉} (3.16)

be the pdf of Hλ (see Eq. (2.5)) with c0(λ) satisfying Eq. (3.14)).
(a) The Rnc -valued random variable hc(Hλ) is of second-order,

E{‖ hc(Hλ) ‖2} < +∞ . (3.17)

(b) Let λ 7→ Γ(λ) : Cad,λ → R be defined by

Γ(λ) = 〈λ , bc〉 − log c0(λ) , (3.18)

in which bc is given in Rnc . For all λ in Cad,λ, we have

∇λΓ(λ) = bc − E{hc(Hλ)} ∈ Rnc , (3.19)

[Γ ′′(λ)] = [cov{hc(Hλ)}] ∈ M+
nc
, (3.20)

where the positive-definite covariance matrix [Γ ′′(λ)] of hc(Hλ) is such that [Γ ′′(λ)]kk′ = ∂2Γ(λ)/∂λk∂λk′ .
(c) Γ is a strictly convex function on Cad,λ. There is a unique solution λsol in Cad,λ of the convex optimization problem,

λsol = arg min
λ∈Cad,λ

Γ(λ) . (3.21)

If the following equation in λ,
∇λΓ(λ) = 0nc , (3.22)

has a solution λ̃ that belongs to Cad,λ, then this solution is unique and we have λsol = λ̃. The pdf pHc of Hc, which
satisfies the constraint E{hc(Hc)} = bc is written (see Eq. (3.13) or (3.16)) as

pHc (η) = pHλsol (η ; λsol) , ∀η ∈ Rν . (3.23)
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PROOF. (Proposition 1).
(a) Using Eq. (3.13), Eq. (3.14), and the first equation Eq. (3.15) yield

E{‖ hc(Hλ) ‖2} =

∫
Rν

‖ hc(η) ‖2 c0(λ) exp{−Vλ(η)} dη < +∞ .

(b) The definition of function Γ given by Eq. (3.18) is similar to the one introduced in the discrete case for finding the
probability measure of maximal entropy [132, 88]. Let us prove Eqs. (3.19) and (3.20). Eq. (3.11) yields ∇λVλ(η) =

hc(η) and from Eq. (3.13), it can be deduced that

∇λpHλ
(η ; λ) =

(
c0(λ)−1 ∇λc0(λ) − hc(η)

)
pHλ

(η ; λ) . (3.24)

Integrating Eq. (3.13) on Rν and taking the logarithm yields log c0(λ) = − log
∫

Rν exp{−Vλ(η)} dη and consequently,

c0(λ)−1 ∇λc0(λ) =

∫
Rν

hc(η) pHλ
(η ; λ) dη = E{hc(Hλ)} . (3.25)

Eq. (3.18) yields ∇λΓ(λ) = bc − c0(λ)−1 ∇λc0(λ), which proves Eq. (3.19) by using Eq. (3.25). It should be noted that
Eq. (3.17) implies the existence of the mean value E{hc(Hλ)}. Taking the derivative of Eq. (3.19) with respect to λ
yields

[Γ ′′(λ)] = −

∫
Rν

hc(η) ⊗ ∇λpHλ
(η ; λ) dη . (3.26)

Substituting Eq. (3.25) into Eq. (3.24) yields ∇λpHλ
(η ; λ) = (E{hc(Hλ)} − hc(η) ) pHλ

(η ; λ), which with Eq. (3.26),
gives [Γ ′′(λ)] = E{hc(Hλ) ⊗ hc(Hλ)} − (E{hc(Hλ)}) ⊗ (E{hc(Hλ)}) that is the covariance matrix of the Rnc -valued
random variable hc(Hλ). Again Eq. (3.17) proves the existence of matrix [Γ ′′(λ)] as a covariance matrix, which is
semi-positive definite. We have to prove that this matrix is positive definite, which will be true if the matrix [Mλ] =

E{hc(Hλ) ⊗ hc(Hλ)} belongs to M+
nc

, that is to say if 〈[Mλ] v , v〉2 > 0 for all v in Rnc with ‖ v ‖6= 0. Since pHλ
(η ; λ) dη

is a probability measure, this will be true if η 7→ 〈hc(η) , v〉2 is not zero on a set B such that
∫
B

pHλ
(η ; λ) dη > 0 that

is the case due to the hypothesis defined by Eq. (2.6).
(c) From Lemma 1-(a), Cad,λ is a convex set and from Eq. (3.20), [Γ ′′(λ)] is a positive-definite matrix for all λ in Cad,λ.
It can then be deduced that λ 7→ Γ(λ) is strictly convex on Cad,λ and therefore, Eq. (3.21) holds and λsol is unique. Note
that the existence of a solution of Eq. (3.22), which would then be a global minimum, could be not in Cad,λ. However,
if the equation ∇λΓ(λ) = 0nc admits a solution λ = λ̃ ∈ Rnc that belongs to Cad,λ, then this solution is unique and we
have λsol = λ̃, which is the solution of the convex optimization problem defined by Eq. (3.21), and then Eq. (3.22)
holds for λ̃ = λsol. Finally, under the condition that λ̃ belongs to Cad,λ, Eq. (3.19) shows that E{hc(Hλsol )} = bc.
Taking into account Eq. (2.7), the solution is given by Eq. (3.23) and is unique due to the uniqueness of solution λsol

of ∇λΓ(λ) = 0nc .

Definition 3 (Surrogate model ĥN of hc). Let λ be fixed in Cad,λ and let DHλ
= {η1

λ, . . . , η
N
λ } be the constrained

learned set whose points are N � Nd independent realizations of the Rν-valued random variable Hλ for which the pdf
η 7→ pHλ

(η ; λ) is defined by Eq. (3.13). Let Aλ = hc(Hλ) be the Rnc -valued random variable defined on (Θ,T ,P)
whose N independent realizations a1

λ, . . . , a
N
λ are such that a`λ = hc(η`λ) ∈ Rnc for ` = 1, . . . ,N. The surrogate model

η 7→ ĥN(η ; λ) : Rν → Rnc of hc is defined, for all η in Rν, by

ĥN(η ; λ) =

N∑
`=1

a`λ
βN
η (η`λ)∑N

`′=1 β
N
η (η`′λ )

, (3.27)

in which for all η and η̃ in Rν,

βN
η (η̃) = exp{−

1
2s2

SB

‖ η̃ − η ‖2H} , (3.28)

‖ η̃ − η ‖2H= 〈[σHλ
]−2(η̃ − η) , η̃ − η〉 , (3.29)
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in which [σHλ
] is the diagonal positive-definite matrix in M+

ν such that [σHλ
]αα is the standard deviation of the real-

valued random variable Hλ,α, estimated using DHλ
, and where sSB is the Silverman bandwidth that depends on N and

written as

sSB =

(
4

N(2 + nc + ν)

)1/(nc+ν+4)

. (3.30)

Remark 2 (Rationale of Definition 3). Let us assume that λ is fixed in Cad,λ. For all η in Rν, we have the following
identity,

hc(η) = E{hc(Hλ) |Hλ = η} , (3.31)

in which E{hc(Hλ) |Hλ = η} is the conditional mathematical expectation of the Rnc -valued second-order random
variable hc(Hλ) given Hλ = η. Let PAλ,Hλ

(da, dη ; λ) be the probability measure on Rnc × Rν of the Rnc × Rν-
valued random variable (Aλ,Hλ). Since Aλ = hc(Hλ), the support of PAλ,Hλ

is the manifold defined by the graph
{(a, η) ∈ Rnc ×Rν ; a = hc(η)}. Let PHλ

(dη ; λ) = pHλ
(η ; λ) dη be the probability measure of Hλ, for which the density

pHλ
is defined by Eq. (3.13) with supp pHλ

= Rν. Eq. (3.31) can then be rewritten, for all η in Rν, as

hc(η) =

∫
a∈Rnc

a PAλ |Hλ
(da | η ; λ) , (3.32)

in which PAλ |Hλ
(da | η ; λ) is the conditional probability measure of Aλ given Hλ = η in Rν, which could also be

written as δ0(a − hc(η)) in which δ0 is the Dirac measure on Rnc at point a = 0nc . Note that if the joint probability
measure PAλ,Hλ

(da, dη ; λ) of (Aλ,Hλ) had a density pAλ,Hλ
(a, η ; λ) with respect to da⊗ dη (that is not the case), then

Eq. (3.32) could be written as hc(η) =
∫

a∈Rnc a pAλ |Hλ
(a | η ; λ) da with pAλ |Hλ

(a | η ; λ) = pAλ,Hλ
(a | η ; λ)/pHλ

(η ; λ).
The statistical surrogate model η 7→ ĥN(η ; λ) : Rν → Rnc of hc is then defined by approximating (regularizing)
PAλ |Hλ

(da | η ; λ) by the conditional probability measure,

p̂N
Aλ |Hλ

(a | η ; λ) da = ( p̂N
Hλ

(η ; λ))−1 p̂N
Aλ,Hλ

(a, η ; λ) da , (3.33)

in which the pdf p̂N
Aλ,Hλ

(a, η ; λ) on Rnc ×Rν with respect to da⊗dη is defined by the following Gaussian kernel density
representation, based on the N independent realizations {(a`λ, η

`
λ), ` = 1, . . . ,N} of (Aλ,Hλ), and where p̂N

Hλ
(η ; λ) =∫

Rnc p̂N
Aλ,Hλ

(a, η ; λ) da. Therefore, we have

p̂N
Aλ,Hλ

(a, η ; λ) =
1
N

N∑
`=1

(
(
√

2π sSB)nc+ν det[σAλ
] det[σHλ

]
)−1

exp
{
−

1
2s2

SB

(
‖ a`λ − a ‖2A+‖ η`λ − η ‖

2
H

)}
, (3.34)

in which sSB is defined by Eq. (3.30), where [σAλ
] is the diagonal positive-definite matrix in M+

nc
such that [σAλ

]kk

is the standard deviation of the real-valued random variable Aλ,k, estimated using the realizations {a`λ, ` = 1, . . . ,N},
and where for all ã and a in Rnc , ‖ ã − a ‖2A= 〈[σAλ

]−2(ã − a) , ã − a〉. From Eq. (3.32) and using the approximation
of PAλ |Hλ

(da | η ; λ) defined by Eq. (3.33), we have ĥN(η ; λ) = ( p̂N
Hλ

(η ; λ))−1
∫

a∈Rnc a p̂N
Aλ,Hλ

(a, η ; λ) da, which using
Eq. (3.34) yields Eq. (3.27).

