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Abstract: In the last years coating of surfaces in the presence of dopamine or other 

catecholamines in oxidative conditions to yield “polydopamine” films has become a popular, 

easy and versatile coating methodology. Polydopamine(s) offer(s) also a rich chemistry 

allowing to post-functionalize the obtained coatings with metal nanoparticles with polymers 

and proteins. However, the interactions either of covalent or non-covalent nature between 

polydopamine and biomolecules has only been explored more recently. They allow 

polydopamine to become a material, in the form of nanoparticles, membranes and other 

assemblies, in its own right not just as a coating. It is the aim of this review to describe the most 

recent advances in the design of composites between polydopamine and related eumelanin like 

materials with biomolecules like proteins, nucleotides, oligosaccharides and lipid assemblies. 

Furthermore, the interactions between polydopamine and living cells will be also reported. 
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1. Introduction 

 The need for surface functionalisation of materials has long been of great importance in 

human technology, because the first interactions between materials and their surrounding occur 

via their surfaces [1,2]. Nowadays, the protection of metals against corrosion without the release 

of heavy metal cations within the anticorrosive paint, the functionalization of nanoparticles for 

their colloidal stabilization and for their targeting to specific tissues, the design of self-cleaning 

materials, and many other examples require stable and controlled functionalization of those 

materials. However, specific chemical strategies and processes are required for the 

functionalization of various materials, for example, the well-known modification of noble 

metals with molecules carrying a thiol moiety [3,4], the grafting of siloxanes onto the surface 

of oxides [5], among others. One of the most challenging surface modifications is the coating 

of polymeric materials without reactive groups, such as polytetrafluoroethylene. These very 

specific and highly demanding chemical methodologies often require organic solvents or harsh 

conditions, which has been a major limitation. In their seminal discovery, Messersmith, Lee et 

al. have reported a universal surface coating strategy of almost all known materials by simple 

oxidation of dopamine in the presence of dissolved oxygen at slightly basic pH values [6] (Fig. 

1). The unique features of the dopamine precursor that deposits as a versatile and strongly 

adhesive film on solid surfaces is due to its molecular structure: the presence of a catechol and 

an amine group. Dopamine has similarities to the modified amino acid L-DOPA and L-tyrosine 

that appear in the amino acid sequence of the mefp proteins, which are responsible for the strong 

and irreversible adhesion of mussels to many different kinds of materials under wet conditions 

[7–9]. 

Other catecholamines (Fig. 1) such as norepinephrine [10,11] and the hydroxylated L-tyrosine, 

namely L-DOPA [12] as well as their derivatives or oxidation products [13] have been used to 

coat materials that also allow post-functionalization with either polymers [10,14], biomolecules 

[15,16], or metallic nanoparticles (which is possible owing to the presence of remaining non-

oxidized catechol groups) [6]. All these chemical strategies and the applications of 

polydopamine based materials have been intensively reviewed in the literature [17–24] and they 

will not be the subject of this review. However, in the past years, major efforts have been 

devoted to expand the surface deposition methods of polydopamine, such as spray deposition 

[25], electrochemical deposition [26–29], microfluidic technology [30], UV and microwave 

irradiation [31,32], plasma and hydrothermal treatments [33,34], solid phase deposition using 

oxidants in the gas phase [35], and to investigate the role of different oxidation pathways [36–
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40] on the properties of the obtained films. From these investigations, it became apparent that 

there are as many “polydopamines” as there are methods for their production. In consequence, 

all these different structures provide a large variety of surface properties, which opens access 

to diverse applications. For example, the hydrophilicity of polydopamine or related coatings 

can be varied from superhydrophilic to slightly hydrophobic by just changing the nature of the 

used oxidant [38]. 

 

 

Fig. 1. Generic structure of catecholamines. The side groups of a few natural catecholamines 
are given in the table below the structure. A-E. From mussels to dopamine. (A): Photograph of 
a mussel attached to commercial PTFE. (B and C): Schematic illustrations of the interfacial 
location of a mussel foot protein (Mefp-5) and a simplified molecular representation of 
characteristic amine and catechol groups. (D): The amino acid sequence of Mefp-5. (E): 
Dopamine contains both amine and catechol functional groups found in Mefp-5 and was used 
as a molecular building block for polymer coatings. Adapted with permission from “Lee et al. 
Mussel-Inspired Surface Chemistry for Multifunctional Coatings. Science. 2007, 318(5849), 
426-4301 doi: 10.1126/science.1147241.” Copyright (2007) The American Association for the 
Advancement of Science. 
 

