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A B S T R A C T
The accelerating depletion of fossil fuel reserves and the growing awareness about climate issues
have put forth a plethora of interesting approaches that attempt to tackle the crucial problem of energy
saving, specifically in buildings, known as a major energy consumer. Existing approaches tackle the
problem of energy efficiency in buildings by proposing model-based approaches such as knowledge
models (thermal, CO2, cost, etc.) and regressive models. However, different factors make the building
of knowledge models particularly challenging, including the very complicated interaction between
several heterogeneous phenomena that can impact the use of energy in buildings like the buildings
envelope characteristics, their positions, the weather conditions, but also the occupant’s behavior is a
critical issue in the process. More Recently, techniques from machine learning (ML) to support energy
saving in buildings gained increased interest. They learn from collected historical data a model that
forecasts the future energy behavior of the building. Although occupant’s behavior to save energy in
the building is far from trivial, has received less attention from these studies. This paper takes on
this challenge and proposes an energy management system based on historical data thanks to case-
based reasoning approach. We guide the occupant by proposing an action plan (opening/closing of
doors/windows, etc.) to help him in the process of improving his indoor comfort (thermal, air quality,
luminosity, etc.) without using more energy if not using less. To encourage the occupant to trust
the inference mechanism learnt and cooperate with the energy management system, this approach
generates explanations arguing the proposed action plan. We assess the performance of our energy
management technique on real-word data collected from a research building at the University of
Grenoble, France.

1. Introduction
Global electricity use is projected to increase by 50 %

by 2045, says a report published by the BNEF1 organization
[66]. To meet this demand, global electricity production is
growing steadily, reaching 1012 watt\hour in 2013, three
times more than in 1973. In turn, this production is respon-
sible for about 43% (a yearly increase of 1.1% during the
past decade) of the world’s carbon dioxide CO2 emissions,
making it by far the largest contributor to the generation of
greenhouse gases.

Buildings are the most energy-intensive end-use sector,
far ahead of transport, industry, and agriculture. It represents
46% and 92% of final energy consumption in France [69] and
Hong Kong [92] respectively, making this sector in France
the source of more than 25% of greenhouse gas emissions.
With a building park that includes more than 37 million
dwellings in France, it is obvious that the measures to be
taken as a priority to improve energy consumption focus on
buildings.

Numerous studies have investigated the factors that in-
fluence the building energy efficiency. Based on a study
conducted by the International Energy Agency [103], six
parameters can affect the building energy behavior: climate,
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building envelope characteristics, energy management sys-
tem (EMS) characteristics, operation and maintenance of
buildings, occupant behavior, and quality of inside design.

One of the main challenges to saving energy in buildings
is to reconcile the energy sobriety with the comfort of
their occupants. On the policy front, various measures have
been adopted to tackle this issue. For instance, governments
around the world have set in motion significant reforms
involving different measures such as setting energy standards
for new buildings or proposing sales contracts with attractive
electricity sales rates for off-peak consumption. The purpose
is to meet the occupant’s needs by providing the best possible
thermal comfort, air quality (CO2 concentration), and cost
while cutting down on the energy consumed in the buildings.

The Majority of the above initiatives are primarily con-
cerned with addressing the physical envelope of the building
and rarely take into account the role of the occupant in the
energy-saving process, albeit an essential one, especially
since, paradoxically, the occupants often remain inside these
buildings about 90% of the time [94]. The behavior of the
occupant and its influence on the energy efficiency of the
building are extensively studied in the literature (e.g., see
[79, 57, 18, 77] ) from different aspects: psychological,
cultural, economic, physiological, and time. These studies
are unanimously in agreement that the behavior of occupants
has a considerable bearing on the buildings energy use.
Therefore, guiding the occupant by intelligently utilizing his
actions can bring an enhancement of his thermal and air
quality comfort whilst consuming equivalent energy if not
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lesser. It is, therefore, now necessary to turn to strategies
involving the behavior of the occupant in the improvement
of the energy saving of a building.

As buildings are erratic consumers of energy [104],
control-based approach is a key strategy to attend occupants
to elaborate an optimized energy consumption plan while re-
specting their comfort. Traditionally, smart thermostats are
used. The latter only might show the actual temperature and
may provide basic energy use recommendations. Moreover,
the cooperation and interaction between occupants and these
systems are limited to define only the setpoints and some
states.

Another control-based strategy is the rule-based ap-
proach [48, 4] which considers "If-Then" rules to guide the
occupant’s actions to reduce energy consumption. The in-
teraction between the system and the occupant is both more
advanced and more flexible than with intelligent thermostats
since it allows to set various data on the environment status
and customize some action plans. However, these systems
do not allow to simulate the environment or to assess its
evolution. For example, "If-Then" systems cannot predict
how changes in weather conditions might impact the comfort
of the occupant.

To reach a global optimization of the energy perfor-
mance of buildings, the building control process must be
optimized. It is required to look for new methods to estimate
the weather, the occupancy behavior and to improve the
energy consumption without jeopardizing the occupant’s
comfort. An approach deeply investigated in the research
literature and largely applied in the professional sector ( e.g.,
[8, 9, 44, 88], involves developing a knowledge model of the
considered building and applying optimization methods to
identify a combination of actions (windows/doors opening,
heating setpoints, etc.) leading to the desired comfort level,
whilst minimizing the required energy costs. Alternative
approaches frequently adopted in the modeling of buildings
use techniques from artificial intelligence such as genetic
algorithms, Bayesian networks, and Artificial Neural Net-
work [59, 19, 61]. Many considerations affect the relevance
of a modeling approach to a specific setting, for instance
the aim of the modeling, the data availability, and the level
and nature of the user’s interaction with the system. While
Knowledge modeling approaches certainly provide benefits
in precision, are challenging to be specified, and remain an
open scientific issue [9]. They require a considerable time
to design, their implementation requests a significant effort,
and have difficulty addressing the wide range of causal rela-
tionships influencing energy behavior in buildings. Knowl-
edge models must be fitted to each energy area, and be
readjusted or rebuilt whenever the environment changes. For
example, installing an additional cooling system or heater
would necessitate changing or even redesigning the model.
The coming paragraph details the problems that hamper the
deployment of those approaches.

1.1. Knowledge model challenges
Modeling a knowledge model is a challenging process

given the character of the data (volume, variety, velocity,
etc.) as well as the causal connections that may exist between
these data.
Data properties

A building is a complex system composed of a vari-
ety of interlocking phenomena which influence the energy
behavior of the building. For formalizing the model of the
system, each phenomenon is modeled using variable that can
be qualitative or quantitative (continuous, discrete).

Based on the literature [26, 98], the overall building
energy efficiency can be impacted by different factors which
can be grouped into four categories including building con-
ception, building materials and techniques of construction,
environmental features, and occupant behavior. Doors and
windows positions, orientation of the building, and aperture-
to-wall ratio are examples of the design parameters. Quality
of materials used to insulate walls and ceilings, and glazing
thermal performance are mentioned as the second category.
As environment parameters, weather characteristics, and
position of the building about the site surroundings, can
be cited. Occupant behavior is defined by the presence and
the interaction of the occupant regarding his environment
by performing (or not) actions to change the indoor envi-
ronment. As actions, windows/doors opening/closing and
adjusting the HVAC system settings can be mentioned.
Data interactions

The process of determining the links, specifically the
causal ones, between the features is a key stage in the
development of a knowledge system, as the efficiency of the
latter is closely tied to the accuracy of this stage. Although
considerable research exists on causality (cf. [39, 93] for an
overview), this matter is only at its beginning because ex-
isting approaches are challenged by the ongoing exponential
complexity of the systems to be modeled and, consequently,
are restricted to fairly simple applications using a limited
number of variables. An extensive comparative study of
different approaches to inferring causality is presented in
[55], which highlighted that neither of these techniques is
meaningfully more efficient than the others.
Cognitive aspect

In the theory control literature, the qualifier Human-in-
the-loop is commonly employed to depict the implication
of the human in systems2 control. A human could take an
active role in controlling the system when the latter is fully
or partially controlled by the human. The human is referred
to be passive in the loop when he is supervised, if not outright
controlled, by the system.

A common finding from psychological studies on theory
control is that humans need to feel in control over the system
[56, 89]. In EMS, the desire of the occupant to control should

2The term system is used in the broad sense to include physical systems
such as machines or software applications.
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be considered as a component of his comfort [12]. Indeed,
it has been established in the literature that people have a
higher tolerance to variations in indoor thermal conditions
if they can exercise some control over them (for example,
occupants like to activate blinds by themselves and not by
actuators) [16]. But also, for the same sensation of discom-
fort, we can observe different reactions [17].

However, modelling occupant behavior is not at all
straightforward and still a very challenging task. The existing
approaches still fall short, they are either very general or
very specific for a particular scenario. Inadequacies due to
the stochastic nature and randomness of people, humans are
diverse in their knowledge and abilities, and finally, besides
the rationality of decision making, a person’s behavior has
emotional aspects as well [51].
Interaction hurdle

The occupant is incapable of correctly interpreting and
understating the functioning of his environment, owing to
the complex nature of the various phenomena and the dif-
ferent dynamic variables that occur in the building. The
occupant is aware of his intents and comfort needs, but he
lacks the knowledge to achieve them. Whilst the system has
the expertise to optimize the various aims, it is not often
conscious of the occupant’s desires. A major difficulty of
the EMS is its opaqueness, i.e., its lack of transparency in
providing clear reasoning and persuasive justification for its
advice to occupants. The study reported in [34] concluded
that unless there is confidence in the recommendations,
the actions and the outcomes generated by the EMS as an
intelligent advisor, its adoption and therefore the expected
results will be seriously restricted.

The lack of interaction between the EMS and occupant
could lead to a conflict situation since the occupant fails
to interpret the behavior of the system and even seems
to be battling against his house to meet his comfort. A
representative scenario is when an occupant shuts the shades
to dim the lights to take a nap. Consequently, the EMS turns
on the lights automatically as the space is not well lit, which
can be uncomfortable. In addition, shortly afterward, the
EMS can pull back the shades to warm the indoor of the
house as the sun appears on a day of winter.

It is not possible for the occupant nor for the EMS
to reach alone and independently of each other the best
compromise between comfort and energy efficiency. Both
the EMS and occupant have a part of the total knowledge
needed to meet the objectives. Consequently, close cooper-
ation between the EMS and occupant is essential as their
knowledge is complementary. A well-designed EMS should
provide a mechanism to encourage the occupant to cooperate
with it.
1.2. Contribution

As outlined in the studies [72, 9], identifying the set of
variables that model the phenomena characterizing a com-
plex system is a daunting and expensive task. Therefore, this
paper develops an alternative methodology for the design of

an EMS using a data-based model instead of a knowledge-
based model. The proposed framework does not require any
expert knowledge particular to each building but draws its
knowledge and expertise from the past data describing the
various phenomena (energy behavior) specific to each build-
ing as well as from the actions of its occupants. Our approach
is based on assumption that historical data holds hidden
information about the environment variables as well as about
the occupant’s behavior and provides information on their
interactions with each other. Thus, that inferred information
could be utilized to develop a model to forecast building
behavior from environment features and occupant’s behavior
thanks to the case-based reasoning (CBR) approach.