Proposition 2 (Convergence of sequences {ĥN(η ; λ)}N and {[∇η ĥN(η ; λ)]}N). Let λ be fixed in Cad,λ and let η be
fixed in Rν. Under the hypothesis hc ∈ C1(Rν,Rnc ) (see Eq. (3.7)), ∀ε > 0, there exists a finite integer Nε(η, λ)
depending on ε, η, and λ, such that ∀N ≥ Nε(η, λ),

‖ ĥN(η ; λ) − hc(η) ‖ ≤ ε , ‖ [∇η ĥN(η ; λ)] − [∇ηhc(η)] ‖F ≤ ε . (3.35)

PROOF. (Proposition 2). The probability measure PHλ
(dη ; λ) admits a continuous density pHλ

( . ; λ) with respect to
dη on Rν (see Eq. (3.13)). Using the notation of Definition 3, for s > 0, let η̃ 7→ κη(η̃ ; s, λ) = (

√
2π s)−ν (det[σHλ

])−1

exp{− 1
2s2 ‖ η̃ − η ‖

2
H} be the function defined on Rν with values in R+. Since ∀α ∈ {1, . . . , ν}, lims→0+

{s [σHλ
]αα} = 0, it

can be seen that
lim
s→0+

κη(η̃ ; s, λ) dη̃ = δ0(η̃ − η) , (3.36)
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in the vector space of bounded measures, in which δ0(η̃) is the Dirac measure on Rν at point η̃ = 0ν. Eq. (3.27)
with Eqs. (3.28) and (3.29) can be rewritten as ĥN(η ; λ) = ĥN(η ; sSB, λ) in which for all s > 0, ĥN(η ; s, λ) =(
(1/N)

∑N
`=1 hc(η`λ) κη(η`λ ; s, λ)

) (
(1/N)

∑N
`′=1 κη(η`

′

λ ; s, λ)
)−1

. Since hc, pHλ
( . ; λ), and κη( . ; s, λ) are continuous on

Rν, and since for any value of N, η1
λ, . . . , η

N
λ are N independent realizations of Rν-valued random variable Hλ,

for s > 0 fixed, limN→+∞ ĥN(η ; s, λ) =
(
E{hc(Hλ) κη(Hλ ; s, λ)}

) (
E{κη(Hλ ; s, λ)}

)−1
, which can be rewritten as

limN→+∞ ĥN(η ; s, λ) =
(∫

Rν hc(η̃) pHλ
(η̃ ; λ) κη(η̃ ; s, λ)

) (∫
Rν pHλ

(η̃ ; λ) κη(η̃ ; s, λ)
)−1

. Since hc belongs to C1(Rν,Rnc )

and pHλ
( . ; λ) to C0(Rν,R+), using Eq. (3.36) yields, for η fixed in Rν, lims→0+

limN→+∞ ĥN(η ; s, λ) = hc(η) ∈
Rν and lims→0+

limN→+∞[∇ηĥN(η ; s, λ)] = [∇ηhc(η)] ∈ Mν,nc . Consequently, ∀λ ∈ Cad,λ, ∀η ∈ Rν, ∀ε > 0,
there exists sε > 0 and a finite integer Nε(η, λ) depending on ε, η, and λ, such that ‖ ĥNε (η ; sε, λ) − hc(η) ‖ ≤ ε

and ‖ [∇ηĥNε (η ; sε, λ)] − [∇ηhc(η)] ‖ ≤ ε. The Silverman bandwidth sSB = sSB(N) defined by Eq. (3.30), goes to
0 when N → +∞. Therefore, choosing N ≥ Nε(η, λ) such that sSB(N) < sε (that is always possible) yields
‖ ĥN(η ; sSB(N), λ) − hc(η) ‖ ≤ ε and ‖ [∇ηĥN(η ; sSB(N), λ)] − [∇ηhc(η)] ‖ ≤ ε, which proves Eq. (3.35).

Notation (Normalized Rν-valued Wiener stochastic process). Let {Wwien(t) = (Wwien
1 (t), . . . ,Wwien

ν (t)), t ≥ 0} be the
Wiener process, defined on (Θ,T ,P), indexed by R+, with values in Rν, such that Wwien

1 , . . . ,Wwien
ν are mutually

independent, Wwien(0) = 0ν a.s., Wwien is a process with independent increments such that, for all 0 ≤ t′ < t < +∞,
the increment Wwien(t) −Wwien(t′) is a Rν-valued second-order, Gaussian, centered random variable whose covariance
matrix is (t − t′) [Iν].

Proposition 3 (MCMC generator of Hλ). Let hc be the function satisfying Hypothesis 1. Let λ be fixed in Cad,λ.
Consequently, Lemma 1-(d) holds. Let {(Uλ(t),Vλ(t)), t ≥ 0} be the stochastic process, defined on (Θ,T ,P), indexed
by R+, with values in Rν × Rν, which verifies the following ISDE for t > 0, with the initial condition (u0, v0) given in
Rν × Rν,

dUλ(t) = Vλ(t) dt , (3.37)

dVλ(t) = Lλ(Uλ(t)) dt −
1
2

f0 Vλ(t) dt +
√

f0 dWwien(t) , (3.38)

Uλ(0) = u0 , Vλ(0) = v0 a.s. (3.39)

(a) The initial condition u0 ∈ Rν is chosen from the points of the training set Dd = {η1
d, . . . , η

Nd
d } (see Section 4.2)

while the initial condition v0 is chosen as any realization of a normalized Gaussian Rν-valued random variable VG,
independent of Wwien, whose probability density function with respect to dv is pVG (v) = (2π)−ν/2 exp{−‖ v ‖2/2}.
(b) The parameter f0 > 0 allows the dissipation term in the dissipative Hamiltonian system to be controlled and to
rapidly reach the stationary response associated with the invariant measure (the value f0 = 4 is generally a good
choice).
(c) For all u = (u1, . . . , uν) in Rν, the vector Lλ(u) in Rν is defined by Lλ(u) = −∇uVλ(u) that can be written as

Lλ(u) =
1
ζ(u)

∇uζ(u) − [∇uhc(u)] λ . (3.40)

(d) The stochastic solution {(Uλ(t),Vλ(t)), t ≥ 0} of the ISDE defined by Eqs. (3.37) to (3.39) is unique, has almost-
surely continuous trajectories, and is a second-order diffusion stochastic process. For t → +∞, this diffusion process
converges to a stationary second-order diffusion stochastic process {(Ust

λ (τ),Vst
λ (τ)), τ ≥ 0} associated with the unique

invariant probability measure on Rν × Rν,

pHλ,VG (η, v ; λ) dη ⊗ dv = (pHλ
(η ; λ) dη) ⊗ (pVG (v) dv) , (3.41)

in which pHλ
(η ; λ) is the pdf defined by Eq. (3.13).

(e) For ts sufficiently large, we can choose Hλ as Uλ(ts). The generation of the constrained learned set DHλ
=

{η1
λ, . . . , η

N
λ }, made up of N � Nd independent realizations of Hλ whose probability measure is pHλ

(η ; λ) dη, consists
in solving Eqs. (3.37) to (3.39) for t ∈ [0 , ts] and then using the realizations of Uλ(ts) (see the numerical aspects in
Section 4).
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PROOF. (Proposition 3). Since hc ∈ C1(Rν,Rnc ) and φ(u) = − log ζ(u) with ζ(u) given by Eq. (3.3), function u 7→
Vλ(u) defined by Eq. (3.11) belongs to C1(Rν,R). Therefore, u 7→ ‖ ∇uVλ(u) ‖ is locally bounded on Rν. Using
Eqs. (3.11) and (3.12), it can be seen that, for all λ ∈ Cad,λ, inf‖u ‖>RVλ(u) → +∞ if R → +∞, and infu∈Rν Vλ(u) is a
finite real number. Using Eqs. (3.3), (3.4), and (3.11) yields∫

Rν

‖ ∇uVλ(u) ‖ pHλ
(u ; λ) du ≤

∫
Rν

1
ζ(u)
‖ ∇uζ(u) ‖ pHλ

(u ; λ) du +

∫
Rν

‖ [∇uhc(u)] ‖F ‖ λ ‖ pHλ
(u ; λ) du , (3.42)

because ‖ [∇uhc(u)] λ ‖ ≤ ‖ [∇uhc(u)] ‖ ‖ λ ‖ and ‖ [∇uhc(u)] ‖ ≤ ‖ [∇uhc(u)] ‖F . From Eqs. (3.12) and (3.3), the first
term in the right-hand side member of Eq. (3.42) is finite, while from the second equation (3.15), the second term is
also finite. It can then be deduced that the left-hand side member of Eq. (3.42) is finite. Consequently, Theorems 6,
7, and 9 in Pages 214 to 216 of [129], and the expression of the invariant measure given by Theorem 4 in Page 211 of
the same reference, for which the Hamiltonian isH(u, v) = ‖ v ‖2/2 +Vλ(u), prove that the solution of Eqs. (3.37) to
(3.39) is unique and is a second-order diffusion stochastic process with almost-surely continuous trajectories, which
converges for t → +∞ to a second-order stationary diffusion process with almost surely continuous trajectories
{(Ust

λ (τ),Vst
λ (τ)), τ ≥ 0} associated with the invariant probability measure given by Eq. (3.41). For any τ > 0, Ust

λ (τ) =

limt→+∞ Uλ(t + τ) in probability measure.