In recent years, only little progress has been made in elucidating the mechanism of 

polydopamine formation, which is based on a very complex covalent structure [41–43] in 

combination with the self-assembly of oligomeric oxidation products of 5-6-dihydroxyindole 

(DHI) [44]. In these structures, cation-π stacking [45] seem to play an important role (Fig. 2). 

The analogy to eumelanin [46], the brown-black pigment of the skin, has already been 

emphasized, which appears in the form of clustered nanoparticles that are surrounded and 

stabilized by a strongly bound protein shell, which complicates its chemical analysis. 

Replacement of nitrogen by sulfur can impart more regioregularity to eumelanin structure 

through modification of visible absorption properties and the average redox state [47]. New 

polydopamine-based nanomaterials have been designed based on the structure and function of 

eumelanin [48,49].  However, a systematic overview of the diverse biomolecule-polydopamine 



4 

 

interactions is still elusive, which could afford entirely new biohybrid nanomaterials for diverse 

applications like improved targeting of cancer cells. We will review the interactions between 

polydopamine(s) and the different classes of biomolecules, such as proteins, nucleotides, 

oligosaccharides and lipids and we will highlight their unique features and potential 

applications. 

 

Fig. 2. Proposed mechanism of PDA formation. 
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2. Polydopamine and polypeptides/proteins 

2.1 Protein adsorption and grafting on polydopamine nanostructures 

 Eumelanin in the skin is naturally surrounded by proteins. Since polydopamine (PDA) 

is a biomimetic analogue of this black natural photoprotective material, its ability to adsorb and 

covalently interact with proteins has been investigated and used for various applications. 

Proteins adsorb to PDA films via various supramolecular interactions such as electrostatic, van 

der Waals or hydrogen bonds [16]. However, also covalent binding between proteins such as 

trypsin or other model polypeptides and PDA has been demonstrated [15]. Covalent 

bioconjugation to proteins could proceed when the catechol groups are oxidized to quinones 

that are susceptible to nucleophilic attack by amines and thiols through Michael addition and 

Schiff base reactions. The PDA material readily reacts in a mildly alkaline solution with 

primary amine or thiol groups on proteins (Fig. 3). The adsorbed or covalently bound proteins 

on PDA surfaces retain at least some of their enzymatic activity, as demonstrated in the case of 

alkaline phosphatase [50]. Unfortunately, to our knowledge, the fraction of immobilized/grafted 

enzymes remaining active on PDA has not yet been determined. This is of paramount 

importance because adsorbed or grafted proteins usually undergo important conformational 

changes depending on the hydrophilicity/hydrophobicity of the surface. However, in some polar 

and confined environments, proteins can even increase their conformational stability, and PDA 

films could constitute such an environment. Similarly, silk fibroin proteins adsorbed on PDA 

films retain their biological activity in vitro [51].  

 

Fig. 3. Possible reactions of proteins with PDA. Most abundant reactive surface groups of the 
amino acid side chains are shown exemplarily. 
 

Similar to melanin-like materials, PDA films serve as efficient fluorescent quenchers [52] due 

to their broad absorption spectrum. This concept has been used for biosensing applications to 
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record binding of fluorescently labelled proteins [52]. The adsorption and immobilization of 

proteins on PDA also allowed the design of molecular imprints. As an example, a PDA film 

deposited on an electrospun network covered with lysozyme has generated an imprinted and 

reusable material suitable for lysozyme binding with a capacity of about 500 mg of protein per 

gram of polymer scaffold. This imprinted matrix could be reused at least six times, and the 

released protein retained its activity as demonstrated in the bacterial cell wall decomposition of 

Micrococcus Lysodeikticus [53]. 

