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Strong convergence of tensor products of independent G.U.E. matrices

Given tuples of properly normalized independent N × N G.U.E. matrices (X (1) N , . . . , X (r 1 ) N ) and (Y (1) N , . . . , Y (r 2 ) N ), we show that the tuple (X (1) N ⊗ I N , . . . , X

Introduction

In the fifties, Wigner proposed in quantum mechanics to replace the selfadjoint Hamiltonian operator in an infinite dimensional Hilbert space by an ensemble of very large Hermitian matrices. Let us present the most frequently used Gaussian matrix ensembles G.U.E. (Gaussian Unitary Ensemble, so named because their law is invariant under conjugation by unitary matrices). A G.U.E. matrix W N of size N is a selfadjoint matrix such that the entries (W N ) i,j of W N are centered Gaussian random variables satisfying: {(W N ) i,i : 1 ≤ i ≤ N} ∪ {ℜ(W N ) i,j , ℑ(W N ) i,j : 1 ≤ j < i ≤ N} are independent and (W N ) i,i , 1 ≤ i ≤ N, and √ 2ℜ(W N ) i,j , √ 2ℑ(W N ) i,j , 1 ≤ j < i ≤ N have all variance equal to 1. We call X N = W N √ N a standard normalized G.U.E. The famous theorem of Wigner [START_REF] Wigner | Characteristic vectors of bordered matrices with infinite dimensions[END_REF][START_REF] Wigner | On the distribution of the roots of certain symmetric matrices[END_REF] states that the empirical distribution of the eigenvalues of X N converges weakly, in probability, to the standard semicircular distribution µ sc where dµ sc (t) = 1 2π √ 4 -t 2 1 I [-2,2] (t)dt. The semicircular distribution appeared also as the central limit distribution in Voiculescu's free probability theory, developped in the eighties (see [START_REF] Voiculescu | Addition of certain noncommuting random variables[END_REF]). This occurrence hinted at a closer relation between free probability 1 and random matrices. In the early 90's, Voiculescu [START_REF] Voiculescu | Limit laws for random matrices and free products[END_REF] made this concrete by showing that also freeness shows up asymptotically in the random matrix world. Indeed, one of the results of [START_REF] Voiculescu | Limit laws for random matrices and free products[END_REF] states that an r-tuple of independent standard normalized G.U.E.-distributed matrices X

(1) N , . . . , X

N are asymptotically free, that is, for every noncommutative polynomial P in r variables, one has E[tr N P (X

N , . . . , X

N )] →

N →+∞ τ (P (s 1 , . . . , s r ))

where tr N stands for the normalized trace on M N (C) and s 1 , . . . , s r are free standard semicircular variables in a C * -probability space (A, τ ) (for an introduction to free probability we refer to [START_REF] Voiculescu | Free Random Variables[END_REF]). A noncommutative random variable x in (A, τ ) is called a standard semicircular variable if its distribution with respect to τ is µ sc ; that is, if x = x * (i.e. x is selfadjoint) and for any k ∈ N, τ (x k ) = t k dµ sc (t). In [START_REF] Hiai | Asymptotic Freeness almost everywhere for random matrices[END_REF] and [START_REF] Thorbjørnsen | Mixed moments of Voiculescu's Gaussian random matrices[END_REF], the authors showed that the convergence in Voiculescu's result actually holds almost surely, that is almost surely, for every noncommutative polynomial P in r variables,

tr N P (X (1) 
N , . . . , X

N ) →

N →+∞ τ (P (s 1 , . . . , s r )).

Later, Haagerup and Thorbjørnsen [START_REF] Haagerup | A new application of random matrices: Ext(C * red (F 2 )) is not a group[END_REF] proved a strong version of [START_REF] Anantharaman | An introduction to II 1 factors[END_REF], in the G.U.E. case, namely a convergence for the operator norm: almost surely, for every noncommutative polynomial P in r variables, lim

N →+∞ P (X (1) 
N , . . . , X

N ) = P (s 1 , . . . , s r ) .

Now, let X N = {X (i)

N , i = 1, . . . r 1 } and Y N = {Y (j)

N , i = 1, . . . r 2 } be independent tuples of independent normalized standard G.U.E. N × N matrices. Let (A, τ ) be a C * -probability space equipped with a faithful tracial state and s = {s i , i = 1, . . . , r 1 } and t = {t i , i = 1, . . . , r 2 } be (possibly different) free semicircular systems, that is tuples of free standard semicircular variables, in (A, τ ). Denote by I N the N × N identity matrix and by 1 s the unit of C * (s 1 , . . . , s r ), the unital C * -algebra generated by the free semicirculars s 1 , . . . , s r . It is straightfoward to deduce from (1) that almost surely for any noncommutative polynomial P in r 1 + r 2 variables, one has lim N →∞ (tr N ⊗ tr N ) P (X N ) = (τ ⊗ τ )[P (s 1 ⊗ 1 t , . . . , s r 1 ⊗ 1 t , 1 s ⊗ t 1 , . . . , 1 t ⊗ t r 2 )] . [START_REF] Bercovici | Free convolution of measures with unbounded support[END_REF] In this paper, we prove the following strong convergence. N ) = P (s 1 ⊗ 1 t , . . . , s r 1 ⊗ 1 t , 1 s ⊗ t 1 , . . . , 1 s ⊗ t r 2 ) min . [START_REF] Blackadar | Operator Algebras. Theory of C * -Algebras and von Neumann Algebras[END_REF] One views P (s 1 ⊗1 t , . . . , s r 1 ⊗1 t , 1 s ⊗t 1 , . . . , 1 s ⊗t r 2 ) ∈ C * (s 1 , . . . , s r 1 )⊗ min C * (t 1 , . . . , t r 2 ), the completion of the algebraic tensor product C * (s 1 , . . . , s r 1 )⊗ C * (t 1 , . . . , t r 2 ) with respect to • min , the minimal, or spatial, norm on C * (s 1 , . . . , s r ) ⊗ C * (s 1 , . . . , t r 2 ) -see [START_REF] Hayes | A random matrix approach to the Peterson-Thom conjecture[END_REF]Section 2.1] and [4, Section II.9.1]; since in this paper we consider only the algebraic and the spatial, minimal tensor product norm on our tensor products of C * -algebras -or von Neumann algebras -from now on we suppress the "min" subscript in our norm notations.)

In the wake of Voiculescu's discovery, random matrix theory became a powerful tool in the study of operator algebras. The option of modeling operator algebras asymptotically by random matrices led to new results on von Neumann algebras, in particular on the free group factors [START_REF] Voiculescu | Free Random Variables[END_REF]. Our investigation is motivated by a result of Ben Hayes [START_REF] Hayes | A random matrix approach to the Peterson-Thom conjecture[END_REF], showing that a conjecture about the structure of certain finite von Neumann algebras is implied by a strong convergence result for tuples of random matrices. Specifically, the conjecture (see [11, Conjecture 1]) is the following. Assume r ∈ N, r > 1, is given. Denote by F r the free group with r free generators, and by L(F r ) the free group von Neumann algebra, that is, the von Neumann algebra generated by the left regular representation of F r in the space B(ℓ 2 (F r )) of bounded linear operators on the Hilbert space ℓ 2 (F r ). Assume that Q is a von Neumann subalgebra of L(F r ) which is diffuse (meaning that it contains no minimal projections) and amenable (meaning that there exists a conditional expectation E : B(ℓ 2 (F r )) → Q). Then there exists a unique maximal amenable von Neumann subalgebra P of L(F r ) such that Q ⊆ P . (For the terminology related to the structure of von Neumann algebras, we refer to [START_REF] Anantharaman | An introduction to II 1 factors[END_REF] -specifically in our case to [START_REF] Anantharaman | An introduction to II 1 factors[END_REF]Definition 2.4.12] and [1, Definition 10.2.1 and Proposition 10.2.2].) This conjecture, cited in [START_REF] Hayes | A random matrix approach to the Peterson-Thom conjecture[END_REF], is known as the Peterson-Thom conjecture [START_REF] Peterson | Group cocycles and the ring of affiliated operators[END_REF]. Ben Hayes proved in [START_REF] Hayes | A random matrix approach to the Peterson-Thom conjecture[END_REF]Theorem 1.1] that if (4) holds for r 1 = r 2 , then the Peterson-Thom conjecture is true as well. Note that previous works established strong convergence of matrices X M 's is M and M = o(N 1/4 ) in [START_REF] Pisier | Random Matrices and Subexponential Operator Spaces[END_REF], M = o(N 1/3 ) in [START_REF] Collins | On the operator norm of noncommutative polynomials in deterministic matrices and iid GUE matrices[END_REF], and M = o(N/(log N) 3 ) in [START_REF] Bandeira | Matrix concentration inequalities and free probability[END_REF]. This does not suffice for the purpose of [START_REF] Hayes | A random matrix approach to the Peterson-Thom conjecture[END_REF], which requires M = N. Since the appearance of our paper on arXiv, Bordenave and Collins [START_REF] Bordenave | Norm of matrix-valued polynomials in random unitaries and permutations[END_REF] have obtained independently another proof of the Peterson-Thom conjecture via Hayes' theorem, by showing the strong convergence of tensor products of independent Haar-distributed unitary random matrices instead of G.U.E. matrices.

Our approach is very similar to that of [START_REF] Haagerup | A new application of random matrices: Ext(C * red (F 2 )) is not a group[END_REF][START_REF] Schultz | Non-commutative polynomials of independent Gaussian random matrices. The real and symplectic cases[END_REF]. Therefore, we will recall the first ideas of the proof of [START_REF] Bandeira | Matrix concentration inequalities and free probability[END_REF]. First, the minoration lim inf

N →+∞ P (X (1) 
N , . . . , X (r) N ) P (s 1 , . . . , s r ) comes rather easily from [START_REF] Anantharaman | An introduction to II 1 factors[END_REF]. So, the main difficulty is the proof of the reverse inequality: lim sup

N →+∞ P (X (1) 
N , . . . , X

N ) P (s 1 , . . . , s r )

Section 2 and Proposition 7.3 of [START_REF] Haagerup | A new application of random matrices: Ext(C * red (F 2 )) is not a group[END_REF] established that, in order to prove [START_REF] Bordenave | Norm of matrix-valued polynomials in random unitaries and permutations[END_REF], it is sufficient to prove that, for all m ∈ N, all self-adjoint matrices a 0 , . . . , a r of size m × m and all ǫ > 0, almost surely for all large N,

sp a 0 ⊗ I N + r i=1 a i ⊗ X (i) N ⊂ sp a 0 ⊗ I N + r i=1 a i ⊗ s i + (-ǫ, ǫ). (6) 
Here, sp(T ) denotes the spectrum of the operator T . The analysis of the spectrum of Σ N = a 0 ⊗ I N + r i=1 a i ⊗ X (i)

N was done using the matrixvalued Cauchy transform G N (λ) = E[(id Mm(C) ⊗ tr N )[(λ ⊗ I N -Σ N ) -1 ]], λ ∈ M m (C), ℑ(λ) positive definite; the proof of [START_REF] Collins | On the operator norm of noncommutative polynomials in deterministic matrices and iid GUE matrices[END_REF] required sharp estimates of the rate of convergence of g N (z) = tr m G N (zI m ) to g(z) = tr m G(zI m ) where

G(λ) = (id Mm(C) ⊗ τ )[(λ ⊗ I N -Σ) -1 ], Σ : = a 0 ⊗ 1 A + r i=1 a i ⊗ s i , z ∈ C \ R.
In [START_REF] Haagerup | A new application of random matrices: Ext(C * red (F 2 )) is not a group[END_REF], such sharp estimates were deduced from an equation and an approximate equation respectively, satisfied by G and G N . By necessity, our method to prove such sharp estimates dealing now with the tensorized G.U.E. matrices involved in Theorem 1 is different and is based on a series expansion of the resolvents viewed as rational noncommutative functions, successively in each of their variables. Thus, first, thanks to results from [START_REF] Yin | Non-commutative rational function in strongly convergent random variables[END_REF], we re-phrase Theorem 1 in terms of the Cayley transforms of the selfadjoint variables involved in order to deal with a bounded sequence of matrices (see Theorem 3).

Then a series expansion around infinity of the resolvents and an expansion in 1/N 2 of expectations of normalized traces of polynomials in Cayley transforms of tuples of independent G.U.E. matrices allow us to obtain a precise formula for g N (z) -g(z), for large |z| (here g N and g are obtained by replacing the G.U.E. matrices and the semicircular operators in the above Σ N and Σ by the tensorized Cayley transforms of G.U.E. and semicircular operators involved in Theorem 3). Since this formula we obtained for large |z| involves functions that can be analytically extended to C \ R, we can deduce that it holds on the whole C \ R. Our proof relies heavily on the explicit asymptotic expansion of smooth functions in polynomials in independent G.U.E. matrices obtained in the beautiful work of Parraud [START_REF] Parraud | Asymptotic expansion of smooth functions in polynomials in deterministic matrices and iid GUE matrices[END_REF]. We use Parraud's formulae in an essential way in our work, but with the free difference quotient replaced by the difference-differential operator, via the natural identification between the two operations.

We end the introduction with a brief outline of the rest of the paper. In Section 2 we introduce the main objects of interest for our study and re-phrase Theorem 1 in terms of the Cayley transforms of the selfadjoint variables involved (see Theorem 3). In Section 3 we explain in detail how the methods introduced by Haagerup, Thorbjørnsen, and Schultz for proving strong convergence of random matrices [START_REF] Haagerup | A new application of random matrices: Ext(C * red (F 2 )) is not a group[END_REF][START_REF] Schultz | Non-commutative polynomials of independent Gaussian random matrices. The real and symplectic cases[END_REF] apply to prove Theorem 3. In Section 4 we introduce the necessary tools from noncommutative analysis, and prove a number of auxiliary results about them. This section follows largely [START_REF] Kaliuzhnyi-Verbovetskyi | Foundations of free noncommutative function theory[END_REF][START_REF] Parraud | Asymptotic expansion of smooth functions in polynomials in deterministic matrices and iid GUE matrices[END_REF][START_REF] Voiculescu | The analogues of entropy and of Fisher's information measure in free probability theory, V: Noncommutative Hilbert transforms[END_REF][START_REF] Voiculescu | The coalgebra of the free difference quotient and free probability[END_REF]. Section 5 is dedicated to the extension of Parraud's work [START_REF] Parraud | Asymptotic expansion of smooth functions in polynomials in deterministic matrices and iid GUE matrices[END_REF] to rational functions. Section 6 contains the proof of the main step [START_REF] Kaliuzhnyi-Verbovetskyi | Foundations of free noncommutative function theory[END_REF] indicated in Section 3.

(x 1 , . . . , x r ) in (A, τ ), that is, for any polynomial P in 2r non-commuting indeterminates, lim n→+∞ τ n (P (x(n), x(n) * )) = τ (P (x, x * )), lim n→+∞ P (x(n), x(n) * ) An = P (x, x * ) A .

Assume moreover that the tuple (x, x * ) lies in the domain of a rational function R. Then R(x(n), (x(n)) * ) is well defined for sufficiently large n and we have lim

n→+∞ τ n (R(x(n), x(n) * )) = τ (R(x, x * )), lim n→+∞ R(x(n), x(n) * ) An = R(x, x * ) A . Let X = (X 1 , . . . , X r 1 ), Y = (Y 1 , . . . , Y r 2 ),
be independent tuples of independent normalized G.U.E. matrices. Let (A, τ ) be a C * -probability space equipped with a faithful tracial state and s = {s i , i = 1, . . . , r 1 } and t = {t i , i = 1, . . . , r 2 } be free semicircular systems in (A, τ ). Consider the Cayley transform Ψ : C → C given by Ψ(z) = z+i z-i . This is an automorphism of the extended complex plane C = C ∪ {∞} which sends the complex lower half-plane C -onto the unit disk D, infinity to the complex number 1, and the extended real line R ∪ {∞} onto the unit circle T. Its inverse with respect to composition Ψ -1 : C → C is given by Ψ -1 (w) = i w+1 w-1 . By continuous functional calculus, one evaluates Ψ on bounded selfadjoint linear operators on Hilbert spaces and this gives rise to unitary operators. Conversely, if U is a unitary operator whose spectrum does not contain 1, then Ψ -1 (U) is a bounded selfadjoint operator. Set (Ψ(X 1 ), . . . , Ψ(X r 1 )) = (U 1 , . . . , U r 1 ) = U r 1 , (Ψ(s 1 ), . . . , Ψ(s r 1 )) = (u 1 , . . . , u r 1 ) = u r 1 , (Ψ(Y 1 ), . . . , Ψ(Y r 2 )) = (V 1 , . . . , V r 2 ) = V r 2 , (Ψ(t 1 ), . . . , Ψ(t r 2 )) = (v 1 , . . . , v r 2 ) = v r 2 , (due to a lack of space, we find it convenient sometimes to use an underline in order to denote a vector of objects, with the index denoting the length of the vector). In order to prove Theorem 1, it is sufficient, thanks to Yin's Theorem 2, to prove the following Theorem 3. For any selfadjoint polynomial P in r 1 + r 2 variables and their adjoints,

P (U ⊗ I N r 1 , I N ⊗ V r 2 , U * ⊗ I N r 1 , I N ⊗ V * r 2 ) converges to P (u ⊗ 1 A r 1 , 1 A ⊗ v r 2 , u * ⊗ 1 A r 1 , 1 A ⊗ v * r 2 ) .
Indeed, as we have seen above,

Ψ -1 (U) = i U +1 U -1 and U +1 U -1 ⊗ I = I ⊗ I + 2(U ⊗ I -I ⊗ I) -1 . A noncommutative monomial M of degree n in r 1 + r 2 indeterminates is written as M = αX i 1 X i 2 • • • X in for some i 1 , . . . , i n ∈ {1, . . . , r 1 + r 2 }. Then M(X 1 ⊗ I N , . . . , X r 1 ⊗ I N , I N ⊗ Y 1 , . . . , I N ⊗ Y r 2 ) = α   j : i j ∈{1,...,r 1 } X i j ⊗ 1     k : i k ∈{r 1 +1,...,r 1 +r 2 } 1 ⊗ Y i k -r 1   = α   j : i j ∈{1,...,r 1 } i[I ⊗ I + 2(U i j ⊗ I -I ⊗ I) -1 ]   ×   k : i k ∈{r 1 +1,...,r 1 +r 2 } i[I ⊗ I + 2(I ⊗ V i k -r 1 -I ⊗ I) -1 ]   . Thus M(X 1 ⊗ I N , . . . , X r 1 ⊗ I N , I N ⊗ Y 1 , . . . , I N ⊗ Y r 2 ) is a rational func- tion in U 1 ⊗ I N , . . . , U r 1 ⊗ I N , I N ⊗ V 1 , . . . , I N ⊗ V r 2 . Since a polynomial is a sum of monomials, this implies that any noncommutative polynomial in X 1 ⊗ I N , . . . , X r 1 ⊗ I N , I N ⊗ Y 1 , . . . , I N ⊗ Y r 2 is a rational function of U 1 ⊗ I N , . . . , U r 1 ⊗ I N , I N ⊗ V 1 , . . . , I N ⊗ V r 2 . Therefore, if we are able to prove the strong convergence of U 1 ⊗ I N , . . . , U r 1 ⊗ I N , I N ⊗ V 1 , . . . , I N ⊗ V r 2 (that is Theorem 3, then we will deduce the strong convergence of X 1 ⊗I N , . . . , X r 1 ⊗ I N , I N ⊗ Y 1 , . . . , I N ⊗ Y r 2 (that is Theorem 1) by Theorem 2.
Therefore, in the following, we will focus on the proof of Theorem 3.

Haagerup, Thorbjørnsen and Schultz's approach

We present here the arguments of [START_REF] Haagerup | A new application of random matrices: Ext(C * red (F 2 )) is not a group[END_REF] and [START_REF] Schultz | Non-commutative polynomials of independent Gaussian random matrices. The real and symplectic cases[END_REF] which still hold in our framework of Theorem 3 and point out the result which requires new ideas and techniques.

First, it is straightfoward to deduce from Theorem 2 that almost surely, for any noncommutative polynomial P in r 1 + r 2 variables and their adjoints,

tr N ⊗ tr N P (U ⊗ I N r 1 , I N ⊗ V r 2 , U * ⊗ I N r 1 , I N ⊗ V * r 2 ) → N →+∞ τ ⊗ τ P u ⊗ 1 A r 1 , 1 A ⊗ v r 2 , u * ⊗ 1 A r 1 , 1 A ⊗ v * r 2 (7) 
(recall the notations introduced before Theorem 3). It turns out that in proving Theorem 3, the minoration almost surely, for any P , lim inf

N →+∞ P (U ⊗ I N r 1 , I N ⊗ V r 2 , U * ⊗ I N r 1 , I N ⊗ V * r 2 ) P u ⊗ 1 A r 1 , 1 A ⊗ v r 2 , u * ⊗ 1 A r 1 , 1 A ⊗ v * r 2
should follows rather easily (sticking to the proof of Lemma 7.2 in [START_REF] Haagerup | A new application of random matrices: Ext(C * red (F 2 )) is not a group[END_REF]). So, the main difficulty is the proof of the reverse inequality: almost surely for any P , lim sup

N →+∞ P (U ⊗ I N r 1 , I N ⊗ V r 2 , U * ⊗ I N r 1 , I N ⊗ V * r 2 ) P u ⊗ 1 A r 1 , 1 A ⊗ v r 2 , u * ⊗ 1 A r 1 , 1 A ⊗ v * r 2 . ( 8 
)
Thanks to a linearization trick (following [10, Section 2] and the proof of Proposition 7.3 from the same [START_REF] Haagerup | A new application of random matrices: Ext(C * red (F 2 )) is not a group[END_REF]), in order to prove [START_REF] Dineen | Complex analysis in locally convex spaces[END_REF], it suffices to prove:

Proposition 4. For all m ∈ N, all matrices ξ = ξ * , γ 1 , . . . , γ r 1 , β 1 , . . . , β r 2 ∈ M m (C) and all ε > 0, almost surely, for all large N, we have

sp (ξ ⊗ I N ⊗ I N + S U + S V ) ⊂ sp (ξ ⊗ 1 A ⊗ 1 A + S u + S v ) + (-ε, ε), (9) 
where

S U = r 1 i=1 (γ i ⊗ U i ⊗ I N + γ * i ⊗ U * i ⊗ I N ) = 2ℜ r 1 i=1 γ i ⊗ U i ⊗ I N , S V = r 2 i=1 (β i ⊗ I N ⊗ V i + β * i ⊗ I N ⊗ V * i ) = 2ℜ r 2 i=1 β i ⊗ I N ⊗ V i , S u = r 1 i=1 (γ i ⊗ u i ⊗ 1 A + γ * i ⊗ u * i ⊗ 1 A ) = 2ℜ r 1 i=1 γ i ⊗ u i ⊗ 1 A , S v = r 2 i=1 (β i ⊗ 1 A ⊗ v i + β * i ⊗ 1 A ⊗ v * i ) = 2ℜ r 2 i=1 β i ⊗ 1 A ⊗ v i .
Here, sp(T ) denotes the spectrum of the operator T , I N the identity matrix and 1 A denotes the unit of A.