Proposition 4 (Convergence of the sequence of MCMC generator using the statistical surrogate model). Let λ be
fixed in Cad,λ and let us use Proposition 3. For all η in Rν, let ĥN(η ; λ) be the approximation of hc(η) defined by
Eq. (3.27) and let u 7→ L̂λ(u) be the twice continuously differentiable function on Rν with values in Rν such that, for
all u in Rν,

L̂N
λ (u) =

1
ζ(u)

∇uζ(u) − [∇u ĥN(u ; λ)] λ , (3.43)

in which ζ is defined by Eq. (3.3) and where [∇u ĥN(u ; λ)] is explicitly given (see Eq. (4.8)) by differentiating function
u 7→ ĥN(u ; λ) defined by Eq. (3.27). Let {(UN

λ (t),VN
λ (t)), t ≥ 0} be the stochastic process solution of the ISDE defined

by Eqs. (3.37) to (3.39) in which Lλ is replaced by L̂N
λ ,

dUN
λ (t) = VN

λ (t) dt , (3.44)

dVN
λ (t) = L̂N

λ (UN
λ (t)) dt −

1
2

f0 VN
λ (t) dt +

√
f0 dWwien(t) , (3.45)

UN
λ (0) = u0 , VN

λ (0) = v0 a.s. , (3.46)

and where u0, v0, f0, and Wwien are the quantities defined in Proposition 3. Then the stochastic solution {(UN
λ (t),VN

λ (t)),
t ≥ 0} of Eqs. (3.44) to (3.46) is unique, has almost-surely continuous trajectories, and is a second-order diffusion
stochastic process, which converges to a stationary second-order diffusion stochastic process for t → +∞, associated
with the unique invariant probability measure on Rν × Rν, p̂N

Hλ,VG
(η, v ; λ) dη ⊗ dv = ( p̂N

Hλ
(η ; λ) dη) ⊗ (pVG (v) dv), in

which p̂N
Hλ

(η ; λ) = ĉN
0 (λ) exp{−V̂N

λ (η)} with V̂N
λ (η) = − log ζ(ζ) + 〈λ , ĥN(η ; λ)〉. Then for all t ∈ [0 , ts] with ts < +∞,

the sequence {UN
λ (t)}N of second-order Rν-valued random variables converges in mean-square to the second-order

Rν-valued random variable Uλ(t) of Proposition 3,

lim
N→+∞

E{‖UN
λ (t) − Uλ(t) ‖2} = 0 , ∀t ∈ [0 , ts] . (3.47)

PROOF. (Proposition 4). The classical theorem, such as Theorem 5.1 Page 118 of [133], cannot directly be used
because, for ‖η‖→ +∞, the growth of the drift vector must be at most linear, which is not verified taking into account
Eq. (3.40) and the fact that ‖[∇ηhc(η)]‖F can have any polynomial growth at infinity (see Eq. (3.8)). Consequently, an
adapted proof of this Proposition 4 must be done. For λ be fixed in Cad,λ, the unique second-order stochastic process
with almost-surely continuous trajectories {(Uλ(t),Vλ(t)), t ≥ 0} of Proposition 3 can be written as

Zλ(t) = z0 +

∫ t

0
aλ(Zλ(τ)) dτ +

∫ t

0
[b] dWwien(τ) , (3.48)

in which z0 = (u0, v0), aλ(z) = (v , Lλ(u) − (1/2) f0 v) and where z = (u, v) with u and v in Rν, where z0, z, and aλ(z)
are in R2ν = Rν × Rν, and where [b] = [ [0ν]

√
f0 [Iν] ]T ∈ M2ν,ν. Reusing the proof of Proposition 3, it can be seen
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that Eqs. (3.44) to (3.46) admits a unique solution {(UN
λ (t),VN

λ (t)), t ≥ 0} (with the properties given in Proposition 3),
which can be written as,

ZN
λ (t) = z0 +

∫ t

0
âN
λ (ZN

λ (τ)) dτ +

∫ t

0
[b] dWwien(τ) , (3.49)

in which âN
λ (z) = (v , L̂N

λ (u) − (1/2) f0 v). Subtracting the two equations Eqs. (3.48) and (3.49) yields

ZN
λ (t) − Zλ(t) = χN

λ (t) +

∫ t

0

(̂
aN
λ (ZN

λ (τ)) − âN
λ (Zλ(τ))

)
dτ ,

χN
λ (t) =

∫ t

0

(̂
aN
λ (Zλ(τ)) − aλ(Zλ(τ))

)
dτ . (3.50)

Let L2(Θ,Rm) be the Hilbert space of the equivalent classes of second-order Rm-valued random variables defined on
(Θ,T ,P), equipped with the inner product 〈〈A , A′〉〉 = E{〈A , A′〉} and the associated norm ||| A |||= (E{‖ A ‖2})1/2.
Let us define G(τ) = âN

λ (ZN
λ (τ)) − âN

λ (Zλ(τ)) and 1(τ) = 1. The Schwarz inequality
∫ t

0 1(τ) × |||G(τ) ||| dτ ≤

(
∫ t

0 1(τ)2dτ)1/2 (
∫ t

0 |||G(τ) |||2 dτ)1/2 yields
(∫ t

0 |||G(τ) ||| dτ
)2
≤ t

∫ t
0 |||G(τ) |||2 dτ. Using the inequality 2αβ ≤ 2α2 +β2/2

for all α > 0 and β > 0 and since ||| âN
λ (ZN

λ (τ)) − âN
λ (Zλ(τ)) |||2= (1 + f 2

0 /4) |||VN
λ (τ) − Vλ(τ) |||2+||| L̂N

λ (UN
λ (τ)) −

L̂N
λ (Uλ(τ)) |||2, we obtain

||| ZN
λ (t) − Zλ(t) |||2 ≤ 3 |||χN

λ (t) |||2+
3
2

t
∫ t

0

(1+
f 2
0

4
) |||VN

λ (τ) − Vλ(τ) |||2+||| L̂N
λ (UN

λ (τ)) − L̂N
λ (Uλ(τ)) |||2

 dτ. (3.51)

Let t be fixed such that 0 < t ≤ ts < +∞. Since {UN
λ (τ), τ ≥ 0} and {Uλ(τ), τ ≥ 0} are dependent second-order Rν-valued

stochastic process with almost-surely continuous trajectories, there exists a finite positive constant rλ(ts) depending
on λ and ts, 0 < rλ(ts) < +∞, such that sup0≤τ≤ts

|||UN
λ (τ) ||| < rλ(ts) and sup0≤τ≤ts

|||Uλ(τ) ||| < rλ(ts). Let Uts be the
open ball of L2(Θ,Rν) such that Uts =

{
U ∈ L2(Θ,Rν) ; |||U ||| < rλ(ts)

}
. Due to the convexity of the open ball in a

normed vector space,Uts is a convex open set of L2(Θ,Rν) (∀U,U′ ∈ Uts , ∀µ ∈ [0 , 1], we have ||| (1−µ) U +µU′ ||| ≤
(1 − µ) |||U |||+µ |||U′ ||| ≤ (1 − µ) rλ(ts) + µ rλ(ts) = rλ(ts), which shows that (1 − µ) U + µU′ ∈ Uts ). Let U 7→ L̂N

λ (U)
be the mapping from L2(Θ,Rν) into L2(Θ,Rν), in which L̂N

λ is defined by Eq. (3.43). Since u 7→ ĥN(u ; λ) is twice
continuously differentiable on Rν, then function u 7→ L̂N

λ (u) is continuously differentiable on Rν. It can easily be

verified that ∀U ∈ Uts ,
(
E{‖ [∇u L̂N

λ (U)] ‖2F}
)1/2
≤ kλ(ts), in which kλ(ts) is a finite positive constant depending on λ

and ts. Consequently, using Theorem 3.3.2 Page 45 of [134] for Banach spaces, for all 0 ≤ τ ≤ t ≤ ts, we have

||| L̂N
λ (UN

λ (τ)) − L̂N
λ (Uλ(τ)) ||| ≤ kλ(ts) |||UN

λ (τ) − Uλ(τ) ||| . (3.52)

From Eqs. (3.51) and (3.52), it can be deduced using the Gronwall Lemma (see [135] or [136], Page 362) that, for all
0 ≤ t ≤ ts < +∞,

||| ZN
λ (t) − Zλ(t) |||2 ≤ cλ(ts) |||χN

λ (t) |||2 , (3.53)

with cλ(ts) = (9/2) t2
s max{(1 + f 2

0 /4) , kλ(ts)2} < +∞. Eq. (3.50) yields |||χN
λ (t) ||| ≤

∫ t
0 ||| L̂

N
λ (Uλ(τ)) − Lλ(Uλ(τ)) ||| dτ.

Using Eqs. (3.40) and (3.43) yields

|||χN
λ (t) ||| ≤ ‖ λ ‖

∫ t

0

(
E{‖ [∇u ĥN(Uλ(τ) ; λ)] − [∇uhc(Uλ(τ))] ‖2F

)1/2
dτ . (3.54)

From Proposition 2, it can be deduced that, for N → +∞, the right-hand side member of Eq. (3.54) goes to 0 and
consequently, Eq. (3.53) shows that ZN

λ (t)→ Zλ(t) for the mean-square convergence.