We have recently reported the biotemplated synthesis of amyloid-like polypeptide nanofibers 

as a bioactive scaffold for the controlled growth of a very thin PDA layer that supported the 

adhesion and growth of neuronal cells. The PDA-coated peptide nanofibers enhanced the 

development of the neuronal growth cone over that of bare nanofibers or PDA alone (Fig. 4). 

Moreover, the pH sensitive loading and release of boronic acid containing cargo onto the PDA 

surface was realized. Such biohybrid materials provide potential applications as neuronal 

implants and for tissue engineering [54].  

 

Fig. 4. Enhanced neuronal cell growth and adhesion of PDA coated fibrils. (A)  Schematic 
representation of the formation of polydopamine-coated peptide nanofiber hybrids. Mouse 
primary hippocampal neurons were plated on the indicated substrates, followed by labeling for 
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microtubules (green) and F-actin (red); the latter is used to label growth cones. (B,E) Growth 
cone area of neurons plated on glass only (no coating) was comparable to (C,F) neurons grown 
on coverslips coated with polylysine/laminin. (D,G) By contrast, the growth cone area of 
neurons cultured on PDA-PNF was enhanced as was the number of finger-like filopodia. (E–
G) are higher magnifications of dashed areas in (B–D). (H) Quantification of growth cone area. 
Adapted with permission from “Water-Dispersible Polydopamine-Coated Nanofibers for 
Stimulation of Neuronal Growth and Adhesion. Adv. Healthc. Mater. 2018, 7 (11).” Copyright 
John Wiley & Sons, Inc. 

2.2 Peptide motifs support the formation of PDA nanoparticles with controlled size  

Polydopamine usually precipitates from dopamine solution in the presence of an oxidant and 

the resultant material has a heterogeneous size in the micrometer range. In contrast, narrowly 

dispersed melanin nanoparticles are formed in the presence of alcohols which also modify the 

deposition of PDA films [55]  and within melanocyte human skin cells or within cells of Sepia 

officinalis [56]. It has been shown that these nanoparticles are surrounded by stabilizing 

proteins, which prompted several studies on the role of proteins in the oxidation and self-

assembly process of PDA. The first investigations performed in this direction were of trial-and-

error type. Proteins of similar molecular mass and dimensions as hen egg white lysozyme or α-

lactalbumin with isoelectric points of 11.4 and 4.5, respectively, have no impact on the 

formation of PDA films and on the precipitation of PDA from dopamine containing solutions 

[56]. However, when Human Serum Albumin (HSA) is added to high concentrations of 

dissolved dopamine (at 2.0 mg mL−1, Tris buffer, pH = 8.5, dissolved O2 as the oxidant), the 

average hydrodynamic diameter of the resultant PDA particles decreases with increasing the 

HSA/dopamine ratio. The hydrodynamic diameter of the polydopamine nanoparticles reaches 

values as low as 20–30 nm for an HSA concentration of 2.0 mg/mL−1 corresponding to a 

protein/dopamine molar ratio as low as 3 ×10−3 [57]. In addition, the obtained nanoparticles are 

stable in Tris buffer for months and their cytotoxicity is negligible. 

This important finding required some understanding by which mechanism some proteins take 

an active role in the self-assembly and polymerization processes of PDA in solution whereas 

others are inactive. The human surenal gland secretes chromaffin vesicles rich in both 

catecholamines and proteins, mainly Chromogranins [58]. Hence it was believed that such 

vesicles could constitute a biological laboratory to investigate the fate of catecholamines in the 

presence of a large set of proteins. The proteins present in the chromaffin vesicles undergo 

enzymatic cleavage resulting in the formation of various bioactive peptides such as 

antimicrobial peptides. Dopamine was hence mixed with a large set of such peptides generated 

from the enzymatic degradation of Chromogranin A. Some of these peptides allowed the 
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production of PDA with controlled sizes, which was demonstrated by size exclusion 

chromatography, whereas others did not prevent uncontrolled aggregation and polymerization 

of PDA resulting in the formation of insoluble precipitates. Interestingly, all the peptides 

involved in the controlled dopamine oxidation and polymerization contained adjacent L-lysine 

(K) and L-glutamic acid (E) amino acids within their sequence. Control experiments with very 

short synthetic peptides containing either the KE diad or similar peptides with one or two 

glycine spacers revealed a similar effect on polydopamine size, whereas peptides without 

adjacent K and E could not control the sizes of the obtained PDA nanoparticles. Proteins 

containing K and E as adjacent amino acids in their primary sequence could all stabilize PDA 

nanoparticles with controlled dimensions when added to dopamine solutions at pH = 8.5 and 

no precipitate was formed that usually occurs in the absence of these proteins (and alcohols). 