As the risk of confusion is small, from here on we denote both the unit of the von Neumann algebra A and the complex number one by 1, preserving I with a subscript exclusively for the unit of the matrix algebra of matrices of the size indicated by the subscript. Set

S N = ξ ⊗ I N ⊗ I N + r 1 i=1 γ i ⊗ U i ⊗ I N + r 1 i=1 γ * i ⊗ U * i ⊗ I N (10) + r 2 j=1 β j ⊗ I N ⊗ V j + r 2 j=1 β * j ⊗ I N ⊗ V * j = ξ ⊗ I N ⊗ I N + S U + S V and S = ξ ⊗ 1 ⊗ 1 + r 1 i=1 (γ i ⊗ u i ⊗ 1 + γ * i ⊗ u * i ⊗ 1) + r 2 j=1 (β j ⊗ 1 ⊗ v j + β * j ⊗ 1 ⊗ v * j ) = ξ ⊗ 1 ⊗ 1 + S u + S v .
The proof of Proposition 4 requires sharp estimate of g N (z) -g(z) where for

z ∈ C \ R, g N (z) = E(tr m ⊗ tr N ⊗ tr N )[(zI m ⊗ I N ⊗ I N -S N ) -1 ] (11) 
and

g(z) = (tr m ⊗ τ ⊗ τ )[(zI m ⊗ 1 ⊗ 1 -S) -1 ]. ( 12 
)
This estimate is detailed in Section 6. More precisely we are going to establish that there exists a polynomial Q with nonnegative coefficients such that, for

z ∈ C \ R, g N (z) -g(z) - E(z) N 2 Q(|ℑz| -1 ) N 4 , (13) 
where E(z) is the Stieltjes transform of a distribution Λ whose support is included in the spectrum of S and Λ(1) = 0. Now, we explain, for the reader's convenience because of differences arising from the dimension of our tensor matrices, how (9) can be deduced from ( 13) by the approaches introduced in [START_REF] Haagerup | A new application of random matrices: Ext(C * red (F 2 )) is not a group[END_REF][START_REF] Schultz | Non-commutative polynomials of independent Gaussian random matrices. The real and symplectic cases[END_REF]. Using the Stieltjes inversion formula for measures and compactly supported distributions (see [START_REF] Schultz | Non-commutative polynomials of independent Gaussian random matrices. The real and symplectic cases[END_REF]Theorem 5.4]), one obtains that, for any

ϕ in C ∞ (R, R) with compact support, E[tr m ⊗ tr N ⊗ tr N (ϕ(S N ))] -tr m ⊗τ ⊗ τ (ϕ(S)) - Λ(ϕ) N 2 = i 2π lim y→0 + R ϕ(x) [ǫ N (x + iy) -ǫ N (x -iy)] dx,
where ǫ N (z) = g N (z)-g(z)-E(z) N 2 satisfies, according to [START_REF] Kaliuzhnyi-Verbovetskyi | Foundations of free noncommutative function theory[END_REF], for any z ∈ C\R,

|ǫ N (z)| Q(|ℑz| -1 ) N 4 .
We refer the reader to the Appendix of [START_REF] Capitaine | Strong asymptotic freeness for Wigner and Wishart matrices[END_REF], where it is proved using the ideas of [START_REF] Haagerup | A new application of random matrices: Ext(C * red (F 2 )) is not a group[END_REF] that if h is an analytic function on C \ R which satisfies

|h(z)| Q(|ℑz| -1 )(|z| + K) α
for some polynomial Q with nonnegative coefficients and degree k, then there exists a polynomial Q such that lim sup

y→0 + R ϕ(x)h(x + iy) dx R +∞ 0 |(1 + D) k+1 ϕ(x)|(|x| + √ 2t + K) α Q(t) exp(-t) dtdx,
where D stands for the derivative operator. Hence, dealing with h(z) = N 4 ǫ N (z) (respectively x → ϕ(-x) instead of ϕ and h(z) = N 4 ǫ N (-z)), we deduce that there exists C > 0 such that for all large N, lim sup

y→0 + R ϕ(x)ǫ N (x ± iy) dx C N 4 ,
and then

E[tr m ⊗ tr N ⊗ tr N (ϕ(S N ))] -tr m ⊗ τ ⊗ τ (ϕ(S)) - Λ(ϕ) N 2 = O 1 N 4 . ( 14 
) Let ρ ∈ C ∞ (R, R) be such that ρ 0, its support is included in [-1, 1] and R ρ(x) dx = 1. Let 0 < δ < 1. Define for any x ∈ R, ρδ 2 (x) = 2 δ ρ 2x δ . Set K(δ) = {x, dist(x, sp(S)) δ}
and define for any x ∈ R,

f δ (x) = R 1 I K(δ) (y)ρδ 2 (x -y) dy. The function f δ is in C ∞ (R, R), f δ ≡ 1 on K( δ 2 
); its support is included in K(2δ). Since there exists C such that the spectrum of S is included in [-C; C], the support of f δ is included in [-C -2; C + 2]. Thus, according to [START_REF] Hiai | Asymptotic Freeness almost everywhere for random matrices[END_REF],

E[tr m ⊗ tr N ⊗ tr N (f δ (S n ))] -tr m ⊗ τ ⊗ τ (f δ (S)) - Λ(f δ ) N 2 = O δ 1 N 4 . ( 15 
)
Since Λ(1) = 0, the function

ψ δ ≡ 1 -f δ also satisfies E[tr m ⊗tr N ⊗tr N (ψ δ (S N ))] -tr m ⊗τ ⊗τ (ψ δ (S)) - Λ(ψ δ ) N 2 = O δ 1 N 4 . ( 16 
)
Now, since ψ δ ≡ 0 on the spectrum of S, we deduce that

E[tr m ⊗ tr N ⊗ tr N (ψ δ (S N ))] = O δ 1 N 4 . (17) 
Let m δ (S N ) be the number of eigenvalues of S N outside K 2δ . Since ψ δ 1 I R\K(2δ) , we have m δ (S N ) Tr m ⊗ Tr N ⊗ Tr N (ψ δ (S N )), hence

P(m δ (S N ) 1) E[m δ (S N )] mN 2 E[tr m ⊗ tr N ⊗ tr N (ψ δ (S N ))] = O δ 1 N 2 .
Thus, by the Borell-Cantelli lemma, almost surely for all large N, the spectrum of S N is included in K(2δ) = {x, dist(x, sp(S)) 2δ}. Since this result holds for any m × m matrices ξ, γ, β, the proof of Proposition 4 is complete.

Thus, the difficulty of the paper relies on the proof of ( 13) to which the rest of the article is dedicated.

In the following section, we first introduce preliminary notions and results in noncommutative analysis that are needed for our purposes.

Noncommutative analysis 4.1 Noncommutative polynomials

Consider the star-algebra C x 1 , . . . , x r = C x r of noncommutative polynomials in r noncommuting selfadjoint indeterminates x 1 , . . . , x r . This is the algebra of the free monoid with r free generators, and the star (adjoint) operation is the R-linear extension of (λx

i 1 x i 2 • • • x in ) * = λx in • • • x i 2 x i 1 , λ ∈ C, n ∈ N, i 1 , i 2 , .
. . , i n ∈ {1, . . . , r}. On this algebra we consider Voiculescu's free difference quotient [START_REF] Voiculescu | The analogues of entropy and of Fisher's information measure in free probability theory, V: Noncommutative Hilbert transforms[END_REF][START_REF] Voiculescu | The coalgebra of the free difference quotient and free probability[END_REF]:

∂ j : C x r → C x r ⊗ C x r , ∂ j 1 = 0, ∂ j x k = δ j,k 1 ⊗ 1, (18) 
extended by C-linearity and the Leibniz rule:

∂ j (P Q) = (∂ j P )(1 ⊗ Q) + (P ⊗ 1)(∂ j Q).
One can iterate ∂ j : for k, l ∈ N (possibly zero), is defined the obvious way:

id ⊗k C x r ⊗ ∂ j ⊗ id ⊗l C x r : C x r ⊗k ⊗ C x r ⊗ C x r ⊗l → C x r ⊗k+2+l .
We introduce the notation k ∂ l j = id ⊗k C x r ⊗ ∂ j ⊗ id ⊗l C x r , so that ∂ j = 0 ∂ 0 j . A direct verification shows that the free difference quotient thus defined obeys the usual chain rule

∂ j (P (Q 1 (x r ), . . . , Q r (x r ))) = r k=1 (∂ k P )(Q 1 (x r ), . . . , Q r (x r )) • ∂ j Q k (x r
). The symbol • refers to the linear extension of the operation (A⊗B)•(C ⊗D) = AC ⊗DB -this is the natural multiplication of the algebra C x r ⊗C x r op -and is motivated by the view of C x r ⊗C x r op as a space of linear maps from C x r to itself: (A ⊗ B)(X) = AXB. (As the reader has surely guessed, C x r op denotes the opposite algebra structure on C x r : one has C x r op = C x r as complex vector spaces, but the multiplication on C x r op is given by P op • Q op = (QP ) op . The superscript op is only relevant when the multiplicative structure of our algebra is considered, otherwise there is no difference between P and P op .) This motivates us to introduce for any P ∈ C x r the operator

ev P : C x r ⊗ C x r → C x r
by the requirement that it is linear and that ev P (A⊗B) = A(x r )P (x r )B(x r ). (One uses the identification of C x r ⊗ C x r ⊆ L (C x r , C x r ), where, as discussed above, the linear map is given by the linear extension of A

⊗ B → [X → AXB].) A "multilinear" version is ev P 1 ,...,Ps : C x r ⊗ • • • ⊗ C x r s+1 times → C x r ,
given by ev P 1 ,...,Ps (A

1 ⊗ • • • ⊗ A s+1 ) = A 1 (x r )P 1 (x r )A 2 (x r ) • • • P s (x r )A s+1 (x r ).
We will seldom need any other case except P = 1 / P 1 = • • • = P s = 1. In this last case we write ev 1,...,1 = ev 1 s .

The map

flip : C x r ⊗ C x r → C x r ⊗ C x r
is defined as the linear extension of flip(A ⊗ B) = B ⊗ A. Sometimes we will need to write this map on different algebras:

flip : C x r ⊗ C y t → C y t ⊗ C x r
given by the linear extension of flip(A(x r ) ⊗ B(y t )) = B(y t ) ⊗ A(x r ). We can also define

k flip l = id ⊗k C x r ⊗ flip ⊗ id ⊗l C x r ,
where

k flip l : C x r ⊗k+2+l → C x r ⊗k+2+l .
With this notation, flip = 0 flip 0 . Sometimes it might be convenient to write

(flip ⊗ flip)(A ⊗ B ⊗ C ⊗ D) = B ⊗ A ⊗ D ⊗ C for 0 flip 2 • 2 flip 0 ,
or variations on this theme, but we will try to do so only when the risk of confusion is small.

Finally, we define

# : C x r ⊗ C y t → C x r ; y t
by the linear extension of #(A(x r ) ⊗ B(y t )) = A(x r )B(y t ). The main difference between # and ev 1 is that the latter does not increase the number of variables; # is an embedding of the tensor product in the algebraic free product, # :

C x r ⊗ C y t → C x r * C y t ≃ C x r ; y t ,
the algebra of the free semigroup with r + t free generators, while ev 1 is essentially the multiplication operation. We generally denote

# * • • • * # s-1 times : C x r ⊗ • • • ⊗ C x r s times → C x r * • • • * C x r s times ; As usual, we view C x r * C x r * • • • * C x r ≃ C x 1 r ; x 2 r ; . . . ; x s r . Then # * # * • • • * # is expressed as (# * # * • • • * #)(A 1 (x r )⊗A 2 (x r )⊗• • •⊗A s (x r )) = A 1 (x 1 r )A 2 (x 2 r ) • • • A s (x s r ). Sometimes it will be convenient to write # s-1 for # * # * • • • * # s-1 times
, s ≥ 2. (Note that one can define a priori a more general version of #, which we could denote by ev P (x r ,y t ) • # for a fixed P , given by (ev P (x r ,y t ) • #)(A ⊗ B) = A(x r )P (x r , y t )B(y t ), but such considerations will not be relevant in our paper.) Remark 5. There are algebras of operators (bounded or not) which are starisomorphic to C x r . For example, the unital star-algebra * Alg{1, s 1 , . . . , s r } generated by an r-tuple of standard free semicircular random variables s 1 , . . . , s r ∈ A and the unit 1 of A is star-isomorphic to C x r via the linear extension of the map

αs i 1 s i 2 • • • s in → αx i 1 x i 2 • • • x in .
This is in fact true for any free r-tuple of diffuse selfadjoint random variables, but not only. We call algebraically free any r tuple of selfadjoint random variables which generate a unital star-subalgebra of a von Neumann algebra containing the unit of the von Neumann algebra, which is star-isomorphic to C x r . All of the above operations extend via this isomorphism to algebras generated by algebraically free operators. Moreover, in a sufficiently large von Neumann algebra (for instance one that includes the free group factor L(F ∞ )), the set of algebraically free r-tuples of selfadjoints is norm-dense in the following sense: if t 1 , . . . , t r are not algebraically free, then one picks a standard free semicircular system (s 1 , . . . , s r ), free from (t 1 , . . . , t r ). For any ε > 0, the tuple (t 1 + εs 1 , . . . , t r + εs r ) is algebraically free (see [START_REF] Voiculescu | The coalgebra of the free difference quotient and free probability[END_REF]), and converges in norm to (t 1 , . . . , t r ) as ε ց 0. We make this assumption about A. Remark 6. With the exception of the density argument in the above remark, all considerations in this subsection were purely algebraic. The existence of a star (adjoint) operation is not a requirement for either of ∂ j , flip, ev • , # to exist/be well-defined. Moreover, non-selfadjoint elements in a von Neumann algebra may as well be algebraically free, by requiring only that the unital algebra (not star-algebra) they generate is isomorphic (not star-isomorphic) to the unital algebra generated by r noncommuting indeterminates.

For future reference, we write down here also how ∂ j acts on C x r op . For a given monomial, one has (

x i 1 x i 2 • • • x in ) op = x op in • • • x op i 2 x op i 1 .
When we write a polynomial P ∈ C x r as an element P op ∈ C x r op , we mean that each of its monomials is written as just above: if

P = k α k x i k 1 x i k 2 • • • x i k n k , then P op = k α k (x i k 1 x i k 2 • • • x i k n k ) op = k α k x op i k n k • • • x op i k 2 x op i k 1
. When acting on C x r op , the free difference quotient ∂ j "differentiates in the direction" of x op j . Thus,

∂ j (x i 1 x i 2 • • • x in ) op = ∂ j (x op in • • • x op i 2 x op i 1 ) = k : i k =j x op in • • • x op i k+1 ⊗ x op i k-1 • • • x op i 1 = k : i k =j (x i k+1 • • • x in ) op ⊗ (x i 1 • • • x i k-1 ) op .
We recognize here the flip operation applied to

∂ j (x i 1 x i 2 • • • x in ).
That is, we have shown that ∂ j acts on C x r op as flip • ∂ j acts on C x r . Let us write down the Leibniz rule in this context. If P, Q ∈ C x r are two given polynomials, then

∂ j (P Q) op = ∂ j (Q op P op ) = (∂ j (Q op ))(1 ⊗ P op ) + (Q op ⊗ 1)(∂ j (P op )) = (flip • ∂ j Q) op (1 ⊗ P ) op + (Q ⊗ 1) op (flip • ∂ j P ) op = [(1 ⊗ P )(flip • ∂ j Q)] op + [(flip • ∂ j P )(Q ⊗ 1)] op .
The free difference quotient extends to a much larger family of noncommutative functions f that includes polynomial functions, with the meaning of ∂ j f being quite obvious (the reader can easily verify this fact for "most" analytic functions that are locally norm limits of sequences of polynomialssince the notion of analyticity may become rather complicated in infinitely dimensional spaces, we do not provide details here, but refer the curious reader to, for instance, [START_REF] Dineen | Complex analysis in locally convex spaces[END_REF], for a thorough discussion of analytic functions on Banach, and more generally, locally convex, topological vector spaces). Some specific cases have already been considered in detail, and we mention here

∂ j e P = 1 0 e aP ⊗1 (∂ j P )e 1⊗(1-a)P da, P ∈ C x r , (19) 
from [START_REF] Parraud | Asymptotic expansion of smooth functions in polynomials in deterministic matrices and iid GUE matrices[END_REF], and

∂ j (z -P ) -1 = (z -P ) -1 ⊗ 1 (∂ j P ) 1 ⊗ (z -P ) -1 , P ∈ C x r , (20) 
from [START_REF] Voiculescu | The coalgebra of the free difference quotient and free probability[END_REF] (see, in particular, Sections 1 and 3), which, again, the reader can verify by hand. Applications of the chain rule and sum/product rules extend these formulas to much larger classes of functions. We do not elaborate any further because these facts will hardly play any role in our paper in this shape, but will become very important under the shape of the computation rules for the difference-differential operator, as it is seen below.

Noncommutative functions

In this subsection we follow very closely [START_REF] Kaliuzhnyi-Verbovetskyi | Foundations of free noncommutative function theory[END_REF], to which we refer for a thorough and detailed introduction to the subject. We do not introduce noncommutative functions in maximum generality, but in a context only as general as needed for our purposes. Thus, given d ∈ N, d ≥ 1, and a C * -algebra B, a noncommutative set over B d is a family Ω = n∈N Ω n such that

1. Ω n ⊆ M n (B) d for all n ∈ N; 2. If X d ∈ Ω n , Y d ∈ Ω m , then X d ⊕ Y d = X 1 0 0 Y 1 , . . . , X d 0 0 Y d ∈ Ω n+m , m, n ∈ N; 3. If X d ∈ Ω n and U ∈ M n (C) is a unitary, then UX d U * = (UX 1 U * , . . . , UX d U * ) ∈ Ω n .
Given a (possibly, but not necessarily, different) C * -algebra B, a noncommutative function is a family

f = {f n } n∈N such that 1. f n : Ω n → M n ( B) for all n ∈ N; 2. If X d ∈ Ω n , Y d ∈ Ω m , then f n+m (X d ⊕Y d ) = f n (X d )⊕f m (Y d ), m, n ∈ N; 3. If X d ∈ Ω n and S ∈ M n (C) is an invertible matrix such that SX d S -1 ∈ Ω n , then f n (SX d S -1 ) = Sf n (X d )S -1 .
We call n the level of the noncommutative function/set. The following example will be useful. n {Z ∈ M n (C) : sp(Z) ⊆ G} and it is defined via the analytic functional calculus:

f n (Z) = 1 2πi γ f (ζ)(ζI n -Z) -1 dγ(ζ),
for some simple closed curve γ in G and surrounding exactly once the spectrum sp(Z) of Z. This is easily seen to be an extension of the polynomial evaluation.

An important property of noncommutative functions is that the derivative at a given level n is often recoverable from evaluation at level 2n. Specifically:

if X d ∈ Ω n , Y d ∈ Ω m , and B d ∈ M n×m (B) d is such that X d B d 0 Y d ∈ Ω n+m
and f is locally bounded on slices, then f n+m on upper triangular matrices is of the form

f n+m X d B d 0 Y d = f n (X d ) ∆f n,m (X d , Y d )(B d ) 0 f m (Y d ) .
If there is an open set around zero such that

X d B d 0 Y d ∈ Ω n+m for all B d in that set, then M n×m (B) d ∋ B d → ∆f n,m (X d , Y d )(B d ) ∈ M n×m (B) is a C-linear map. If m = n, then ∆f n,n (X d , Y d )(X d -Y d ) = f n (X d ) -f n (Y d ), and if X d = Y d , then ∆f n,n (X d , X d )(B d ) = f ′ n (X d )(B d
), the usual Fréchet derivative of the Banach space-valued map f n (the dependence in X d and

Y d of ∆f n,m (X d , Y d )(B d
) is of a nature that is very similar to the dependence of f n on X d , or of f m on Y d ). A rather spectacular fact that follows from this is that locally bounded noncommutative functions defined on sets that are "thick" enough (open sets, for instance) are automatically Fréchet analytic (see [START_REF] Kaliuzhnyi-Verbovetskyi | Foundations of free noncommutative function theory[END_REF]Corollary 7.6]). The linear operator ∆f n,m (X d , Y d ) is called the (first) difference-differential operator. This is important for us for several reasons. First, one easily notes that any

B d = (B 1 , B 2 , . . . , B d ) ∈ M n×m (B) d is written as B d = B 1 e 1 + B 2 e 2 + • • • + B d e d
, with e j = (0, . . . , 1 ⊗ I m , . . . , 0) having the identity on position j and zero everywhere else. Thus, it makes sense to define

∆ j f n,m (X d , Y d )(B) = ∆f n,m (X d , Y d )(Be j ) = ∆f n,m (X d , Y d )(0, . . . , B, . . . , 0), the j th partial difference-differential operator ∆ j f n,m (X d , Y d ) : M n×m (B) → M n×m (B). If m = n and X d = Y d , then ∆ j f n,n (X d , X d
) is just the classical partial derivative in the j th coordinate. Second, one may repeat the above for larger matrices:

f n+m+p     X d B d 0 0 Y d C d 0 0 Z d     =   f n (X d ) ∆f n,m (X d , Y d )(B d ) ∆ 2 f n,m,p (X d , Y d , Z d )(B d , C d ) 0 f m (Y d ) ∆f m,p (Y d , Z d )(C d ) 0 0 f p (Z d )   , where (B d , C d ) → ∆ 2 f n,m,p (X d , Y d , Z d )(B d , C d ) is a bilinear correspondence from M n×m (B) d × M m×p (B) d to M n×p (B)
, and so on, as one considers larger and larger matrices (again, ∆ 2 f n,n,n (X d , X d , X d ) is the classical second derivative of f n ). Generally,

f m 1 +•••+m n+1                 X (1) d B (1) d • • • 0 0 0 X (2) d • • • 0 0 . . . . . . . . . . . . . . . 0 0 • • • X (n) d B (n) d 0 0 • • • 0 X (n+1) d                 =    f m 1 (X (1) 
d ) • • • ∆ n f m 1 ,...,m n+1 (X (1) 
d , . . . , X

)(B

d , . . . , B

(n) d ) . . . . . . . . . 0 • • • f p (X (n+1) d )    .( 21 
)
One observes that ∆ n f(X

d , . . . , X

) makes sense for tuples X

d of all sizes in the domain of the initial f, and, based on the properties of f itself when defined on block matrices as above, the correspondence (X

(1) d , . . . , X (n+1) d ) → ∆ n f(X (1) d , . . . , X (n+1) d
) must have a "nice" behavior, similar to that of f. Indeed, for any fixed

n ≥ 1, ∆ n f is a map on sets m 1 ,...,m n+1 ∈N Ω m 1 ו • •×Ω m n+1 taking values in the space of n-linear continuous maps from M m 1 ×m 2 (B) × M m 2 ×m 3 (B) × • • • × M mn×m n+1 (B) to M m 1 ×m n+1 (B), m 1 , . . . , m n+1 ∈ N.
This is a particular case of a noncommutative map of order n (with f being a map of order zero), and such maps have properties that are very similar to those of f, including accepting the application of the free difference quotient in any of its n + 1 tuples of variables, which they "carry" with them in upper triangular matrices in a manner similar to that of f, and analyticity under very mild conditions of local boundedness. Conceptually, this is quite similar to the case of noncommutative functions of order zero, but the notations become quickly very cumbersome, so we do not provide any details here, but refer the reader to [13, Chapter 3] -particularly Section 3.2 -and [13, Section 7.4] for a clear and comprehensive presentation of the properties of analytic higher order noncommutative functions.

The existence and properties of the difference differential operator allows one to write power series expansions for noncommutative functions: according to [13, Theorems 7.2 and 7.4], if f is locally bounded (which will always be the case for the functions we deal with), then

1 K! d K dt K f n (Y d + tZ d )| t=0 = ∆ K f n,...,n (Y d , . . . , Y d K+1 times )(Z d , . . . , Z d K times ), (22) 
f n (X d ) = ∞ l=0 ∆ l f n,...,n (Y d , . . . , Y d l+1 times )(X d -Y d , . . . , X d -Y d l times ), (23) 
where [START_REF] Takesaki | Theory of Operator Algebras II[END_REF] happens for all 

K, n ∈ N, Y d ∈ Ω n , Z d ∈ M n (B) d (
Υ ε := {X d ∈ Υ : Y d + (1 + ε)(X d -Y d ) ∈ Υ} : one has ∞ l=0 sup X d ∈Υε ∆ l f n,...,n (Y d , . . . , Y d l+1 times )(X d -Y d , . . . , X d -Y d l times ) Mn(B) d < ∞. (24) 
Following [START_REF] Kaliuzhnyi-Verbovetskyi | Foundations of free noncommutative function theory[END_REF], we refer to [START_REF] Thorbjørnsen | Mixed moments of Voiculescu's Gaussian random matrices[END_REF] 

Relations between the difference-differential operator and the free difference quotient

We have seen in Sections 4.1 and 4.2 two perspectives on noncommutative functions and derivatives. In this section, we intend to unify them to some extent. For clarity, let us begin by considering noncommutative functions on open subsets of C r nc = n M n (C) r . Given a monomial M ∈ C x r , one may view it as a noncommutative function simply by performing evaluations on r-tuples of n × n complex matrices for all n. Thus, for an

M = x i 1 x i 2 • • • x im , i 1 , . . . , i m ∈ {1, . . . , r}, one has ∂ j M = k:i k =j x i 1 • • • x i k-1 ⊗ x i k+1 • • • x im ,
with the convention that the empty word is the unit 1 (that is, if, say, i m = j, then the last summand is

x i 1 • • • x i m-1 ⊗ 1). Evalu- ation on an r-tuple of matrices (X 1 , . . . , X r ) yields (∂ j M)(X 1 , . . . , X r ) = k:i k =j X i 1 • • • X i k-1 ⊗ X i k+1 • • • X im ∈ M n (C) ⊗ M n (C). However, M n (C) ⊗ M n (C) identifies naturally with the space of linear maps from M n (C) to itself via M n (C) ⊗ M n (C) ∋ j A j ⊗ B j → C → j A j CB j ∈ L (M n (C), M n (C)).
(One recognizes above ev C j A j ⊗ B j .) The identification is bijective, and if one considers the opposite algebra structure on the second tensor, it is also an algebra isomorphism

M n (C) ⊗ M n (C) op ≃ L (M n (C), M n (C)
). This allows one to easily identify the free difference quotient and the differencedifferential operator: simply observe that

M X 1 0 0 X 1 , . . . , X j C 0 X j , . . . , X r 0 0 X r = X i 1 δ i 1 ,j C 0 X i 1 X i 2 δ i 2 ,j C 0 X i 2 • • • X im δ im,j C 0 X im = X i 1 X i 2 • • • X im k:i k =j X i 1 • • • X i k-1 CX i k+1 • • • X im 0 X i 1 X i 2 • • • X im ,
which shows that on monomial functions defined on C r nc the above isomorphism identifies the difference-differential operator and the free difference quotient when evaluated on r-tuples of complex matrices of all sizes. The extension to convergent power series is performed by applying this procedure term-by-term. Given that both resolvents of polynomials and exponentials of polynomials are noncommutative functions in the sense of [START_REF] Kaliuzhnyi-Verbovetskyi | Foundations of free noncommutative function theory[END_REF] whose Taylor-Taylor series converge as described in ( 23) and [START_REF] Tillmann | Randverteilungen analytischer Funktionen und Distributionen[END_REF], it follows that the identification of free difference quotients and difference-differential operators described just above extends to the algebra generated by polynomials, exponentials of polynomials, resolvents of polynomials, and compositions of such (on the open noncommutative sets on which they are defined).