Trust depends on the perception of the user of the com-
petence of the system [70]. Several studies [102, 41, 33]
have established that the capacity of the system to explain
recommendations is an influential factor in user’s confi-
dence and acceptance. As such, an EMS that can motivate
its actions with explanations seems competent and thereby
enhance the confidence of the occupant in its accuracy.
To foster cooperation between EMS and occupants, a new
explanation method combining case-based reasoning and
Bayesian networks is developed.

In summary, our main contributions included the follow-
ing:

• we investigate the use of a data-driven approach apply-
ing the CBR method to improve the comfort of build-
ing occupants while optimizing energy expenditures.

• we propose new methods for features weighting and
similarity estimation.

• we present a simple and effective approach to the
adaptation process.

• We design three algorithms to explain the reasoning
process adopted by the system to advise the occupant.

• we gauge the effectiveness of the CBR framework
through an extensive experimental evaluation using
real data.

The remainder of this paper is structured as follow-
ing. Section 2, briefly provides the relevant background
for understanding the proposed approach. Related works
are reviewed in the Section 3. Afterwards, a description of
our contribution is given in Sections 4 and 5. Section 6,
reports and comments on experiments with realistic data.
In closing, Section 7 concludes and suggests some future
research guidelines.

2. Review of related literature
We survey the pertinent literature for two main aspects

of our research. First, we give a review of related notions
in the area of CBR. Second, we review the literature on the
explanation of intelligence systems.
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2.1. Case-based reasoning
Reasoning from cases is a reasoning mode that consists

of solving a new problem by matching one or more similar
problems already solved whilst fitting their solutions if any
[54]. It can be used either for problem-solving or decision-
explanation [53].

The interest in CBR is pushing the emergence of its
application for the diagnostic, maintenance, conception, en-
gineering, etc. in various domains such as law [82], medicine
[96], banking and insurance [60], etc.

Broadly, the existing literature adopts the original model
first proposed in [2] that is, the 4R model: Recover, Reuse,
Revise, and Retain. We argue that the standard 4Rs scheme
has to be completed with a 5th step, the elaboration of the
problem, and assume a holistic perspective for the develop-
ment of the CBR system. Indeed, considering the different
CBR steps independently of each other is usually not very
effective, as they are complementary steps to achieve a
common objective.
Elaboration

The purpose of this step is to query the system envi-
ronment to collect the information required to structure the
problem in a format exploitable by the other stages. The case
structure is freely defined and is heavily dependent on the
application domain. However, whatever the domain, certain
information is compulsory. A classical composition consists
minimally of two elements:

• the description of the problem which defines the cur-
rent state of the environment and describes the request
to be solved.

• the description of the retained solution, if any, at the
end of the problem-solving process.

Retrieve
In this stage one seeks out one or more past solved cases

having problems estimated to be similar to the problem to be
solved. The objective is to identify first and foremost similar
cases, but above all cases that can be easily adapted [91].
The major issue at this stage is to identify the similarity.
A detailed overview of the existing approaches to similarity
estimation is given in [52, 63].

The different features of the system do not have the same
influence on the solution of the problem, to model their
importance to each other, the features are weighted in the
similarity estimation. Indeed, in [101], it has been shown that
assigning weights to features may significantly enhance the
precision of conventional techniques such as kNN and SVM.
Reuse

Ideally, in the reuse step, cases with problems match-
ing the problem to be solved are found and consequently,
their solutions are applied unmodified for solving the target
problem. Unfortunately, the new problem seldom perfectly
fit the existing ones. It is, therefore, necessary to adapt
the solutions of the latter to consider their differences to
the target problem. While many approaches are reported

to adapt, these can be categorized into two broad classes
according to the component of the retrieved cases targeted by
the modification. Whereas in structural adaptation one acts
directly on the solutions of the retrieved cases, derivational
adaptation takes up the different phases of reasoning leading
to the solutions of the similar cases..
Revise

During the revision stage, the proposed solution is re-
vised to check its relevance to resolve of the target case. The
revision process is a way to learn new knowledge following
the passing or failing of the reuse process. The review
process is performed either by simulation or by soliciting
directly domain expert\user to judge the solution.
Retain:

The retention step is the opportunity to enrich the case
base with the new solving experience. Besides the knowl-
edge of the novel case, the knowledge of the other steps and
notably that of adaptation and similarity could be improved.
2.2. Explanations

Whereas research on explanations is not recent (the
first explanation systems date back to rule-based systems
in the 1970s), in last few years, the role of explanations in
the design of machine learning models has received surge
interest both from technical and ethical perspectives [3].

It is necessary to point out that the notion of explanation
is always confused with that of justification. The former is a
form of reasoning that aims at providing an integer report on
the process that led to the recommendation to make the user
understand the causes that allowed to generate the sugges-
tion, whereas justification is the system’s capacity to assist
the user in the comprehension of reasons for recommending
a particular action or item[71]. That is to say, justification
consists of giving reasons why a recommendation is deemed
to be appropriate, without attempting to describe the actual
process of reasoning that led to this decision.

The principal objective of the explanation is to motivate
the behavior of a model in a human-friendly way [99, 49].
There are several possible intents that a system can formulate
in providing explanatory information for a recommendation.
Table 1 states the results of an in-depth analysis study [97]
on explanation objectives. It is interesting to point out that is
very challenging to find a trade-off between all these objec-
tives as certain of these aims are conflicting. For instance,
persuasiveness could be antagonistic to the effectiveness.
Therefore, few works in the literature consider more than
one of these goals, and the bulk of the existing works seek to
optimize a single objective. Based on a broad-based litera-
ture review [73], the most prominent explanation objective is
transparency, which is considered a pivotal factor in earning
the trust of users [1].

Several taxonomies have been suggested in the litera-
ture to categorize explanation techniques. They may vary
considerably according to the criteria used and techniques’
characteristics. A detailed overview of these taxonomies is
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Table 1
Explanation objectives [97].

Objective De�nition

Trust Boost user's trust in the system

Satisfaction Improve ease of use or enjoyment

E�ciency Assist users with decision-making faster

E�ectiveness Assist users in making a good decisions

Scrutability Give users the ability to report to the
system that it is wrong

Transparency Clarify the workings of the system

Persuasiveness Persuade users to test or purchase

provided in [15]. For instance, Based on how recommenda-
tions are communicated to the recipient, explanations can be
grouped into three categories as:

• attribution (feature)-based explanations: explain the
model in terms of the relevance of the input features by
calculating the explanatory power of the input feature
on each output feature.

• example-based explanations: refer to historical situa-
tions in which the recommendation turned out to be
true or false. An illustrative example of such explana-
tion is: the outside temperature is currently 21°, and it
is advised to open the window for 45 minutes at 2 pm.
Before yesterday, the situation was similar, it was 22°
and the same advice found to be correct.

• rule-based explanations: these methods target to de-
scribe the reasoning of a model in simplified or
human-understandable rules, such as "If-Then-Else"
rules or logical rules. In practice, this is the most used
technique as far as it is easier to understand by humans
[27], as they tend to analyze events based on a cause-
effect approach[78].

While several techniques have been explored to gener-
ate explanations, the criteria for choosing the appropriate
approach of explanation for a specific domain in a given
situation are still quite unclear. Research in the assessment
of explanation approaches is very active, however to date,
there is no consensus on evaluation metrics. Authors in
[105], present an excellent overview of existing efforts in the
literature to evaluate machine learning explanations’ quality.

3. Related work
To position our research, this section sheds light on

existing frameworks. For convenience, it follows the same
outline as the previous section. First, we discuss some case-
based EMS. Then, we present frameworks considered as
references in the field of systems explanation.
3.1. Machine learning-based EMS

The conception of energy management systems is ex-
tensively investigated in the literature. The goal here is far

from being an exhaustive review of the existing literature.
Attempts in this regard are given in [65, 67]. Authors in
[8] propose a set of criteria to be fulfilled to assist in the
effortless design of energy monitoring and control systems
in buildings. They evaluate a few EMS against these criteria.
The study [25] gives a structured review of the existing
research on energy management systems according to a
machine learning outlook by classifying them into two cat-
egories. Firstly, the occupant-oriented approach consists of
occupancy identification, analysis of activities, and predic-
tion of preferences and behavior. Secondly, the appliance-
and energy-oriented approach involves the profiling of de-
vices, detection of anomalies, and monitoring of energy.

Artificial Neural Networks (ANN) with various network
architectures are broadly applied to forecast building energy
consumption [62, 95], heating and cooling loads [75, 47, 90],
control of HVAC Systems [85, 46], energy efficiency [14]
and comfort enhancing [24, 76].

Undoubtedly, ANNs provide a valuable tool for energy
behavior modeling in the building. However, the perfor-
mance of ANN models is highly conditioned on the quantity
and the quality of the data on which ANNs are trained.
Indeed, results from different researchers [40, 13, 20, 6]
show that ANNs require an appropriate quantity of input
samples during the training phase to achieve a suitable
precision. Otherwise, ANNs require an appropriate design
of the structure of the network and a careful tuning of their
different hyper-parameters for training. In the current state
of research, they are done in an ad-hoc fashion by testing
several types of architecture and different parameters to find
the most efficient configuration. Finally, a major drawback
of these approaches is their unawareness of physical laws. It
is quite possible to generate results that are in contradiction
with their physical natures, for example, a negative CO2concentration or a humidity level that exceeds 100%.

An alternative approach widely adopted in the literature
consists of using CBR for predicting the energy behavior
of building. Thereafter some existing material is discussed
that we found relevant to the current research, i.e. using
CBR to enhance the energy performance of buildings while
respecting the comfort of the occupants.

The application of CBR in the study of the energy
behavior of buildings was mainly focused on the forecast
of electricity use. In alignment with existing studies [86,
80, 45], The authors in [21] and [28] describe two closely
approaches to predicting electricity consumption in build-
ings using the CBR. They propose to apply the Analytical
Hierarchy Processing (AHP) method to structure the prob-
lem to be solved into a hierarchy of objectives and then a
pairwise influence comparison matrix is performed by the
expert opinions to determine the weight of each variable
on the global objective. The similarity between the cases is
estimated by computing a similarity distance based on the
cosine metric. The two algorithms Kmeans and KNN are
combined to retrieve similar cases. The adaptation process is
assumed to be an optimization problem which is addressed
by the particle swarm optimization (PSO) method [50]. The
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revision process involves the Support Vector Regression
model combined with a threshold to improve the solution
proposed in the adaptation step. However, as discussed in the
introduction, even with high expertise knowledge, it is not
straightforward to determine the features modelling a build-
ing energy behavior, and harder still to draw a comparison
between these features.