Iterative algorithm for calculating λsol. Under Proposition 1, for λ ∈ Cad,λ, since Γ(λ) cannot be evaluated in high
dimension using Eq. (3.18) due to the presence of constant c0(λ) (the normalization constant), λsol cannot directly be
estimated using the gradient descent algorithm applied to the convex optimization problem defined by Eq. (3.21). We
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will then assumed that λsol can be calculated as the unique solution in λ of equation∇λΓ(λ) = 0nc (see Proposition 1-(c))
and in particular Eq. (3.22)), that is to say (see Eq. (3.19)), solving the following equation in λ on Rnc ,

E{hc(Hλ)} − bc = 0nc . (3.55)

This equation is solved using the Newton iterative method [137] applied to function λ 7→ ∇λΓ(λ) as proposed in
[138, 139], that is to say,

λ i+1 = λ i − [Γ ′′(λ i)]−1 ∇λΓ(λ i) , i = 0, 1, . . . , imax , (3.56)

with λ 0 = 0nc , in which ∇λΓ(λ) and [Γ ′′(λ)] are defined by Eqs. (3.19) and (3.20), and where imax is a given integer
sufficiently large. An estimation of λsol is chosen as

λsol = λisol , isol = arg min
i=1,...,imax

err(i) , (3.57)

in which the error function i 7→ err(i) : {1, . . . , imax} → R+ is defined as follows for taking into account the possible
types of algebraic quantities (scalar, vectors, tensors) that are used for defining function hc. Therefore, let M be
an integer such that 1 ≤ M ≤ nc and for which hc and bc are written as hc(η) = (hc,k1 (η), . . . , hc,kM (η)) and bc =

(bc,k1 , . . . , bc,kM ) with
∑M

m=1 km = nc.The error function is then defined by

err(i) =

 M∑
m=1

wm

(
errm(i)
errm(1)

)21/2

, (3.58)

in which {wm ≥ 0 ,m = 1, . . .M} are given real numbers and where

errm(i) =
1

‖ bc,km ‖
‖ bc,km − E{hc,km (Hλ i )}‖ . (3.59)

Proposition 5 (Rate of convergence of the sequence {pHλ
}λ). Let λ i+1 and λ i be given values of λ in Cad,λ and let

pHλ
( . ; λ) be the pdf of Hλ defined by Eq. (3.13). For ‖ λ i+1 − λ i ‖ sufficiently small, we have

‖ pHλ i+1 ( . ; λ i+1) − pHλ i ( . ; λ
i) ‖ L1(Rν,R) ≤ ‖ λ

i+1 − λ i ‖
(
tr [Γ ′′(λ i)]

)1/2
+ o (‖ λ i+1 − λ i ‖) , (3.60)

in which [Γ ′′(λ i)] ∈ M+
nc

is defined by Eq. (3.20) for λ = λ i.

PROOF. (Proposition 5). In this proof, for simplifying the writing, λ i is simply written as λ. Proposition 1 shows
that Γ is twice differentiable in Cad,λ. For all η fixed in Rν, the Taylor expansion of λ i+1 7→ pHλ i+1 (η ; λ i+1) around λ,
truncated at the first order, is written as,

pHλ i+1 (η ; λ i+1) = pHλ
(η ; λ) + 〈∇λpHλ

(η ; λ) , λ i+1− λ 〉 + . . . (3.61)

Eq. (3.18) is written as c0(λ) = exp{〈λ , bc〉 − Γ(λ)〉} and is substituted in Eq. (3.13) (or equivalently, in Eq. (2.5)) of
pHλ

(η ; λ) yielding pHλ
(η ; λ) = ζ(η) exp{−Γ(λ) − 〈λ , hc(η) − bc〉}. The gradient with respect to λ can be written as

∇λpHλ
(η ; λ) = −

(
∇λΓ(λ) + hc(η) − bc) pHλ

(η ; λ) . (3.62)

Let us introduce the score variable

v(η ; λ) = ∇λ log pHλ
(η ; λ) = pHλ

(η ; λ)−1 ∇λpHλ
(η ; λ) , (3.63)

which can be rewritten, using Eq. (3.62), as v(η ; λ) = −
(
∇λΓ(λ) + hc(η) − bc) yielding with the use of Eq. (3.19),

v(η ; λ) = −
(
hc(η) − E{hc(Hλ)}

)
. (3.64)

Eq. (3.64) shows that E{‖ v(Hλ; λ) ‖2} = E
{
‖ hc(Hλ) − E{hc(Hλ)} ‖2

}
= tr [cov{hc(Hλ)}] and using Eq. (3.20) yields,

E{‖ v(Hλ; λ) ‖2} =

∫
Rν

‖ v(η; λ) ‖2 pHλ
(η ; λ) dη = tr [Γ ′′(λ)] . (3.65)
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Eq. (3.63) can be written as ∇λpHλ
(η ; λ) = pHλ

(η ; λ) v(η ; λ). Consequently,∫
Rν

| 〈 ∇λpHλ
(η ; λ) , λ i+1− λ 〉 | dη =

∫
Rν

| 〈v(η ; λ) , λ i+1− λ 〉 | pHλ
(η ; λ) dη

≤ ‖ λ i+1− λ ‖

∫
Rν

‖ v(η ; λ) ‖ pHλ
(η ; λ) dη ≤ ‖ λ i+1− λ ‖

(∫
Rν

pHλ
(η ; λ) dη

)1/2(∫
Rν

‖ v(η ; λ) ‖2 pHλ
(η ; λ) dη

)1/2

.

(3.66)

Since
∫

Rν pHλ
(η ; λ) dη = 1 and using Eq. (3.65), we obtain∫

Rν

| 〈 ∇λpHλ
(η ; λ) , λ i+1− λ 〉 | dη ≤

(
tr [Γ ′′(λ)]

)1/2
‖ λ i+1− λ ‖ . (3.67)

From Eq. (3.61), it can be deduced that
∫

Rν | pHλ i+1 (η ; λ i+1) − pHλ
(η ; λ) | dη ≤

∫
Rν | 〈 ∇λpHλ

(η ; λ) , λ i+1− λ 〉 | dη +

o (‖ λ i+1 − λ i ‖) that yields Eq. (3.60) by using Eq. (3.67).

4. A few numerical elements for implementation of the methodology

4.1. Choice of the integration scheme for solving the ISDE introduced in Propositions 3 and 4

As we have previously explained, for λ ∈ Cad,λ, the ISDE defined by Eqs. (3.44) to (3.46), must be solved for
t ∈ [0 , ts] (see Proposition 3-(e)) with the initial condition at t = 0 defined in Proposition 3-(a), in order to generate
the constrained learned set DHλ

= {η1
λ, . . . , η

N
λ } with N � Nd. It is assumed that N is written as N = Nd × nMC with

nMC � 1. Therefore, a discretization scheme [140, 141] must be used. The case of Hamiltonian dynamical systems has
been analyzed in [142] by using an implicit Euler scheme. The Störmer-Verlet scheme (see [143] for the deterministic
case and [144] for the stochastic case) is a very efficient scheme that allows for having a long-time energy conservation
for non-dissipative Hamiltonian dynamical systems. In [145], we have proposed to use an extension of the Störmer-
Verlet scheme for stochastic dissipative Hamiltonian systems, that we have also used in [146, 47, 103, 95].

4.2. Störmer-Verlet scheme and computation of the constrained learned setDHλ i

Let i be the index of the sequence {λ i, i = 0, 1, . . . , imax} of Lagrange multipliers computed using Eq. (3.56) with
λ 0 = 0nc . Let tm = m ∆t for m = 0, 1, . . . ,Ms (with Ms > 1 an integer) be the time sampling in which ts = Ms ∆t
(and thus tMs = ts). Let ∆Wwien

m+1 = Wwien(tm+1) −Wwien(tm) be the Gaussian, second-order, centered, Rν-valued random
variable such that E{∆Wwien

m+1 ⊗ ∆Wwien
m+1} = ∆t [Iν]. Let {θ`, ` = 1, . . . ,N} be N independent realizations in Θ. For

m = 0, 1, . . . ,Ms − 1, let ∆W`
m+1 = ∆Wwien

m+1(θ`) be the realization θ` of ∆Wwien
m+1. Following the choice of (u0, v0) defined

in Proposition 3-(a), let u1
0, . . . ,u

N
0 in Rν be such that for k = 1, . . . , nMC and for j = 1, . . . ,Nd, we take u`0 = η j

d with
` = j + (k − 1) × Nd. Let v1

0, . . . , v
N
0 in Rν be N independent realizations of the Rν-valued random variable VG also

defined in Proposition 3-(a). Note that the realizations ∆W`
m+1, u`0, and v`0, for ` = 1, . . . ,N are independent of {λ i}i.

For i ∈ {0, 1, . . . , imax} and for ` ∈ {1, . . . ,N}, we introduce the realizations Ui,`
m = UN

λ i (tm ; θ`) and Vi,`
m = VN

λ i (tm ; θ`). For
m ∈ {0, 1, . . . ,Ms−1}, the Störmer-Verlet scheme applied to realization θ` of Eqs. (3.44) to (3.46) yields the following
recurrence,

Ui,`
m+1/2 = Ui,`

m +
∆t
2

Vi,`
m , (4.1)

Vi,`
m+1 =

1 − γ
1 + γ

Vi,`
m +

∆t
1 + γ

L̂N
λ i−1 (Ui,`

m+1/2) +

√
f0

1 + γ
∆W`

m+1 , (4.2)

Ui,`
m+1 = Ui,`

m+1/2 +
∆t
2

Vi,`
m+1 , (4.3)

with the initial condition
Ui,`

0 = u`0 , Vi,`
0 = v`0 , (4.4)

17



in which γ = f0 ∆t/4 and where, using Eq. (3.43),

L̂N
λ i−1 (u) =

1
ζ(u)

∇uζ(u) − [∇u ĥN(u ; λ i−1)] λ i−1 (4.5)

The matrix [∇u ĥN(u ; λ i−1)] is given by Eq. (4.8), which depends on

DHλ i−1 = {η1
λ i−1 , . . . , η

N
λ i−1 } . (4.6)

It should be noted that, in Eq. (4.2), L̂N
λ i−1 has been used instead of L̂N

λ i because L̂N
λ i depends onDHλ i that is unknown,

recalling that the aim of the recurrence defined by Eqs. (4.1) to (4.4) is precisely to calculateDHλ i that is written as

DHλ i = {η1
λ i , . . . , η

N
λ i } , η`λ i = UN

λ i (ts ; θ`) = Ui,`
Ms
. (4.7)

4.3. Explicit expression of the gradient of the statistical surrogate model of hc

Using Definition 3, for fixed value of λ ∈ Cad,λ, the gradient [∇η ĥN(η ; λ)] ∈ Mν,nc at point η ∈ Rν of the statistical
surrogate model ĥN of hc can be written as

[∇η ĥN(η ; λ)] =

N∑
`=1

γ`λ ⊗ a`λ , γ`λ = ∇η

 βN
η (η`λ)∑N

`′=1 β
N
η (η`′λ )

 , (4.8)

in which a`λ = hc(η`λ) ∈ Rnc and where γ`λ ∈ Rν is explicitly calculated using Eqs. (3.28) and (3.29).