The only point in the above reasoning where the finite dimensionality of the domain of definition for the noncommutative functions we consider came up is in the identification

M n (C) ⊗ M n (C) op ≃ L (M n (C), M n (C)).
However, for a given von Neumann algebra A, one still has an inclusion

M n (A) ⊗ M n (A) op ֒→ L (M n (A), M n (A)) of algebras, in the sense that the correspondence C → j A j CB j (finite sum) is continuous from M n (A) to itself and M n (A)⊗M n (A) op ∋ j A j ⊗B j → C → j A j CB j ∈ L (M n (A), M n (A))
is an endomorphism of algebras. (In the above we look at the algebraic tensor product over C -no issues of continuity or closure occur -and the von Neumann algebra A is arbitrary.) This allows us to extend the identification of Voiculescu's free difference quotient and the difference-differential operator to a large class of noncommutative functions, but this time defined on noncommutative subsets of n M n (A) for an arbitrary von Neumann algebra A. As the reader will notice in the following, the fact that we only need to consider the algebraic tensor product in the above simplifies greatly our work. The formal description of the above observation is the following: for any polynomial P ∈ C x r , any n ∈ N, any algebraically free selfadjoints (s 1 , . . . , s r ) ∈ M n (A) r , and any c ∈ M n (A), one has

ev c • ∂ j P (s 1 , . . . , s r ) = ∆ j P (s 1 , . . . , s r ; s 1 , . . . , s r )(c).
Observe that, generally, if f, g are locally norm-bounded noncommutative functions that satisfy this hypothesis (namely that ev c • ∂ j f(s 1 , . . . , s r ) = ∆ j f(s 1 , . . . , s r ; s 1 , . . . , s r )(c)), then so does fg, because of the Leibniz rule and the fact that ∂ j is a derivation with respect to the M n (A)-bimodule structure of M n (A) ⊗ M n (A) -see [28, Section 1.3] 1 . (That the statement holds for sums is trivial.) It then follows that the above identification of ∂ j and ∆ j holds in particular for rational functions and, more generally, for noncommutative functions that are locally norm-limits of polynomials.

However, for the purpose of using Parraud's work [START_REF] Parraud | Asymptotic expansion of smooth functions in polynomials in deterministic matrices and iid GUE matrices[END_REF], we need a slightly more general statement. Recall that ∂ j : C x r → C x r ⊗ C x r takes values in a tensor product of two identical noncommutative polynomials algebras. This means that the evaluation of ∂ j P on, say, A ⊗ A (may be any two algebras), can be performed in different operators corresponding to the two tensor coordinates: given r-tuples s r = (s 1 , . . . , s r ) and t r = (t 1 , . . . , t r ) in A r , one can evaluate (∂ j P )(s r ; t r ) as well as (∂ j P )(s r ; s r ) (the reader may feel more comfortable writing

∂ j : C x r → C x r ⊗C y r instead). Recalling the operation # : C x r ⊗ C y r → C x r ; y r , #(A(x r ) ⊗ B(y r )) = A(x r )B(y r ) from Section 4.1 (with equal number of indeterminates r = t), this leads to M s 1 0 0 t 1 , . . . , s j c 0 t j , . . . , s r 0 0 t r = s i 1 δ i 1 ,j c 0 t i 1 s i 2 δ i 2 ,j c 0 t i 2 • • • s im δ im,j c 0 t im = s i 1 s i 2 • • • s im k:i k =j s i 1 • • • s i k-1 ct i k+1 • • • t im 0 t i 1 t i 2 • • • t im for M = x i 1 x i 2 • • •
x im , and, as above, allows us to conclude that

(# • ∂ j f)(s r ; t r ) = ∆ j f(s r ; t r )(1),
for functions f in the class previously mentioned.

The important (to us) consequence of the above (mostly tautological) argument is that the operations ∂ j , #, ev • are translatable in terms of differencedifferential operators, so that the nature of the noncommutative function we work with does not change. In particular, if both the variables s and the variables t are in the domain of our function, then these operations become simply operations between levels of the same noncommutative function.

Domains for (z -S) -1

As the reader remembers from Section 3, we are concerned with resolvents of operators of the type

S = ξ ⊗ 1 ⊗ 1 + r 1 i=1 (γ i ⊗ u i ⊗ 1 + γ * i ⊗ u * i ⊗ 1) + r 2 j=1 (β j ⊗ 1 ⊗ v j + β * j ⊗ 1 ⊗ v * j )
, where u j , v j are Cayley transforms of various free algebraically free selfadjoint variables. By choosing r = max{r 1 , r 2 }, we may assume r 1 = r 2 = r by simply setting the missing coefficients (be they γ or β) to zero, so from now on we make this assumption. Since Cayley transforms of selfadjoints are unitaries, one has

u * i = u -1 i , v * i = v -1 i .
We intend to view S and its various transforms as noncommutative functions (hence analytic). Because of that, we cannot keep adjoints in the formula of S, so that from now on, we agree that

S = ξ ⊗ 1 ⊗ 1 (25) + r i=1 (γ i ⊗ u i ⊗ 1 + γ * i ⊗ u -1 i ⊗ 1 + β i ⊗ 1 ⊗ v i + β * i ⊗ 1 ⊗ v -1 i ),
where we remind the reader that ξ = ξ * , γ i , β i ∈ M m (C) are arbitrary, but fixed. Similarly,

S u = r i=1 (γ i ⊗ u i ⊗ 1 + γ * i ⊗ u -1 i ⊗ 1), S v = r i=1 (β i ⊗ 1 ⊗ v i + β * i ⊗ 1 ⊗ v -1 i ),
where u i and v i are simply placeholders for variables to be specified at a later time (in particular, S = ξ ⊗ 1 ⊗ 1 + S u + S v ). Then S u , S v , S are selfadjoint whenever evaluated on unitary operators u i , v i , and (u i , v i ), respectively. In the following, we restrict our variables u i , v i to a very specific kind of operators, namely Cayley transforms of operators with imaginary part between -1 and 1. Thus, for an arbitrary von Neumann algebra2 A, we consider the set

I r (A) = n≥1 I r (A) n = n≥1 {s r ∈ M n (A) r : -1 < ℑs j < 1, j ∈ {1, . . . , r}} .
The Cayley transform Ψ(z) = z+i z-i and its inverse Ψ(z) -1 = z-i z+i are both defined on operators whose imaginary part is between -1 and 1.

Indeed, if -1 < ℑs < 1, then (s + i) -1 = (ℜs + i(1 + ℑs)) -1 = (1 + ℑs) -1/2 ((1 + ℑs) -1/2 ℜs(1+ℑs) -1/2 +i) -1 (1+ℑs) -1/2 and (s-i) -1 = (ℜs-i(1-ℑs)) -1 = (1 -ℑs) -1/2 ((1 -ℑs) -1/2 ℜs(1 -ℑs) -1/2 -i) -1 (1 -ℑs) -1/2 . Since ℑs > -1, one has ℑs+1 > 0, so that ℑs+1 is invertible. As (1+ℑs) -1/2 ℜs(1+ℑs) -1/2 is selfadjoint, ((1 + ℑs) -1/2 ℜs(1 + ℑs) -1/2 + i) -1 is bounded in norm by one. Thus, (s + i) -1 ≤ (1 + ℑs) -1 . Similarly, 1 > ℑs =⇒ 1 -ℑs > 0 makes (1 -ℑs) -1 bounded as well, and (s -i) -1 ≤ (1 -ℑs) -1 . This implies that Ψ(s) ǫ ≤ 1 + 2 max{ (1 -ℑs) -1 , (1 + ℑs) -1 }, ǫ ∈ {±1}.
We also note that, regardless of A, I r (A) is a noncommutative set. Indeed,

if s r ∈ I r (A) n , t r ∈ I r (A) m , then -1 ⊗ I n+m = -1 ⊗ I n 0 0 -1 ⊗ I m < ℑs j 0 0 ℑt j < 1 ⊗ I n 0 0 1 ⊗ I m = 1 ⊗ I n+m , and if U ∈ M n (C) is unitary, then -1 ⊗ I n = -(1 ⊗ U)(1 ⊗ I n )(1 ⊗ U * ) < (1 ⊗ U)ℑs j (1 ⊗ U * ) < (1 ⊗ U)(1 ⊗ I n )(1 ⊗ U * ) = 1 ⊗ I n for all 1 ≤ j ≤ r, so that s r ⊕ t r ∈ I r (A) n+m and (1 ⊗ U)s r (1 ⊗ U * ) ∈ I r (A) n .
Next we observe that the formula for S makes full sense regardless of whether the u i 's and v i 's are from the same algebra or from different algebras. This is just stating that tensor product (over C) of arbitrary C * -algebras is well-defined (the question of completion simply does not appear when we consider S, S u , S v ; it barely appears when considering the resolvent (z -S) -1 , in the sense that S is viewed as an element in the spatial tensor product, and the inverse which is the resolvent is viewed in the same space).

We argue that we may view S -and some transforms of S -separately as a noncommutative function of r variables, first in one tensor factor (with the coefficients and the v's being fixed parameters), then in the second (with the coefficients and the u's being fixed parameters). We consider the composition of S with the map s r → Ψ r (s r ) := (Ψ(s 1 ), . . . Ψ(s r )). This map has just been shown to be a bijective noncommutative map from I r (A) onto its range Ψ r (I r (A)) (it should be noted for future reference that subsets I ε r (A) := n≥1 {s r ∈ I r (A) n : -ε ≤ ℑs j ≤ ε, 1 ≤ j ≤ r} are mapped into uniformly norm-bounded sets, bounded by a constant which only depends on ε ∈ [0, 1)).

While straightforward (like the proof for I r (A)), for the sake of the reader's comfort we provide here the proof of the fact that, given (fixed)

z ∈ C + , von Neumann algebra Ã, p ∈ N, v 1 , . . . , v r ∈ Ψ r (I r ( Ã) p ) such that z -ξ ⊗1⊗1-r i=1 (γ i ⊗Ψ(s i )⊗1+γ * i ⊗Ψ(s i ) -1 ⊗1+β i ⊗1⊗v i +β * i ⊗1⊗v -1 i ) is invertible when s i = s * i , the correspondence s r → z -ξ ⊗1⊗1-r i=1 (γ i ⊗ Ψ(s i ) ⊗ 1 + γ * i ⊗ Ψ(s i ) -1 ⊗ 1 + β i ⊗ 1 ⊗ v i + β * i ⊗ 1 ⊗ v -1 i ) -1
is locally a noncommutative map.

First, let us observe that the correspondence

s r → ξ ⊗ 1 ⊗ 1 + r i=1 (γ i ⊗ Ψ(s i ) ⊗ 1 + γ * i ⊗ Ψ(s i ) -1 ⊗ 1 + β i ⊗ 1 ⊗ v i + β * i ⊗ 1 ⊗ v -1 i
) is indeed a noncommutative map. This is quite obvious, however: the correspondences s j → Ψ(s j ) ±1 have been seen just above to be noncommutative maps on all of I r (A) by analytic functional calculus. Thus, it is enough to show that

u r → ξ⊗1⊗1+ r i=1 (γ i ⊗u i ⊗1+γ * i ⊗u -1 i ⊗1+β i ⊗1⊗v i +β * i ⊗1⊗v -1 i
) satisfies the axioms of noncommutative functions on Ψ r (I r (A)). This is tautological; one only needs to specify the manner in which the extension is performed. Our level-one map is from (a subset of) A into M m (C) ⊗ A ⊗ Ã. Thus, the amplifications must send elements from

M n (A) into M n (M m (C) ⊗ A ⊗ Ã).
To be very rigorous3 , we consider first the different formula corresponding to noncommutative functions taking values in A ⊗M m (C) ⊗ Ã; this corresponds to applying the isometric isomorphism flip in the first two coordinates, i.e. 0 flip 1 in our notation. Then we can safely write

u i 0 0 ũi ⊗ γ i ⊗ 1 + u -1 i 0 0 ũ-1 i ⊗ γ * i ⊗ 1 = u i ⊗ γ i ⊗ 1 0 0 ũi ⊗ γ i ⊗ 1 + u -1 i ⊗ γ * i ⊗ 1 0 0 ũ-1 i ⊗ γ * i ⊗ 1 ,
showing that (since sums of noncommutative functions are noncommutative functions)

s r → 1⊗ξ ⊗1+ r i=1 (Ψ(s i )⊗γ i ⊗1+Ψ(s i ) -1 ⊗γ * i ⊗1+1⊗β i ⊗v i + 1 ⊗ β * i ⊗ v -1 i ), and hence s r → z -1 ⊗ ξ ⊗ 1 -r i=1 (Ψ(s i ) ⊗ γ i ⊗ 1 + Ψ(s i ) -1 ⊗ γ * i ⊗ 1 + 1 ⊗ β i ⊗ v i + 1 ⊗ β * i ⊗ v -1 i ) -1
is -locally -a noncommutative map. (Conjugation with scalar invertible matrices clearly passes through, and we know that sets of invertibility are level-wise open.) Since 0 flip 1 is isometric, it extends to the spatial tensor product completion, so it can be applied to our resolvent as well ( 0 flip 1 is also its own inverse, i.e. 0 flip 1 • 0 flip 1 is the identity map). As a von Neumann algebra isomorphism, it can be extended to matrices of all sizes, by an entry-wise application. Of course, two consecutive applications bring us to the identity, as in the case of level one. Thus, when analyzing the behavior of this correspondence as a noncommutative function in variables from A, we first apply 0 flip 1 , then we perform the evaluations at the desired levels, and then apply again

0 flip 1 . For t r → z -ξ ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ u i ⊗ 1 + γ * i ⊗ u -1 i ⊗ 1 + β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1
, one

replaces 0 flip 1 by 0 flip 1 • 1 flip 0 : M m (C) ⊗ A ⊗ Ã → Ã ⊗ M m (C) ⊗ A in the above argument.
We have thus proved locally the desired properties for our map. However, it is important to have large enough noncommutative domains on which the map in question is defined. For that, we show next that for any levels p, q ∈ N, p, q > 0, and any z 0 ∈ C + , there exists ε > 0 such that the map

{z ∈ C + : ℑz 0 -ε < ℑz} × I ε r (A) p × I ε r ( Ã) q ∋ (z, s r , t r ) → z -ξ ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗Ψ(s i ) ⊗1 + γ * i ⊗Ψ(s i ) -1 ⊗1 + β i ⊗1 ⊗Ψ(t i ) + β * i ⊗1 ⊗Ψ(t i ) -1 )
-1 is a well-defined analytic map. This will be done by a rough, far from optimal, majorization. Pick an arbitrary j ∈ {1, . . . , r} and write

ℑ γ i ⊗ Ψ(s i ) ⊗ 1 + γ * i ⊗ Ψ(s i ) -1 ⊗ 1 = 1 2i γ i ⊗ Ψ(s i ) + γ * i ⊗ Ψ(s i ) -1 -γ * i ⊗ Ψ(s i ) * -γ i ⊗ [Ψ(s i ) -1 ] * ⊗ 1 = 1 2i γ i ⊗ s i + i s i -i - s * i + i s * i -i + γ * i ⊗ s i -i s i + i - s * i -i s * i + i ⊗ 1 = 1 2i γ i ⊗ 2i s i -i - 2i s * i -i + γ * i ⊗ -2i s i + i - -2i s * i + i ⊗ 1 = γ i ⊗ (s i -i) -1 (s * i -s i )(s * i -i) -1 + γ * i ⊗ (s * i + i) -1 (s i -s * i )(s i + i) -1 ⊗1.
We apply the obvious majorization:

ℑ γ i ⊗ Ψ(s i ) ⊗ 1 + γ * i ⊗ Ψ(s i ) -1 ⊗ 1 = γ i ⊗ (s i -i) -1 (s * i -s i )(s * i -i) -1 + γ * i ⊗ (s * i + i) -1 (s i -s * i )(s i + i) -1 ≤ 2 γ i s * i -s i (s i -i) -1 (s i + i) -1 ≤ 2 γ i ℑs i (1 -ℑs i ) -1 (1 + ℑs i ) -1 < 4 γ i ε (1 -ε) 2 .

This guarantees that

ℑ ξ ⊗ 1 ⊗ 1 + r i=1 (γ i ⊗ Ψ(s i ) ⊗ 1 + γ * i ⊗ Ψ(s i ) -1 ⊗ 1 + β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) < 8 ε r i=1 ( γ i + β i ) (1 -ε) 2
whenever all of the variables s r , t r satisfy ℑs j < ε, ℑt j < ε. Thus, if

we choose ε ∈ 0, min 1 -1 √ 2 , ℑz 0 1+16 r i=1 ( γ i + β i )
, we are guaranteed that

the correspondence {z ∈ C + : ℑz 0 -ε < ℑz}×I ε r (A) p ×I ε r ( Ã) q ∋ (z, s r , t r ) → z -ξ ⊗ 1 ⊗ 1 -r i=1 (γ i ⊗ Ψ(s i ) ⊗ 1 + γ * i ⊗ Ψ(s i ) -1 ⊗ 1 + β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1
is well-defined. Since it is rational in all variables, it is automatically analytic on this domain. We also note that ε can be taken to depend only on ℑz 0 > 0 and on the initial data of gammas and betas, and not on ξ, not on the levels p, q ∈ N, not on the specific von Neumann (in fact just C * -) algebras A, Ã, and not on the norms of the operators s i , t j (which shows that even unbounded evaluations are possible, even though in that situation questions of continuity/analyticity become more involvedfortunately that does not concern us here). In particular, we conclude from the above that, given a fixed z 0 ∈ C + , there exists an

ε > 0 such that, if ℑt 1 , . . . , ℑt r < ε, then s r → z -ξ ⊗ 1 ⊗ 1 -r i=1 (γ i ⊗ Ψ(s i ) ⊗ 1 + γ * i ⊗ Ψ(s i ) -1 ⊗ 1 + β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) is invertible on all of I ε r (A), and hence s r → z -ξ ⊗ 1 ⊗ 1 -r i=1 (γ i ⊗ Ψ(s i ) ⊗ 1 + γ * i ⊗ Ψ(s i ) -1 ⊗ 1 + β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1
is a noncommutative map defined on I ε r (A) which is bounded (uniformly) on I ε 1 r (A) for any fixed ε 1 ∈ [0, ε). As we have seen already that Ψ(s i ) ±1 , Ψ(t j ) ±1 are bounded uniformly in terms of ℑs i , ℑt j ∈ [0, 1) exclusively, the above argument also guarantees that, for a given majorization ℑs i , ℑt j < ε ∈ (0, 1), there exists an M > 0 which depends only on ε ∈ [0, 1) and on the initial data

ξ, γ 1 , . . . , γ r , β 1 , . . . , β r ∈ M m (C), such that z -ξ ⊗ 1 ⊗ 1 -r i=1 (γ i ⊗ Ψ(s i ) ⊗ 1 + γ * i ⊗ Ψ(s i ) -1 ⊗ 1 + β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1
) is invertible for all |z| > M, and has a power series expansion in 1 z which converges uniformly on |z| ≥ M ′ if M ′ > M is given. It is important to note that this constant M does not depend on the von Neumann algebras in which s i , t i live, on the levels p, q at which we evaluate, or on the norm of the operators s i , t i .

We summarize the facts established above in the following Proposition 8. With the previously introduced notations,

• given z 0 ∈ C + , there exists an ε ∈ (0, 1) such that the correspondence

{z ∈ C + : ℑz 0 -ε < ℑz} × I ε r (A) p × I ε r ( Ã) q ∋ (z, s r , t r ) → z -ξ ⊗ 1 ⊗ 1 -r i=1 (γ i ⊗ Ψ(s i ) ⊗ 1 + γ * i ⊗ Ψ(s i ) -1 ⊗ 1 + β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1
is analytic for all p, q ∈ N, p, q > 0. This ε does not depend on p, q ∈ N.

If 0 < ε 1 < ε is given, then the set {z ∈ C + : ℑz 0 -ε 1 < ℑz} × I ε 1 r (A) p × I ε 1 r ( Ã)
q is mapped inside a norm-bounded set, with a bound depending on ε 1 and not on p, q. In particular, if any two of the three variables (z, s r , t r ) are fixed, then the correspondence in the third is a noncommutative function on the given domain;

• given ε ∈ (0, 1), there exists an

M > 0 such that {z ∈ C + : |z| > M} × I ε r (A) p × I ε r ( Ã) q ∋ (z, s r , t r ) → z -ξ ⊗ 1 ⊗ 1 -r i=1 (γ i ⊗ Ψ(s i ) ⊗ 1 + γ * i ⊗Ψ(s i ) -1 ⊗1 + β i ⊗1 ⊗Ψ(t i ) + β * i ⊗1 ⊗Ψ(t i ) -1 ) -1
is analytic for all p, q ∈ N, p, q > 0. This M does not depend on p, q ∈ N.

If M 1 > M, then this correspondence sends {z ∈ C + : |z| > M 1 } × I ε r (A) p × I ε r ( Ã) q in a
norm-bounded set, with a bound that does not depend on p, q. If any two of the three variables (z, s r , t r ) are fixed, then the correspondence in the third is a noncommutative function on the given domain.

Via a generalized Schwarz reflection principle, the first item above is rephrased in the obvious manner for z 0 ∈ C -.

In order to use Parraud's formulas, which are shown to hold on polynomials and exponentials, we need to express the Cayley transform as a Fourier-like transform. We next use the formulas on the power series expansions at infinity of the resolvent of S, whose terms are polynomials in Cayley transforms of our variables, and extend by analytic continuation.

The Fourier-like formula we use is the following:

Ψ(x) ǫ = x + ǫi x -ǫi = 1 -2 0 -∞ e (iǫx+1)y dy, ǫ ∈ {±1}. ( 26 
)
The first equality holds for all x ∈ C, and the second for all x ∈ {z ∈ C : |ℑz| < 1}, as analytic functions (to be precise, when ǫ = 1, the second equality holds on {z ∈ C : ℑz < 1}, and when ǫ = -1, on {z ∈ C : ℑz > -1}). This extends via analytic functional calculus to bounded linear operators with imaginary part between -1 and 1 (of course, (26) makes sense for operators whose spectrum is included in the corresponding domain), and, for selfadjoint unbounded operators affiliated to any type II von Neumann algebra, via continuous functional calculus; we use the obvious notation:

Ψ(Z) ǫ = Z + ǫi Z -ǫi = 1 -2 0 -∞ e (iǫZ+1)y dy, ǫ ∈ {±1}. (27) 
(Since there is no risk of confusion, we continue to write Z+ǫi Z-ǫi for (Z + ǫi)(Zǫi) -1 = (Z -ǫi) -1 (Z + ǫi), as we have before.)

Analyticity (see Example 7) guarantees that the Taylor-Taylor power series expansions around zero of the left and right hand sides in [START_REF] Voiculescu | The analogues of entropy and of Fisher's information measure in free probability theory, V: Noncommutative Hilbert transforms[END_REF] coincide. However, a direct verification is possible:

Z + ǫi Z -ǫi = 1 -2 ∞ n=0 (-iǫZ) n , Z < 1, 1 -2 0 -∞ e (iǫZ+1)y dy = 1 -2 0 -∞ e y e iǫZy dy = 1 -2 0 -∞ e y ∞ n=0 (iǫZy) n n! dy = 1 -2 ∞ n=0 0 -∞ y n e y n! dy (iǫZ) n = 1 -2 ∞ n=0 (-1) n (iǫZ) n , Z < 1.
(We have used the commutativity of the identity with Z to write e (iǫZ+1)y = e y e iǫZy , and the elementary equality I n = -nI n-1 for I n = 0 -∞ y n e y dy.) This gives an alternative, elementary proof of the equality [START_REF] Voiculescu | The analogues of entropy and of Fisher's information measure in free probability theory, V: Noncommutative Hilbert transforms[END_REF] on operators of norm strictly less than one. It follows from Example 7 that the equality holds for all operators Z with -1 < ℑZ < 1.