Other research, such as [36], tackles the issue of energy
performance by better monitoring the HVAC system avoid-
ing abrupt changes, as this would drastically increase the
energy consumption. To remedy the inefficient piloting of
HVAC systems, the authors propose a framework relying on
a multi-agent system which learns the social behavior of the
occupant and the building’s energy consumption thanks to
a CBR approach. The latter is used to estimate the social
activities of each employee in the Building’s offices (arrival
time, lunchtime, leaving time). To minimize the harsh shifts
in temperature (temperature change by several degrees in a
short period), an optimization algorithm is used to adjust
the indoor temperature and turn on/off the air conditioning
system. The algorithm is based on the employees’ schedules
and different variables that can affect the indoor tempera-
ture. However, this category of approaches considers only a
very limited set of variables that can influence the energy
behavior of buildings. Furthermore, it does not take into
account the weight of each variable nor the impact of each of
them compared to other variables. Finally, this approach pro-
vides no mechanism for capturing the occupant’s feedback.
The only possible interaction between the occupant and the
system is limited to the occupant’s preferred temperature
setting.

Another direction of research is focused on the com-
bination of several approaches to increase the efficiency
of the proposed approaches. This is the case of the study
[43] where the authors proposed a CBR-based model to
control the electricity consumption in school buildings. The
precision of the model is enhanced by combining ANN,
genetic algorithm and multiple regression analysis (MRA).
Particularly, a genetic algorithm is used to look for similar
cases. MRA and ANN techniques are used to bound the
range of possible values for the predicted solution.
3.2. Explanation

Recently, explanation research has experienced a surge
of interest, after slacking off after the explosion of ex-
planation research in expert-based systems during the past
decades. This resurgence is driven by the craze for artificial
intelligence methods and fostered by the rapid development
of machine learning techniques and the capabilities of com-
puting machines.

Although the wealth of literature on the matter, the EMS
explanation variant of the intelligent systems explanation
problem has attracted very limited consideration so far.
Failing this type of research and for the sake of brevity,
we review in this section only frameworks that are model
agnostic, i.e., techniques that have no prior knowledge of the
model structure (consider the model to explain as a black

box) and thus they are generic enough to be applied to any
machine learning model.

LIME (Local Interpretable Model-Agnostic Explana-
tions) framework [81] provides a model-independent method
for explaining machine learning models. The overall con-
cept is to generate a local substitution model driven by
interpretable data. The local substitution model is locally
equivalent to the model to be explained, which is often com-
plicated. Local modeling is supported by easy-to-interpret
models such as SVM and decision trees. The local model
is trained on a sample of data randomly chosen from the
training dataset and weighted based on the distance from the
data to be explained. The data features are filtered to retain
only the most significant ones.

In [29], the authors draw on LIME to introduce a data-
driven model to explain how the EMS make decisions in
forecasting the coefficient of performance (COP) of HVAC
system in buildings. Specifically, they use five approaches to
locally model the data, namely: generalized linear models,
SVM, ANN, extreme gradient boosting trees, and random
forests. The former is applied to grasp the linear relations
among the local data. The remaining techniques are used
to model more complex and non-linear ones. Each item in
the surrogate model is assigned a weight that corresponds
to its similarity with the item to be explained. The more
similar an item is to the item to be explained, the more
interesting it is to generate local explanations. The similarity
is calculated using the Gower’s metric [38]. Although the
philosophy of providing a framework independent of the
model to be explained is very practical since it facilitates
the task of the designer of machine learning algorithms, the
LIMA framework suffers from an important shortcoming,
namely, its inconsistency, i.e., the same forecasted result
could have various explanations. This is the result of the
random selection of the neighborhood when generating the
local model. This lack of robustness is highlighted in the
study presented in [5] and confirmed by another study of
uncertainty in [37].

Other plot-based methods such as Individual Condi-
tional Expectations (ICE) [35] and Partial Dependence Plot
(PDP) [32], allow inspecting the relationship between an
explanatory variable (or even two) and the phenomenon to
be explained for which a prediction is calculated. The pro-
cedure for ICE consists in plot the curves of the prediction
corresponding to the variation of the value of the explanatory
variable to be inspected (so that it takes all possible values)
for each item in the database. The PDP plot is simply the
average of the items plots for all values of the explanatory
variable. These methods are easy to implement and offer
an intuitive and causal interpretation of the model (if the
explanatory variable changes for this value, the impact will
be visible on the graph). However, correlations between
variables can lead to the creation of incoherent situations
(e.g., in the case where the explanatory variables are height
and weight of a person, a situation with height = 2 m and
weight = 5 kg is very likely). As such, these methods are
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quite far from the requirements of an explanatory model of
an EMS (several highly correlated explanatory variables).

Recently, authors in [83] proposed the Shapley Additive
exPlanations (SHAP) method which slightly extends the
LIME model by borrowing the notion of Shapley values [87]
from game theory. For a given item, the Shapley value of an
explanatory variable (or of several variables) represents its
contribution to the difference between the value predicted
by the model and the average of the predictions of all the
items. However, like the ICE and PDP methods, SHAP could
lead to inconsistent situations because of the correlations
between the variables. Moreover, the contributions’ calcu-
lation, if exhaustive, can be very time-consuming.

4. Proposed solution
This research seeks to investigate quantitatively and

qualitatively the feasibility of using CBR approach to en-
hance occupant comfort while minimizing energy consump-
tion in buildings. To meet this goal, the following desiderata
outline the properties deemed essential for an effective
system.
Desideratum 1 (data model). Proposed approach should
be based on a "data model" which is a conceptual repre-
sentation of the existing relations among the data extracted
from the sensors measurements and does not need the use of
a physical building model.

Desideratum 2 (flexibility). The system should be easily
adaptable to the needs and comfort requirements of the
occupant, e.g., the occupant is looking for thermal comfort,
air quality, sound comfort, or a combination of some or all
of these criteria.

Desideratum 3 (cooperation). Cooperating of the occu-
pant with the EMS by accepting the proposed action plans
to change his behavior to more responsible ones.

4.1. Architecture overview
Our working assumption that will drive our approach

states that:
Hypothesis 1. Performing the same actions on two days
with the same context generates the same effects, and there-
fore the occupant attains a similar level of satisfaction.

Another hypothesis that we consider in this research,
especially to satisfy Desideratum 3, suggests that:
Hypothesis 2. Giving the occupant transparent informa-
tion about the reasoning process of the EMS through an
explanation mechanism could improve the occupant’s trust
in the recommendations provided by the EMS.

Looking from an overall perspective, we look for among
the historical days having the same context as the day to
predict, the day having the best performance (this notion
is developed in Section 4.6) and propose its actions to the
occupant.

To estimate the weight of the variables, historical days
are initially classified into similar days, i.e. those which have
similar contexts and identical actions and therefore have the
same effects constitute a unique group. For instance, turning
on the heating with the window open does not produce the
same effect with the window closed. Among the action plans
of days similar to the day to be predicted the action plan that
earlier yielded the best effects is advised to the occupant.
These actions are also exploited to learn a Bayesian network
describing the causal relations in the neighboring context to
generate causal explanations of the system’s reasoning.

More concretely, we have developed a five-stage ap-
proach as depicted in Figure 1:

1. gathering homogeneous variables (having the same
type and the same physical magnitude) and standard-
ize3 them.

2. a genetic algorithm approach is applied to calculating
the weights of the variables.

3. finding days with similar context variables as the day
to be predicted.

4. extracting the best schedule of actions to present to the
occupant.

5. generating and presenting explanations that corre-
spond to the recommended action plan.

4.2. Case structure
This research presents a finer classification of variables

involved in building modeling. The different variables are
grouped into three categories, based on the causal relations
among the phenomena they model:

• context variables: describe the uncontrollable phe-
nomena of the environment. They are the causing of
other phenomena. For instance, the number of oc-
cupants and the meteorological conditions (humidity,
precipitation, sunlight, wind direction and speed, etc.).

• action variables: represent phenomena as causes of
other phenomena but which can be monitored by
the occupant to regulate the energy consumption or
the comfort. For instance, the door opening and the
switching of the air conditioning system on/off.

• effect variables: model the phenomena representing
the consequences of the application of the actions to
the contexts. For instance, indoor temperature, noise
level, and the recommended actions number.

Each historical day𝐷 corresponds to one case𝐶 which is
described by a triplet (𝑝𝐷, 𝑠𝐷, 𝑠𝑡𝐷), where 𝑝𝐷 is the problem
part, 𝑠𝐷 is the solution part, and 𝑠𝑡𝐷 the environment state.

• the problem part describes non-controllable environ-
mental features for day 𝐷, it is defined by a set of
𝑘 descriptors representing the 𝑘 variables 𝒞𝐷

𝑖 of the
context of day 𝐷. So, 𝑝𝐷 = {𝒞𝐷

𝑖 }𝑖∈{1,...,𝑘}.
3The terms "normalization" and "standardization" are used in the same

sense.
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Figure 1: An overview of the EMS architecture

• the solution part is represented by the set of 𝑙 descrip-
tors describing the 𝑙 variables 𝒜𝐷

𝑖 of the actions of the
day 𝐷. Thus, 𝑠𝐷 = {𝒜𝐷}𝑖∈{1,...,𝑙}.

• the environment state post the running of the solution
is described by the part 𝑠𝑡𝐷 comprising 𝑚 elements
corresponding to the variables ℰ𝐷

𝑖 of the effects of the
day 𝐷, 𝑠𝑡𝐷 = {ℰ𝐷}𝑖∈{1,...,𝑚}.

Note that the descriptors describing the features of the
context, action, and effect are time-series data since the data
collected are sequences of values evolving over time. The
time frame chosen to sample the data does not impact the
applicability of the approach.

Before discussing our methodology for similar days ex-
tracting, let stop our attention on the notion of the compari-
son between days.
Definition 1 (Days comparison). The comparison between
two days consists of comparing all or a type of variables
that model days. In context-based comparison, for instance,
the comparison consists of computing the distance between
vectors representing each context variable.

4.3. Normalizing data
Incompatibility of measuring units and magnitudes be-

tween variables may bias the results, it is, therefore, neces-
sary to adjust them according to transformation functions to
have a comparable impact.

The proposed approach is in two phases. the first one is a
discretization phase whose goal is to eliminate the noise due
to the measurement sensors. The second one is to rescale
features values to the same range to correctly interpret their
effects.

This study defines a sensitive threshold assigned to each
variable according to expert knowledge as a tool to discretize
the features.
Definition 2 (Sensitive distance). It reflects the sensitivity
level of human perception to the changes in values of a
variable.

For instance, according to physical findings, any change in
CO2 concentration below 100 ppm is not perceptible to the
occupant. Indeed, fresh air contains 400 ppm of CO2 on
average and the occupant generates 4000 ppm of CO2 when
exhaling. Meanwhile, a temperature variation of less than 2
°c is a change that is not felt by the occupant.

The discretization formula is described as follows:
𝑁𝑒𝑤(𝑉 ) = 𝑉

𝑠𝑉
, with 𝑠𝑉 - sensitive distance of feature V.