4.4. Summary of the complete algorithm

The algorithm for calculating λsol and DHc = {η1
c , . . . , η

N
c } with η`c = η`

λsol for ` = 1, . . . ,N is summarized in
Algorithm 1.

Algorithm 1 Algorithm for calculating λsol andDHc = {η1
c , . . . , η

N
c }.

1: Data:Nd,Dd = {η1
d, . . . , η

Nd
d }, N, imax, Ms, ts, ∆t, f0, γ = f0 ∆t/4

2: Init: ∆W`
m+1, ` ∈ {1, . . . ,N},m ∈ {1, . . . ,Ms − 1}, u`0 and v`0 for ` ∈ {1, . . . ,N}, λ 0 = 0nc

3: for i = 1 : imax do
4: for ` = 1 : N (loop in parallel computation) do
5: DHλ i = {η1

λ i , . . . , η
N
λ i } from Eq. (4.7), using Eqs. (4.1) to (4.4) andDHλ i−1 (DHλ 0 not used for i = 1)

6: end for
7: for ` = 1 : N (loop in parallel computation) do
8: hc(η`

λ i ), ` = 1, . . . ,N using the BVP
9: end for

10: ∇λΓ(λ i) and [Γ ′′(λ i)] using Eqs. (3.19) to (3.20) andDHλ i

11: err(i) using Eqs. (3.58) with (3.59)
12: λ i+1 = λ i − αrelax [Γ ′′(λ i)]−1 ∇λΓ(λ i) using Eq. (3.56) with a relaxation factor αrelax ∈]0 , 1]
13: λ i ← λ i+1

14: DHλ i−1 ← DHλ i

15: end for
16: λsol = λisol , isol = arg mini err(i) from Eq. (3.57)
17: DHc ← DHλsol
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5. Application to stochastic homogenization without scale separation

In this section, we consider the stochastic boundary value problem associated with the stochastic homogeniza-
tion of a random elastic medium without scale separation, which has been presented in Section 1. The physical
space R3 is referred to a Cartesian reference system whose the generic point is ξ = (ξ1, ξ2, ξ3). We consider the
stochastic homogenization of a heterogeneous linear elastic microstructure occupying the 3D bounded open domain
Ω =] 0 , 1 [×] 0 , 1 [×] 0 , 0.1 [⊂ R3 (square thick plate) with boundary ∂Ω. The homogenization method on Ω in the
one proposed in [147] that we have already used in [120, 122]. In this section, we use the convention for summation
over repeated Latin indices taking values in {1, 2, 3}.

5.1. Stochastic elliptic boundary value problem

For all m and r in {1, 2, 3} the unknown field is the R3-valued random field {Y(ξ) = (Y1(ξ),Y2(ξ),Y3(ξ)), ξ ∈ Ω}

defined on (Θ,T ,P), indexed by Ω, such that for i = 1, 2, 3, and almost surely,

−
∂

∂ξ j

(
Ci jpq(ξ) εpq(Ymr(ξ))

)
= 03 , ∀ξ ∈ Ω , (5.1)

Ymr(ξ) = ymr
0 , ∀ξ ∈ ∂Ω , (5.2)

in which the strain tensor is εpq(y) = (∂yp/∂ξq +∂yq/∂ξp)/2 for all y = (y1, y2, y3). For all ξ ∈ ∂Ω, ymr
0 = (ymr

0,1, y
mr
0,2, y

mr
0,3)

is defined by
ymr

0, j = (δ jm ξr + δ jr ξm)/2 , j ∈ {1, 2, 3} , (5.3)

in which δ jm is the Kronecker symbol. At mesoscale, the linear elastic heterogeneous medium is described by the
random apparent elasticity field {C(ξ), ξ ∈ R3}, which is a non-Gaussian fourth-order tensor-valued random field
C = {Ci jpq}i jpq with i, j, p, and q in {1, 2, 3}, defined on (Θ,T ,P). The stochastic homogenization consists, for i, j,
m, and r in {1, 2, 3}, in analyzing at macroscale the component Ceff

i jmr of the random effective/apparent elasticity tensor
{Ceff

i jmr}i jmr, which is defined by

Ceff
i jmr =

1
|Ω|

∫
Ω

Ci jpq(ξ) εpq(Ymr(ξ)) dξ , (5.4)

in which Ymr is the R3-valued random field that satisfies Eqs. (5.1) to (5.3) and where |Ω|=
∫

Ω
dξ. The random

effective/apparent elasticity tensor Ceff is symmetric and positive definite almost surely. If there was a scale separation,
then the statistical fluctuations of this tensor would be negligible.

5.2. Prior probability model of random field C

The prior probability model of C used for generating the training set is the one presented in [122, 148]. This is a
second-order, non-Gaussian, positive-definite fourth-order tensor-valued homogeneous random field, indexed by R3,
defined on (Θ,T ,P), with a spectral random measure. This random field is parameterized as

C(ξ) = c(G(ξ), z) , ξ ∈ Ω , (5.5)

in which {G(ξ), ξ ∈ R3} is a non-Gaussian second-order, homogeneous, R21-valued random field indexed by R3, de-
fined on (Θ,T ,P), with random spectral measure, where z = (z1, z2, z3) is the nominal value of a R3-valued control
parameter, and where c is a given mapping from R21 × R3 into the fourth-order tensor on R3.

(i) Isotropic nominal model at mesoscale. At mesoscale, the nominal model is a linear, elastic, homogeneous, isotropic
medium whose elasticity tensor C depends only on the Young modulus E = 1.7 × 1011 N/m2 and Poisson coefficient
νP = 0.24. The corresponding bulk modulus C bulk = E /(3(1 − 2ν)) and shear modulus C shear = E /(2(1 + ν)) are
1.08974 × 1011 N/m2 and 6.85484 × 1010 N/m2.

(ii) Anisotropic statistical fluctuations at mesoscale. The statistical fluctuations of the random medium are assumed to
be anisotropic, which means that, for all ξ fixed in R3, the random apparent elasticity tensor C(ξ) is a full anisotropic
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tensor. The hyperparameters that control the anisotropic statistical fluctuations of the random apparent elasticity field
(see [122]) are:
(1) the dispersion coefficient δC = 0.3 that controls the level of statistical fluctuations of the random medium.
(2) the spatial correlation lengths L c1, L c2, and L c3 (for directions ξ1, ξ2, and ξ3) of the random field {G(ξ), ξ ∈
R3} and the dispersion coefficient δ s = 0.1 that controls the level of uncertainties of its spectral measure (these
spectral-measure uncertainties will not be controlled, which means that δ s will not be a control parameter and its
value is fixed). As explained at the end of Section 1, three cases, SC1, SC2, and SC3, of the correlation lengths are
considered for analyzing the level of scale separation and are defined in Table 1. Taking into account the definition
of domain Ω and the values of the spatial correlation lengths, there will not have a scale separation and consequently,
the effective/apparent elasticity tensor will exhibit statistical fluctuations.

Table 1: Values of the spatial correlation lengths L c1, L c2, and L c3 for cases SC1, SC2, and SC3 of scale separation.

L c1 L c2 L c3
SC1 0.1 0.1 0.1
SC2 0.3 0.3 0.1
SC3 0.5 0.5 0.2

(iii) Nominal value z of the control parameter. It is defined by z1 = C bulk, z2 = C shear, and z3 = δC.

(iv) Random control parameter for the probabilistic learning inference. For estimating the posterior model using
the probabilistic learning inference methodology, in addition to the prior probability model of random field G, we
introduce a Rnw -valued random control parameter W = (W1, . . . ,Wnw ) defined on (Θ,T ,P) and independent of G such
that, nw = 3 and

W1 = log Cbulk , W2 = log Cshear , W3 = log δC , (5.6)

in which (a) Cbulk and Cshear are Gamma independent random variables (see [149]) whose mean values are the nominal
values C bulk and C shear previously defined and for which the coefficient of variation of Cbulk is chosen as δbulk = 0.5
yielding δshear = 0.25 (note that, with the model proposed in [149], δshear is deduced from δbulk and cannot arbitrarily be
chosen); (b) δC is chosen as a uniform random variable on [0.1 , 0.5] whose mean values is δC.

It should be noted that the statistical fluctuations of Cbulk, Cshear, and δC are chosen sufficiently large in order that the
range of fluctuations of the random effective/apparent elasticity tensor covers the experimental target (see Section 5.5)
in order to be able to improve the prior probabilistic model with the posterior probabilistic model by solving the
inverse statistical problem with the proposed probabilistic learning inference approach.