Since Ψ(Z) ǫ are noncommutative functions on an open set, they are differentiable, in the (much stronger) sense that they accept the application of difference-differential operators and the resulting functions have domains which are no smaller than the domain of Ψ(Z) ǫ . For operators of norm strictly less than one, a direct verification using the power series found above allows one to conclude that ∂Ψ(Z

) ǫ = iǫ 2 (Ψ(Z) ǫ -1) ⊗ (Ψ(Z) ǫ -1)
, regardless of which expression for Ψ we consider. (Of course, thanks to Voiculescu's result [START_REF] Voiculescu | The coalgebra of the free difference quotient and free probability[END_REF]Section 3], this needs neither verification, nor proof, when the rational formula for Ψ is employed.) Thus, if s 1 , . . . , s r are algebraically free selfadjoint variables, then

∂ j Ψ(s k ) ǫ = δ j,k ǫ i 2 (Ψ(s k ) ǫ -1)⊗(Ψ(s k ) ǫ -1), j, k = 1, . . . , r, ǫ ∈ {±1}. ( 28 
)
The formula derived from the expression involving exponentials can be seen to be the same, for example by employing (classical) analytic continuation.

A most direct verification shows the equality

∆Ψ(Z 1 ; Z 2 )(W ) = (ev W •#•∂)(Ψ)(Z 1 ; Z 2 )(W ), -1 < ℑZ j < 1, W arbitrary,
with a similar formula for Ψ(•) -1 . In particular,

∆(Ψ ǫ )(s; t)(c) = ǫ i 2 (Ψ(s) ǫ -1)c(Ψ(t) ǫ -1), -1 < ℑs, ℑt < 1, ǫ ∈ {±1}.
(29) Up to this point, we have established that s r → (z -S) -1 , t r → (z -S) -1 are noncommutative functions on convenient domains that contain the selfadjoints, that the Cayley transform Ψ can be expressed in terms of a Fourier-like integral on R, and the formula for ∂Ψ, ∆Ψ. As it will be seen in Section 5.1, Parraud's formulae for linear functionals that are used in the definition of E and ∆ N from Section 3 involve applications of ∂ i , #, ev . , flip to the tensor coordinates of (z -S) -1 . The fact that these operations make sense on (z -S) -1 follows very easily by employing the identification of ev•∂ j and ∆ j , coupled with Proposition 8. However, that is not enough: we need to show that these applications indeed represent an extension of Parraud's functionals to (z -S) -1 , as well as prove certain properties of the functions obtained this way, properties related to the behavior in z when z is close to the real line.

Differentiation and evaluation

Recall the fact that flip is a von Neumann algebra isomorphism, so that flip(z -W ) -1 = (z -flipW ) -1 , for instance. This extends to any rational expression.

We record next the expression one obtains when applying the partial difference-differential operator to (z -S) -1 . The computations are not new (see [13, 2.3.5]), and we only provide them for the sake of completeness; the reader may view them as an exercise. We recall from above the manner in which we understand S as a noncommutative function, and (since we work in our computation on the second tensor coordinate) we remind the reader that -for computational purposes only -we first perform the flipping of the first two coordinates:

0 flip 1 (z -S) = 1 ⊗ b ⊗ 1 -r i=1 (Ψ(s i ) ⊗ γ i ⊗ 1 + Ψ(s i ) -1 ⊗ γ * i ⊗ 1 + 1 ⊗ β i ⊗ Ψ(t i ) + 1 ⊗ β * i ⊗ Ψ(t i ) -1
). Then we pick some other c, u 1 , . . . , u r ∈ A (or any matrix amplification of it, if needed) and evaluate the multiplicative inverse of

1 0 0 1 ⊗b⊗1 -r i=1 Ψ s i δ i,j c 0 u i ⊗γ i ⊗1 + Ψ s i δ i,j c 0 u i -1 ⊗ γ * i ⊗ 1 + 1 0 0 1 ⊗ β i ⊗ Ψ(t i ) + 1 0 0 1 ⊗ β * i ⊗ Ψ(t i ) -1 = 1 ⊗ b ⊗ 1 0 0 1 ⊗ b ⊗ 1 -r i=1 ( Ψ(s i ) ⊗ γ i ⊗ 1 δ i,j ∆Ψ(s i , u i )(c) ⊗ γ i ⊗ 1 0 Ψ(u i ) ⊗ γ i ⊗ 1 + 1 ⊗ β i ⊗ Ψ(t i ) 0 0 1 ⊗ β i ⊗ Ψ(t i ) + 1 ⊗ β * i ⊗ Ψ(t i ) -1 0 0 1 ⊗ β * i ⊗ Ψ(t i ) -1 + Ψ(s i ) -1 ⊗ γ i ⊗ 1 -δ i,j Ψ(s i ) -1 ∆Ψ(s i , u i )(c)Ψ(u i ) -1 ⊗ γ i ⊗ 1 0 Ψ(u i ) -1 ⊗ γ i ⊗ 1
). (In order to make the argument more self-contained,

Ψ s j c 0 u j = 1 0 0 1 + 2i s j -i c 0 u j -i -1 = 1 + 2i(s j -i) -1 -2i(s j -i) -1 c(u j -i) -1 0 1 + 2i(u j -i) -1 = Ψ(s j ) i 2 (Ψ(s j ) -1) c (Ψ(u j ) -1) 0 Ψ(u j ) ; (30) 
recall [START_REF] Voiculescu | Free Random Variables[END_REF]. If c = 1, we recognize in the (1, 2) entry ((# • ∂ j )Ψ)(s j ; u j ), and if s j = u j , we recognize (ev c • ∂ j )(Ψ)(s j ).) The forms of Ψ(•) and Ψ(•) -1 are so similar that we will not hesitate to keep in our formulae the expression ∆(

Ψ -1 )(s i , u i )(c) instead of -Ψ(s i ) -1 ∆Ψ(s i , u i )(c)Ψ(u i ) -1 ,
or alternate between them. We view (z -S) -1 -after the application of 0 flip 1 -as a noncommutative function in the variables s r and apply the usual calculation rules (for saving space, we use again b = z -ξ in our notation):

1 0 0 1 ⊗ b ⊗ 1 - r i=1 Ψ s i δ i,j c 0 u i ⊗ γ i ⊗ 1 + Ψ s i δ i,j c 0 u i -1 ⊗ γ * i ⊗ 1 + 1 0 0 1 ⊗ β i ⊗ Ψ(t i ) + 1 0 0 1 ⊗ β * i ⊗ Ψ(t i ) -1 -1 = (1 ⊗ b - Ψ(s i ) ⊗ γ i + Ψ(s i ) -1 ⊗ γ * i ) ⊗ 1 - δ i,j (∆Ψ(s i ; u i )(c) ⊗ γ i + ∆(Ψ -1 )(s i , ; u i )(c) ⊗ γ * i ) ⊗ 1 0 (1 ⊗ b - Ψ(u i ) ⊗ γ i + Ψ(u i ) -1 ⊗ γ * i ) ⊗ 1 - 1 ⊗ (β i ⊗ Ψ(t i ) + β * i ⊗ Ψ(t i ) -1 ) 0 0 1 ⊗ (β i ⊗ Ψ(t i ) + β * i ⊗ Ψ(t i ) -1 ) -1 = 0 flip 1 (z -S) -0 flip 1 δ i,j (γ i ⊗ ∆Ψ(s i ; u i )(c) + γ * i ⊗ ∆(Ψ -1 )(s i , ; u i )(c)) ⊗ 1 0 0 flip 1 (z -S) = M 2 ( 0 flip 1 ) (z -S) -1 (z -S) -1 δ i,j (γ i ⊗ ∆Ψ(s i ; u i )(c) + γ * i ⊗ ∆(Ψ -1 )(s i , ; u i )(c)) ⊗ 1 (z -S) -1 0 (z -S) -1 (31) 
Here the upper left S is evaluated in s r , the lower right one in u r , the one on the left side of the (1, 2) entry in s r , and the one on the right side of the (1, 2) entry in u r . Replacing ∆Ψ(s i ; u i )(c) with the result of (30) and ∆(Ψ -1 )(s i ; u i )(c) with the result obtained by replacing Ψ with Ψ -1 in (30) followed by a second application of flip yields

∆ j (z -S) -1 = i 2 (z -ξ) ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s i ) ⊗ 1 + γ * i ⊗ Ψ(s i ) -1 ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × γ j ⊗[(Ψ(s j )-1)c(Ψ(u j )-1)] -γ * j ⊗ [(Ψ(s j ) -1 -1)c(Ψ(u j ) -1 -1)] ⊗1 × (z -ξ) ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(u i ) ⊗ 1 + γ * i ⊗ Ψ(u i ) -1 ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 . (32) 
Employing power series expansions around infinity yields the same result, as it can be directly verified. The terms of the power series expansion are polynomials in Ψ(•) and Ψ(•) -1 , functions for which the conclusions of Section 4.3 hold. Thus, the same holds for the (convergent) power series for |z| large, and, by analytic continuation, for all z in the connected component of the domain of definition which contains a neighborhood of infinity. We wish to emphasize that in [START_REF] Wigner | On the distribution of the roots of certain symmetric matrices[END_REF] the power series expansions around infinity (in 1/z) are convergent on the neighborhood of infinity which is the set of points z ∈ C with the property that w -

ξ ⊗ 1 ⊗ 1 -r i=1 (γ i ⊗ Ψ(s i ) ⊗ 1 + γ * i ⊗ Ψ(s i ) -1 ⊗ 1) -r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1
) is invertible for all w ∈ C satisfying |w| ≥ |z| (if u i = s i for all i ∈ {1, . . . , r}, otherwise one needs to require the same condition for the expression in which the vector s r is replaced by u r ). It is obvious that one may apply ∆ k in either of the variables u or s in the right-hand side of [START_REF] Wigner | On the distribution of the roots of certain symmetric matrices[END_REF], and the usual rules for the computation of difference-differentials apply. Thus, we conclude that • The domain of analyticity in the variable z does not decrease through the application of ∆ j .

5 Asymptotic expansion of polynomials in Cayley transforms of GUE's

A fundamental result of Parraud

In [START_REF] Parraud | Asymptotic expansion of smooth functions in polynomials in deterministic matrices and iid GUE matrices[END_REF], Parraud established an asymptotic expansion in the dimension of smooth functions in polynomials in deterministic matrices and iid GUE matrices. The constants in this expansion are built explicitly with the help of free probability. In this section, we are going to present the second order expansion of the expectation of the normalized trace of a product of polynomials in independent GUE matrices, contained in Parraud's work. We just rewrite the constants in this expansion in terms of the operations #, ev 1 , flip and ∂ introduced in Section 4.1. Let (A, τ ) be a C * -probability space where τ is a faithful trace. Let (A N , τ N ) be the free product of (M N (C), tr N ) and (A, τ ). Let s, w, z 1 , z 2 , w, z1 , z2 be free r-semi-circular systems in (A, τ ). Let X N r be an r-tuple of independent GUE. Define for 0 t 1 t 2 , the following noncommutative variables in (A N , τ N )

z 1 t 1 = (1 -e -t 1 ) 1/2 z 1 + (e -t 1 -e -t 2 ) 1/2 w + e -t 2 /2 s, z 2 t 1 = (1 -e -t 1 ) 1/2 z 2 + (e -t 1 -e -t 2 ) 1/2 w + e -t 2 /2 s, z1 t 1 = (1 -e -t 1 ) 1/2 z1 + (e -t 1 -e -t 2 ) 1/2 w + e -t 2 /2 s, z2 t 1 = (1 -e -t 1 ) 1/2 z2 + (e -t 1 -e -t 2 ) 1/2 w + e -t 2 /2 s and z 1 t 1 (N) = (1 -e -t 1 ) 1/2 z 1 + (e -t 1 -e -t 2 ) 1/2 w + e -t 2 /2 X N r , z 2 t 1 (N) = (1 -e -t 1 ) 1/2 z 2 + (e -t 1 -e -t 2 ) 1/2 w + e -t 2 /2 X N r , z1 t 1 (N) = (1 -e -t 1 ) 1/2 z1 + (e -t 1 -e -t 2 ) 1/2 w + e -t 2 /2 X N r , z2 t 1 (N) = (1 -e -t 1 ) 1/2 z2 + (e -t 1 -e -t 2 ) 1/2 w + e -t 2 /2 X N r .
Define now the linear forms ν 1 and ν (N ) 1

on C x r , by setting for any P ∈ C x r ,

ν 1 (P ) = 1 2 +∞ 0 t 2 0 e -t 2 -t 1 τ R 1 (P )(z 1 t 1 , z1 t 1 , z2 t 1 , z 2 t 1 ) dt 1 dt 2 , ν (N ) 1 (P ) = 1 2 +∞ 0 t 2 0 e -t 2 -t 1 τ N R 1 (P )(z 1 t 1 (N), z1 t 1 (N), z2 t 1 (N), z 2 t 1 (N)) dt 1 dt 2
where R 1 (P ) is the function in four indeterminates x 1 , x1 , x2 , x 2 of r-tuples defined by

R 1 (P )(x 1 , x1 , x2 , x 2 ) = 1 j,k r # 3 {[(flip • ∂ k )⊗(flip • ∂ k )] (∂ j (D j P ))} (x 1 , x1 , x2 , x 2 ), (33) 
# being the embedding of the tensor product in the algebraic free product defined in Section 4.1. It is clear that R 1 (P ) belongs to C x 4r . For the reader's understanding, here is the explicit formula for R 1 (P ) when

P (x 1 , . . . , x r ) = x i 1 • • • x in , (i 1 , . . . , i n ) ∈ {1, . . . , r} n : R 1 (P )(x 1 , x1 , x2 , x 2 ) = 1 i,j r 1 k n i k = i k + 1 l n i l = i k + 1 p l -1 ip = j      l + 1 q n iq = j x 1 i p+1 • • • x 1 i l-1 x1 i k+1 • • • x1 i p-1 x2 i q+1 • • • x2 in x2 i 1 • • • x2 i k-1 x 2 i l+1 • • • x 2 i q-1 + 1 q k -1 iq = j x 1 i p+1 • • • x 1 i l-1 x1 i k+1 • • • x1 i p-1 x2 i q+1 • • • x2 i k-1 x 2 i l+1 • • • x 2 in x 2 i 1 • • • x 2 i q-1      + 1 i,j r 1 k n i k = i 1 l k -1 i l = i l + 1 q k -1 iq = j      k + 1 p n ip = j x 1 i p+1 • • • x 1 in x 1 i 1 • • • x 1 i l-1 x1 i k+1 • • • x1 i p-1 x2 i q+1 • • • x2 i k-1 x 2 i l+1 • • • x 2 i q-1 + 1 p l -1 ip = j x 1 i p+1 • • • x 1 i l-1 x1 i k+1 • • • x1 in x1 i 1 • • • x1 i p-1 x2 i q+1 • • • x2 i k-1 x 2 i l+1 • • • x 2 i q-1      . Now, define J 1 = {{2, 1}, {3, 1}, {5, 4}, {6, 4}} = E 1 , E 2 , Ẽ1 , Ẽ2
and set for any i = 1, . . . , r,

x i,E 1 := x 1 i , x i, Ẽ1 := x1 i , x i, Ẽ2 := x2 i , x i,E 2 := x 2 i .
Thus R 1 (P ) is a function in four indeterminates, indexed by the sets of J 1 , of r-tuples (x i,E 1 ) 1 i r , (x i, Ẽ1 ) 1 i r , (x i, Ẽ2 ) 1 i r and (x i,E 2 ) 1 i r . Now let us introduce the following sets of sets. J 2 is by definition the union of all these sets, that is J 2 contains 48 sets of integer numbers lower than 42. Let s 1 , . . . , s 42 be free r-semi-circular systems in (A, τ ) and X N be a r-tuple of independent GUE matrices. Set

J 1,1 2 = {{8, 2,
A 2 = {T 2 = (t 1 , t 2 , t 3 , t 4 ), 0 t 1 t 2 t 4 , 0 t 3 t 4 }.
Define now, for T 2 = (t 1 , t 2 , t 3 , t 4 ) ∈ A 2 , for any 1 i r, for any I ∈ J 2 , I = {I 1 , I 2 , I 3 , I 4 } where the I p 's are integer numbers smaller or equal to 42, the following A N -valued random variables:

X N,T 2 i,I = 4 l=1 (e -tl-1 -e -tl ) 1/2 s I l i + e -t 4 /2 X (i) N ,
where t1 • • • t4 are the t i 's in increasing order. Set

X N,T 2 1,1 = X N,T 2 i,I 1 i r,I∈J 1,1 2 , X N,T 2 2,1 = X N,T 2 i,I 1 i r,I∈J 2,1 2 , X N,T 2 1,2 = X N,T 2 i,I 1 i r,I∈J 1,2 2 , X N,T 2 2,2 = X N,T 2 i,I 1 i r,I∈J 2,2 2 , X N,T 2 3,1 = X N,T 2 i,I 1 i r,I∈J 3,1 2 , X N,T 2 3,2 = X N,T 2 i,I 1 i r,I∈J 3,2 2 , XN,T 2 1,1 = X N,T 2 i,I 1 i r,I∈ J1,1 2 , XN,T 2 2,1 = X N,T 2 i,I 1 i r,I∈ J2,1 2 , XN,T 2 1,2 = X N,T 2 i,I 1 i r,I∈ J1,2 2 , XN,T 2 2,2 = X N,T 2 i,I 1 i r,I∈ J2,2 2 , XN,T 2 3,1 = X N,T 2 i,I 1 i r,I∈ J3,1 2 , XN,T 2 3,2 = X N,T 2 i,I 1 i r,I∈ J3,2 2 .
Since there are four elements in each J l,p 2 , Jl,p 2 , each X N,T 2 l,p and XN,T 2 l,p is a 4-tuple of r-tuples. There is a natural bijection between J 1 and each of the sets

J 1,1 2 , J 2,1 2 , J 1,2 2 , J 2,2 2 , J 3,1 2 , J 3,2 2 , J1,1 2 , J2,1 2 , J1,2 2 , J2,2 2 , J3,1 2 , J3,2 2 .
Therefore, we can evaluate in (X i,I ) 1 i r,I∈J l,p 2 or (X i,I ) 1 i r,I∈ Jl,p 2 , any polynomial with indeterminates (x i,I ) 1 i r,I∈J 1 .

Similarly, for I in J 1 ∪ J 2 , and 1 i r, define on monomials

M ∂ i,I M = M =AX i,I B A ⊗ B, D i,I M = M =AX i,I B
BA and set for any 1 i r,

∂ i = I∈J 1 ∂ i,I , D i = I∈J 1 D i,I .
We define, for any polynomial Q in ((x i,E 1 ) 1 i r , ((x i, Ẽ1 ) 1 i r , ((x i, Ẽ2 ) 1 i r , ((x i,E 2 ) 1 i r ), for any 4-tuple (y 1 , ỹ1 , ỹ2 , y 2 ) of 4r-tuples

y 1 = ((y 1 i,E 1 ) 1 i r , ((y 1 i, Ẽ1 ) 1 i r , ((y 1 i, Ẽ2 ) 1 i r , ((y 1 i,E 2 ) 1 i r ), ỹ1 = ((ỹ 1 i,E 1 ) 1 i r , ((ỹ 1 i, Ẽ1 ) 1 i r , ((ỹ 1 i, Ẽ2 ) 1 i r , ((ỹ 1 i,E 2 ) 1 i r ), ỹ2 = ((ỹ 2 i,E 1 ) 1 i r , ((ỹ 2 i, Ẽ1 ) 1 i r , ((ỹ 2 i, Ẽ2 ) 1 i r , ((ỹ 2 i,E 2 ) 1 i r ), y 2 = ((y 2 i,E 1 ) 1 i r , ((y 2 i, Ẽ1 ) 1 i r , ((y 2 i, Ẽ2 ) 1 i r , ((y 2 i,E 2 ) 1 i r ), R (1) 
2 (Q)(y 1 , ỹ1 , ỹ2 , y 2 ) = 1 i,j r # 3 [(flip • ∂ j ) ⊗ (flip • ∂ j )(∂ i D i (Q))] (y 1 , ỹ1 , ỹ2 , y 2 ), (34) R (2) 2 (Q)(y 1 , ỹ1 , ỹ2 , y 2 ) = 1 i,j r I, K ∈ J 1 I 1 = K 1 # 3 [(flip • ∂ j,I ) ⊗ (flip • ∂ j,K )(∂ i D i (Q))] (y 1 , ỹ1 , ỹ2 , y 2 ), (35) R (3) 2 (Q)(y 1 , ỹ1 , ỹ2 , y 2 ) = 1 i,j r I, K ∈ J 2 I 2 = K 2 # 3 [(flip • ∂ j,I ) ⊗ (flip • ∂ j,K )(∂ i D i (Q))] (y 1 , ỹ1 , ỹ2 , y 2 ).
(36) Now, define the linear form ν (N ) 2 on C x r by setting for any

P ∈ C x r , ν (N ) 2 (P ) = 1 4 A 2 e -t 4 -t 3 -t 2 -t 1 1 I [t 2 ,t 4 ] (t 3 )E τ N (R (1) 
2 (R 1 (P ))(X N,T 2 3,1 , XN,T 2 3,1 , XN,T 2 3,2 , X N,T 2 3,2 ) +1 I [0,t 1 ] (t 3 )E τ N (R (2) 
2 ((R

1 (P )))(X N,T 2 1,1 , XN,T 2 1,1 , XN,T 2 1,2 , X N,T 2 1,2 ) +1 I [t 1 ,t 2 ] (t 3 )E τ N (R (3) 
2 ((R

1 (P )))(X N,T 2 2,1 , XN,T 2 2,1 , XN,T 2 2,2 , X N,T 2 2,2 ) dt 1 dt 2 dt 3 dt 4 .
The following proposition is a corollary of [START_REF] Parraud | Asymptotic expansion of smooth functions in polynomials in deterministic matrices and iid GUE matrices[END_REF]Proposition 3.7].

Proposition 9. [15, Proposition 3.7] Let X 1 , . . . , X r be independent GUE's. For any P ∈ C x r , one has

E [tr N (P (X 1 , . . . , X r ))] = τ (P (s 1 , . . . , s r )) + ν (N ) 1 (P ) N 2 = τ (P (s 1 , . . . , s r )) + ν 1 (P ) N 2 + ν (N ) 2 (P ) N 4 .
Corollary 10. Let X 1 , . . . , X r be independent GUE's. For any n ∈ N * , any I = (ι 1 , . . . , ι n ) ∈ {1, . . . , r} n , any y = (y 1 , . . . , y n ) ∈ R n , one has

E tr N (e iy 1 Xι 1 e iy 2 Xι 2 • • • e iynXι n ) = τ (e iy 1 sι e iy 2 sι 2 • • • e iynsι n ) + 1 2N 2 +∞ 0 t 2 0 e -t 2 -t 1 τ N F 1,(I,y) (z 1 t 1 (N), z1 t 1 (N), z2 t 1 (N), z 2 t 1 (N)) dt 1 dt 2 = τ (e iy 1 sι e iy 2 sι 2 • • • e iynsι n ) + 1 2N 2 +∞ 0 t 2 0 e -t 2 -t 1 τ F 1,(I,y) (z 1 t 1 , z1 t 1 , z2 t 1 , z 2 t 1 ) dt 1 dt 2 + 1 4N 4 A 2 e -t 4 -t 3 -t 2 -t 1 1 I [t 2 ,t 4 ] (t 3 )E τ N (F (1) 2,(I,y) (X N,T 2 3,1 , XN,T 2 3,1 , XN,T 2 3,2 , X N,T 2 3,2 ) + 1 I [0,t 1 ] (t 3 )E τ N (F (2) 2,(I,y) (X N,T 2 1,1 , XN,T 2 1,1 , XN,T 2 1,2 , X N,T 2 1,2 ) + 1 I [t 1 ,t ] (t 3 )E τ N (F (3) 2,(I,y) (X N,T 2 2,1 , XN,T 2 2,1 , XN,T 2 2,2 , X N,T 2 2,2 ) dt 1 dt 2 dt 3 dt 4 ,
where F 1,(I,y) , F

2,(I,y) , F

2,(I,y) , F

2,(I,y) are the noncommutative functions

F 1,(I,y) = ∞ m 1 ,m 2 ,...,mn=0 i m 1 +•••+mn y m 1 1 • • • y mn n m 1 !m 2 ! • • • m n ! R 1 (M I,m 1 ,...,mn ) , F (1) 
2,(I,y) = ∞ m 1 ,m 2 ,...,mn=0

i m 1 +•••+mn y m 1 1 • • • y mn n m 1 !m 2 ! • • • m n ! R (1) 
2 (M I,m 1 ,...,mn ) ,

F (2) 2,(I,y) = ∞ m 1 ,m 2 ,...,mn=0 i m 1 +•••+mn y m 1 1 • • • y mn n m 1 !m 2 ! • • • m n ! R (2) 
2 (M I,m 1 ,...,mn ) , F

,(I,y) = ∞ m 1 ,m 2 ,...,mn=0 i m 1 +•••+mn y m 1 1 • • • y mn n m 1 !m 2 ! • • • m n ! R (3) 2 
2 (M I,m 1 ,...,mn ) , and M I,m 1 ,...,mn is the monomial

(x 1 , . . . , x r ) → x m 1 ι 1 x m 2 ι 2 • • • x mn ιn
, and the series converge in operator norm, uniformly on norm balls of any given, fixed radius (as uniform limits of noncommutative polynomials -hence noncommutative functions -on any given norm-bounded set, the functions F 1,(I,y) , F Proof.

e iy 1 Xι 1 e iy 2 Xι 2 • • • e iynXι n = ∞ m 1 ,m 2 ,...,mn=0 1 m 1 !m 2 ! • • • m n ! (iy 1 X ι 1 ) m 1 (iy 2 X ι 2 ) m 2 • • • (iy n X ιn ) mn ,
where the series is absolutely convergent. Thus,

tr N e iy 1 Xι 1 e iy 2 Xι 2 • • • e iynXι n = ∞ m 1 ,m 2 ,...,mn=0 1 m 1 !m 2 ! • • • m n ! tr N [(iy 1 X ι 1 ) m 1 (iy 2 X ι 2 ) m 2 • • • (iy n X ιn ) mn ] .
Now, we have

|tr N [(iy 1 X ι 1 ) m 1 (iy 2 X ι 2 ) m 2 • • • (iy n X ιn ) mn ]| (|y 1 | X ι 1 ) m 1 • • • (|y n | X ιn ) mn .
Define for j = 1, . . . , r, d j = l,i l =j |y l |. Applying Fubini's theorem for positive functions, we have that

∞ m 1 ,m 2 ,...,mn=0 1 m 1 !m 2 ! • • • m n ! E [(|y 1 | X ι 1 ) m 1 • • • (|y n | X ιn ) mn ] = E e |y 1 | Xι 1 • • • e |yn| Xι n = E(e d 1 X 1 ) • • • E(e dr Xr ) 2 r r i=1 E(Tr e d i X i ) 2 r N r r i=1 e 2d i + d 2 i 2N ,
where, in the two last lines, we use the inequalities (5.4) and (5.3) in [START_REF] Haagerup | A new application of random matrices: Ext(C * red (F 2 )) is not a group[END_REF]. Therefore we can deduce that

∞ m 1 ,m 2 ,...,mn=0 1 m 1 !m 2 ! • • • m n ! tr N [(iy 1 X ι 1 ) m 1 (iy 2 X ι 2 ) m 2 • • • (iy n X ιn ) mn ]
is absolutely convergent and then, by Fubini theorem, that

E tr N e iy 1 Xι 1 e iy 2 Xι 2 • • • e iynXι n = ∞ m 1 ,m 2 ,...,mn=0 1 m 1 !m 2 ! • • • m n ! E tr N [(iy 1 X ι 1 ) m 1 (iy 2 X ι 2 ) m 2 • • • (iy n X ιn ) mn ] .
The result readily follows from Proposition 9.