According to the expert knowledge, the sensitive distance for
some variables is given by:

• CO2 concentration: 400 ppm,
• temeprature: 2 °c,
• wind speed: 2 m/s.
Thereafter, a linear transformation on the data is carried

out thanks to Min-Max normalization method. Suppose,
𝑉𝑚𝑖𝑛 and 𝑉𝑚𝑎𝑥 are the minimal and maximal values of
variable 𝑉 , the normalization function matches a value 𝑉 𝑡

𝐷
of 𝑉 to 𝑉 ′𝑡

𝐷 in the range [0, 1] by evaluating the formula (1).

𝑉
′𝑡
𝐷 =

𝑉 𝑡
𝐷 − 𝑉𝑚𝑖𝑛

𝑉𝑚𝑎𝑥 − 𝑉𝑚𝑖𝑛
(1)

With 𝑉 𝑡
𝐷 - the value of variable 𝑉 of day 𝐷 at time 𝑡.

4.4. Features weighting
The weighting of context and action features is done

to reflect the extent to which these features are important
in generating effects. The overall goal is to approach the
optimal level of influence of each feature. To do this, if
an action or context feature is more significant for effects,
it would be assigned a relatively high weight compared to
other features, knowing that while a couple of days are
within a great context-action distance 𝐷𝑖𝑠𝑡𝐶𝐴 (cf. Equation
2), they should be within a great effect distance 𝐷𝑖𝑠𝑡𝐸 (cf.
Equation 3) and conversely. It is imperative to introduce
the context-action distance in the calculation of the weights
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of context and action variables because the impact of the
latter is not completely isolated from each other. There are
situations where the influence of a variable is correlated to
other variables. For example, the sunshine in a room does not
only depend on the state of the weather (absence of storms)
but also on the position of the blinds (open or not). That is
why one has to consider this distance to estimate the impact
of the features between each other.

More specifically, we provide an approach using a ge-
netic algorithm to approximate features weights and fulfill
the identified constraints. The pseudocode corresponding is
given in Algorithm 1.

1. create an initial random number of vectors of weight
𝑤𝑖 for context and action variables. Each context and
action weight variable is represented by a unique value
in the vector𝑤𝑖, such that the size of the vector is equal
to the total number of context and action variables.

2. cluster the days, which are close, using a k-means
clustering approach based on the weighted context-
action distance defined in equation (2).

3. the optimization problem is to solve the objective
function, which corresponds to the optimization of
two criteria: minimizing the number of clusters to
ensure the variety of actions in each cluster (to be able
to propose at the end a pertinent set of actions to the
user for the current day) and reducing the average of
the distance defined in equation (4) within the effects
in each cluster to meet our starting hypothesis (see
Hypothesis 1).

4. generation of new individuals 𝑤𝑖+1 from 𝑤𝑖 by apply-
ing crossover and mutation operators and back to step
2 until the convergence criteria are met.
The algorithm terminates either if the total of the
generations in the population reaches a given value
without fitness enhancement, or when a maximum
number of generations has been attained,

𝐷𝑖𝑠𝑡𝐶𝐴(𝐷′, 𝐷′′) = (
𝑛𝐶
∑

𝑖=1
𝑤𝑉𝐶 ∗ (𝑉 𝐷′

𝐶 − 𝑉 𝐷′′

𝐶 )2+

𝑛𝐴
∑

𝑖=1
𝑤𝑉𝐴 ∗ (𝑉 𝐷′

𝐴 − 𝑉 𝐷′′

𝐴 )2)
1
2

(2)

With 𝑤𝑉𝐶 , 𝑤𝑉𝐴 - the weight of context 𝑉 𝐷′

𝐶 and action
𝑉 𝐷′

𝐴 features respectively of day 𝐷′, 𝑛𝐶 - number of context
variables, 𝑛𝐴 - number of action variables.

𝐷𝑖𝑠𝑡𝐸(𝐷′, 𝐷′′) = (
𝑛
∑

𝑖=1
(𝑉 𝐷′

𝐸 − 𝑉 𝐷′′

𝐸 )2)
1
2 (3)

With 𝑉 𝐷′

𝐸 - the effect variable of day 𝐷′.

𝐷𝑖𝑠𝑡𝑤𝑐 ,𝑤𝐴
= 1

𝑛
(

∑

𝐶𝑖∈𝐶𝑤𝐶 ,𝑤𝐴

∑

𝐷′,𝐷′′∈𝐶𝑖
𝐷𝑖𝑠𝑡𝐸(𝐷′, 𝐷′′)
|

|

𝐶𝑖
|

|

) (4)

With 𝑛 - number of clusters, 𝐷′, 𝐷′′ - cluster members, |
|

𝐶𝑖
|

|cardinality of cluster 𝐶𝑖.

Algorithm 1: Pseudocode of genetic algorithm for
features weighting

// Get All variables from the base of cases

Input: 𝐴𝑙𝑙𝑉 𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 = {𝜁,Λ, 𝜉}
Output: 𝑤, Weights of context and action variables

// Generate an initial Population of 𝑛 vectors

𝑤0 of size |𝜁 | + |Λ|
1 Initialize(𝑤0)
2 𝑤 ← 𝑤0
3 Function Reproduce(𝑤):
4 𝑆𝑒𝑙𝑊 ← 𝑆𝑒𝑙𝑒𝑐𝑡(𝑛) // Selection of n

chromosomes for reproduction into New

population using Roulette wheel

5 while |𝑁𝑒𝑤𝑊 | < |𝑤| do
// From 𝑆𝑒𝑙𝑊

6 Select 2 chromosomes, 𝑤1 and 𝑤2
7 NewW ← CrossOver(𝑤1, 𝑤2)
8 end while
9 𝑤 ← 𝑁𝑒𝑤𝑊

10 return 𝑤
11 Function Evaluation(𝑤, 𝑙𝑎𝑏𝑒𝑙𝑠):

// Calculate the fitness score

12 𝐹 𝑖𝑡𝑛𝑒𝑠𝑠 ← 1
𝐷𝑖𝑠𝑡𝑊𝐶 ,𝑊𝐴+0.1

// 𝐷𝑖𝑠𝑡𝑊𝐶 ,𝑊𝐴

defined in equation (4)
13 return Fitnesss,|labels|
14 while not termination () do
15 for 𝑖 ← 1 to 𝑛 do
16 Calculate 𝐷𝑖𝑠𝑡𝐶𝐴(𝑤𝑖, 𝜁 ,Λ)
17 𝐿𝑎𝑏𝑒𝑙𝑠 ← 𝑘𝑚𝑒𝑎𝑛𝑠(𝐷𝑖𝑠𝑡𝐶𝐴)
18 𝑠𝑐𝑜𝑟𝑒[𝑤𝑖] ←Evaluate(𝑤𝑖, 𝐿𝑎𝑏𝑒𝑙𝑠)
19 end for
20 𝑤 ← Reproduce(𝑤)
21 𝑤 ← Mutate(𝑤) // Choose randomly 2 position

x1, x2 on each 𝑤𝑖: swap(x1,x2)

22

23 end while
24 return 𝑤

4.5. Retrieving similar days
Once the weights of action and context variables are de-

termined, days having a similar context to the one forecasted
can be extracted. The similarity estimation is done using
the context variables exclusively as the action variables are
not available (that is what we want to determine) and, con-
sequently, effect variables are either unknown. The unique
data at disposal are the context features (based on weather
predictions and planned occupancies) and these are used to
compare context variables between two days by calculating
context distance through the formula (5).

𝐷𝑖𝑠𝑡𝐶 (𝐷′, 𝐷′′) = (
𝑛
∑

𝑖=1
(𝑤𝑉𝐶 ∗ 𝑉 𝐷′

𝐶 −𝑤𝑉𝐶 ∗ 𝑉 𝐷′′

𝐶 )2)
1
2 (5)

With 𝑤𝑉𝐶 - the weight of context variable 𝑉𝐶 , 𝑉 𝐷′

𝐶 - the
context variable 𝑉𝐶 of day 𝐷′.
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To determine the days with similar context to the day
to be predicted, the kNN algorithm is used to evaluate the
similarity according to the distance defined in the equation
(5). The challenge at this stage is how to define the criterion
for determining the distance beyond which the days are not
considered neighbors. Indeed, if the context distance is far
too high, it could result in some selected days which are not
similar. On the other hand, if context distance is too low,
there might be some similar days which are not selected, and
therefore, the variety of the actions set might not be sufficient
to recommend actions to the occupants.

To address this issue, the notion of sensitive distance
introduced in Section 4.3 is used again. This is a value
defined by experts in the domain (physical rule), above
which the difference between the effect variable values will
not be perceived by the occupant.
Definition 3. Two days are similar based on their effects if
the difference between the values of each effect variable does
not exceed the corresponding sensible distance.

For instance, in the case of the effect variables temper-
ature and CO2 concentration, according to definition 3, two
days are similar based on their effects if:

• the maximum difference in indoor CO2 concentration
should be less than 400 ppm,

• the maximum difference in indoor temperature should
be less than 2 °c.

The target is to identify the clusters of days with the
same context while respecting the sensitive distance for the
effect variables. From the context distance and the physical
rules, it is, therefore, possible to set a metric to determine
the threshold context distance ⊤𝐶 below which the days are
considered similar.
𝐷𝑖𝑠𝑡𝐶 (𝐷′, 𝐷′′) ≤ ⊤𝑐 ⇒ similarity of 𝐷′, 𝐷′′ according to

sensitive distance.
(6)

However, once again, it is not possible to exactly define
the ⊤𝐶 which satisfies the previous condition. The reason is
that the number of neighboring days, and thus potentially the
context distance, that verify the similarity based on physical
rules (Equation (6)) varies from day to day in the base of
historical days. So, if ⊤𝐶 is set too low, likely, some similar
days meeting the condition will not be chosen (recall). On
the other hand, when ⊤𝐶 is set too high, the result may
include irrelevant days (precision). Figure 2 illustrates this
challenge.

To find the best trade-off of precision and maximizing
the number of similar days based on physical rules, a method
of classification using the F1-measure metric is applied. To
calculate the F1-measure defined in Equation (7), each pair
of days is labeled according to the ⊤𝐶 and the physical rules.
Each element of the set of labels is defined by the equation
(8).

The threshold ⊤𝐶 retained is the one that maximises
the F1-measure on the set of labeled days as shown in
formula (9).

𝐹1−𝑚𝑒𝑎𝑠𝑢𝑟𝑒(⊤𝑖
𝐶 ,𝓁

𝑖) = 2
Precision−1 + Recall−1 (7)

Whith 𝓁𝑖 - the set of labeled days corresponding to ⊤𝑖
𝐶 .