5.3. Solution of the stochastic BVP

Under the hypotheses introduced for constructing random field C, Proposition 5.1 of [148] proves that for 1 ≤ m ≤
r ≤ 3, the strong stochastic solution {Ymr(ξ), ξ ∈ Ω} of the weak formulation of the stochastic elliptic BVP defined by
Eqs. (5.1) to (5.3) exists, is unique, and is a second-order random field,

E{ ‖Ymr(ξ) ‖2} < +∞ , ∀ξ ∈ Ω . (5.7)

Due to Corollary 5.1 of [148] and its proof, the random effective/apparent elasticity tensor Ceff is a second-order
random variable, ∑

1≤i≤ j≤3

∑
1≤m≤r≤3

E{(Ceff
i jmr)

2} < +∞ . (5.8)
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5.4. Stochastic computational model and random effective/apparent elasticity matrix

The finite element method is used for discretizing the weak formulation of the stochastic BVP. The finite element
mesh of domain Ω is made up of 60 × 60 × 6 = 21 600 eight-nodes solid elements, 26 047 nodes, and 78 141 dofs
(25 926 Dirichlet conditions on ∂Ω and ny = 52 215 the remaining dofs). There are 23 integration points in each finite
element, which yields np = 172 800 integration points for the spatial discretization of the random fourth-order tensor-
valued elasticity field {C(ξ), ξ ∈ Ω}. The discretization of random field C is expressed as a function of a Rng -valued
random variable G corresponding to the spatial discretization of random field G with ng = 21 × np = 3 628 800. For
1 ≤ m ≤ r ≤ 3, let Ymr be the Rny -valued random variable of the free dofs (that corresponds to the dofs of the nodes
inside Ω of the finite element discretization of random field {Ymr(ξ), ξ ∈ Ω}). Therefore, the stochastic computational
model can be written as the Rny -valued stochastic equation,

N
mr(Ymr,G,W) = 0ny a.s. , (5.9)

which is a stochastic linear equation that can be rewritten as [amr(G,W)]Ymr
−bmr(G,W) = 0ny in which, for gd ∈ Rng

and wd ∈ Rnw , [amr(gd,wd)] is a matrix in M+
ny

(thus, invertible) and where bmr(gd,wd) is a vector in Rny , which
depends on the Dirichlet condition defined by Eq. (5.2). For 1 ≤ m ≤ r ≤ 3, the finite element discretization of the
right-hand side member of Eq. (5.4) yields the M+

6 -valued random effective/apparent elasticity matrix [Ceff] such that
[Ceff]ij = Ceff

i jmr in which the indices i = (i, j) with 1 ≤ i ≤ j ≤ 3 and j = (m, r) with 1 ≤ m ≤ r ≤ 3 are with values in
{1, . . . , 6}. This random matrix can be written as

[Ceff] = [O({Ymr, 1 ≤ m ≤ r ≤ 3},G,W)] , (5.10)

in which ({ymr, 1 ≤ m ≤ r ≤ 3}, g,w) 7→ [O({ymr, 1 ≤ m ≤ r ≤ 3}, g,w)] is a measurable mapping from R6×ny×Rng×Rnw

into M+
6 . Note that, for 1 ≤ m ≤ r ≤ 3, Ymr satisfying Eq. (5.9) corresponds to the strong stochastic solution of the

finite element discretization of the weak formulation of the stochastic BVP (see Section 5.3). Due to Eqs. (5.7) and
(5.8), we have,

E{ ‖Ymr
‖2} < +∞ , E{ ‖ [Ceff] ‖2F} < +∞ , (5.11)

which proves that Ymr and [Ceff] are second-order random variables.

5.5. Definition of the statistical moments and their targets

From Eq. (5.11), the M+
6 -valued random variable [Ceff] is of second-order. We can then define its first two moments.

(i) The first statistical moment of interest is the mean value [ Ceff] = E{ [Ceff] } ∈ M+
6 of random matrix [Ceff] while its

target counterpart is the given matrix [ Cexp] ∈ M+
6 . Let µexp = ‖ [ Cexp] ‖F be the Frobenius norm of [ Cexp]. Introducing

the subscript ”n” to designate a normalization, we define the normalized quantities with respect to µexp as,

[Ceff
n ] =

1
µexp

[Ceff] , [ Ceff
n ] =

1
µexp

[ Ceff] , [ Cexp
n ] =

1
µexp

[ Cexp] . (5.12)

The corresponding constraint equation will then be written as

E{ [Ceff
n ] } = [ Cexp

n ] . (5.13)

(ii) The second statistical moment of interest is the coefficient of dispersion δ eff of random matrix [Ceff] and its target
counterpart δ exp. Let ∆eff

2 be the positive-valued random variable defined by

∆eff
2 =

1
‖ [ Ceff] ‖2F

‖ [Ceff] − [ Ceff] ‖2F . (5.14)

Consequently, δ eff that is defined by δ eff =
(
E{ ‖ [Ceff] − [ Ceff] ‖2F/‖ [ Ceff] ‖2F }

)1/2
can be rewritten as

δ eff =

√
E{∆eff

2 } . (5.15)
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Defining µeff = ‖ [ Ceff] ‖F , the constraint equation that is defined by

δ eff = δ exp , (5.16)

can be rewritten, using Eqs. (5.12) to (5.15), as

E{ ‖ [Ceff
n ] − [ Ceff

n ] ‖2F } =

(
µeff

µexp
δ exp

)2

. (5.17)

while Eq. (5.14) yields

∆eff
2 =

(
µexp

µeff

)2

‖ [Ceff
n ] − [ Ceff

n ] ‖2F } . (5.18)

It should be noted that, if δ eff goes to zero, then the statistical fluctuations of [Ceff] goes to zero because, due to the
Tchebychev inequality, [Ceff] goes in probability to its mean value [ Ceff] (this would be the case of a scale separation).

(iii) As we have explained and as we will see in Sections 5.7 and 5.8, the constrained learned set is constructed by also
taking as a constraint the second-order moment of the normalized random residue of the stochastic PDE. On the other
hand, as shown by equations Eqs. (5.19) and (5.29), the spatial discretization G of the random field {G(ξ), ξ ∈ Ω}

is obviously a fundamental quantity that intervenes in the calculation of this normalized random residue during the
constrained learning process. Furthermore, it is essential that the mathematical properties of {C(ξ), ξ ∈ Ω} (random
field with values in the positive-definite symmetric fourth-order tensors, lower bound, statistical homogeneity, control
of the random spectral measure), defined by Eq. (5.5), remain verified. This implies strong mathematical properties
on the random field {G(ξ), ξ ∈ Ω}. This class of random fields with a random spectral measure, which was constructed
and analyzed in [148] and that we are using in this paper, already corresponds to a large class, given all the alge-
braic and probabilistic properties that this class must verify. The targets have been simulated by using the stochastic
computational model while keeping the same class of random fields for {C(ξ) ∈ Ω} but for which the values of its
hyperparameters are different of those used for the prior probabilistic model. It should be noted that changing the
class by keeping this type of algebraic representation would be very difficult. A way for performing an extension of
the class would then be to use a polynomial Chaos representations as proposed in [150, 139] to properly take into
account all the required properties. As the objective of this paper is not to build an even larger class for generating
the targets, we have preferred to keep the same class. Finally, note that this choice does not facilitate the analysis,
because the methodology and its proven mathematical properties are independent of the choice of the random fields
class provide that the class be correctly constructed for the stochastic elliptic operator. Nevertheless, the proximity
of the constructed posterior probability measure to the prior probability measure is certainly dependent on the chosen
class.

(iv) For the three considered cases of scale separation, the numerical values of µeff for the training set (and thus denoted
by µeff,d) and µexp for the target are given in Table 2.

Table 2: For cases SC1, SC2, and SC3, values of µeff,d and µexp.

L c1 L c2 L c3 µeff,d × 1011 µexp × 1011

SC1 0.1 0.1 0.1 4.2106 4.6317
SC2 0.3 0.3 0.1 4.1925 4.6549
SC3 0.5 0.5 0.2 4.1943 4.6706

5.6. Training set computed with the prior probability model and its normalization

The stochastic computational model defined in Section 5.4 is used for generating the training set related to the
random variable X = ( {Ymr, 1 ≤ m ≤ r ≤ 3},G,W) with values in Rnx = R6×ny × Rng × Rnw with nx = 6 ny + ng + nw =
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3 942 093. The Monte Carlo numerical simulation method is used with Nd = 50 independent realizations and the prior
probability model of G and W. We then obtain the training set {x j

d, j = 1, . . . ,Nd} with x j
d = ( {ymr, j

d , 1 ≤ m ≤ r ≤
3}, g j

d,w
j
d) in which ymr, j

d ∈ Rny is the solution (see Eq. (5.9)) of

N
mr(ymr, j

d , g j
d,w

j
d) = 0ny , (5.19)

that is to say of the linear equation [amr(g j
d,w

j
d)] ymr, j

d = bmr(g j
d,w

j
d) (see Section 5.4). The statistical moments defined

in Section 5.5 can then be computed using the Nd independent realizations { [Ceff, j
d ], j = 1, . . . ,Nd} of the M+

6 -valued
random matrix [Ceff

d ] defined by Eq. (5.10) (a subscript ”d” is introduced to designate the computation done with the
training set, based on the prior probability model). Since Nd � nx, the normalization of X is performed using the
principal component analysis as follows. Let x j

ctr = x j
d − x with x = (1/Nd)

∑Nd
j=1 x j

d ∈ Rnx . Let [xctr] = [x1
ctr . . . xNd

ctr ]
be the matrix in Mnx,Nd and let [Φ] [S ] [Ψ]T = [xctr] be the thin SVD [151] (economy size SVD) of matrix [xctr]. The
diagonal entries of diagonal matrix [S ] are the singular values S 1 ≥ . . . ≥ S Nd−1 > S Nd = 0 that are in decreasing
order and we have S Nd = 0. The matrix [Φ] is in Mnx,ν with ν = Nd − 1 and [Φ]T [Φ] = [Iν]. Then random vector X
can be written as

X = x + [Φ] [κ]1/2 H , (5.20)

in which [κ] is the diagonal matrix such that κα = [κ]αα = S 2
α/(Nd − 1), and where H is the Rν-valued random variable

whose Nd independent realizations are computed by

η j
d = [κ]−1/2 [Φ]T (x j

d − x) , j = 1, . . . ,Nd . (5.21)

Note that {κα}α are the eigenvalues of the covariance matrix of X estimated with {x1
d, . . . , x

Nd
d }. Random vector H is

then normalized. The empirical estimation of its mean value and its covariance matrix are given by Eq. (3.1) (centered
and identity matrix). From Eq. (5.20), it can be deduced that, for 1 ≤ m ≤ r ≤ 3, we have

Y
mr = ymr + [Φmr

y ] [κ]1/2 H , ymr ∈ Rny , [Φmr
y ] ∈ Mny,ν , (5.22)

G = g + [Φg] [κ]1/2 H , g ∈ Rng , [Φg] ∈ Mng,ν , (5.23)

W = w + [Φw] [κ]1/2 H , w ∈ Rnw , [Φw] ∈ Mnw,ν . (5.24)

The training setDd introduced in Definition 1 is written as

Dd = {η1
d, . . . , η

Nd
d } , η j

d ∈ Rν . (5.25)

Figure 1 displays the distribution of the eigenvalues κα for the 3 cases, SC1, SC2, and SC3 of scale separation,
computed with the training set and the prior probability model.