Parraud's formulae for polynomials in Cayley transforms

Consider first ν 1 and ν

(N )

1 . The non-obvious part of Parraud's formula consists of

# 3 {[(flip • ∂ j ) ⊗ (flip • ∂ j )] (∂ i (D i P ))} , 1 ≤ i, j ≤ r,
where D i = ev 1 • flip • ∂ j . We intend to write this formula in terms of the difference-differential operators, applied to noncommutative functions in r noncommuting variables. Instead of the polynomial P , we consider an arbitrary polynomial in Cayley transforms and their inverses (noncommutative Laurent polynomials in the Cayley transform of each of the r selfadjoint indeterminates), defined on an open noncommutative subset of A r . Such a function f is given by a (finite) formula in x 1 , . . . , x r . Thus, let us apply

# 3 {[(flip • ∂ j ) ⊗ (flip • ∂ j )] (∂ i (D i •
))} to our f , but via the identification with the difference-differential operator. Thus, (D i f )(s 1 , . . . , s r ) is expressed as the formula for ∆ i f (s 1 , . . . , s r ; s 1 , . . . , s r )(1) when the expression of f is viewed as being in the opposite algebra A op . This is a new noncommutative function in r variables, which we denote by g(s 1 , . . . , s r ). The object obtained through the application of ∂ i to g would be expected to be identified with ∆ i g(s 1 , . . . , s r ; s 1 , . . . , s r )(•). However, since one may act on the two tensor factors independently with various operations (and Parraud's formula requires us to do so), the correct interpretation is for ∂ i g to be identified with ((s 1 , . . . , s r ); (s 1 , . . . , sr )) → ∆ i g(s 1 , . . . , s r ; s1 , . . . , sr )(•), a noncommutative function in (s 1 , . . . , s r ) and (s 1 , . . . , sr ) with values in a space of linear maps -different variables, although the evaluation can be performed in the same r-tuple as well. It is helpful to recall how this formula comes from the evaluations on upper triangular matrices as seen in Section 4.2:

g s 1 δ i,1 • 0 s1 , . . . , s r δ i,r • 0 sr = g(s 1 , . . . , s r ) ∆ i g(s 1 , . . . , s r ; s1 , . . . , sr )(•) 0 g(s 1 , . . . , s1 ) .
As mentioned in Section 4.2, this is a sample of a higher order noncommutative function (see [START_REF] Kaliuzhnyi-Verbovetskyi | Foundations of free noncommutative function theory[END_REF]Chapter 3]). It is important that one may now view the variables s r and sr as independent variables: Parraud's formula requires us now to apply ∆ j with respect to the variables s 1 , . . . , s r and the obvious sense made clear in Section 4.2) the domain does not changesee Section 4.4. In particular, for a product of rational functions Ψ(•) ±1 , one has

R [Ψ(x ι 1 ) ǫ 1 • • • Ψ(x ιn ) ǫn ] = ∞ m 1 ,m 2 ,...,mn=0 c m 1 c m 2 • • • c mn i m 1 +...+mn ǫ m 1 1 • • • ǫ mn n R x m 1 ι 1 • • • x mn ιn . (37) 
Lemma 11.

c m 1 c m 2 • • • c mn = (-∞,0] n e y 1 y m 1 1 e y 2 y m 2 2 • • • e yn y mn n m 1 !m 2 ! • • • m n ! n j=1
(dδ 0 (y j ) -2dy j ).

Proof. Clearly if all of m 1 , m 2 , . . . , m n = 0, then the integral with respect to the Dirac measure is zero, so that the equality to be proved becomes

c m 1 c m 2 • • • c mn = (-2) n (-∞,0] n e y 1 y m 1 1 e y 2 y m 2 2 • • • e yn y mn n m 1 !m 2 ! • • • m n ! dy 1 dy 2 • • • dy n ,
which is obviously true. If some of the m j 's are equal to zero, then we separate them form the rest. Since the scalar coefficients do commute, we may assume without loss of generality that

m 1 = m 2 = • • • = m k = 0, m k+1 , . . . , m n > 0.
Recalling that c 0 = -1, the equality to be proved becomes

(-1) k c m k+1 • • • c mn = (-2) n-k (-∞,0] n e y 1 • • • e y k e y k+1 y m k+1 k+1 • • • e yn y mn n m k+1 ! • • • m n ! k j=1 (dδ 0 (y j )-2dy j )dy k+1 • • • dy n .
This is again obvious: since the integral factors, one needs only notice that

(-∞,0] k e y 1 • • • e y k k j=1 (dδ 0 (y j ) -2dy j ) = (1 -2) k = (-1) k . Proposition 12.
We have the following identity between the two noncommutative functions on I r (A):

R 1 [Ψ(x ι 1 ) ǫ 1 • • • Ψ(x ιn ) ǫn ] = (-∞,0] n F 1,(I,ǫy) e y 1 +•••+yn n i=1 (dδ 0 (y i ) -2dy i ). For R ∈ {R (1) 2 , R (2) 2 , R (3) 
2 }, we have the following identity between the two noncommutative functions on I r (A):

R [Ψ(x ι 1 ) ǫ 1 • • • Ψ(x ιn ) ǫn ] = (-∞,0] n F I,ǫy e y 1 +•••+yn n i=1 (dδ 0 (y i ) -2dy i ),
with the corresponding F I,ǫy ∈ {F The functions in the first equality depend on 4r variables, while the ones in the second depend on 16r variables. When we refer to them as defined on I r (A) -i.e. as functions of r variables -we mean that they are 'produced' via various operations, including applications of the difference-differential operator, out of functions of r variables; indeed, if f (•) is a noncommutative function of r variables, then ∆f ( • ; • ) (or, better said, a restriction of it) is a function of 2r variables: however, it comes from a noncommutative function of r variables, function which does encode all the information necessary in order to know ∆f ( • ; • ). The noncommutative function structure is essential in order for this to be possible.

Proof of Proposition 12. For any x ∈ I r (A) such that x i < 1, i = 1, . . . , r, the identity follows from (37) and Lemma 11. The left-hand side is a noncommutative rational function simply by definition and by the fact that all of the Rs preserve rationality. Each of the functions F is an entire noncommutative function, whose Taylor-Taylor series converges uniformly in norm on bounded subsets. The integrals in the right-hand side of the two formulas in Proposition 12 converge when evaluated in elements from I r (A) (in the sense previously specified). Since both sides of the identity are locally bounded noncommutative functions on I r (A) and thus automatically analytic, the classical identity principle for Banach space-valued analytic functions allows us to conclude. Now, apply Corollary 10 with ǫy instead of y, multiply the identity by e y 1 +•••+yn , integrate on (-∞, 0] n against the measure n i=1 (dδ 0 (y i ) -dy i ). Since for any bounded selfadjoint operator x, we have Ψ(x) ǫ = 0 -∞ e (iǫx+1)y (dδ 0 (y) -dy), and using Proposition 12, we obtain the following Proposition 13. Let X 1 , . . . , X r be independent GUE's. For any P ∈ C x r , x -1 r , one has E [tr N (P (Ψ(X 1 ), . . . , Ψ(X r ))] = τ (P (Ψ(s 1 ), . . . , Ψ(s r )) + ν(N) 1 (P ) N 2

= τ (P (Ψ(s 1 ), . . . , Ψ(s r )) + ν1 (P )

N 2 + ν(N) 2 (P ) N 4 . ν1 (P ) = 1 2 +∞ 0 t 2 0 e -t 2 -t 1 τ R 1 [P (Ψ(x 1 ), . . . , Ψ(x r ))](z 1 t 1 , z1 t 1 , z2 t 1 , z 2 t 1 ) dt 1 dt 2 , ν(N) 1 (P ) = 1 2 +∞ 0 t 2 0 e -t 2 -t 1 τ N R 1 [P (Ψ(x 1 ), . . . , Ψ(x r ))](z 1 t 1 (N), z1 t 1 (N), z2 t 1 (N), z 2 t 1 (N)) dt 1 dt 2 , ν(N) 2 (P ) = 1 4 A 2 e -t 4 -t 3 -t 2 -t 1 × 1 I [t 2 ,t 4 ] (t 3 )E τ N (R (1) 
2 {R 1 [P (Ψ(x 1 ), . . . ,

Ψ(x r )]}(X N,T 2 3,1 , XN,T 2 3,1 , XN,T 2 3,2 , X N,T 2 3,2 ) + 1 I [0,t 1 ] (t 3 )E τ N (R (2) 
2 {R 1 [P (Ψ(x 1 ), . . . ,

Ψ(x r )]}(X N,T 2 1,1 , XN,T 2 1,1 , XN,T 2 1,2 , X N,T 2 1,2 ) + 1 I [t 1 ,t 2 ] (t 3 )E τ N (R (3) 
2 {R 1 [P (Ψ(x 1 ), . . . , Ψ(x r )]}(X N,T 2 2,1 , XN,T 2 2,1 , XN,T 2 2,2 , X N,T 2 2,2 ) dt 1 dt 2 dt 3 dt 4 .

Parraud's formulae on rational functions

In this section we concern ourselves with the extension of Parraud's functionals ν j , ν (N ) j , j = 1, 2, to rational expressions. In itself, the extension is trivial, and would not merit a separate section, except that in our case the rational functions are defined on (subsets of) M m (C) ⊗ A ⊗ A and we apply the functionals to one of the last two tensor coordinates at a time. Since we find it convenient (although not necessary) to have explicit formulae for the resulting object, we are forced to use at some points the opposite algebra structure on A. Thus, we recall from Section 4.1 that ∂ j acts on C x r op as flip • ∂ j acts on C x r ; by that we mean that

C x r op = C x op 1 , • • • , x op
r is a vector space whose basis is given by monomials which are denoted thus:

(x i 1 x i 2 • • • x in ) op = x op in • • • x op i 2 x op i 1 . Then ∂ j : C x r op → C x r op ⊗ C x r
op is the free difference quotient ("differentiation") with respect to x op j and hence it acts by

∂ j (x i 1 x i 2 • • • x in ) op = ∂ j (x op in • • • x op i 2 x op i 1 ) = k : i k =j x op in • • • x op i k+1 ⊗ x op i k-1 • • • x op i 1 = k : i k =j (x i k+1 • • • x in ) op ⊗ (x i 1 • • • x i k-1
) op . When viewed as an element in C x r ⊗ C x r , as opposed to an element in C x r op ⊗ C x r op , we recognize here the flip operation applied to

∂ j (x i 1 x i 2 • • • x in ). Of course,
this extends to rational functions. The identification of ev • • ∂ j with ∆ j from Section 4.3 extends to noncommutative rational functions in the sense of [START_REF] Kaliuzhnyi-Verbovetskyi | Foundations of free noncommutative function theory[END_REF] defined on noncommutative subsets in A op when ∂ j is viewed as acting on the opposite algebra.

Consider first ν 1 and ν

(N )

1 . The non-obvious part of Parraud's formula consists of

# 3 {[(flip • ∂ j ) ⊗ (flip • ∂ j )] (∂ i (D i P ))} , 1 ≤ i, j ≤ r,
where D i = ev 1 • flip • ∂ j . We intend to write this formula in terms of the difference-differential operators, applied to noncommutative functions in r noncommuting variables. Thus, instead of the polynomial P , we consider an arbitrary noncommutative rational function f defined on an open noncommutative subset of A r . This function is given by a (finite) formula in x 1 , . . . , x r , and, in order to cover the case of (z -S) -1 , we assume that it might have non-scalar coefficients; an example would be (t

1 , . . . , t r ) → (z -ξ) ⊗ 1 ⊗ 1 -r i=1 (γ i ⊗ Ψ(s i ) ⊗ 1 + γ * i ⊗ Ψ(s i ) -1 ⊗ 1) -r i=1 (β i ⊗ 1 ⊗ Ψ(t i )+β * i ⊗1⊗Ψ(t i ) -1 ) -1
, where the coefficients are in M m (C)⊗A. However, via a flip (specifically, via a conjugation with 1 flip 0 ), one views (s 1 , . . . , s r )

→ (z -ξ)⊗1⊗1-r i=1 (γ i ⊗Ψ(s i )⊗1+γ * i ⊗Ψ(s i ) -1 ⊗1)-r i=1 (β i ⊗1⊗Ψ(t i )+ β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1
as a rational function with coefficients in M m (C) ⊗ A as well. In fact, these two examples and what is derived from them through the operations introduced in Section 4.1 are the only ones of interest for our paper. Thus, let us apply

# 3 {[(flip • ∂ j ) ⊗ (flip • ∂ j )] (∂ i (D i • ))} to our
f , but via the identification with the difference-differential operator. Thus, (D i f )(s 1 , . . . , s r ) is expressed as the formula for ∆ i f (s 1 , . . . , s r ; s 1 , . . . , s r )(1) when the expression of f is viewed as being in the opposite algebra A op . This is a new noncommutative function in r variables, which we denote by g(s 1 , . . . , s r ). The object obtained through the application of ∂ i to g would be expected to be identified with ∆ i g(s 1 , . . . , s r ; s 1 , . . . , s r )(•). However, since one may act on the two tensor factors independently with various operations (and Parraud's formula requires us to do so), the correct interpretation is for ∂ i g to be identified with ((s 1 , . . . , s r ); (s 1 , . . . , sr )) → ∆ i g(s 1 , . . . , s r ; s1 , . . . , sr )(•), a noncommutative function in (s 1 , . . . , s r ) and (s 1 , . . . , sr ) with values in a space of linear maps -different variables, although the evaluation can be performed in the same r-tuple as well. It is helpful to recall how this formula comes from the evaluations on upper triangular matrices as seen in Section 4.2:

g s 1 δ i,1 • 0 s1
, . . . , s r δ i,r • 0 sr = g(s 1 , . . . , s r ) ∆ i g(s 1 , . . . , s r ; s1 , . . . , sr )(•) 0 g(s 1 , . . . , s1 ) .

As mentioned in Section 4.2, this is a sample of a higher order noncommutative function (see [START_REF] Kaliuzhnyi-Verbovetskyi | Foundations of free noncommutative function theory[END_REF]Chapter 3]). It is important that one may now view the variables s r and sr as independent variables: Parraud's formula requires us now to apply ∆ j with respect to the variables s 1 , . . . , s r and the same for s1 , . . . , sr , but each of the two correspondences (s 1 , . . . , s r ) → ∆ i g(s 1 , . . . , s r ; s1 , . . . , sr )(•) and (s 1 , . . . , sr ) → ∆ i g(s 1 , . . . , s r ; s1 , . . . , sr )(•) viewed as for functions on noncommutative subsets of A op . Specifically, with the usual notation s r = (s 1 , . . . , s r ), sr = (s 1 , . . . , sr ), the noncommutative function h(s r ; sr ) = ∆ i g(s 1 , . . . , s r ; s1 , . . . , sr )(•) acts on n,m M n×m (A), from the left with the variables s r and from the right with the variables sr . Denote by ∆ j the partial difference-differential operator with respect to the variable s j and by ∆j the one with respect to sj (one could a priori think of ∆j as ∆ j+r , but especially in this context it would be the wrong view, since it would obscure the fact that the s variables act on the left and the s ones on the right). We view now h as being defined on noncommutative subsets that live in A op -that is, in variables s op r and sop rand apply ∆ j ∆j h(s 1 op r , s 2 op r ; s2 op r , s1 op r ) = ∆j ∆ j h(s 1 op r , s 2 op r ; s2 op r , s1 op r ) to obtain a third order (trilinear-valued) noncommutative map in four r-tuples of variables. Finally, we drop the op, that is, we let k(s 1 r , s 2 r ; s2 r , s1 r ) = ∆ j ∆j h(s 1 r , s 2 r ; s2 r , s1 r ), still a third order noncommutative map, we evaluate it in the variables (z 1 t 1 , z1 t 1 , z2 t 1 , z 2 t 1 ) defined in the previous section, and evaluates the tri-linear map thus obtained in (1, 1, 1).

In the following, for the comfort of the reader, we perform the above steps for the resolvent (z -S) -1 , viewed as a noncommutative function of the variables s r positioned on the second tensor coordinate. Recall that (after re-applying 0 flip 1 ), the application of

D i to (z -S) -1 yields i 2 b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i )⊗1+γ * i ⊗Ψ(s op i ) -1 ⊗1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × γ j ⊗ [(Ψ(s j ) -1) (Ψ(s j ) -1)] op -γ * j ⊗ Ψ(s j ) -1 -1 Ψ(s j ) -1 -1 op ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i ) ⊗ 1 + γ * i ⊗ Ψ(s op i ) -1 ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1
.

The above formula has a remarkably favourable structure, which makes it coincide with

i 2 b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s i )⊗1+γ * i ⊗Ψ(s i ) -1 ⊗1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × γ j ⊗ (Ψ(s j ) -1) (Ψ(s j ) -1) -γ * j ⊗ Ψ(s j ) -1 -1 Ψ(s j ) -1 -1 ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s i ) ⊗ 1 + γ * i ⊗ Ψ(s i ) -1 ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1
, meaning that for this formula we obtain the same regardless of whether the second tensor coordinate contains elements from A or A op . (The reader uncomfortable with the opposite structure can reach this conclusion by noting that the op structure on selfadjoint elements coincides with the usual structure followed by taking the adjoint.) The next step is to apply ∆ j again and evaluate it in two r-tuples to obtain a linear map-valued (i.e. first-order) noncommutative function. We have seen what effect the application of ∆ j on (z -S) -1 has in Equation ( 32), which we rewrite below with • (a dot) instead of c and with sk ,

1 ≤ k ≤ r, instead of u k (convention b = z -ξ is preserved): i 2 b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s i ) ⊗ 1 + γ * i ⊗ Ψ(s i ) -1 ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × γ j ⊗[(Ψ(s j )-1) • (Ψ(s j )-1)] -γ * j ⊗ [(Ψ(s j ) -1 -1) • (Ψ(s j ) -1 -1)] ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s i )) ⊗ 1 + γ * i ⊗ Ψ(s i ) -1 ) ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1
.

Together with the Leibniz rule, this yields the expression

-1 4 b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s i )⊗1+γ * i ⊗Ψ(s i ) -1 ⊗1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × γ j ⊗[(Ψ(s j )-1) • (Ψ(s j )-1)] -γ * j ⊗ [(Ψ(s j ) -1 -1) • (Ψ(s j ) -1 -1)] ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s i )) ⊗ 1 + γ * i ⊗ Ψ(s i ) -1 ) ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × γ j ⊗ (Ψ(s j ) -1) (Ψ(s j ) -1) -γ * j ⊗ Ψ(s j ) -1 -1 Ψ(s j ) -1 -1 ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s i ) ⊗ 1 + γ * i ⊗ Ψ(s i ) -1 ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 - 1 4 b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s i )⊗1+γ * i ⊗Ψ(s i ) -1 ⊗1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × γ j ⊗[(Ψ(s j )-1) • (Ψ(s j )-1) 2 + (Ψ(s j )-1) 2 • (Ψ(s j )-1)] +γ * j ⊗ [(Ψ(s j ) -1 -1) 2 • (Ψ(s j ) -1 -1) + (Ψ(s j ) -1 -1) • (Ψ(s j ) -1 -1) 2 ] ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s i ) ⊗ 1 + γ * i ⊗ Ψ(s i ) -1 ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 - 1 4 b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s i )⊗1+γ * i ⊗Ψ(s i ) -1 ⊗1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × γ j ⊗(Ψ(s j )-1)(Ψ(s j )-1) -γ * j ⊗ (Ψ(s j ) -1 -1)(Ψ(s j ) -1 -1)] ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s i )) ⊗ 1 + γ * i ⊗ Ψ(s i ) -1 ) ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × γ j ⊗ [(Ψ(s j ) -1) • (Ψ(s j ) -1)] -γ * j ⊗ Ψ(s j ) -1 -1 • Ψ(s j ) -1 -1 ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s i ) ⊗ 1 + γ * i ⊗ Ψ(s i ) -1 ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1
, in which the reader is asked to mainly keep track of how the number of resolvents grows and where the dots (the placeholders for the argument of the linear map) are located. Here that is still reasonably easy to do: there are three summands, in two of them there are three resolvents as factors, and in one there are two. The placeholder appears in the 'middle' of the last-mentioned one, and alternatingly 'left and right of the center one' in the other two. As an aside, one observes again that, when evaluated in s r = sr , the above expression does not change regardless of whether s r ∈ A r or s r ∈ (A op ) r . We apply next ∆ k for k possibly (but not necessarily) different from j, independently on the two sides of the placeholder • -that is, with respect to s r and sr independently -but with s r and sr being viewed as belonging to (A op ) r , meaning that the formulas one obtains left and right of the two newly occurring placeholders being understood to express elements in the opposite algebra. To distinguish between the two sides, we use ∆ k for the partial difference-differential operator with respect to the k th left-hand variable s k and ∆k for the partial difference-differential operator with respect to the k th right-hand variable sk . Moreover, since it now becomes very difficult to read the formula with the required attention paid to the sides of the three placeholders, we mark the left side by writing it in red, the middle in black, and the right in blue. The left and right placeholders will be marked by •, while the middle remains •. We apply first ∆k , hence color blue only appears below. In addition, since there are three terms in the object to which we apply ∆k , we mark in the right-hand side where the result of the application of ∆k ends by writing to its right "end xth term," x = 1, 2, and 3:

∆k b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i )⊗1+γ * i ⊗Ψ(s op i ) -1 ⊗1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × γ j ⊗[(Ψ(s op j )-1) • (Ψ(s op j )-1)] -γ * j ⊗ [(Ψ(s op j ) -1 -1) • (Ψ(s op j ) -1 -1)] ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i ) ⊗ 1 + γ * i ⊗ Ψ(s op i ) -1 ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × γ j ⊗ Ψ(s op j ) -1 2 -γ * j ⊗ Ψ(s op j ) -1 -1 2 ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i ) ⊗ 1 + γ * i ⊗ Ψ(s op i ) -1 ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 + b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i ) ⊗ 1 + γ * i ⊗ Ψ(s op i ) -1 ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × γ j ⊗[(Ψ(s op j )-1) • (Ψ(s op j )-1) 2 + (Ψ(s op j )-1) 2 • (Ψ(s op j )-1)] +γ * j ⊗ [(Ψ(s op j ) -1 -1) 2 • (Ψ(s op j ) -1 -1) + (Ψ(s op j ) -1 -1) • (Ψ(s op j ) -1 -1) 2 ] ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i ) ⊗ 1 + γ * i ⊗ Ψ(s op i ) -1 ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 + b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i )⊗1+γ * i ⊗Ψ(s op i ) -1 ⊗1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × γ j ⊗(Ψ(s op j )-1)(Ψ(s op j )-1) -γ * j ⊗ (Ψ(s op j ) -1 -1)(Ψ(s op j ) -1 -1)] ⊗1 50 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i )) ⊗ 1 + γ * i ⊗ Ψ(s op i ) -1 ) ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × γ j ⊗ Ψ(s op j ) -1 • Ψ(s op j ) -1 -γ * j ⊗ Ψ(s op j ) -1 -1 • Ψ(s op j ) -1 -1 ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i ) ⊗ 1 + γ * i ⊗ Ψ(s op i ) -1 ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1   = b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i )⊗1+γ * i ⊗Ψ(s op i ) -1 ⊗1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × δ j,k i 2 γ j ⊗[(Ψ(s op j )-1) • (Ψ(s op j )-1) • (Ψ(s op j )-1)] + γ * j ⊗ [(Ψ(s op j ) -1 -1) • (Ψ(s op j ) -1 -1) • (Ψ(s op j ) -1 -1)] ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i ) ⊗ 1 + γ * i ⊗ Ψ(s op i ) -1 ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × γ j ⊗ Ψ(s op j ) -1 2 -γ * j ⊗ Ψ(s op j ) -1 -1 2 ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i ) ⊗ 1 + γ * i ⊗ Ψ(s op i ) -1 ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 + b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i )⊗1+γ * i ⊗Ψ(s op i ) -1 ⊗1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × γ j ⊗[(Ψ(s op j )-1) • (Ψ(s op j )-1)] -γ * j ⊗ [(Ψ(s op j ) -1 -1) • (Ψ(s op j ) -1 -1)] ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i )) ⊗ 1 + γ * i ⊗ Ψ(s op i ) -1 ) ⊗ 1) 51 - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × i 2 γ k ⊗[(Ψ(s op k )-1) • (Ψ(s op k )-1)] -γ * k ⊗ [(Ψ(s op k ) -1 -1) • (Ψ(s op k ) -1 -1)] ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i ) ⊗ 1 + γ * i ⊗ Ψ(s op i ) -1 ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × γ j ⊗ Ψ(s op j ) -1 2 -γ * j ⊗ Ψ(s op j ) -1 -1 2 ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i ) ⊗ 1 + γ * i ⊗ Ψ(s op i ) -1 ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 + b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i )⊗1+γ * i ⊗Ψ(s op i ) -1 ⊗1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × γ j ⊗[(Ψ(s op j )-1) • (Ψ(s op j )-1)] -γ * j ⊗ [(Ψ(s op j ) -1 -1) • (Ψ(s op j ) -1 -1)] ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i ) ⊗ 1 + γ * i ⊗ Ψ(s op i ) -1 ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × i 2 δ j,k γ j ⊗ Ψ(s op j ) -1 2 • Ψ(s op j ) -1 + Ψ(s op j ) -1 • Ψ(s op j ) -1 2 + γ * j ⊗ Ψ(s op j ) -1 -1 • Ψ(s op j ) -1 -1 2 + Ψ(s op j ) -1 -1 2 • Ψ(s op j ) -1 -1 ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i ) ⊗ 1 + γ * i ⊗ Ψ(s op i ) -1 ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 + b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i )⊗1+γ * i ⊗Ψ(s op i ) -1 ⊗1) 52 - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × γ j ⊗[(Ψ(s op j )-1) • (Ψ(s op j )-1)] -γ * j ⊗ [(Ψ(s op j ) -1 -1) • (Ψ(s op j ) -1 -1)] ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i ) ⊗ 1 + γ * i ⊗ Ψ(s op i ) -1 ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × γ j ⊗ Ψ(s op j ) -1 2 -γ * j ⊗ Ψ(s op j ) -1 -1 2 ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i ) ⊗ 1 + γ * i ⊗ Ψ(s op i ) -1 ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × i 2 γ k ⊗[(Ψ(s op k )-1) • (Ψ(s op k )-1)] -γ * k ⊗ [(Ψ(s op k ) -1 -1) • (Ψ(s op k ) -1 -1)] ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i ) ⊗ 1 + γ * i ⊗ Ψ(s op i ) -1 ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 end 1st term + b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i ) ⊗ 1 + γ * i ⊗ Ψ(s op i ) -1 ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × i 2 δ j,k γ j ⊗ (Ψ(s op j )-1) • (Ψ(s op j )-1) 2 • (Ψ(s op j ) -1) + (Ψ(s op j )-1) • (Ψ(s op j ) -1) 2 +(Ψ(s op j )-1) 2 • (Ψ(s op j )-1) • (Ψ(s op j )-1)] -γ * j ⊗ (Ψ(s op j ) -1 -1) 2 • (Ψ(s op j ) -1 -1) • (Ψ(s op j ) -1 -1) + (Ψ(s op j ) -1 -1) • (Ψ(s op j ) -1 -1) 2 • (Ψ(s op j ) -1 -1)+(Ψ(s op j ) -1 -1)•(Ψ(s op j ) -1 -1) 2 ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i ) ⊗ 1 + γ * i ⊗ Ψ(s op i ) -1 ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 53 + b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i ) ⊗ 1 + γ * i ⊗ Ψ(s op i ) -1 ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × γ j ⊗[(Ψ(s op j )-1) • (Ψ(s op j )-1) 2 + (Ψ(s op j )-1) 2 • (Ψ(s op j )-1)] +γ * j ⊗ [(Ψ(s op j ) -1 -1) 2 • (Ψ(s op j ) -1 -1) + (Ψ(s op j ) -1 -1) • (Ψ(s op j ) -1 -1) 2 ] ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i ) ⊗ 1 + γ * i ⊗ Ψ(s op i ) -1 ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × i 2 γ k ⊗[(Ψ(s op k )-1) • (Ψ(s op k )-1)] -γ * k ⊗ [(Ψ(s op k ) -1 -1) • (Ψ(s op k ) -1 -1)] ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i ) ⊗ 1 + γ * i ⊗ Ψ(s op i ) -1 ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 end 2nd term + b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i )⊗1+γ * i ⊗Ψ(s op i ) -1 ⊗1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × γ j ⊗(Ψ(s op j )-1)(Ψ(s op j )-1) -γ * j ⊗ (Ψ(s op j ) -1 -1)(Ψ(s op j ) -1 -1)] ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i )) ⊗ 1 + γ * i ⊗ Ψ(s op i ) -1 ) ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × δ j,k i 2 γ j ⊗ Ψ(s op j ) -1 • Ψ(s op j ) -1 • Ψ(s op j ) -1 + γ * j ⊗ Ψ(s op j ) -1 -1 • Ψ(s op j ) -1 -1 • Ψ(s op j ) -1 -1 ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i ) ⊗ 1 + γ * i ⊗ Ψ(s op i ) -1 ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 54 + b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i )⊗1+γ * i ⊗Ψ(s op i ) -1 ⊗1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × γ j ⊗(Ψ(s op j )-1)(Ψ(s op j )-1) -γ * j ⊗ (Ψ(s op j ) -1 -1)(Ψ(s op j ) -1 -1)] ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i )) ⊗ 1 + γ * i ⊗ Ψ(s op i ) -1 ) ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × γ j ⊗ Ψ(s op j ) -1 • Ψ(s op j ) -1 -γ * j ⊗ Ψ(s op j ) -1 -1 • Ψ(s op j ) -1 -1 ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i ) ⊗ 1 + γ * i ⊗ Ψ(s op i ) -1 ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × i 2 γ k ⊗[(Ψ(s op k )-1) • (Ψ(s op k )-1)] -γ * k ⊗ [(Ψ(s op k ) -1 -1) • (Ψ(s op k ) -1 -1)] ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i ) ⊗ 1 + γ * i ⊗ Ψ(s op i ) -1 ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 end of 3rd term. ( 38 
)
We remind the reader that the above is a second order noncommutative function, and the variables are denoted by s, s, and s. Next, we "differentiate in s k " -meaning, we apply the partial difference-differential operator ∆ k with respect to s k -in the right-hand side of (38). Now a new placeholder • will appear, and left of it the formulas on the second tensor coordinate will be red (the evaluation is in (s r , s r )). We will obviously not copy all of the right-hand side of (38) with square brackets around it and a ∆ k in front of it, but we just write below the final result. As in the case of ∆k , we mark where the result of differentiating each of the eight terms ends, this time in capital letters ("END Xth TERM", X = 1, . . . , 8), while at the same time preserving the markings from the application of ∆k above:

b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i )⊗1+γ * i ⊗Ψ(s op i ) -1 ⊗1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × i 2 (γ k ⊗ [(Ψ(s op k ) -1) • (Ψ(s op k ) -1)] -γ * k ⊗ [(Ψ(s op k ) -1 -1) • (Ψ(s op k ) -1 -1)]) ⊗ 1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i )⊗1+γ * i ⊗Ψ(s op i ) -1 ⊗1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × δ j,k i 2 γ j ⊗[(Ψ(s op j )-1) • (Ψ(s op j )-1) • (Ψ(s op j )-1)] + γ * j ⊗ [(Ψ(s op j ) -1 -1) • (Ψ(s op j ) -1 -1) • (Ψ(s op j ) -1 -1)] ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i ) ⊗ 1 + γ * i ⊗ Ψ(s op i ) -1 ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × γ j ⊗ Ψ(s op j ) -1 2 -γ * j ⊗ Ψ(s op j ) -1 -1 2 ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i ) ⊗ 1 + γ * i ⊗ Ψ(s op i ) -1 ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 + b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i )⊗1+γ * i ⊗Ψ(s op i ) -1 ⊗1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × δ j,k 4 γ * j ⊗[(Ψ(s op j ) -1 -1) • (Ψ(s op j ) -1 -1) • (Ψ(s op j ) -1 -1) • (Ψ(s op j ) -1 -1)] -γ j ⊗ [(Ψ(s op j )-1) • (Ψ(s op j )-1) • (Ψ(s op j )-1) • (Ψ(s op j )-1)] ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i ) ⊗ 1 + γ * i ⊗ Ψ(s op i ) -1 ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × γ j ⊗ Ψ(s op j ) -1 2 -γ * j ⊗ Ψ(s op j ) -1 -1 2 ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i ) ⊗ 1 + γ * i ⊗ Ψ(s op i ) -1 ⊗ 1) 56 - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 END 1st TERM + b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i )⊗1+γ * i ⊗Ψ(s op i ) -1 ⊗1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × i 2 (γ k ⊗ [(Ψ(s op k ) -1) • (Ψ(s op k ) -1)] -γ * k ⊗ [(Ψ(s op k ) -1 -1) • (Ψ(s op k ) -1 -1)]) ⊗ 1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i )⊗1+γ * i ⊗Ψ(s op i ) -1 ⊗1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × γ j ⊗[(Ψ(s op j )-1) • (Ψ(s op j )-1)] -γ * j ⊗ [(Ψ(s op j ) -1 -1) • (Ψ(s op j ) -1 -1)] ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i )) ⊗ 1 + γ * i ⊗ Ψ(s op i ) -1 ) ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × i 2 γ k ⊗[(Ψ(s op k )-1) • (Ψ(s op k )-1)] -γ * k ⊗ [(Ψ(s op k ) -1 -1) • (Ψ(s op k ) -1 -1)] ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i ) ⊗ 1 + γ * i ⊗ Ψ(s op i ) -1 ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × γ j ⊗ Ψ(s op j ) -1 2 -γ * j ⊗ Ψ(s op j ) -1 -1 2 ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i ) ⊗ 1 + γ * i ⊗ Ψ(s op i ) -1 ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 + b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i )⊗1+γ * i ⊗Ψ(s op i ) -1 ⊗1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 57 × δ j,k 4 γ * j ⊗[(Ψ(s op j ) -1 -1) • (Ψ(s op j ) -1 -1) • (Ψ(s op j ) -1 -1)] -γ j ⊗ [(Ψ(s op j )-1) • (Ψ(s op j )-1) • (Ψ(s op j )-1)] ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i )) ⊗ 1 + γ * i ⊗ Ψ(s op i ) -1 ) ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × γ k ⊗[(Ψ(s op k )-1) • (Ψ(s op k )-1)] -γ * k ⊗ [(Ψ(s op k ) -1 -1) • (Ψ(s op k ) -1 -1)] ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i ) ⊗ 1 + γ * i ⊗ Ψ(s op i ) -1 ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × γ j ⊗ Ψ(s op j ) -1 2 -γ * j ⊗ Ψ(s op j ) -1 -1 2 ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i ) ⊗ 1 + γ * i ⊗ Ψ(s op i ) -1 ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 END 2nd TERM + b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i )⊗1+γ * i ⊗Ψ(s op i ) -1 ⊗1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × i 2 γ k ⊗[(Ψ(s op k )-1) • (Ψ(s op k )-1)]-γ * k ⊗[(Ψ(s op k ) -1 -1) • (Ψ(s op k ) -1 -1)] ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i )⊗1+γ * i ⊗Ψ(s op i ) -1 ⊗1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × γ j ⊗[(Ψ(s op j )-1) • (Ψ(s op j )-1)] -γ * j ⊗ [(Ψ(s op j ) -1 -1) • (Ψ(s op j ) -1 -1)] ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i ) ⊗ 1 + γ * i ⊗ Ψ(s op i ) -1 ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × i 2 δ j,k γ j ⊗ Ψ(s op j ) -1 2 • Ψ(s op j ) -1 + Ψ(s op j ) -1 • Ψ(s op j ) -1 2 + γ * j ⊗ Ψ(s op j ) -1 -1 • Ψ(s op j ) -1 -1 2 + Ψ(s op j ) -1 -1 2 • Ψ(s op j ) -1 -1 ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i ) ⊗ 1 + γ * i ⊗ Ψ(s op i ) -1 ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 + b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i )⊗1+γ * i ⊗Ψ(s op i ) -1 ⊗1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × i 2 δ j,k γ j ⊗[(Ψ(s op j )-1) • (Ψ(s op j )-1) • (Ψ(s op j ) -1)] + γ * j ⊗[(Ψ(s op j ) -1 -1) • (Ψ(s op j ) -1 -1) • (Ψ(s op j ) -1 -1)] ⊗ 1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i ) ⊗ 1 + γ * i ⊗ Ψ(s op i ) -1 ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × i 2 δ j,k γ j ⊗ Ψ(s op j ) -1 2 • Ψ(s op j ) -1 + Ψ(s op j ) -1 • Ψ(s op j ) -1 2 + γ * j ⊗ Ψ(s op j ) -1 -1 • Ψ(s op j ) -1 -1 2 + Ψ(s op j ) -1 -1 2 • Ψ(s op j ) -1 -1 ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i ) ⊗ 1 + γ * i ⊗ Ψ(s op i ) -1 ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 END 3rd TERM + b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i )⊗1+γ * i ⊗Ψ(s op i ) -1 ⊗1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × i 2 γ k ⊗[(Ψ(s op k )-1) • (Ψ(s op k )-1)]-γ * k ⊗[(Ψ(s op k ) -1 -1) • (Ψ(s op k ) -1 -1)] ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i )⊗1+γ * i ⊗Ψ(s op i ) -1 ⊗1) 59 - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × γ j ⊗[(Ψ(s op j )-1) • (Ψ(s op j )-1)] -γ * j ⊗ [(Ψ(s op j ) -1 -1) • (Ψ(s op j ) -1 -1)] ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i ) ⊗ 1 + γ * i ⊗ Ψ(s op i ) -1 ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × γ j ⊗ Ψ(s op j ) -1 2 -γ * j ⊗ Ψ(s op j ) -1 -1 2 ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i ) ⊗ 1 + γ * i ⊗ Ψ(s op i ) -1 ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × i 2 γ k ⊗[(Ψ(s op k )-1) • (Ψ(s op k )-1)] -γ * k ⊗ [(Ψ(s op k ) -1 -1) • (Ψ(s op k ) -1 -1)] ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i ) ⊗ 1 + γ * i ⊗ Ψ(s op i ) -1 ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 + b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i )⊗1+γ * i ⊗Ψ(s op i ) -1 ⊗1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × δ j,k i 2 γ j ⊗ [(Ψ(s op j ) -1) • (Ψ(s op j ) -1) • (Ψ(s op j ) -1)] + γ j ⊗ [(Ψ(s op j ) -1 -1) • (Ψ(s op j ) -1 -1) • (Ψ(s op j ) -1 -1)] ⊗ 1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i ) ⊗ 1 + γ * i ⊗ Ψ(s op i ) -1 ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × γ j ⊗ Ψ(s op j ) -1 2 -γ * j ⊗ Ψ(s op j ) -1 -1 2 ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i ) ⊗ 1 + γ * i ⊗ Ψ(s op i ) -1 ⊗ 1) 60 - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × i 2 γ k ⊗[(Ψ(s op k )-1) • (Ψ(s op k )-1)] -γ * k ⊗ [(Ψ(s op k ) -1 -1) • (Ψ(s op k ) -1 -1)] ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i ) ⊗ 1 + γ * i ⊗ Ψ(s op i ) -1 ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 )
-1

[end 1st term] END 4th TERM

+ b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i )⊗1+γ * i ⊗Ψ(s op i ) -1 ⊗1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × i 2 γ k ⊗[(Ψ(s op k )-1) • (Ψ(s op k )-1)]-γ * k ⊗[(Ψ(s op k ) -1 -1) • (Ψ(s op k ) -1 -1)] ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i )⊗1+γ * i ⊗Ψ(s op i ) -1 ⊗1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × i 2 δ j,k γ j ⊗ (Ψ(s op j )-1) • (Ψ(s op j )-1) 2 • (Ψ(s op j ) -1) + (Ψ(s op j )-1) • (Ψ(s op j ) -1) 2 +(Ψ(s op j )-1) 2 • (Ψ(s op j )-1) • (Ψ(s op j )-1)] -γ * j ⊗ (Ψ(s op j ) -1 -1) 2 • (Ψ(s op j ) -1 -1) • (Ψ(s op j ) -1 -1) + (Ψ(s op j ) -1 -1) • (Ψ(s op j ) -1 -1) 2 • (Ψ(s op j ) -1 -1)+(Ψ(s op j ) -1 -1)•(Ψ(s op j ) -1 -1) 2 ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i ) ⊗ 1 + γ * i ⊗ Ψ(s op i ) -1 ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 + b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i )⊗1+γ * i ⊗Ψ(s op i ) -1 ⊗1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × -1 4 δ j,k γ j ⊗ (Ψ(s op k )-1) • (Ψ(s op j )-1) • (Ψ(s op j )-1) 2 • (Ψ(s op j ) -1) + (Ψ(s op j )-1) • (Ψ(s op j ) -1) 2 + (Ψ(s op k )-1) • (Ψ(s op j )-1) 2 + (Ψ(s op k )-1) 2 • (Ψ(s op j )-1) • (Ψ(s op j )-1) • (Ψ(s op j )-1)] + γ * j ⊗ {(Ψ(s op k ) -1 -1) • (Ψ(s op j ) -1 -1) 2 + (Ψ(s op k ) -1 -1) 2 • (Ψ(s op j ) -1 -1)} • (Ψ(s op j ) -1 -1) • (Ψ(s op j ) -1 -1) + (Ψ(s op k ) -1 -1) • (Ψ(s op j ) -1 -1) • (Ψ(s op j ) -1 -1) 2 • (Ψ(s op j ) -1 -1) + (Ψ(s op j ) -1 -1)•(Ψ(s op j ) -1 -1) 2 ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i ) ⊗ 1 + γ * i ⊗ Ψ(s op i ) -1 ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 END 5th TERM + b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i )⊗1+γ * i ⊗Ψ(s op i ) -1 ⊗1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × i 2 γ k ⊗[(Ψ(s op k )-1) • (Ψ(s op k )-1)]-γ * k ⊗[(Ψ(s op k ) -1 -1) • (Ψ(s op k ) -1 -1)] ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i )⊗1+γ * i ⊗Ψ(s op i ) -1 ⊗1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × γ j ⊗[(Ψ(s op j )-1) • (Ψ(s op j )-1) 2 + (Ψ(s op j )-1) 2 • (Ψ(s op j )-1)] +γ * j ⊗ [(Ψ(s op j ) -1 -1) 2 • (Ψ(s op j ) -1 -1) + (Ψ(s op j ) -1 -1) • (Ψ(s op j ) -1 -1) 2 ] ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i ) ⊗ 1 + γ * i ⊗ Ψ(s op i ) -1 ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × i 2 γ k ⊗[(Ψ(s op k )-1) • (Ψ(s op k )-1)] -γ * k ⊗ [(Ψ(s op k ) -1 -1) • (Ψ(s op k ) -1 -1)] ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i ) ⊗ 1 + γ * i ⊗ Ψ(s op i ) -1 ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 ⋆ ⋆ ⋆ + b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i )⊗1+γ * i ⊗Ψ(s op i ) -1 ⊗1) 62 - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × i 2 δ j,k γ j ⊗[(Ψ(s op k )-1) • (Ψ(s op j )-1) • (Ψ(s op j )-1) 2 + {(Ψ(s op k )-1) • (Ψ(s op j )-1) 2 + (Ψ(s op k )-1) 2 • (Ψ(s op j )-1)} • (Ψ(s op j )-1)] -γ * j ⊗ [{(Ψ(s op k ) -1 -1) • (Ψ(s op j ) -1 -1) 2 + (Ψ(s op k ) -1 -1) 2 • (Ψ(s op j ) -1 -1)} • (Ψ(s op j ) -1 -1) + (Ψ(s op k ) -1 -1) • (Ψ(s op j ) -1 -1) • (Ψ(s op j ) -1 -1) 2 ] ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i ) ⊗ 1 + γ * i ⊗ Ψ(s op i ) -1 ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × i 2 γ k ⊗[(Ψ(s op k )-1) • (Ψ(s op k )-1)] -γ * k ⊗ [(Ψ(s op k ) -1 -1) • (Ψ(s op k ) -1 -1)] ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i ) ⊗ 1 + γ * i ⊗ Ψ(s op i ) -1 ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 [end 2nd term] END 6th TERM + b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i )⊗1+γ * i ⊗Ψ(s op i ) -1 ⊗1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × i 2 γ k ⊗[(Ψ(s op k )-1) • (Ψ(s op k )-1)]-γ * k ⊗[(Ψ(s op k ) -1 -1) • (Ψ(s op k ) -1 -1)] ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i )⊗1+γ * i ⊗Ψ(s op i ) -1 ⊗1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × γ j ⊗(Ψ(s op j )-1)(Ψ(s op j )-1) -γ * j ⊗ (Ψ(s op j ) -1 -1)(Ψ(s op j ) -1 -1) ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i )) ⊗ 1 + γ * i ⊗ Ψ(s op i ) -1 ) ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × δ j,k i 2 γ j ⊗ Ψ(s op j ) -1 • Ψ(s op j ) -1 • Ψ(s op j ) -1 + γ * j ⊗ Ψ(s op j ) -1 -1 • Ψ(s op j ) -1 -1 • Ψ(s op j ) -1 -1 ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i ) ⊗ 1 + γ * i ⊗ Ψ(s op i ) -1 ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 + b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i )⊗1+γ * i ⊗Ψ(s op i ) -1 ⊗1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × δ j,k i 2 γ j ⊗[(Ψ(s op k )-1) • (Ψ(s op k )-1) 2 + (Ψ(s op k )-1) 2 • (Ψ(s op k )-1)] + γ * j ⊗ [(Ψ(s op k ) -1 -1) 2 • (Ψ(s op j ) -1 -1) + (Ψ(s op k ) -1 -1) • (Ψ(s op j ) -1 -1) 2 ] ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i )) ⊗ 1 + γ * i ⊗ Ψ(s op i ) -1 ) ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × δ j,k i 2 γ j ⊗ Ψ(s op j ) -1 • Ψ(s op j ) -1 • Ψ(s op j ) -1 + γ * j ⊗ Ψ(s op j ) -1 -1 • Ψ(s op j ) -1 -1 • Ψ(s op j ) -1 -1 ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i ) ⊗ 1 + γ * i ⊗ Ψ(s op i ) -1 ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 + b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i )⊗1+γ * i ⊗Ψ(s op i ) -1 ⊗1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × γ j ⊗(Ψ(s op j )-1) 2 -γ * j ⊗ (Ψ(s op j ) -1 -1) 2 ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i )⊗1+γ * i ⊗Ψ(s op i ) -1 ⊗1) 64 - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × i 2 γ k ⊗[(Ψ(s op k )-1) • (Ψ(s op k )-1)]-γ * k ⊗[(Ψ(s op k ) -1 -1) • (Ψ(s op k ) -1 -1)] ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i )) ⊗ 1 + γ * i ⊗ Ψ(s op i ) -1 ) ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × δ j,k i 2 γ j ⊗ Ψ(s op j ) -1 • Ψ(s op j ) -1 • Ψ(s op j ) -1 + γ * j ⊗ Ψ(s op j ) -1 -1 • Ψ(s op j ) -1 -1 • Ψ(s op j ) -1 -1 ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i ) ⊗ 1 + γ * i ⊗ Ψ(s op i ) -1 ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 + b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i )⊗1+γ * i ⊗Ψ(s op i ) -1 ⊗1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × γ j ⊗(Ψ(s op j )-1) 2 -γ * j ⊗ (Ψ(s op j ) -1 -1) 2 ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i )⊗1+γ * i ⊗Ψ(s op i ) -1 ⊗1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × δ j,k -1 4 γ j ⊗ Ψ(s op j ) -1 • Ψ(s op j ) -1 • Ψ(s op j ) -1 • Ψ(s op j ) -1 -γ * j ⊗ Ψ(s op j ) -1 -1 • Ψ(s op j ) -1 -1 • Ψ(s op j ) -1 -1 • Ψ(s op j ) -1 -1 ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i ) ⊗ 1 + γ * i ⊗ Ψ(s op i ) -1 ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 END 7th TERM + b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i )⊗1+γ * i ⊗Ψ(s op i ) -1 ⊗1) 65 - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × i 2 γ k ⊗[(Ψ(s op k )-1) • (Ψ(s op k )-1)]-γ * k ⊗[(Ψ(s op k ) -1 -1) • (Ψ(s op k ) -1 -1)] ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i )⊗1+γ * i ⊗Ψ(s op i ) -1 ⊗1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × γ j ⊗(Ψ(s op j )-1)(Ψ(s op j )-1) -γ * j ⊗ (Ψ(s op j ) -1 -1)(Ψ(s op j ) -1 -1)] ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i )) ⊗ 1 + γ * i ⊗ Ψ(s op i ) -1 ) ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × γ j ⊗ Ψ(s op j ) -1 • Ψ(s op j ) -1 -γ * j ⊗ Ψ(s op j ) -1 -1 • Ψ(s op j ) -1 -1 ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i ) ⊗ 1 + γ * i ⊗ Ψ(s op i ) -1 ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × i 2 γ k ⊗[(Ψ(s op k )-1) • (Ψ(s op k )-1)] -γ * k ⊗ [(Ψ(s op k ) -1 -1) • (Ψ(s op k ) -1 -1)] ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i ) ⊗ 1 + γ * i ⊗ Ψ(s op i ) -1 ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 + b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i )⊗1+γ * i ⊗Ψ(s op i ) -1 ⊗1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × δ j,k i 2 γ j ⊗[(Ψ(s op k )-1) • (Ψ(s op k )-1) 2 + (Ψ(s op k )-1) 2 • (Ψ(s op k )-1)] + γ * j ⊗ [(Ψ(s op k ) -1 -1) 2 • (Ψ(s op j ) -1 -1) + (Ψ(s op k ) -1 -1) • (Ψ(s op j ) -1 -1) 2 ] ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i )) ⊗ 1 + γ * i ⊗ Ψ(s op i ) -1 ) ⊗ 1) 66 - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × γ j ⊗ Ψ(s op j ) -1 • Ψ(s op j ) -1 -γ * j ⊗ Ψ(s op j ) -1 -1 • Ψ(s op j ) -1 -1 ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i ) ⊗ 1 + γ * i ⊗ Ψ(s op i ) -1 ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × i 2 γ k ⊗[(Ψ(s op k )-1) • (Ψ(s op k )-1)] -γ * k ⊗ [(Ψ(s op k ) -1 -1) • (Ψ(s op k ) -1 -1)] ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i ) ⊗ 1 + γ * i ⊗ Ψ(s op i ) -1 ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 + b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i )⊗1+γ * i ⊗Ψ(s op i ) -1 ⊗1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × γ j ⊗(Ψ(s op j )-1) 2 -γ * j ⊗ (Ψ(s op j ) -1 -1) 2 ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i )⊗1+γ * i ⊗Ψ(s op i ) -1 ⊗1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × i 2 γ k ⊗[(Ψ(s op k )-1) • (Ψ(s op k )-1)]-γ * k ⊗[(Ψ(s op k ) -1 -1) • (Ψ(s op k ) -1 -1)] ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i )) ⊗ 1 + γ * i ⊗ Ψ(s op i ) -1 ) ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × γ j ⊗ Ψ(s op j ) -1 • Ψ(s op j ) -1 -γ * j ⊗ Ψ(s op j ) -1 -1 • Ψ(s op j ) -1 -1 ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i ) ⊗ 1 + γ * i ⊗ Ψ(s op i ) -1 ⊗ 1) 67 - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × i 2 γ k ⊗[(Ψ(s op k )-1) • (Ψ(s op k )-1)] -γ * k ⊗ [(Ψ(s op k ) -1 -1) • (Ψ(s op k ) -1 -1)] ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i ) ⊗ 1 + γ * i ⊗ Ψ(s op i ) -1 ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 + b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i )⊗1+γ * i ⊗Ψ(s op i ) -1 ⊗1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × γ j ⊗(Ψ(s op j )-1) 2 -γ * j ⊗ (Ψ(s op j ) -1 -1) 2 ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i )⊗1+γ * i ⊗Ψ(s op i ) -1 ⊗1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × i 2 δ j,k γ j ⊗ Ψ(s op j ) -1 • Ψ(s op j ) -1 • Ψ(s op j ) -1 + γ * j ⊗ Ψ(s op j ) -1 -1 • Ψ(s op j ) -1 -1 • Ψ(s op j ) -1 -1 ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i ) ⊗ 1 + γ * i ⊗ Ψ(s op i ) -1 ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 ) -1 × i 2 γ k ⊗[(Ψ(s op k )-1) • (Ψ(s op k )-1)] -γ * k ⊗ [(Ψ(s op k ) -1 -1) • (Ψ(s op k ) -1 -1)] ⊗1 × b ⊗ 1 ⊗ 1 - r i=1 (γ i ⊗ Ψ(s op i ) ⊗ 1 + γ * i ⊗ Ψ(s op i ) -1 ⊗ 1) - r i=1 (β i ⊗ 1 ⊗ Ψ(t i ) + β * i ⊗ 1 ⊗ Ψ(t i ) -1 )
-1