⊤𝐶 = argmax
⊤𝑖
𝐶

(𝐹1−𝑚𝑒𝑎𝑠𝑢𝑟𝑒(⊤𝑖
𝐶 ,𝓁

𝑖)) (9)

4.6. Getting the best action schedule
Assuming our starting hypothesis, the principle of the

search for the best action plan to improve the occupant’s
comfort consists in identifying, among all the days having
the same context as the day to be predicted, the day𝐷𝑏𝑒𝑠𝑡 that
provides the best performance. The actions Λ𝑏𝑒𝑠𝑡 performed
on this day are extracted and recommended to the occupant.

Comparing the performances of two days 𝐷′ and 𝐷′′

consists in comparing the effects 𝜉′ of applying the actions
Λ′ to the context 𝜁 ′ of the day 𝐷′ with the 𝜉′ obtained
by applying the actions Λ′′ to the context 𝜁 ′′ of the day
𝐷′′. However, it does not make much sense to compare a
pair of effect values. For example, the comparison between
two indoor temperatures at a given time does not give any
indication of the occupant’s satisfaction level following this
temperature change. To address the issue, we introduce the
notion of occupant’s satisfaction.
Definition 4 (Satisfaction). Satisfaction refers to the eval-
uative judgment that the occupant makes about the effects of
the application of an action plan according to the adequacy
perceived between the desired effects and the real effects
obtained.

Different criteria can be considered to model the satisfac-
tion such as indoor temperature, air quality, and noise level.
The acceptability levels of each criterion are determined by
a domain expert.

In the following, two criteria are introduced to exemplar
the measure of the occupant’s satisfaction Υ, thermal and
air quality comfort. These indices are calculated based on
the recommended values cited in the standards [30, 11] for
thermal comfort level and in [10, 31] for indoor air quality.
More precisely:

• satisfaction based on temperature: a thermal comfort
level is judged as acceptable for temperatures between
18°c and 26 °c. The occupant is considered fully satis-
fied for temperatures ranging from 21 °c to 23 °c. To
simplify the calculation, we compute dissatisfaction
instead of satisfaction.
The formula to calculate the thermal dissatisfaction
Ῡ𝑖
𝑡(𝑡) at the i-th hour is given in equiation (10) that
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Figure 2: Challenge of ⊤𝐶 distance

∀𝓁′ ∈ ℒ ,∀𝐷,𝐷′ ∈ 𝐶𝐵,𝓁′ (𝐷,𝐷′ ) =
{

1 if 𝑇 𝐷
𝑖𝑛 − 𝑇 𝐷′

𝑖𝑛 < 2 ∧ 𝐶𝑂𝐷
2 − 𝐶𝑂𝐷′

2 < 400
0 otherwise.

(8)

With ℒ - the set of labels, 𝐶𝐵 - the case base, 𝑇 𝐷
𝑖𝑛 - the indoor temperature of day 𝐷, 𝐶𝑂𝐷

2 - the indoor CO2 concentration of
day 𝐷.

is represented graphically in the Figure 3.

Ῡ𝑖
𝑡(𝑡) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

21−𝑡
21−18 if 𝑡 < 21

𝑡−23
26−23 if 𝑡 > 23

0 if 𝑡 ∈ [21, 23]

(10)

Figure 3: Thermal dissatisfaction

• satisfaction based on air quality: the air quality is
deemed to be excellent when the CO2 concentration is
less than 500 ppm. It is considered to be satisfactory

Figure 4: Air quality dissatisfaction

between 500 ppm and 1500 ppm. Still, for simplifi-
cation matters, we compute dissatisfaction air quality
instead of satisfaction.
The air quality dissatisfaction Ῡ𝑖

𝑐(𝐶) at the i-th hour is
calculated by the formula (11). The variation of the air
quality as a function of the CO2 concentration is plot-
ted in the Figure 4 which follows from equation (11).

Ῡ𝑖
𝑐(𝑐) =

⎧

⎪

⎨

⎪

⎩

𝑐−500
1500−1000 if 𝑐 > 500

0 if 𝑐 ≤ 500
(11)

Where 𝑐 - the CO2 concentration.
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The global dissatisfaction Ῡ𝑖 at the 𝑖𝑡ℎ hour is formulated by
Equation (12).

Ῡ𝑖 =
∑

𝑉 ∈𝑉𝐶∪𝑉𝐴

Ω𝑉 ∗ Ῡ𝑖
𝑉 (12)

with ∑

Ω𝑉 = 1 - the relative weight of variable 𝑉 over the
other action and context variables.

Global satisfaction Υ is obtained through the equa-
tion (13).

Υ = 1
Ῡ

(13)

The best action plan Λ𝑏𝑒𝑠𝑡 to recommend to the occupant
is the one of the day with the highest satisfaction. More
formally:

Λ𝑏𝑒𝑠𝑡 = argmax
Λ𝐷

(Υ(𝐷)), 𝐷 ∈ {similar context days} (14)

Where Υ(𝐷) - the satisfaction of occupant for day 𝐷,

5. Generation of explanations
Although machine learning systems give interesting re-

sults, they can occasionally be wrong in ways that humans
would not be aware. This overuse of machine learning sys-
tems results in misuse (overtrust phenomenon [23]). At
times, these systems are misunderstood, which leads to their
being overlooked or underused by people (so we speak of
under-trust [23]). To avoid falling into such situations, we
propose an approach that allows presenting the previously
generated action plan in a way to improve the calibrated trust
[58] of the occupant in the EMS. The notion of calibrated
trust consists in (not) following the (in)correct advice. Its
principle is to give the occupant enough explanatory infor-
mation to assess the quality of the proposed action plan and
so provide him the ability to lean on the recommendations
of the system when deemed plausible, if not to manage oth-
erwise. By assuming this notion, the contribution presented
hereafter contrasts with the existing studies that only seek to
strengthen the blind confidence of the occupants. The aim
is to encourage the occupant to explore further action plans
whenever he is not convinced by the explanations provided
by the system to generate the action plan, which would be a
wonderful opportunity for the system to learn better.

We hypothesize that an approach that supports all three
types of explanations namely features-based explanations,
examples-based explanations, and rules-based explanations
could improve the calibrated confidence of occupants in
the explanations provided by the EMS. In this chapter, we
contribute to the construction of such model by leveraging
the CBR approach and the Bayesian network, taking into
account findings from multidisciplinary studies on explana-
tions from the perspective of the user. The synthesis of these
studies led to the formulation of three key principles that
guided the design of the explanations framework:

• explanations are chosen: people seldom, if ever, look
for explanations that capture the overall causes of an
occurrence. They prefer, albeit incomplete, explana-
tions that convey the most important information that
is relevant to the decision [68].

• explanations are contrastive: explanations do not clar-
ify why a specific prediction was made, but rather
motivate why that prediction was given instead of
another, to meet people’s mental need to seek out why
event P (referred as fact [64]) occurred instead of some
event Q (called foil [64]) rather than to justify why
event P occurred. The foil could be a real event or an
imagined one.

• explanations are contextual: the explanation is a form
of social interplay involving the explicator and the
explanation receiver[42]. It is therefore important to
look at the context in which the explanation occurs, i.e.
define the receiver’s profile to determine the content
of the explanation and the way to transmit it. An
explanation can be conveyed to the user in a variety
of ways, and choosing the appropriate one is crucial
to the overall success of an explanation approach.

Now, we will take advantage of the calculations made in
the previous steps to generate the different explanations.
5.1. Features-based explanation generation

In this type of explanation, the model forecast is ex-
plained by indicating the overall importance of each feature
in impacting the predictions of the model. We adopted
a method that attributes scores of importance to features
according to their contribution to the forecasted value of an
item. The scores are visualized using a graph. Specifically,
we used the results of the method presented in the Section
4.4 to estimate the importance of each feature. The scores are
ordered and the first 𝑛 features with the scores are presented
to the occupant as a bar graph.
5.2. Example-based explanation generation

Example-based explanations provide reasons for a decision-
making process by supplying instances of similar situations
which resulted in the same outcome earlier. For instance,
today, the weather conditions are very similar to the one
of 2013/04/13, the same proposed recommendations were
satisfactory in this situation.

Several declensions were reported in the literature to
implement this approach. We focus on the explanation in its
counterfactual variant. Explanations based on counterfactual
[100] produce examples that yield a distinct model outcome
given minimal shifts in input features.

The main challenge of counterfactual-based explanation
is twofold. Firstly, is to select the relevant examples that
motivate the decision-making process. Secondly, how to
identify the features to be adjusted and how to measure the
impact of this change on the behavior of the model, espe-
cially since in our case we have no possibility to simulate
the results.
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Our approach to overcoming the former issue is both
intuitive and simple. Intuitive regarding the global approach
adopted to answer the research problem of this paper. i.e.,
finding example cases to solve the case to be predicted.
Simple since all the required computations to extract the
example cases have already been carried out in the previous
steps. Specifically, the cluster of neighbors (similar days) of
the day to be predicted is already computed in the retrieving
similar days’ step (see Section 4.5). From the set of days in
the cluster of neighbors, the appropriate day to be presented
as an example of explanation is the one that has the second-
best satisfaction since the best one is the day recommended
to the occupant.

The generation of explanations consists in examining the
difference between the scenarios of the two days to generate
an indicator of the influence of the change of action variables
on the effects. Since one of the objectives of our approach is
to make the occupant aware of the influence of his actions on
the energy behavior of the building, it is therefore interesting
to show him the effect of modifying his actions on the
building’s energy performance. The comparison between the
two scenarios consists thus of the calculation of two values
for each time slice:

• the difference on each action variable for each corre-
sponding time slot of scenario 𝑆𝑐𝑏𝑒𝑠𝑡 (corresponding
to the recommended action plan) and scenario 𝑆𝑐
(corresponding to the explanatory example). It corre-
sponds to Equation (15).

∀Λ𝑏𝑒𝑠𝑡 ∈
{

𝑆𝑐𝑏𝑒𝑠𝑡
}

,∀Λ̃ ∈
{

𝑆𝑐
}

,Λ𝑏𝑒𝑠𝑡
𝑘 −Λ̃𝑘 = ΔΛ𝑘

(15)
Where Λ𝑏𝑒𝑠𝑡, Λ̃ is the action plan of the recommended
scenario 𝑆𝑐𝑏𝑒𝑠𝑡, explanatory scenario 𝑆𝑐 respectively.

• the difference on each effect variable (indoor tempera-
ture, air quality, etc.) for each corresponding time slot
of scenario 𝑆𝑐𝑏𝑒𝑠𝑡 and scenario 𝑆𝑐. This corresponds
to Equation (16).

∀𝜉𝑏𝑒𝑠𝑡 ∈
{

𝑆𝑐𝑏𝑒𝑠𝑡
}

,∀𝜉 ∈
{

𝑆𝑐
}

, 𝜉𝑏𝑒𝑠𝑡𝑘 − 𝜉𝑘 = Δ𝜉𝑘
(16)

Where 𝜉𝑏𝑒𝑠𝑡, 𝜉 is the effect variables of the scenario 𝑆𝑐𝑏𝑒𝑠𝑡,
𝑆𝑐 respectively.