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5
10

5

SC1

SC2

SC3

Figure 1: For cases, SC1, SC2, and SC3, distribution of the eigenvalues κα.
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5.7. Definition of the random normalized residue induced by the use of the constrained learned set

The construction of the random normalized residue is based on a similar approach of the one that has been used
in [96]. Let us consider the constrained learned set DHλ i = {η1

λ i , . . . , η
N
λ i } generated with Algorithm 1 for iteration i.

Using Eqs. (5.22) to (5.24), for ` ∈ {1, . . . ,N}, the corresponding realizations ymr,`
λ i ∈ Rny for 1 ≤ m ≤ r ≤ 3, g`

λ i ∈ Rng ,
and w`

λ i ∈ Rnw , are computed by

ymr,`
λ i = ymr + [Φmr

y ] [κ]1/2 η`λ i , (5.26)

g`λ i = g + [Φg] [κ]1/2 η`λ i , (5.27)

w`
λ i = w + [Φw] [κ]1/2 η`λ i . (5.28)

For 1 ≤ m ≤ r ≤ 3 and for ` ∈ {1, . . . ,N} the realization Rmr,`
λ i of the Rny -valued random residue are computed using

Eq. (5.9) and Eqs. (5.26) to (5.28), Rmr,`
λ i = Nmr(ymr,`

λ i , g`
λ i ,w`

λ i ). We define the realization ρ̂`
λ i of the random residue

ρ̂λ i by

ρ̂`λ i =
1√
6 ny

 ∑
1≤m≤r≤3

‖R
mr,`
λ i ‖

2

1/2

. (5.29)

Finally, we define the realization ρ`
λ i of the random normalized residue ρλ i by

ρ`λ i =
ρ̂`
λ i

ρ̂
0

, (5.30)

in which ρ̂
0

is the estimation of E{ ρλ1 } using the constrained learned set DHλ1 of the first iteration i = 1. Since for
i = 1, λ i−1 = λ 0 = 0nc , ρλ1 is the random normalized residue of the constrained learned set without taking into account
the constraints and we have, for i = 1, E{ ρλ1 } = E{ ρ̂λ1 }/ρ̂

0
= 1.

5.8. Defining function hc related to the constraints and defining the targets represented by bc

We define the function η 7→ hc(η) : Rν → Rnc related to the constraints (see Eq. (2.2)) and we define the target
represented by vector bc given in Rnc . Three constraints are introduced, the second-order moment of the random
normalized residue (see Section 5.7) and two statistical moments: the normalized mean value of the random effec-
tive/apparent elasticity matrix [Ceff] and its coefficient of dispersion (see Section 5.5). Below we consider iteration i,
and then λ1, . . . , λ i−1, λ i are known.

(i) The random normalized residue ρλ i whose realizations are defined by Eq. (5.30), is an implicit function of Hλ i ,
that we can rewrite as ρλ i (Hλ i ). The second-order moment of the normalized random residue is then written as
E{(ρλ i (Hλ i ))2} yielding hc

ρ(Hλ i ) = (ρλ i (Hλ i ))2. Therefore, using the notation of Eq. (3.55), we have E{ hc
ρ(Hλ i )} = bc

ρ,
in which we choose bc

ρ = 1 (this value is close to the value of the second-order moment of the random normalized
residue without constraint) and where η 7→ hc

ρ(η) : Rν → R is a positive-valued implicit function.

(ii) The second constraint is given by Eq. (5.13). Transforming the upper triangular matrix of [Ceff
n ] ∈ M+

6 in a R21-
vector, Eq. (5.13) is rewritten, similarly to Eq. (3.55), as E{ hc

C(Hλ i )} = bc
C, in which η 7→ hc

C(η) : Rν → R21 is
an implicit function and where bc

C ∈ R21 is the reshaping of the upper triangular matrix of [ Cexp
n ] ∈ M+

6 defined by
Eq. (5.12).

(iii) The last constraint is given by Eq. (5.17) that is rewritten, using Eq. (3.55), as E{ hc
δ(Hλ i )} = bc

δ, in which
bc
δ = (µeff δ

exp/µexp)2 and where η 7→ hc
δ(η) : Rν → R is a positive-valued implicit function.

(iv) Finally, for given λ, and in particular for λ = λsol yielding Hc = Hλ, the constraint is defined by Eq. (3.55) with

η 7→ hc(η) = (hc
ρ(η), hc

C(η), hc
δ(η)) : Rν → Rnc = R × R21 × R , (5.31)
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bc = (bc
ρ, b

c
C, b

c
δ) ∈ Rnc = R × R21 × R , (5.32)

in which nc = 23. Using the mathematical developments presented in [148], it can be verified that hc satisfies
Hypothesis 1. We will also assume that Eq. (2.6) holds. Indeed, verifying a priori that the components of hc are
algebraically independent is very difficult for the considered problem. This hypothesis will indirectly be verified by
checking that the solution λsol is well identified (see Proposition 1-(c) and Section 5.9).

5.9. Error function and convergence analysis of the sequence of MCMC generator

The error function is defined by Eqs. (3.58) and (3.59). The constraint on the random normalized residue (see
Section 5.8-(i)) is introduced with bc

ρ = 1 in order to avoid the increasing of E{ hc
ρ(Hc)} with respect to E{ hc

ρ(Hλ1 )}
(first iteration without constraints effects). This constraint, which is taken into account in Algorithm 1 for computing
{λi, i = 1, . . . , imax}, is not taken into account in the error function (see Eq. (3.58)) to identify the index isol (see
Eq. (3.57)) of the optimal value λsol = λisol of λi. Consequently, Eq. (3.58) is written, for i ∈ {1, . . . , imax},

err(i) =

√
(errC(i) / errC(1))2 + (errδ(i) / errδ(1))2 , (5.33)

errC(i) = ‖ bc
C − E{ hc

C(Hλ i )} ‖ / ‖ bc
C‖ , errδ(i) = | bc

δ − E{ hc
δ(Hλ i )} | / bc

δ . (5.34)

For the three cases, SC1, SC2,and SC3, Fig. 2 displays the error function i 7→ err(i) defined by Eq. (5.33), computed
with the constrained learned set DHλ i for N = 1000, 2000, 6000, and 10 000. It can be seen that convergence is
reached for N = 10 000 and that, at convergence, function i 7→ err(i) is relatively smooth (that is not the case for
N = 1000). These graphs show a good illustration of the convergence of the sequence in N of the MCMC generator
using the statistical surrogate model ĥN of hc (see Proposition 4). When the convergence is reached for N = 10 000,
Table 3 gives the value of isol such that λsol = λ isol (see Eq. (3.57)) and the corresponding value err(isol) of the error.
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Figure 2: For scale separation, SC1 (left figure), SC2 (central figure), and SC3 (right figure), graph of error function i 7→ err(i) for N = 1000, 2000,
6000, and 10 000.

Table 3: For cases SC1, SC2, and SC3 of scale separation, value err(isol) of the error function for the solution λsol = λisol computed with the
constrained learned set for N = 10 000.

Case SC1 SC2 SC3
imax 30 30 20
isol 27 30 17

err(isol) 0.5924 0.5495 0.5364
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5.10. Residue and posterior second-order moments of the random effective/apparent elasticity matrix estimated with
the constrained learned set

The posterior statistics of the random normalized residue and the random effective/apparent elasticity matrix are
estimated with the constrained learned setDHc = DH

λsol as a function of N for the three cases, SC1, SC2, and SC3.
(i) The posterior second-order moment of the random normalized residue is E{ ρ2

c} and compared to 1, see Section 5.8-
(i).
(ii) The posterior mean value is [ Ceff

c ] = E{[Ceff
c ]} and is compared to [ Cexp] (see Eq. (5.13) for the normalized version).

We also consider the Frobenius norm ‖ [ Ceff
c ] ‖F that is compared to ‖ [ Cexp] ‖F .

(iii) For the posterior dispersion coefficient of [Ceff
c ], instead of comparing δ eff

c to δ exp (see Eq. (5.16)), we use the
maximum likelihood consisting in comparing δ eff

c,ML to δ exp in which

δ eff
c,ML =

√
δ eff

2,ML
, δ eff

2,ML = max
δ2

p∆eff
2,C

(δ2) , (5.35)

where p∆eff
2,C

is the pdf of the random variable ∆eff
2,c defined by Eq. (5.18), at convergence λ = λsol (introduction of

subscript ”c”). For the three cases, SC1, SC2, and SC3, Fig. 3 displays the graph of the posterior pdf δ2 7→ p∆eff
2,C

(δ2)
of random variable ∆eff

2,c, estimated with the constrained learned set for N = 10 000 and its prior counterpart estimated
with the training set (constructed using the prior probability model). Fig. 4 (left figure) displays the graph of the Frobe-
nius norm N 7→ ‖ [ Ceff

c (N)] ‖F of the posterior mean value [ Ceff
c (N)] = E{ [Ceff

c (N)]} of the random effective/apparent
elasticity matrix [Ceff

c (N)] as a function of N and estimated using the constrained learned set, while Fig. 4 (right fig-
ure) shows the graph of the maximum likelihood N 7→ δ eff

c,ML(N) of the coefficient of dispersion of [Ceff
c (N)] defined by

Eq. (5.35). Fig. 5 shows the graph of the posterior pdf r 7→ pρc (r) of the random normalized residue ρc, estimated
with the constrained learned set for N = 10 000 and its counterpart for the estimation performed with the training set
(constructed using the prior probability model).
(iv) For cases SC1, SC2, and SC3, Table 4 gives the posterior statistics computed with the constrained learned set
for N = 10 000 (subscript ”c”), the prior statistics computed with the training set (subscript ”d”), and the targets
(superscript ”exp”), for the second-order moment of the random normalized residue, for the Frobenius norm of the
mean value of the random effective/apparent elasticity matrix, and for the coefficient of dispersion of this random
matrix. For the same three cases, Table 5 gives the values of the entries of the mean matrices [ Ceff

d ] computed with
the training set, [ Ceff

c ] computed with the constrained learned set for N = 10 000, and [ Cexp] for the targets. Note that
entries (4, 5), (4, 6), and (5, 6), which are small with respect to the other entries, are not given.