[end of 3rd term] END 8th TERM (39)

In Parraud's expression (33) for ν 1 , ν

(N )
1 , one sums after all j, k = 1, . . . , r (of course, we will not write that expression down). Already before integrating with respect to the real variables t 1 and t 2 (see (33) and before), the result does not change regardless of whether we consider the tuples s, s, s, s -each a free tuple with the same distribution -as belonging to A or to A op . However, this observation is not needed for our purposes. Indeed, obtaining R 1 ((z -S) -1 ) (where R 1 is applied to (z -S) -1 viewed as a noncommutative function in the variables on the second tensor coordinate -strictly speaking, (id Mm(C) ⊗ R 1 ⊗ id A )((z -S) -1 )) from formula (39) above comes (up to a complex multiplicative constant) to performing the following steps: first, sum after j, k ∈ {1, . . . , r}; second, identify the four noncommutative functions with values in M m (C) ⊗ A op ⊗ A (spatial tensor product) that appear left and right of each of the two • (and, of course, left and right of •); third, evaluate these functions on the desired r-tuples of variables to obtain an element in the complex Banach space M m (C) ⊗ A op ⊗ A (spatial tensor product again); fourth, insert 1 ∈ A in the place of each placeholder •, •, and perform the needed operations of addition and multiplication in the von Neumann algebra M m (C) ⊗ A ⊗ A endowed with the canonical trace 4 . Then computing (tr m ⊗ν 1 ⊗τ )((z-S) -1 ) becomes trivial. Computing (tr m ⊗ν 1 ⊗ν 1 )((z-S) -1 ) is almost as easy: after performing the four steps above (or the three steps described in the footnote) for the second tensor coordinate, one performs precisely the same operations for the third tensor coordinate, and only then one applies tr m ⊗ τ ⊗ τ to the element of M m (C) ⊗ A ⊗ A thus obtained. Observing that the r-tuples z 1 t 1 , z 2 t 1 , z1 t 1 , z2 t 1 have distributions that do not depend on t 1 , t 2 , one is spared the need to integrates with respect to the real variables t 1 , t 2 . As the reader will see in the next section, this suffices in order to find the analytic function E(z) from [START_REF] Kaliuzhnyi-Verbovetskyi | Foundations of free noncommutative function theory[END_REF]. Moreover, (39) shows that the domain of analyticity of g(z) and the domain of analyticity of E(z) as functions of the complex number z coincide -see the following section for details.

Expansion of the Cauchy transform

It is clear that if |z| > ξ + 2 r i=1 ( γ i + β i ), then (zI m -ξ)⊗I N ⊗I N - r i=1 ({γ i ⊗U i + γ * i ⊗U -1 i }⊗I N + β i ⊗I N ⊗V i + β * i ⊗I N ⊗V -1 i ) -1 = ∞ n=0 ξ ⊗I N ⊗I N + r i=1 ({γ i ⊗U i + γ * i ⊗U -1 i }⊗I N + β i ⊗I N ⊗V i + β * i ⊗I N ⊗V -1 i ) n z n+1 , (40) 
where the right hand side series converges in norm. It can be easily seen that

(T 0 + T 1 + • • • + T r ) n = 0≤i 1 ,...,in≤r T i 1 T i 2 • • • T in , a sum of (r + 1) n terms.
For each k ∈ {0, 1, . . . , n}, there are r n-k n! k!(n-k)! terms that contain exactly k instances of T 0 in this sum (i.e. for which exactly k of the i 1 , . . . , i n are equal to zero). We isolate the Cayley transforms V j in the above-displayed numerator by applying this formula with

T 0 = ξ ⊗ I N ⊗ I N + r i=1 (γ i ⊗ U i + γ * i ⊗ U -1 i ) ⊗ I N and T j = β j ⊗ I N ⊗ V j + β * j ⊗ I N ⊗ V -1 j , 1 ≤ j ≤ r. Pick i 1 , .
. . , i n with k of the i's being equal to 0, and the other n -k being i ι 1 , . . . , i ι n-k . Then

T i 1 • • • T in = ǫι 1 ,...,ǫι n-k ∈{±1} Ti 1 • • • Tin ⊗ V ǫι 1 iι 1 • • • V ǫι n-k iι n-k , where Ti j ∈ {β i j ⊗ I N , β * i j ⊗ I N } if i j = 0 and Ti j = ξ ⊗ I N + r i=1 (γ i ⊗ U i + γ * i ⊗ U -1 i ) if i j = 0. Thus, (id Mm(C) ⊗id M N (C) ⊗E(tr N )) (zI m -ξ) ⊗ I N ⊗ I N - r i=1 ({γ i ⊗ U i + γ * i ⊗ U -1 i } ⊗ I N + β i ⊗ I N ⊗ V i + β * i ⊗ I N ⊗ V -1 i ) -1 = ∞ n=0 n k=0 0 ≤ i 1 , . . . , i n ≤ r
k of the i's being equal to 0, and the other nk being iι 1 , . . . , iι n-k

ǫι 1 ,...,ǫι n-k ∈{±1} Ti 1 • • • Tin E tr N (V ǫι 1 iι 1 • • • V ǫι n-k iι n-k ) z n+1 .
Similarly,

(id Mm(C) ⊗id M N (C) ⊗τ ) (zI m -ξ) ⊗ I N ⊗ 1 70 - r i=1 ({γ i ⊗ U i + γ * i ⊗ U -1 i } ⊗ 1 + β i ⊗ I N ⊗ v i + β * i ⊗ I N ⊗ v -1 i ) -1 = ∞ n=0 n k=0 0 ≤ i 1 , . . . , i n ≤ r
k of the i's being equal to 0, and the other nk being iι 1 , . . . , iι n-k

ǫι 1 ,...,ǫι n-k ∈{±1} Ti 1 • • • Tin τ v ǫι 1 iι 1 • • • v ǫι n-k iι n-k z n+1 .
Now, according to Proposition 13.

E tr N (V ǫι 1 iι 1 • • • V ǫι n-k iι n-k ) = τ v ǫι 1 iι 1 • • • v ǫι n-k iι n-k + ν 1 Ψ(x iι 1 ) ǫι 1 • • • Ψ(x iι n-k ) ǫι n-k N 2 + ν (N ) 2 Ψ(x iι 1 ) ǫι 1 • • • Ψ(x iι n-k ) ǫι n-k N 4 .
As noted in Section 4.4, for any fixed z ∈ C \ R, any fixed N × N unitary matrices U i 's, the function

(x 1 , . . . , x r ) → z -1 ⊗ ξ ⊗ I N - r i=1 (Ψ(x i ) ⊗ β i ⊗ I N + Ψ(x i ) -1 ⊗ β * i ⊗ I N + 1 ⊗ γ i ⊗ U i + 1 ⊗ γ * i ⊗ U -1 i ) -1
is a rational noncommutative function on ((I r (A)) n ) n≥1 and

1 flip 00 flip 1 z -1 ⊗ ξ ⊗ I N - r i=1 (Ψ(x i ) ⊗ β i ⊗ I N + Ψ(x i ) -1 ⊗ β * i ⊗ I N + 1 ⊗ γ i ⊗ U i + 1 ⊗ γ * i ⊗ U -1 i ) -1 = ∞ n=0 1 z n+1 n k=0 0 ≤ i 1 , . . . , in ≤ r k of the i's being equal to 0, and the other n -k being iι 1 , . . . , iι n-k ǫι 1 ,...,ǫι n-k ∈{±1} 1 flip 00 flip 1 Ψ(x iι 1 ) ǫι 1 • • • Ψ(x iι n-k ) ǫι n-k ⊗ Ti1 • • • Tin . We have R x 1 1 flip 00 flip 1 Ψ(x iι 1 ) ǫι 1 • • • Ψ(x iι n-k ) ǫι n-k ⊗ Ti 1 • • • Tin 71 = 1 flip 00 flip 1 R x 1 Ψ(x iι 1 ) ǫι 1 • • • Ψ(x iι n-k ) ǫι n-k ⊗ Ti 1 • • • Tin .
Then, for any tuple (

x 1 , x1 , x2 , x 2 ) of r-tuples of selfadjoint elements in A N , (R 1 ⊗id Mm(C) ⊗id A ) 1 flip 00 flip 1 Ψ(x iι 1 ) ǫι 1 • • • Ψ(x iι n-k ) ǫι n-k ⊗ Ti 1 • • • Tin (x 1 , x1 , x2 , x 2 ) = Ti 1 • • • Tin ⊗ R 1 Ψ(x iι 1 ) ǫι 1 • • • Ψ(x iι n-k ) ǫι n-k (x 1 , x1 , x2 , x 2 ).
Similarly, for any R ∈ {R

(1) 2 , R (2) 
2 , R

2 }, any tuple (x 1 , x1 , x2 , x 2 ) of 4-tuples of r-tuples of selfadjoint elements in A N ,

R x R x 1 1 flip 00 flip 1 Ψ(x iι 1 ) ǫι 1 • • • Ψ(x iι n-k ) ǫι n-k ⊗ Ti 1 • • • Tin (x 1 , x1 , x2 , x 2 ) = Ti 1 • • • Tin ⊗ R x R x 1 Ψ(x iι 1 ) ǫι 1 • • • Ψ(x iι n-k ) ǫι n-k (x 1 , x1 , x2 , x 2
). Applying the trace τ in the last tensor coordinate of the above,

(id Mm(C) ⊗ id MN (C) ⊗ τ ) 1 flip 00 flip 1 R x 1 z -1 ⊗ ξ ⊗ I N - r i=1 (Ψ(x i ) ⊗ β i ⊗ I N + Ψ(x i ) -1 ⊗ β * i ⊗ I N + 1 ⊗ γ i ⊗ U i + 1 ⊗ γ * i ⊗ U -1 i ) -1 = ∞ n=0 1 z n+1 n k=0 0 ≤ i 1 , . . . , in ≤ r
k of the i's being equal to 0, and the other nk being iι 1 , . . . , iι n-k

ǫι 1 ,...,ǫι n-k ∈{±1} τ R x 1 Ψ(x iι 1 ) ǫι 1 • • • Ψ(x iι n-k ) ǫι n-k (z 1 t1 , z1 t1 , z2 t1 , z 2 t1 ) Ti1 • • • Tin .
Similarly, for any R ∈ {R

2 , R

2 , R

2 },

(id Mm(C) ⊗ id M N (C) ⊗ τ N ) 1 flip 00 flip 1 R x R x 1 (z -1 ⊗ ξ ⊗ I N - r i=1 (Ψ(x i ) ⊗ β i ⊗ I N + Ψ(x i ) -1 ⊗ β * i ⊗ I N + 1 ⊗ γ i ⊗ U i + 1 ⊗ γ * i ⊗ U -1 i )) -1 = ∞ n=0 1 z n+1 n k=0 0 ≤ i 1 , . . . , in ≤ r k of the i's being equal to 0, and the other n -k being iι 1 , . . . , iι n-k ǫι 1 ,...,ǫι n-k ∈{±1} τ N R x R x 1 Ψ(x iι 1 ) ǫι 1 • • • Ψ(x iι n-k ) ǫι n-k (X N,T 2 3,1 , XN,T 2 3,1 , XN,T 2 3,2 , X N,T 2 3,2 ) Ti 1 • • • Tin .
It readily follows that

(id Mm(C) ⊗ id M N (C) ⊗ E(tr N )) (zIm -ξ) ⊗ I N ⊗ I N -2ℜ r i=1 (γ i ⊗ U i ⊗ I N + β i ⊗ I N ⊗ V i ) -1 = (id Mm(C) ⊗ id M N (C) ⊗ τ ) (zIm -ξ) ⊗ I N ⊗ I A -2ℜ r i=1 (γ i ⊗ U i ⊗ I A + β i ⊗ I N ⊗ v i ) -1 + 1 2N 2 +∞ 0 t 2 0 e -t 2 -t 1 (id Mm (C) ⊗ id M N (C) ⊗ τ ) 1 flip 0 0 flip 1 R x 1 z -1 ⊗ ξ ⊗ I N - r i=1 (Ψ(x i ) ⊗ β i ⊗ I N + Ψ(x i ) -1 ⊗ β * i ⊗ I N + 1 ⊗ γ i ⊗ U i + 1 ⊗ γ * i ⊗ U -1 i ) -1 (z 1 t 1 , z1 t 1 , z2 t 1 , z 2 t 1
)

dt 1 dt 2 + 1 4N 4 A 2 e -t 4 -t 3 -t 2 -t 1 1 I [t 2 ,t 4 ] (t 3 )(id Mm(C) ⊗ id M N (C) ⊗ E(τ N )) 1 flip 0 0 flip 1 R (1)x 2 R x 1 z -1 ⊗ ξ ⊗ I N - r i=1 (Ψ(x i ) ⊗ β i ⊗ I N + Ψ(x i ) -1 ⊗ β * i ⊗ I N + 1 ⊗ γ i ⊗ U i + 1 ⊗ γ * i ⊗ U -1 i ) -1 (X N,T 2 3,1 , XN,T 2 3,1 , XN,T 2 3,2 , X N,T 2 3,2 
)

+ 1 I [0,t 1 ] (t 3 )(id Mm (C) ⊗ id M N (C) ⊗ E(τ N )) 1 flip 0 0 flip 1 R (2),x 2 R x 1 z -1 ⊗ ξ ⊗ I N - r i=1 (Ψ(t i ) ⊗ β i ⊗ I N + Ψ(t i ) -1 ⊗ β * i ⊗ I N + 1 ⊗ γ i ⊗ U i + 1 ⊗ γ * i ⊗ U -1 i ) -1 (X N,T 2 1,1 , XN,T 2 1,1 , XN,T 2 1,2 , X N,T 2 1,2 
)

+ 1 I [t 1 ,t 2 ] (t 3 )(id Mm(C) ⊗ id M N (C) ⊗ E(τ N )) 1 flip 0 0 flip 1 R (3),x 2 R x 1 z -1 ⊗ ξ ⊗ I N - r i=1 (Ψ(t i ) ⊗ β i ⊗ I N + Ψ(t i ) -1 ⊗ β * i ⊗ I N + 1 ⊗ γ i ⊗ U i + 1 ⊗ γ * i ⊗ U -1 i ) -1 (X N,T 2 2,1 , XN,T 2 2,1 , XN,T 2 2,2 , X N,T 2 2,2 
) dt 1 dt 2 dt 3 dt 4 .

Let us iterate the process with respect to the U

i 's. It is clear that if |z| > ξ + 2 r i=1 ( γ i + β i ), then (zI m -ξ)⊗I N ⊗1 - r i=1 ({γ i ⊗U i + γ * i ⊗U -1 i }⊗ 1+ β i ⊗I N ⊗v i + β * i ⊗I N ⊗v -1 i ) -1 = ∞ n=0 ξ ⊗I N ⊗ 1+ r i=1 ({γ i ⊗U i + γ * i ⊗U -1 i }⊗ 1+ β i ⊗I N ⊗v i + β * i ⊗I N ⊗v -1 i ) n z n+1 , (41) 
where the right hand side series converges in norm. It can be easily seen that

(T 0 + T 1 + • • • + T r ) n = 0≤i 1 ,...,in≤r T i 1 T i 2 • • • T in , a sum of (r + 1) n terms.
For each k ∈ {0, 1, . . . , n}, there are r n-k n! k!(n-k)! terms that contain exactly k instances of T 0 in this sum (i.e. for which exactly k of the i 1 , . . . , i n are equal to zero). We isolate the Cayley transforms U j in the above-displayed numerator by applying this formula with

T 0 = ξ ⊗ I N ⊗ 1 + r i=1 (β i ⊗ I N ⊗ v i +β * i ⊗I N ⊗v -1 i
and T j = {γ j ⊗U j +γ * j ⊗U -1 j }⊗1, 1 ≤ j ≤ r. Pick i 1 , . . . , i n with k of the i's being equal to 0, and the other n -k being i ι 1 , . . . , i ι n-k . Then 

T i 1 • • • T in = ǫι 1 ,...,ǫι n-k ∈{±1} Ti 1 • • • Tin (I m ⊗ U ǫι 1 iι 1 ⊗ 1) • • • (I m ⊗ U ǫι n-k iι n-k ⊗ 1), where Ti j ∈ {γ i j ⊗ I N ⊗ 1, γ * i j ⊗ I N ⊗ 1} if i j = 0 and Ti j = ξ ⊗ I N ⊗ 1 + r i=1 (β i ⊗ I N ⊗ v i + β * i ⊗ I N ⊗ v -1 i ) if i j = 0. Thus (id Mm(C) ⊗ E(tr N ) ⊗ id A ) (zI m -ξ) ⊗ I N ⊗ 1 - r i=1 ({γ i ⊗ U i + γ * i ⊗ U -1 i } ⊗ 1 + β i ⊗ I N ⊗ v i + β * i ⊗ I N ⊗ v -1 i -1 = ∞ n=0 n k=0 0 ≤ i 1 , . . . ,
1 • • • Tin E tr N (U ǫι 1 iι 1 • • • U ǫι n-k iι n-k ) z n+1 , where Ti j ∈ {γ i j ⊗1, γ * i j ⊗1} if i j = 0 and Ti j = ξ ⊗1+ r i=1 (β i ⊗v i +β * i ⊗v -1 i ) if i j = 0. Similarly, (id Mm(C) ⊗ τ ⊗ id A ) (zI m -ξ) ⊗ 1 ⊗ 1 - r i=1 ({γ i ⊗ u i + γ * i ⊗ u -1 i } ⊗ 1 + β i ⊗ 1 ⊗ Ψ(s i ) + β * i ⊗ 1 ⊗ Ψ(s i ) -1 ) -1 = ∞ n=0 n k=0 0 ≤ i 1 , . . . ,
1 • • • Tin τ u ǫι 1 iι 1 • • • u ǫι n-k iι n-k z n+1 .
Now, according to Proposition 13,

E tr N (U ǫι 1 iι 1 • • • U ǫι n-k iι n-k ) = τ u ǫι 1 iι 1 • • • u ǫι n-k iι n-k + ν (N ) 1 Ψ(x iι 1 ) ǫι 1 • • • Ψ(x iι n-k ) ǫι n-k N 2 = τ u ǫι 1 iι 1 • • • u ǫι n-k iι n-k + ν 1 Ψ(x iι 1 ) ǫι 1 • • • Ψ(x iι n-k ) ǫι n-k N 2 + ν (N ) 2 Ψ(x iι 1 ) ǫι 1 • • • Ψ(x iι n-k ) ǫι n-k N 4 .
For any fixed z ∈ C \ R, any fixed v i 's, the function

(y 1 , . . . , y r ) → z -1 ⊗ ξ ⊗ 1 74 - r i=1 (Ψ(y i ) ⊗ γ i ⊗ 1 + Ψ(y i ) -1 ⊗ γ * i ⊗ 1 + 1 ⊗ β i ⊗ v i + 1 ⊗ β * i ⊗ v -1 i ) -1
is a rational noncommutative function on ((I r (A)) n ) n 1 and 

0 flip 1 z -1 ⊗ ξ ⊗ 1 - r i=1 (1 ⊗ β i ⊗ v i + 1 ⊗ β * i ⊗ v -1 i + Ψ(y i ) ⊗ γ i ⊗ 1 + Ψ(y i ) -1 ⊗ γ * i ⊗ 1 -1 = ∞ n=0 1 z n+1 n k=0 0 ≤ i 1 , . . . ,
∈{±1} 0 flip 1 Ψ(y iι 1 ) ǫι 1 • • • Ψ(y iι n-k ) ǫι n-k ⊗ Ti 1 • • • Tin .
Thus, we can deduce as below that