The comparison between the scenarios provides quanti-
tative information about the difference between the actions
of the two scenarios and between the associated effects. Gen-
erally, people are reluctant to accept numerical knowledge
and prefer knowledge that draws on a qualitative aspect to
describe a phenomenon [22]. For instance, it is desirable
for an occupant to have a recommendation like opening the
door at 4:00 pm could create an airflow that will improve the
air quality than to say, opening the door at 4:00 pm could
increase the airflow by 25% that would allow decreasing the
CO2 concentration by 700 ppm and the humidity by 10%.

For the sake of acceptability, it is, therefore, worthwhile
to turn the obtained numerical values into qualitative values.
This transformation is obtained by dividing the continuous
domain of each action/effect variable into a limited num-
ber of intervals (discretization process), resulting in a non-
overlapping split of the continuous domain. Each interval is
then mapped to a discrete value (label). For a granularity
𝑘, the number of intervals associated with each variable is
defined by a symmetric partition of (2𝑘+ 1) classes with an
interval having only one value 0. Each class is labeled by the
upper limit of its interval. So, the set of associated labels is
denoted by an ordered set 𝐵 of (2𝑘 + 1) values as shown by
the equation (17).

𝐵 =
{

−𝑎𝑘−1, ... − 𝑎0, 0, 𝑎0, ..., 𝑎𝑘−1
} (17)

Discretization values are defined by a domain expert
based on their impact on the occupant perception. The trans-
formation process of the numerical values into its qualitative
form consists of using 1 to 𝑘 arrows to represent visually the
change magnitude corresponding to each discretization label
and the associated sign of variation (i.e., arrows up for pos-
itive values and down for negative values). The qualitative
conversion process is described by the pseudocode presented
in Algorithm 3, whereas the pseudocode representing the
generation of counterfactual explanations is shown in the
Algorithm 2.
5.3. Causal-based explanation generation

The two types of explanations suggested earlier are intu-
itive and easy to understand, they are therefore intended for
occupants who have no background in the domain or who are
not looking for a deep explanation of the reasoning that led to
the proposed action plan. For the wise user, the explanations
should be causal to be consistent with the user’s expectations
of the system’s reasoning process.

Causal explanations are conditioned on the existence
of causal information. This work provides a probabilistic
method for generating causal information and for estimating
the magnitude of the impact of each causal variable (action
or context variable) on the effect variables based on Bayesian
networks.

Bayesian networks are a category of probabilistic graph-
ical methods consisting of a set of random variables, the
eventual dependencies between variables are depicted by
directed acyclic graphs. The starting node of an edge is a
causal event, referred to as the parent node, and the target
node is a consequence of the cause, referred to as the
child node. Each node is assigned a conditional probability
table from information provided by either domain experts or
statistical correlations that reflect the influences of the parent
on its child nodes. The use of Bayesian networks allows ob-
taining a compact representation of the sets of dependencies
between variables thanks to the graph structure (see section
5.3.1) and the notion of conditional probability tables (see
section 5.3.2), from which it will be easier to reason.

The benefit of Bayesian networks in explanations gener-
ation is the ability to directly exploit the causal links (arcs)
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Algorithm 2: Tabulating counterfactual explana-
tions

Input: Best scenario plan
𝑆𝑐𝑏𝑒𝑠𝑡 =

{

Λ𝑏𝑒𝑠𝑡, 𝜉𝑏𝑒𝑠𝑡, 𝜁
}

// Get the best scenario from Section 4.6

Output: Γ ∶ table for counterfactual explanations
1 Obtain action plan from 𝑆𝑐𝑏𝑒𝑠𝑡: 𝜌𝑏𝑒𝑠𝑡 = {

Λ𝑏𝑒𝑠𝑡}

2 Obtain effects vector from 𝑆𝑐𝑏𝑒𝑠𝑡: 𝑉 ∗
𝐸 =

{

𝜉𝑏𝑒𝑠𝑡
}

3 Obtain the scenario of a similar context day
𝑆𝑐 =

{

Λ̃, 𝜉, 𝜁
}

4 Obtain action plan from 𝑆𝑐: �̃� =
{

Λ̃
}

5 Obtain effects vector from 𝑆𝑐: 𝑉�̃� =
{

𝜉
}

6 for 𝑡 = 𝑡𝑠𝑡𝑎𝑟𝑡 to 𝑡𝑒𝑛𝑑 do
7 𝑟𝑜𝑤 ← 𝑡 − 𝑡𝑠𝑡𝑎𝑟𝑡 + 1
8 Γ𝑟𝑜𝑤,1 ← 𝑡
9 Get Λ𝑏𝑒𝑠𝑡

𝑡 from 𝜌𝑏𝑒𝑠𝑡 // Different actions at

instance 𝑡
10 Get Λ̃𝑡 from �̃�
11 Compute ΔΛ𝑡 = Λ𝑏𝑒𝑠𝑡

𝑡 − Λ̃𝑡
12 Get 𝜉𝑏𝑒𝑠𝑡𝑡 from 𝜉𝑏𝑒𝑠𝑡 // Different effects at

instance 𝑡
13 Get 𝜉𝑡 from 𝜉
14 Compute Υ𝑏𝑒𝑠𝑡

𝑡 from 𝜉𝑏𝑒𝑠𝑡 // Get user

satisfaction at instance 𝑡
15 Compute Υ̃𝑡 from 𝜉𝑡
16 Compute ΔΥ𝑡 = Υ𝑏𝑒𝑠𝑡

𝑡 − Υ̃𝑡
17 Γ𝑟𝑜𝑤,2 ← Qualitative conversion (ΔΛ𝑡)
18 Γ𝑟𝑜𝑤,3 ← Qualitative conversion (ΔΥ𝑡)
19 end for
20 Γ(𝑟𝑜𝑤+1),3 ← Qualitative conversion (𝑚𝑒𝑎𝑛(ΔΥ𝑡))

Algorithm 3: Qualitative conversion
Input: 𝑞: quantitative value
𝐵 =

{

−𝑎𝑘−1, ... − 𝑎0, 0, 𝑎0, ..., 𝑎𝑘−1
}

// Ordered list of discretization labels

associated to 𝑞
Output: Qualitative explanation

1 if 𝑞 ≠ 0 then
2 𝑑 ← discretization(𝑞,𝐾)
3 𝑖𝑛𝑑 = index(𝑑)
4 𝑛 ← 𝑖𝑛𝑑 mod 𝑘
5 if 𝑑 > 0 then
6 insert 𝑛 up arrows
7 else
8 insert (𝑘 − 𝑛) down arrows
9 end if

10 else
11 insert ’=’
12 end if

in the graphical representation to give causal explanations to
the occupant. A direct causality between two variables is ma-
terialized by the existence of a direct arc between two nodes
representing the two variables, however, indirect causality is
established if a path (composed of at least two arcs) exists
between the two nodes. Furthermore, the cause and effect
relations between the variables are not deterministic but
probabilistic. Thus, the observation of a cause or several
causes does not systematically lead to the effects that depend
on them but only modifies the probability of observing them.
This allows classifying the causes from the most likely to the
least one.

The construction of a Bayesian graph includes two tasks,
learning the structure of the graph and learning some asso-
ciated parameters (conditional probability tables).
5.3.1. Learning the graph structure

Learning the graph structure consists in determining
both the set of nodes representing the random variables and
the arcs representing the causal links between these vari-
ables. This step aims to find the globally optimal structure
that fits the given data. Two approaches are used in the
literature to define the structure of a graph. The principle of
the constraints-based approach is to look for all the relations
of conditional independence between variables to obtain the
Markov coverage of each variable and thus the structure
of the graph. The Markov blanket of node N is the only
knowledge needed to predict the behavior of this node, it is
composed of the parents of N, its children, and the parents of
its children. The process of searching for the best structure
is generally very expensive, so the second approach is often
preferred. Score maximization-based approaches consist in
maximizing a given function that evaluates the scores on a
combinatorial space of the different graphs generated from
the data set. So, learning the graph structure necessitates
a structure definition mechanism and a scoring function to
evaluate it. Many heuristics are used in the literature to
define the structure of a graph, we used the Hill-Climbing
algorithm to create different combinations of nodes and arcs
to generate graphs. This choice is motivated by the fact that
this algorithm allows finding the optimal balance between
the computing requirement and the accuracy of the obtained
graph.

The algorithm is initialized with a random graph where
arcs randomly created between vertex representing context,
action, and effect variables. This initial graph is attributed a
score calculated thanks to a function 𝑓𝑠𝑐𝑜𝑟𝑒. The algorithm
then performs a random change in the graph (remove, invert,
or add arrows). If this modification leads to no increase in
the score, the algorithm goes back to the previous state and
makes another modification. However, if the score increases,
the new state is kept and a new modification is performed.
The algorithm terminates when no modification increases
the score. There are several score functions whose purpose is
to facilitate the selection of the statistical model represent-
ing reality as closely as possible. We applied the Bayesian
Information Criterion (BIC) algorithm [84] to estimate the
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score of the generated structures. It allows searching for a
compromise between over-learning and under-learning. The
chosen structure is the one that minimizes the BIC score.
The corresponding pseudocode is shown in Algorithm 4.

Algorithm 4: Causal explication graph building
Input: 𝐷𝑏 ∶ Database of context, action, and effect

variables
𝑉 ∶ Set of vertex representing context, action, and
effect variables
𝑓𝑠𝑐𝑜𝑟𝑒 ∶ A score function
Output: A graph maximizing 𝑓𝑠𝑐𝑜𝑟𝑒

1 𝐺 ← empty graph
2 𝐺𝑜𝑝𝑡𝑖𝑚𝑎𝑙 ← random graph
3 𝑆𝑐𝑜𝑟𝑒𝑏𝑒𝑠𝑡 ← 𝑓𝑠𝑐𝑜𝑟𝑒(𝐺𝑜𝑝𝑡𝑖𝑚𝑎𝑙)
4 while 𝐺𝑜𝑝𝑡𝑖𝑚𝑎𝑙 ≠ 𝐺 do
5 𝐺 ← 𝐺𝑜𝑝𝑡𝑖𝑚𝑎𝑙
6 foreach 𝑣𝑖 ∈ 𝑉 do
7 foreach 𝑣𝑗 ∉ 𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑣𝑖) do

8 if 𝑓𝑠𝑐𝑜𝑟𝑒(𝐺 + ⌢𝑣𝑗𝑣𝑖 ) > 𝑆𝑐𝑜𝑟𝑒𝑏𝑒𝑠𝑡 and
⌢𝑣𝑗𝑣𝑖 does not form a loop in 𝐺

then

9 𝐺𝑜𝑝𝑡𝑖𝑚𝑎𝑙 ← (𝐺 + ⌢𝑣𝑗𝑣𝑖 )

10 𝑆𝑐𝑜𝑟𝑒𝑏𝑒𝑠𝑡 ← 𝑓𝑠𝑐𝑜𝑟𝑒(𝐺 + ⌢𝑣𝑗𝑣𝑖 )
11 end if
12 end foreach
13 foreach 𝑣𝑗 ∈ 𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑣𝑖) do