0 0.2 0.4 0.6

0

2

4

6

8

10

0 0.2 0.4 0.6

0

2

4

6

8

10

0 0.2 0.4 0.6

0

2

4

6

8

10

Figure 3: For scale separation, SC1 (left figure), SC2 (central figure), and SC3 (right figure), graph of the posterior pdf of random variable ∆eff
2,c

(thick blue line) estimated with the constrained learned set for N = 10 000 and its prior counterpart (thin black line) corresponding to an estimation
with the training set (constructed using the prior probability model).

5.11. Posterior probability model of parameters
The prior probability model concerns the Rng -valued random variable G that corresponds to the spatial discretiza-

tion of the R21-valued random field G, and the R3-valued random variable W that is related (see Eq. (5.6)) to the
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Figure 5: For scale separation, SC1 (left figure), SC2 (central figure), and SC3 (right figure), graph of the posterior pdf of random normalized
residue ρc (solid line) estimated with the constrained learned set for N = 10 000 and its prior counterpart (dashed line) corresponding to an
estimation with the training set (constructed using the prior probability model).

random bulk modulus Cbulk and the random shear modulus Cshear, which control the elasticity tensor of the mean
isotropic model at mesoscale, and to the dispersion coefficient δC that controls the level of anisotropic statistical fluc-
tuations of the random apparent elasticity field at mesoscale (see Section 5.2). For cases SC1, SC2, and SC3, Fig. 6
displays the posterior pdf c 7→ pCbulk (c) of Cbulk (left figure), c 7→ pCshear (c) of Cshear (central figure), and c 7→ pδC (c)
of δC (right figure), estimated with the constrained learned set for N = 10 000, and their prior counterparts estimated
with the training set constructed using the prior probability model. It should be noted that for each one of the random
variables Cbulk, Cshear, and δC, its prior probability model is the same for the three cases and consequently, does not
depend on the case contrary to its posterior probability model that depends on it.

5.12. Discussion about the presented results

(i) The results obtained with the posterior model (see Tables 4 and 5) show that the constrained learned set significantly
improves the prior probability model used for generating the training set. The comparison of the posterior statistics
with the targets are good.
(ii) As explained in Section 5.9 the residue constraint is taken into account for the generation of the constrained learned
set, but does not intervene in the estimation of the optimal value λsol of λ using the error function. Nevertheless and
as expected, Fig. 5 and Table 4 show that the residue is controlled and stayed small with respect to the reference (the
training) for the optimal solution.
(iii) The convergence of the sequence of MCMC generators with respect to the number of points generated in the
constrained learned set is good as shown by Figs. 2 and 4 in accordance to Proposition 4.
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Table 4: For cases SC1, SC2, and SC3, posterior statistics computed with the constrained learned set for N = 10 000 (subscript ”c”), prior statistics
(subscript ”d”) computed with the training set, and targets.

SC1 SC2 SC3
E{ρ2

c} 1.2938 1.2687 1.2413
bc
ρ 1 1 1

‖ [ Ceff
d ] ‖F×1011 4.2106 4.1925 4.1943

‖ [ Ceff
c ] ‖F×1011 4.6294 4.6923 4.6816

‖ [ Cexp] ‖F×1011 4.6317 4.6549 4.6706
δ eff

d,ML
0.2257 0.2469 0.2701

δ eff
c,ML 0.1329 0.1476 0.1671
δ exp 0.0946 0.1374 0.1825

Table 5: For cases SC1, SC2, and SC3, values of [ Ceff
d ]i j computed with the training set, [ Ceff

c ]i j computed with the constrained learned set for
N = 10 000, and [ Cexp]i j for the targets.

SC1 SC2 SC3
Entries of

(6 × 6) [ Ceff
d ] [ Ceff

c ] [ Cexp] [ Ceff
d ] [ Ceff

c ] [ Cexp] [ Ceff
d ] [ Ceff

c ] [ Cexp]
matrix
(1, 1) 2.0904 2.2600 2.2652 2.0792 2.2914 2.2810 2.0465 2.2751 2.2946
(1, 2) 0.7427 0.8809 0.8753 0.7269 0.8982 0.8809 0.7140 0.8874 0.8824
(1, 3) 0.7458 0.8804 0.8745 0.7324 0.8983 0.8800 0.7381 0.8999 0.8826
(2, 2) 2.0832 2.2603 2.2668 2.0786 2.2946 2.2846 2.0917 2.2830 2.2822
(2, 3) 0.7451 0.8802 0.8734 0.7486 0.8950 0.8754 0.7471 0.9045 0.8808
(3, 3) 2.0839 2.2647 2.2680 2.0777 2.2841 2.2697 2.1038 2.2928 2.2812
(4, 4) 0.6702 0.6909 0.6958 0.6785 0.6985 0.7003 0.6835 0.6976 0.7027
(5, 5) 0.6714 0.6903 0.6949 0.6732 0.6950 0.6960 0.6726 0.6872 0.6980
(6, 6) 0.6713 0.6924 0.6960 0.6727 0.6958 0.6970 0.6749 0.6933 0.6991

(iv) The dispersion of the target, measured by the value of δ exp, is smaller than the one of the prior probability model
(with which the training set has been constructed). So, it was expected that the posterior random effective/apparent
elasticity matrix be less dispersed than the one exhibited by the prior probability model. The results confirm this point
as it can be seen in Tables 4 and 5 and also in Figs. 3 and 6.
(v) Comment (ii) is extended as follows. It can be seen that the target is ”well” reached for the mean value of the
random effective/apparent elasticity matrix (see Table 5), while it is ”less well” reached for its coefficient of dispersion
computed using the maximum likelihood. This can be explained by the fact that the second-order moment E{ρ2

c} of the
random normalized residue of the equation is kept small during the probabilistic learning of the posterior probability
measure, what prevents the dispersion coefficient from reaching its target. We have carried out numerical tests without
imposing the constraint related to E{ρ2

c}, which should stay close to 1. We have observed that the dispersion coefficient
”reasonably” reached its target but that E{ρ2

c} did not stay close to 1 but took on significant values greater than 1.
There is indeed a choice of objective between (1) correctly satisfying the constraint on the dispersion coefficient
while degrading the value of E{ρ2

c} or (2) preserving a small value of E{ρ2
c} to the detriment of perfectly reaching

the target for the dispersion coefficient. We have chosen to present the compromise consisting in taking into account
the constraint on the residue during the probabilistic learning process, but the error function that we have chosen to
identify the optimal value λsol of λ does not take into account the constraint on the residue.
(vi) A last comment concerns the effects of no scale separation. As expected, for the three cases SC1, SC2, and
SC3, Table 4 shows that the coefficient of dispersion is significant and increases with the spatial correlation lengths of
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Figure 6: Graphs of the posterior pdf c 7→ pCbulk (c) (left figure), c 7→ pCshear (c) (central figure), and δ 7→ pδC (δ) (right figure), estimated with the
constrained learned set for N = 10 000, for cases, SC1 (thin solid line), SC2 (med solid line), and SC3 (thick solid line), and the corresponding
prior pdf estimated with the training set constructed using the prior probability model (dashed line).

the random apparent elasticity field at mesoscale, inducing statistical fluctuations of the effective/apparent elasticity
tensor at macroscale. It should be noted that, even for the case SC1, for which homogenization in the plane of the
plate (domain Ω) is guaranteed (the correlation lengths LC1 and LC2 being much lower than 1), this is not the case for
the correlation length LC3 that is equal to the thickness of the plate. Consequently, there is no homogenization at the
macroscopic scale and the effective/apparent elasticity tensor remains random and is not deterministic.

6. Conclusions

In this paper, we have presented a general methodology to estimate a posterior probability model for a stochastic
boundary value problem from a prior probability model. The given targets are statistical moments for which the
underlying realizations are not available. Under these conditions, it has been proposed to use the Kullback-Leibler
divergence minimum principle for estimating the posterior probability measure, given the prior probability measure
and the constraints related to the targets of the statistical moments. We have proposed the construction of a statistical
surrogate model of the implicit mapping that represents the constraints. The constrained learned set, which defines
the posterior model, is constructed using only a training set constituted of a small number of points. A mathematical
analysis of the proposed methodology has been presented. We have defined the required mathematical hypotheses,
which have allowed us to prove the convergence of introduced approximations. We have also given all the necessary
numerical elements, which facilitate the implementation of the methodology in a parallel computing framework.

The application presented to illustrate the proposed theory is also, as such, a contribution to the three-dimensional
stochastic homogenization of heterogeneous linear elastic media in the case of a non-separation of the microscale
and macroscale, that is to say, when there are significant statistical fluctuations in the effective/apparent elasticity
tensor at macroscale. The prior stochastic model of the elasticity tensor field at the mesoscopic scale is an advanced
model, recently proposed, which takes into account uncertainties on its spectral measure. In addition to the statistical
moments of the random effective/apparent elasticity tensor, for the construction of the posterior probability measure
by probabilistic learning inference, the second-order moment of the random normalized residue of the stochastic
partial differential equation has been added as a constraint. This constraint guarantees that the algorithm seeks to
bring the statistical moments closer to their targets while preserving a small residue. The results obtained are those
which were expected and give a very good illustration of the theory developed for a non-trivial application.
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