(id Mm(C) ⊗ E(tr N ) ⊗ id A ) (zIm -ξ) ⊗ I N ⊗ 1 - r i=1 ({γ i ⊗ U i + γ * i ⊗ U -1 i } ⊗ 1 + β i ⊗ I N ⊗ v i + β * i ⊗ I N ⊗ v -1 i ) -1 = (id Mm(C) ⊗ τ ⊗ id A ) (zIm -ξ) ⊗ 1 ⊗ 1 - r i=1 ({γ i ⊗ u i + γ * i ⊗ u -1 i } ⊗ 1 + β i ⊗ 1 ⊗ v i + β * i ⊗ 1 ⊗ v -1 i ) -1 + 1 2N 2 +∞ 0 t 2 0 e -t 2 -t 1 (id Mm (C) ⊗ τ ⊗ id A ) 0 flip 1 R y 1 z -1 ⊗ ξ ⊗ 1 - r i=1 (Ψ(y i ) ⊗ γ i ⊗ 1 -Ψ(y i ) -1 ⊗ γ * i ⊗ 1 + 1 ⊗ β i ⊗ v i + 1 ⊗ β * i ⊗ v -1 i ) -1 (z 1 t 1 , z1 t 1 , z2 t 1 , z 2 t 1 ) dt 1 dt 2 + 1 4N 4 A 2 e -t 4 -t 3 -t 2 -t 1 1 I [t 2 ,t 4 ] (t 3 )(id Mm(C) ⊗ E(τ N ) ⊗ id A ) 0 flip 1 R (1),y 2 R y 1 z -1 ⊗ ξ ⊗ 1 - r i=1 (Ψ(y i ) ⊗ γ i ⊗ 1 + Ψ(y i ) -1 ⊗ γ * i ⊗ 1 + 1 ⊗ β i ⊗ v i + 1 ⊗ γ * i ⊗ v -1 i ) -1 (X N,T 2 3,1 , XN,T 2 3,1 , XN,T 2 3,2 , X N,T 2 3,2 
)

+ 1 I [0,t 1 ] (t 3 )(id Mm (C) ⊗ E(τ N ) ⊗ id A ) 0 flip 1 R (2),y 2 R y 1 z -1 ⊗ ξ ⊗ 1 - r i=1 (Ψ(y i ) ⊗ γ i ⊗ 1 + Ψ(y i ) -1 ⊗ γ * i ⊗ 1 + 1 ⊗ β i ⊗ v i + 1 ⊗ γ * i ⊗ v -1 i ) -1 (X N,T 2 1,1 , XN,T 2 1,1 , XN,T 2 1,2 , X N,T 2 1,2 
) 

+ 1 I [t 1 ,t 2 ] (t 3 )(id Mm(C) ⊗ E(τ N ) ⊗ id A ) 0 flip 1 R (3),y 2 R y 1 z -1 ⊗ ξ ⊗ 1 - r i=1 (Ψ(y i ) ⊗ γ i ⊗ 1 + Ψ(y i ) -1 ⊗ γ * i ⊗ 1 + 1 ⊗ β i ⊗ v i + 1 ⊗ γ * i ⊗ v -1 i ) -1 (X N,T 2 

Now,

(id Mm(C) ⊗ E(tr N ) ⊗ id A )

1 flip 0 0 flip 1 R x 1 z -1 ⊗ ξ ⊗ I N - r i=1 (Ψ(x i ) ⊗ β i ⊗ I N + Ψ(x i ) -1 ⊗ β * i ⊗ I N + 1 ⊗ γ i ⊗ U i + 1 ⊗ γ * i ⊗ U -1 i ) -1
(z

1 t 1 , z1 t 1 , z2 t 1
, z

2 t 1 ) = (id Mm (C) ⊗ τ ⊗ id A ) 1 flip 0 0 flip 1 R x 1 z -1 ⊗ ξ ⊗ 1 + r i=1 (Ψ(x i ) ⊗ β i ⊗ 1 + Ψ(x i ) -1 ⊗ β * i ⊗ 1 + 1 ⊗ γ i ⊗ u i + ⊗γ * i ⊗ u -1 i ) -1
(z

1 t 1 , z1 t 1 , z2 t 1
, z

2 t 1 ) + 1 N 2 (id Mm(C) ⊗ E (τ N ) ⊗ id A ) 0 flip 1 R y 1 0 flip 1 1 flip 0 0 flip 1 R x 1 z -1 ⊗ ξ ⊗ 1 + r i=1 (Ψ(x i ) ⊗ β i ⊗ 1 + Ψ(x i ) -1 ⊗ β * i ⊗ 1 + 1 ⊗ γ i ⊗ Ψ(y i ) + 1 ⊗ γ * i ⊗ Ψ(y i ) -1 ) -1
(z Finally, for |z| > ξ + 2 r 1 i=1 γ i + 2 r 2 i=1 β i , with g N and g defined by ( 11) and ( 12), we have (Ψ(y i ) ⊗ γ i ⊗ 1 + Ψ(y i )

-1 ⊗ γ * i ⊗ 1 + 1 ⊗ β i ⊗ v i + 1 ⊗ γ * i ⊗ v -1 i ) -1
(z

1 t 1 , z1 t 1 , z2 t 1 , z 2 t 1
) dt 1 dt 2 + 1 2 +∞ 0 t 2 0 e -t 2 -t 1 (trm ⊗τ ⊗ τ )

1 flip 00 flip 1 R x 1 z -1 ⊗ ξ ⊗ I N - r i=1 (Ψ(x i ) ⊗ β i ⊗ 1 + Ψ(x i ) -1 ⊗ β * i ⊗ 1 + 1 ⊗ γ i ⊗ u i + 1 ⊗ γ * i ⊗ u -1 i ) -1 (z 1 t 1 , z1 t 1 , z2 t 1 , z 2 t 1
) dt 1 dt 2 , ∆ N (z) = 1 4 A 2 e -t 4 -t 3 -t 2 -t 1 1 I [t 2 ,t 4 ] (t 3 )(trm ⊗E(tr N ) ⊗ E(τ N )) ) + 1 I [0,t 1 ] (t 3 )(trm ⊗E(tr N ) ⊗ E(τ N ))

1 flip 00 flip 1 R (1)x 2 R x 1 z -1 ⊗ ξ ⊗ I N - r i=1 (Ψ(x i ) ⊗ β i ⊗ I N + Ψ(x i ) -1 ⊗ β * i ⊗ I N + 1 ⊗ γ i ⊗ U i + 1 ⊗ γ * i ⊗ U -1 i ) -1 (X N,T 2 
1 flip 00 flip 1 R (2),x 2 R x 1 z -1 ⊗ ξ ⊗ I N - r i=1 (Ψ(t i ) ⊗ β i ⊗ I N + Ψ(t i ) -1 ⊗ β * i ⊗ I N + 1 ⊗ γ i ⊗ U i + 1 ⊗ γ * i ⊗ U -1 i ) -1 (X N,T 2 1,1 , XN,T 2 1,1 , XN,T 2 1,2 , X N,T 2 1,2 
) + 1 I [t 1 ,t 2 ] (t 3 )(trm ⊗E(tr N ) ⊗ E(τ N )) 

1 flip 00 flip 1 R (3),x 2 R x 1 z -1 ⊗ ξ ⊗ I N - r i=1 (Ψ(t i ) ⊗ β i ⊗ I N + Ψ(t i ) -1 ⊗ β * i ⊗ I N + 1 ⊗ γ i ⊗ U i + 1 ⊗ γ * i ⊗ U -1 i ) -1 (X N,T 2 
0 flip 1 R (1),y 2 R y 1 z -1 ⊗ ξ ⊗ 1 - r i=1 (Ψ(y i ) ⊗ γ i ⊗ 1 + Ψ(y i ) -1 ⊗ γ * i ⊗ 1 + 1 ⊗ β i ⊗ v i + 1 ⊗ γ * i ⊗ v -1 i ) -1 (X N,T 2 3,1 , XN,T 2 3,1 , XN,T 2 3,2 , X N,T 2 3,2 
)

+ 1 I [0,t 1 ] (t 3 )(trm ⊗E(τ N ) ⊗ τ ) 0 flip 1 R (2),y 2 R y 1 z -1 ⊗ ξ ⊗ 1 - r i=1 (Ψ(y i ) ⊗ γ i ⊗ 1 + Ψ(y i ) -1 ⊗ γ * i ⊗ 1 + 1 ⊗ β i ⊗ v i + 1 ⊗ γ * i ⊗ v -1 i ) -1 (X N,T 2 1,1 , XN,T 2 1,1 , XN,T 2 1,2 , X N,T 2 1,2 
)

+ 1 I [t 1 ,t 2 ] (t 3 )(trm ⊗E(τ N ) ⊗ τ ) 0 flip 1 R (3),y 2 R y 1 z -1 ⊗ ξ ⊗ 1 - r i=1 (Ψ(y i ) ⊗ γ i ⊗ 1 + Ψ(y i ) -1 ⊗ γ * i ⊗ 1 + 1 ⊗ β i ⊗ v i + 1 ⊗ γ * i ⊗ v -1 i ) -1 (X N,T 2 2,1 , XN,T 2 2,1 , XN,T 2 2,2 , X N,T 2 2,2 
) dt 1 dt 2 dt 3 dt 4 (z It remains to use the two formulae above in order to prove [START_REF] Kaliuzhnyi-Verbovetskyi | Foundations of free noncommutative function theory[END_REF]. Indeed, given that g N (z) -g(z) -E(z) N 2 = ∆ N (z) N 4 , this estimate is proved once we have argued that z → E(z) is analytic on the domain of g, that z → ∆ N (z) is analytic on C \ R, that lim z→∞ zE(z) = 0, and that there exist M, M ′ > 0, k ′′ , k ′ ∈ N not depending on N ∈ N such that

|E(z)| < M + M |ℑz| k ′′ , |∆ N (z)| < M ′ + M ′ |ℑz| k ′ , z ∈ C \ R. ( 42 
)
We have seen that applying any of the operators R to either of the tensor coordinates of (z-S) -1 still yields a rational noncommutative function, the only caveat being that a tensor coordinate might change from A to A op . A priori this could be fatal to our proof: one can find elements x n ∈ A ⊗ A ≃ A ⊗ A op (algebraic tensor products and algebraic vector space identification) whose min norm stays bounded in the first tensor product but tends to infinity in the second. This phenomenon, however, is irrelevant for our purposes, because we use only two types of estimates in all our computations, which hold in both completions: a ⊗ b a b and (z -S) -1 ≤ 1 |ℑz| . The first estimate simply does not 'see' the presence or absence of the op structure in either of the two tensor coordinates, because A and A op are isometrically anti-isomorphic. The second holds whenever S = S * in any C * -algebra. In all our formulas, S is selfadjoint regardless of whether it is seen in A ⊗ A or in A ⊗ A op .

Let us consider first E(z). We make use of the explicit formula (39) in order to obtain the required estimate. By counting the number of terms in it, and the number of factors in each term, and applying the two estimates mentioned above, (39) ≤ 2 Ψ(s) -1 where s stands for a standard semicircular variable (one is mostly interested in the case when |ℑz| > 0 is small, so the possibility that the denominator is zero does not bother us; however, the meaning of the above when |ℑz| = 1 is obvious). We have also used Ψ(a) ±1 -1 ≤ 2 for any a = a * . Quite obviously, when one acts on the other tensor coordinate, the estimate is 6144(1 -|ℑz| 4 )(1 + max j β j ) 4 |ℑz| 5 (1 -|ℑz|) ,

which is a polynomial in 1 |ℑz| . Now let us inspect the expressions under the two integrals in the formula for E(z). As described immediately following (39), applying the R y 1 from the formula for E(z) above comes down to first taking r j,k=1 (39), second evaluating v i = Ψ(t i ), 1 ≤ i ≤ r, with t i being standard free semicirculars and evaluating s = z 1 t 1 , s = z1 t 1 , s = z2 t 1 , s = z 2 t 1 (recall the notations in (39) and before), and performing two more steps which we discuss in a moment. Before that, let us state that the spectrum of S remains the same regardless of whether either of the last two tensor coordinates lay in A or in A op . Indeed, this follows from the fact that the distribution of an r-tuple of free selfadjoint elements (a 1 , . . . , a r ) does not change regardless of whether they are viewed in A or in A op (the reader can easily see this by recalling that τ (a i 1 • • • a ip ) = τ (a ip • • • a i 1 ) for any word i 1 • • • i p , i j ∈ {1, . . . r} and at the same time τ (a i 1 • • • a ip ) ∈ R whenever a 1 , . . . , a r are free wrt τ ) and, as τ is faithful, the spectrum of S is determined by its distribution. Also, by their definition, all of z 1 t 1 , z1 t 1 , z2 t 1 , z 2 t 1 have a distribution that is constant (i.e. not depending on t 1 , t 2 ) and equal to the standard semicircular distribution; while they are nor free from each other, precisely one of them appears in each of the resolvents in formula (39), as the reader can verify by a direct inspection. Thus it follows that (39) is defined for all z in the domain of analyticity of z → g(z), 1 ≤ j, k ≤ r. We pursue with the description of the third step, namely performing the algebraic operations left, right, and between the placeholders present in (39), for each pair (j, k) ∈ {1, . . . , r} 2 , with the evaluations t and z, z mentioned in the previous (second) step. At this step, we observe that the results, that is, the elements that one obtains between each such two placeholders, or left of the leftmost, or right of the rightmost placeholder, are majorized each as described above, regardless of whether the operators z 1 t 1 , z1 t 1 , z2 t 1 , z 2 t 1 are viewed as belonging to A or to A op . Then one views each of the resulting formulas as being in A and replaces the placeholders with copies of theunit 1 ∈ A. The element thus obtained is majorized by a multiple of 6144(1-|ℑz| 4 ) |ℑz| 5 (1-|ℑz|) [(1 + max j β j ) 4 + (1 + max j γ j ) 4 ] in norm. Since tr m ⊗ τ ⊗ τ is a state, hence of norm equal to one, it follows that

(tr m ⊗ τ ⊗ τ ) 0 flip 1 R y 1 z -1 ⊗ ξ ⊗ 1 - r i=1 {Ψ(y i ) ⊗ γ i + Ψ(y i ) -1 ⊗ γ * i }⊗1 + 1 ⊗ β i ⊗ v i + 1 ⊗ γ * i ⊗ v -1 i -1 (z 1 t 1 , z1 t 1 , z2 t 1 , z 2 t 1 ) + 1 flip 00 flip 1 R x 1 z -1 ⊗ ξ ⊗ I N - r i=1 {Ψ(x i ) ⊗ β i + Ψ(x i ) -1 ⊗ β * i } ⊗ I N + 1 ⊗ γ i ⊗ u i + 1 ⊗ γ * i ⊗ u -1 i ) -1
(z for some K > 0 not depending on N, m, z, but only on r (this is again a polynomial in 1 |ℑz| ). Finally, again by inspecting (39), one notices that lim z→∞ z(39) = 0 in norm, so by the above one has lim z→∞ zE(z) = 0 (in fact E is easily seen to be o(|z| 3 ) as |z| → ∞). By [24, Satz 9 and 10] (see [START_REF] Schultz | Non-commutative polynomials of independent Gaussian random matrices. The real and symplectic cases[END_REF]Theorem 5.4]), it follows that E(z) is the Cauchy transform of a compactly supported Schwartz distribution which sends the constant functions to zero and is supported on the set of singularities of E, which has been seen to coincide with the set of singularities of g, i.e. the spectrum of S evaluated in free semicircular systems. It remains to discuss ∆ N . Fortunately here one only needs to investigate the behavior of z → ∆ N (z) close to R. As described in the definition (34) of R (j) 2 , j = 1, 2, 3, they are as well compositions of difference-differential operators, flips and evaluations. As seen in Section 4.5 (see [START_REF] Wigner | On the distribution of the roots of certain symmetric matrices[END_REF]), each such application (to (z -S) -1 and derivatives of it) results in a new rational function, possibly in a larger number of variables, possibly in a rational function of higher order, possibly with some of the tensor coordinates belonging to the opposite algebra. However, the inverses that occur in any such expression are exclusively of the form (z -S) -1 , evaluated in various selfadjoint tuples, all other factors in each term being polynomials in Cayley transforms of selfadjoints. Since any finite succession of applications of difference-differential operators to a rational function like (z -S) -1 yields a finite sum of finite products of such resolvents of selfadjoint polynomials, and selfadjoint polynomials, in Cayley transforms of indeterminates, and all evaluations (see the expresion of ∆ N and of the Rs) are in tuples of selfadjoints, it follows that the expressions under the traces in the definition of ∆ N are bounded in norm by products of |ℑz| -1 , one for each resolvent, and multiples of norms of coefficients γ and β, neither of them depending on N. The fact that all of τ, tr m , E(tr N ) are states, hence of norm one, implies that all the elements under the integrals in the expression of ∆ N are bounded by the same quantities. This guarantees the existence of the M ′ , k ′ required in (42).

This completes the proof of ( 13) and thus, as explained in Section 3, the proof of Theorem 3 and finally, as explained in Section 2, the proof of Theorem 1.

( 1 )

 1 N ⊗ I N , . . . , X (r 1 ) N ⊗ I N , I N ⊗ Y (1) N , . . . , I N ⊗ Y (r 2 )

Theorem 1 .N

 1 Almost surely, for any noncommutative polynomial P in r 1 +r 2 variables, ⊗ I N , . . . , X (r 1 )N ⊗ I N , I N ⊗ Y (1) N , . . . , I N ⊗ Y (r 2 )

( 1 )

 1 N ⊗ I M , . . . , X (r)N ⊗ I M , I N ⊗ Y (1) M , . . . , I N ⊗ Y (r)M , where the dimension of the G.U.E. matrices Y (i)

Example 7 .

 7 Consider a simply connected open set G ⊆ C. Then any analytic function f : G → C is the first level of a noncommutative function taking values in C nc := n M n (C). Its natural domain of definition is

  I,y) are automatically noncommutative in the sense described in Section 4.2).

  I,ǫy) } defined in Corollary 10.

2 -t 1 ( 1 z - 1 ⊗

 2111 trm ⊗τ ⊗ τ ) ξ ⊗ 1 -r i=1

3 , 1 ,

 31 

2 1 z - 1 ⊗

 211 -t 1 (trm ⊗E (τ N ) ⊗ τ ) ξ ⊗ 1 -r i=1 (Ψ(x i ) ⊗ β i ⊗ 1 + Ψ(x i ) -1 ⊗ β * i ⊗ 1 + 1 ⊗ γ i ⊗ Ψ(y i ) + 1 ⊗ γ * i ⊗ Ψ(y i ) -1 )-1

  as the Taylor-Taylor series expansion of f n around Y d . An essential point for us about this series development is that its terms ∆ l f n,...,n (Y d , . . . , Y d )(X d -Y d , . . . , X d -Y d ), n, l ∈ N, determine uniquely the function f.

	As for the free difference quotient, the difference-
	differential calculus obeys the same rules (linearity, Leibniz rule, and chain
	rule) that usual derivatives obey -see [13, 2.3.2, 2.3.4, 2.3.6]. Similar power
	series expansions are available for higher order noncommutative functions,
	as shown in [13, Section 7.4].
	In our case, B will be a finite von Neumann algebra, possibly finite di-mensional (possibly just C).

  {{29, 23, 22, 40}, {30, 24, 22, 40}, {32, 26, 25, 40}, {33, 27, 25, 40}} , J2,1 2 = {{29, 28, 22, 40}, {30, 28, 22, 40}, {32, 31, 25, 40}, {33, 31, 25, 40}} , J1,2 2 = {{35, 23, 22, 40}, {36, 24, 22, 40}, {38, 26, 25, 40}, {39, 27, 25, 40}} , J2,2 2 = {{35, 34, 22, 40}, {36, 34, 22, 40}, {38, 37, 25, 40}, {39, 37, 25, 40}} , J3,1 2 = {{29, 28, 41, 40}, {30, 28, 41, 40}, {32, 31, 41, 40}, {33, 31, 41, 40}} , J3,2 2 = {{35, 34, 42, 40}, {36, 34, 42, 40}, {38, 37, 42, 40}, {39, 37, 42, 40}} .

	1, 19}, {9, 3, 1, 19}, {11, 5, 4, 19}, {12, 6, 4, 19}} ,
	J 2,1 2 = {{8, 7, 1, 19}, {9, 7, 1, 19}, {11, 10, 4, 19}, {12, 10, 4, 19}} , J 1,2 2 = {{14, 2, 1, 19}, {15, 3, 1, 19}, {17, 5, 4, 19}, {18, 6, 4, 19}} , J 2,2 2 = {{14, 13, 1, 19}, {15, 13, 1, 19}, {17, 16, 4, 19}, {18, 16, 4, 19}} , J 3,1 2 = {{8, 7, 20, 19}, {9, 7, 20, 19}, {11, 10, 20, 19}, {12, 10, 20, 19}} , J 3,2

2 = {{14, 13, 21, 19}, {15, 13, 21, 19}, {17, 16, 21, 19}, {18, 16, 21, 19}} and J1,1 2 =

  -t 3 -t 2 -t 1 1 I [t 2 ,t 4 ] (t 3 )(trm ⊗E(τ N ) ⊗ τ )

		2,1	,	XN,T 2 2,1	,	XN,T 2 2,2	, X	N,T 2 2,2	)
	dt 1 dt 2 dt 3 dt 4				
	+	1 4 A 2	e -t 4				

  -|ℑz| 4 )(1 + max j γ j ) 4 |ℑz| 5 (1 -|ℑz|) ,

	+ +	5 4 Ψ(s) -1 7 |ℑz| 2 γ j + 5 γ j 6 Ψ(s) -1 6 |ℑz| 3 2 γ k + γ j γ k γ j |ℑz| 4 16 Ψ(s) -1 8 |ℑz| 5 γ j 2 γ k 2 < 6144(1	2 + γ j γ k 2

We use Voiculescu's statement as phrased in[START_REF] Voiculescu | The coalgebra of the free difference quotient and free probability[END_REF] only for p = 1, but with A replaced by M n (A), n ∈ N.

C * -algebra -or even less -would do.

We know from matrix analysis that (A ⊕ B) ⊗ C = (A ⊗ C) ⊕ (B ⊗ C) but often A ⊗ (B ⊕ C) is only permutation equivalent to (A ⊗ B) ⊕ (A ⊗ C) -see[START_REF] Hayes | A random matrix approach to the Peterson-Thom conjecture[END_REF] Corollary 

4.3.16].

To reiterate, instead of the second step, one may also just use the observation that the formula obtained after the first step does not change regardless of whether it is viewed in the von Neumann algebra M m (C) ⊗ A op ⊗ A or in M m (C) ⊗ A ⊗ A, "drop the op" in the formula obtained from the first step, and then replace directly the placeholders with algebra units.
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the same for s1 , . . . , sr , but each of the two correspondences (s 1 , . . . , s r ) → ∆ i g(s 1 , . . . , s r ; s1 , . . . , sr )(•) and (s 1 , . . . , sr ) → ∆ i g(s 1 , . . . , s r ; s1 , . . . , sr )(•) viewed as for functions on noncommutative subsets of A op . Specifically, with the usual notation s r = (s 1 , . . . , s r ), sr = (s 1 , . . . , sr ), the noncommutative function h(s r ; sr ) = ∆ i g(s 1 , . . . , s r ; s1 , . . . , sr )(•) acts on n,m M n×m (A), from the left with the variables s r and from the right with the variables sr . Denote by ∆ j the partial difference-differential operator with respect to the variable s j and by ∆j the one with respect to sj (one could a priori think of ∆j as ∆ j+r , but especially in this context it would be the wrong view, since it would obscure the fact that the s variables act on the left and the s ones on the right). We view now h as being defined on noncommutative subsets that live in A op -that is, in variables s op r and sop rand apply ∆ j ∆j h(s 1 op r , s 2 op r ; s2 op r , s1 op r ) = ∆j ∆ j h(s 1 op r , s 2 op r ; s2 op r , s1 op r ) to obtain a third order (trilinear-valued) noncommutative map in four r-tuples of variables. Finally, we drop the op, that is, we let k(s 1 r , s 2 r ; s2 r , s1 r ) = ∆ j ∆j h(s 1 r , s 2 r ; s2 r , s1 r ), still a third order noncommutative map. Then R 1 (f ) (see (33)) is the noncommutative map resulting after evaluating the tri-linear map thus obtained in (1, 1, 1). 35), (36)) are similarly the noncommutative maps obtained by iterating the process. Since sums, products, inverses, and compositions (when well-defined) of noncommutative functions are noncommutative functions [13, Section 2.3], one can easily see that R 1 (Ψ(x i 1 ) ǫ 1 • • • Ψ(x in ) ǫn ) is a noncommutative function on I 4r (A), more precisely a polynomial in the Cayley transforms and their inverses of 4r indeterminates; similarly for R in {R

, is a noncommutative function on I 16r (A), more precisely a Laurent polynomial in the Cayley transforms of 16r indeterminates. Now, we rewrite the power series expansion Z+ǫi

As one may verify by using the explicit formulas provided in Sections 4.1-4.4, any of R ∈ {R 1 , R

2 } is well-defined on rational functions, and (in