14 if 𝑓𝑠𝑐𝑜𝑟𝑒(𝐺 − ⌢𝑣𝑗𝑣𝑖 ) > 𝑆𝑐𝑜𝑟𝑒𝑏𝑒𝑠𝑡 then

15 𝐺𝑜𝑝𝑡𝑖𝑚𝑎𝑙 ← (𝐺 − ⌢𝑣𝑗𝑣𝑖 )

16 𝑆𝑐𝑜𝑟𝑒𝑏𝑒𝑠𝑡 ← 𝑓𝑠𝑐𝑜𝑟𝑒(𝐺 − ⌢𝑣𝑗𝑣𝑖 )
17 end if
18 end foreach
19 foreach 𝑣𝑗 ∈ 𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑣𝑖) do
20 if

𝑓𝑠𝑐𝑜𝑟𝑒(𝐺+ ⌢𝑣𝑖𝑣𝑗 − ⌢𝑣𝑗𝑣𝑖 ) > 𝑆𝑐𝑜𝑟𝑒𝑏𝑒𝑠𝑡
then

21 𝐺𝑜𝑝𝑡𝑖𝑚𝑎𝑙 ← (𝐺 + ⌢𝑣𝑖𝑣𝑗 − ⌢𝑣𝑗𝑣𝑖 )
22 end if
23 end foreach
24 end foreach
25 end while
26 return 𝐺𝑜𝑝𝑡𝑖𝑚𝑎𝑙

5.3.2. learning the parameters
In this section, we assume that we already know the

structure of the Bayesian network to be learned thanks to
the previous step and that we only need to evaluate the
conditional probability tables (parameters of the Bayesian
network).

Definition 5. A parameter 𝜗𝑖 is a table consisting of the set
of probabilities for each of the possible values of the variable
𝑉𝑖 given each of the possible configuration or combination
values of its parents ℘(𝑉𝑖).

Let 𝑉1, ..., 𝑉𝑛 be 𝑛 random variables, 𝑉 = {𝜁,Λ, 𝜉},
and 𝐷𝐵 a complete database of examples. Let also denote
{

𝜗1, ..., 𝜗𝑛
} the parameters of the model to be estimated. The

variable 𝑉𝑖 can take its values in {

𝑣𝑖1, ..., 𝑣𝑖𝑘
}. Let 𝑁𝑖𝑗 be the

number of times the set of parent variables of 𝑉𝑖 in G ,℘(𝑉𝑖),takes its 𝑗𝑡ℎ configuration in 𝐷, for all 𝑗 ∈ {1, ..., 𝑞𝑖} and let
𝑁𝑖𝑗𝑘 be the number of times where 𝑉𝑖 = 𝑘 and ℘(𝑉𝑖) takes
its 𝑗𝑡ℎ value in the database 𝐷, for all 𝑘 ∈ {1, ..., 𝑟}.

In the where all variables are observed, the simplest and
most widely used method is the statistical estimation which
consists in estimating the probability of an event by the
frequency of occurrence of this event in the database. This
approach, called maximum likelihood, provides an estimate
of the parameter 𝜗𝑖𝑗𝑘 by applying the Formula (18).

𝜗𝑖𝑗𝑘 =
𝑁𝑖𝑗𝑘

∑𝑟𝑖
𝑘=1𝑁𝑖𝑗𝑘

(18)

6. Experimental analysis
The two main points we look to verify in our experi-

mental study are the following: (1) Validate our working
hypothesis (see Hypothesis 1). (2) Validate that the action
plan proposed to the occupant improves his comfort. To that
end, the experimental process consists of the following steps:

1. description of the data used for the validation.
2. evaluation of the genetic algorithm’s performance to

estimate the features’ weighting.
3. discussion on the threshold of the distance ⊤𝐶 calcu-

lated by our approach to retrieve similar days.
4. checking the validity of our working hypothesis.
5. assessment of the proposed action schedule’s perfor-

mance.
6. presentation of the results of the implementation of

the different explanation strategies.
6.1. Setup of testbed

To evaluate the performance of the proposed approach,
an experiment was carried out on realistic data obtained
by deploying several sensors in a university office build-
ing occupied by several researchers. The sensors collect
mainly information on the indoor environment conditions
as humidity, temperature, occupancy, window opening, etc.
These data are enriched by information about the outdoor
environment conditions using weather forecasts provided by
a service provider. Table 2, presents the recorded features
indicating their units and the relevant category (context,
action, effect) to which they were affected.

While the values recorded in the base of cases repre-
sent the average of the values obtained from the sensors
and the weather forecast service during a time step (in
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this experiment, a time step of one hour is adopted), an
exception is made concerning the 𝑊 𝑖𝑛𝑑𝑜𝑤_𝑜𝑝𝑒𝑛𝑖𝑛𝑔 and
the 𝐷𝑜𝑜𝑟_𝑜𝑝𝑒𝑛𝑖𝑛𝑔 variables, since their values are the per-
centage of opening in regards to the time step. For instance,
𝐷𝑜𝑜𝑟_𝑜𝑝𝑒𝑛𝑖𝑛𝑔 = 0.2 in the 𝑘𝑡ℎ hour of the day, indicates
that the door was open for 12 minutes (60 × 0.2) during that
hour.

Data were registered for a continuous period beginning
in 2015-04 and extending through 2016-10. Data are filtered
to eliminate periods with missing values, weekends, and
public holidays (since the office is unoccupied on these
days and therefore there are no recorded actions). After
screening, the retained periods are: 2015-05-01/2015-05-28,
2015-06-01/2015-07-23, 2016-05-11/2016-05-31, 2016-06-
02/2016-06-19 and 2016-06-22/2016-07-30. Altogether, 98
days were retained. The base of cases is randomly split into
disjointed training and testing data (75% and 25% respec-
tively). The final train data consists of 74 days and the test
data contains 24 days. Knowing that the periods retained
were during the season of ambient temperature see high, the
heating was switched off.

For results reproducibility, a knowledge model of the
office in which the sensors have been installed is used.
The model is presented in [7], it describes mathematically,
the physical interactions between the office characteristics.
Specifically, it is an implementation of the thermal and CO2models of the office. These models will allow reproducing
the effects 𝜉𝑏𝑒𝑠𝑡 of the proposed action plan Λ𝑏𝑒𝑠𝑡 in the
context 𝜁 . To ensure that the results are consistent, any real
effect features in the recorded data are overwritten with the
simulated ones using the office knowledge model. Therefore,
the objective of applying the knowledge model is twofold:
⎧

⎪

⎨

⎪

⎩

𝜁,Λ𝑏𝑒𝑠𝑡 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 𝜉𝑏𝑒𝑠𝑡 //use KM model to produce results

𝜁,Λ
𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ 𝜉 //use KM to ensure results consistency

WhereΛ𝑏𝑒𝑠𝑡 - recommended actions,Λ- real actions, KM
- knowledge model.

Experiments were conducted on an Intel® Core™i5-2,7
GHz processor, 16 GB RAM machine, running Python 3.8.
6.2. Variables weighting

The proposed genetic algorithm was applied to the
dataset described above to generate weights for differ-
ent variables. The optimisation procedure is ended after
a maximum of 500 iterations. However, to save time, if
the minimum distance of a solution from the best solution
changes by less than 10-5 over 15 iterations, the optimisation
is interrupted.

The genetic algorithm was able to compute the weights
reported in Table 3 corresponding to the context and action
variables described in Table 2. The algorithm has converged
in 4784 seconds after 11 iterations.

It is observed from results reported in Table 3 that in
the case study, the variable that models the temperature
of the corridor has the highest impact on effect variables

(𝑊𝑇 𝑐𝑜𝑟𝑟𝑖𝑑𝑜𝑟 = 0.21136) whereas the variable models outside
nebulosity has the lowest influence on effect variables com-
pared to the other context and action variables (𝑊𝑁𝑒𝑏𝑢𝑙𝑜𝑠𝑖𝑡𝑦 =
0.00391).
6.3. Threshold of context distance

This section discusses through the case study how the
F1-measure is used to learn optimal context distance for
nearest similar days.

The result of application of the proposed approach to
determine the context distance threshold is schematized in
the Figure 5. We observe that if the threshold distance ⊤𝐶rises, the number of similar days (recall curve) that would
be detected also rises, unlike the accuracy (precision curve)
that evolves inversely. While the precision of prediction is
very high (99%) when ⊤𝐶 = 0.4, the percentage of similar
days (recall) is low (2%). Inversely, if ⊤𝐶 = 1.5, the recall
is very higher (96%) but the accuracy is the only 52%. For
the case study, the F1-measure reaches its maximum (72%)
at ⊤𝐶 = 1.2 when precision is 64% and recall is 81%.
6.4. Hypothesis proving

The objective of this step is to check that the hypothesis
about dependencies between the action, context and effect
variables is valid (Hypothesis 1). In concrete terms, this
amounts to verifying that the effects 𝜉𝑏𝑒𝑠𝑡 of a day resulting
from the application of the best plan Λ𝑏𝑒𝑠𝑡 extracted from a
historical day 𝐷ℎ𝑖𝑠𝑡 should be similar to the effects 𝜉ℎ𝑖𝑠𝑡 of
the latter-day.

For each day 𝐷 from the 24 test days, assuming Δ𝜉 =
|𝜉𝑏𝑒𝑠𝑡−𝜉ℎ𝑖𝑠𝑡| is the difference between the effects of applying
the best action plan to day 𝐷 and the reel effects of the best
historical day 𝐷ℎ𝑖𝑠𝑡. For each effect variable (temperature,
CO2 concentration), the difference is given by the difference
between the values for each hour of the two days. Table
4 reports the obtained results. Specifically, the maximum
difference of temperature Δ𝑇 does not exceed 2 °c and the
maximum difference of CO2 concentration Δ𝐶𝑂2 is less
than 400 ppm. This means that the days to be predicted and
the days with the best action plan are similarly based on the
expert rules (see Section 4.5). This illustrates the correctness
of our starting hypothesis.

As an illustration, Figure 6 shows the predicted temper-
ature and CO2 concentration for the days 2016-07-09 and
2016-07-10 as well as the same values for the day 2015-07-
21, identified as the best historical day. The results show that
their effects are similar, since for 2016-07-09, the maximum
temperature difference Δ𝑇 , which is obtained at 17:00, does
not exceed 1.7 °c, and the same value for CO2 concentration
Δ𝐶𝑂2 is recorded at 18:00 and does not go beyond 140 ppm.
For 2016-07-10, the maximumΔ𝑇 does not exceed 0.9 °c (at
19:00) and the maximum Δ𝐶𝑂2 is 150 ppm (at 18:00).
6.5. Evaluating the recommended action plan
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Table 2
Features in building.

Feature Unit Description Type

To�ce_reference °c Indoor temperature E�ect

O�ce_CO2_concentration ppm Indoor CO2 concentration E�ect

Tcorridor °c Corridor temperature Context

Illuminance (new, old) lux Luminosite in o�ce Context

Solar radiation w/m2 Solar radiation in o�ce Context

Wind speed m/s Outside wind's speed Context

Corridor_CO2_concentration ppm Corridor CO2 concentration Context

Power (block east, west, total) w Electricity consumption Context

Theat °c Heater temperature Context

Occupancy Number of occupancy in o�ce Context

Nebulosity % Outside nebulosity Context

Tout °c Outside temperature Context

Windows_opening % The duration of opening window Action

Door_opening % The duration of opening door Action

Figure 5: Threshold of context distance.

The present part aims to gauge the effectiveness of the
approach by assessing the improvement (or not) of the occu-
pant satisfaction following the carrying out of the suggested
actions. The evaluation principle consists in comparing, for
each day𝐷 from the test set, the effect 𝜉𝑏𝑒𝑠𝑡 of the application
of recommended actions Λ𝑏𝑒𝑠𝑡 with the real result 𝜉 obtained
by applying the real actions Λ (actions performed by the
occupant without support from EMS) on the context of the
same day.

The improvement evaluation of the satisfaction Υ𝑏𝑒𝑠𝑡

achieved by the effect 𝜉𝑏𝑒𝑠𝑡 following the carrying out of the
suggested actions Λ𝑏𝑒𝑠𝑡, against the satisfaction Υ obtained
from applying the real actions Λ for the day 𝐷, is calculated
by the equation (19).

𝐻𝐷(Υ𝑏𝑒𝑠𝑡,Υ) = Υ𝑏𝑒𝑠𝑡 − Υ
𝑎𝑏𝑠(Υ)

(19)
Where 𝑎𝑏𝑠(Υ) - absolute value of Υ.

𝐻𝐷(Υ𝑏𝑒𝑠𝑡,Υ) > 0, implies that the advised actions
have enhanced the occupant satisfaction regarding the real
actions. The accuracy of the proposed method is assessed
according to the function (20).

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
|𝑁𝑏𝑒𝑠𝑡

𝐷 |

|𝑁𝐷|
(20)

With - 𝑁𝐷 =
{

𝐷(Υ𝑏𝑒𝑠𝑡,Υ)
}, the set of test days.

- 𝑁𝑏𝑒𝑠𝑡
𝐷 =

{

𝐷(Υ𝑏𝑒𝑠𝑡,Υ) ∈ 𝑁𝐷,𝐻𝐷(Υ𝑏𝑒𝑠𝑡,Υ) > 0
}

This experiment considers two criteria to rate the oc-
cupant’s satisfaction, thermal and air quality comfort. The
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Figure 6: Example applying recommended actions.

importance of the temperature dissatisfaction is equivalent
to that of the air quality (i.e., Ω𝑇 = Ω𝐶𝑂2 = 0.5). In this
case, the global dissatisfaction at the 𝑖𝑡ℎ hour defined by the
Equation (12) becomes:

Ῡ𝑖 = 0.5 ∗ Ῡ𝑇 + 0.5 ∗ Ῡ𝐶𝑂2 (21)
With a context distance threshold ⊤𝐶 = 1.2 and owing to
the limitation of the data, the approach misses to find similar
days for 11 days among the 24 test days, and therefore, we
can suggest to the occupant actions for 13 days. (|𝑁𝐷| = 13).
To be consistent with the results, when the process of extract-
ing similar days fails, the recorded actions of the test day are
considered for the simulation. The obtained results of the
comparison between the satisfaction resulting from the ap-
plying of the recommended action plan and the satisfaction
resulting from the applying of the real actions are shown in
Figure 7, demonstrating that over the 13 days, the advisable
actions improve performance by 10 days (|𝑁𝑏𝑒𝑠𝑡

𝐷 | = 10),
showing the effectiveness of the proposed method in 77% of
cases. We can observe that the improvement is in the range
of 8% to 18%.

This is confirmed by plots in Figure 8 which illustrate
two examples of test days and their effect variables as results

of the execution of the real and recommended actions. We
can easily observe for both days that the overall perfor-
mance of our approach is superior to that of the real actions
performed by the occupant without assistance. Indeed, it
is worthwhile observing that our approach succeeded in
reaching the optimal air quality comfort by limiting the
CO2 concentration at values significantly lower than the
upper limit (500 ppm) of the optimal comfort range. For
the day of 2016-07-14, the proposed action plan improves
the overall comfort by almost 18%, since it allows to bring
the indoor temperature even closer to the optimal thermal
comfort interval. Note that our approach allows to reduce the
temperature by 1 °c on average and the maximum tempera-
ture difference is obtained at 08H00 with a reduction of 1.39
°c. Analogously, for the day of 2016-07-16, the temperature
is improved by 0.57 °c on average with a maximum reduction
of 0.77 °c at 19H00, thus improving the comfort by 11.4%.
6.6. Explanation
Features-based explanations

Features’ weights generated in the Section 6.2 thanks to
the genetic algorithm we proposed in Section 4.4 are used to
explain to the occupant the importance of different features
in the prediction of an action plan. Figure 9 shows the
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Figure 7: Performance evaluation regarding satisfaction improvement.

Table 3
Generated weights.

Variable Weight

Tcorridor 0.21136

Illuminance (new) 0.10247

Illuminance (old) 0.08193

Solar radiation 0.02583

Wind speed 0.04188

Corridor_CO2_concentration 0.04069

Power block east 0.08788

Power block west 0.05852

Power block total 0.05186

Theat 0.10789

Occupancy 0.03950

Nebulosity 0.00391

Tout 0.02946

Windows_opening 0.01576

Door_opening 0.09380

importance of the five features having the highest influence
on the behavior of the prediction system. It can be easily
remarked that the feature models the temperature of the
adjacent corridor to the office has a remarkably high impact
compared to the other features.
Example-based explanations

In this experiment, the generation of example-based
explanations consists of comparing the recommended plan
of actions for the day to be predicted with the actions plan for
the day with the second-best satisfaction in the neighborhood

of that day and their effects. In the Figure 10, the system
explains to the occupant the choice of the action plan of the
day of 2015-06-17 to recommend it for the day of 2016-
07-25, by comparing it to the day having the second-best
satisfaction which is the day of 2015-05-26. The last row
of this table shows that the overall satisfaction in terms of
temperature and air quality would be better if the proposed
plan is adopted.
Causal-based explanations

To increase the accuracy of the Bayesian network in
generating causal explanations, the learning of the Bayesian
network is performed on the contextual neighbors of the day
to be predicted. This is motivated by the fact that the learning
of a global network from the overall base of cases is unlikely
to succeed since the discovery of the causal relations be-
tween the variables of the days with distant context distances
can generate conflicts and thus to the failure of the process.
For example, the algorithm could infer the relation between
heating and indoor temperature on days when the heating is
on, while this explanation is not consistent for a summer day
when the heating is off.

The graph depicted in Figure 11 represents the causal
relations between the different features on the day of 2016-
07-25. The corresponding Bayesian network is learned from
the data observed in a neighborhood composed of eight days
within a context distance of ⊤𝐶 = 1.2 (see Section 6.3).
Each type of feature is depicted by a different color, i.e. all
orange nodes are effect variables, etc. The arc thickness is
proportional to the importance of the dependence probabil-
ity between a node and its parent. We can see that occu-
pancy is a factor having a stronger influence on the features
𝑊 𝑖𝑛𝑑𝑜𝑤_𝑜𝑝𝑒𝑛𝑖𝑛𝑔 and 𝐷𝑜𝑜𝑟_𝑜𝑝𝑒𝑛𝑖𝑛𝑔 than on the variable
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Table 4
Summary of the validation results of the working hypothesis.

𝚫𝑻 (°c) 𝚫𝑪𝑶𝟐 (ppm)

Max value Mean value Max value Mean value

Max di�erence 1.26 0.59 139.0 55.0

Mean di�erence 2.0 1.56 400.0 199.0

Figure 8: Comparison between recommended and recorded actions e�ects for 2016/07/14 and 2016/07/16.

𝑡𝑜𝑡𝑎𝑙_𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐_𝑝𝑜𝑤𝑒𝑟. We observe also that the indoor tem-
perature is impacted in the same proportion by the factors
𝑇 𝑐𝑜𝑟𝑟𝑖𝑑𝑜𝑟, 𝐷𝑜𝑜𝑟_𝑜𝑝𝑒𝑛𝑖𝑛𝑔, and 𝑡𝑜𝑡𝑎𝑙_𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐_𝑝𝑜𝑤𝑒𝑟.
Discussion

The different types of explanations provided to the occu-
pant aim at helping him to better understand the reasoning of
the system, which in turn seeks to make the occupant aware
of the impact of his behavior on energy use and help him to
modify his behavior to improve this impact. We are aware
that, reading a complex table such as the one generated to
present the example-based explanations in Section 5.2 or
observing a graph to understand the causal reasoning of the
system such as the Bayesian network presented in Section
5.3, could be a rather embarrassing experience even for an
experienced user.

To capture the occupant’s intention, it is desirable that
the generated explanatory data be transformed into a natural

language. Indeed, prior work [74] has shown that verbalizing
an explanation in a natural human language is preferred if
it is destined to lay user. Although translating the graphical
data into human language is not the focus of this study, we
consider it a particularly important orientation for upcoming
work.

7. Conclusion
This article lays the groundwork for a practical frame-

work for enhancing building occupant comfort while opti-
mizing energy expenditure. Specifically, a data-driven ap-
proach is used to calculate and recommend an action plan
to the occupant to make the occupant aware of the impact
of his behavior on increasing the energy efficiency of the
building without scarifying his comfort. The approach pre-
sented tries on two schemes. Firstly, CBR is used to calculate
the best action plan to propose to the occupant. It tries
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Figure 9: Features-based explanation

on an innovative method based on a genetic algorithm for
features weighting and a straightforward but surprisingly
efficient method to retrieve the set of actions to propose.
Secondly, an explanation-oriented approach is used to foster
the occupant’s trust in the recommendations proposed by the
system.

This technique is easily deployed in any type of environ-
ment without the need for domain expert knowledge. The ex-
perimentation performed with real data shows the feasibility
of the technique. The test results of the CBR method indicate
that in 77% of the cases the satisfaction of the occupant is
improved up to 18%. To further enhance this work, some
guidelines are planned for the future. We aim to investigate
a more sophisticated approach to compute the best action
plan using a local optimization method to generate an action
plan from a model learned on the neighborhood of the day
to be predicted. Also,we intend to integrate further criteria
in the estimation of the occupant’s comfort as the energy
cost, the outdoor noise, and the natural lighting level. Fur-
thermore, Like any data-based approach, the performance of
the proposed approach may be significantly influenced by the
quality and quantity of the data used, one future perspective
is to explore how to extend the proposed method to handle
cases without similar data. Finally, to avoid overloading
the occupant, we plan to enhance the presentation interface
of the recommendations and explanations by carrying out
large-scale experiments.
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