Moreover, PDA deposition on the walls of the reaction beaker was almost completely inhibited 

and colloidally well dispersed solutions were obtained [59]. These findings suggest some 

sequestration of dopamine by the protein surface, with dopamine oxidation and self-assembly 

(or polymerization) of dopamine preferentially occurring near the protein surface or in the 

vicinity of the water-accessible KE diad. Figure 5 A-E shows the particular influence of alkaline 

phosphatase, as a KE containing protein, on the control of PDA formation. High resolution 

TEM micrographs suggest core-shell nanoparticles. But the formation of a composite structure, 

in which the protein is dispersed throughout the particle volume could not be ruled out. Clearly, 

some proteins in their native and enzymatically active conformation are present on the 

nanoparticle surface, as demonstrated by their retained enzymatic activity [60]. In another 

related study, where PDA nanoparticle formation was stabilized by a poly(ethyleneglycol) 

polymer chain with two terminal primary amino groups, polymer and PDA were observed 

throughout the nanoparticle volume as shown by Time-of-Flight Secondary Ion Mass 

Spectrometry (ToF-SIMS), indicating that also composite structures composed of PDA 

nanodomains could be formed [61]. 
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Fig. 5. (A) Influence of the alkaline phosphatase concentration on the deposition of PDA on 
quartz slides as measured by UV-Vis spectroscopy. The concentration in alkaline phosphatase 
was equal to: 0 (red disks), 0.1 (green disks) and 0.5 (black disks) mg.mL−1 respectively. The 
blue disks correspond to alkaline phosphatase pre-adsorbed from a 1 mg mL−1 solution during 
1 h on the quartz slides before contact with the dopamine containing solution. (B) Change in 
the hydrodynamic radius of PDA particles (after 24 h of oxidation from O2 dissolved in Tris 
buffer at pH = 8.5) as function of the concentration of added alkaline phosphatase, the 
concentration of dopamine being held constant at 2 mg mL−1. (C) TEM micrographs of the 
PDA nanoparticles obtained in the presence of alkaline phosphatase at 0.5 and 2 mg mL−1 after 
24 h oxidation (the initial dopamine concentration is equal to 2 mg mL−1). (D) Magnification 
of a region in the TEM picture of panel C. (E) Size distribution (n = 322 particles) of the PDA 
nanoparticles obtained in the presence of alkaline phosphatase at 2 mg mL−1. (F) High 
resolution TEM image of an individual nanoparticle suggesting a core-shell structure. (G) 
Results from molecular dynamics simulations showing that dopamine interacts preferentially 
with the carboxylic group of L-glutamic acid (E) via hydrogen bonds and via cation-π 
interactions with the amino group on L-lysine (K). The presence of a glycine spacer group 
between K and E, dramatically reduces the interaction between dopamine and the peptide 
sequence. Adapted with permission from: “Mimicking the Chemistry of Natural Eumelanin 
Synthesis: The KE Sequence in Polypeptides and in Proteins Allows for a Specific Control of 
Nanosized Functional Polydopamine Formation. Biomacromolecules 2018;19: 3693–3704.” 
Copyright American Chemical Society. 

  

In order to elucidate the influence of the K and E amino acids on dopamine and polydopamine 

formation, molecular dynamics simulations have been performed to investigate the interaction 

modes of dopamine with K and E as well as the influence of a glycine spacer between K and E. 

It was found that the oxygen atoms of the carboxylic acid function of E form strong hydrogen 
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bonds with the two vicinal diols on dopamine whereas the protonated amino group on K (pKa 

around 10) adopts a cation-π interaction with the aromatic ring of dopamine. The introduction 

of a spacer glycine between K and E considerably weakens these interactions (Fig. 5G) [59]. 

In addition to the KE sequence, L-tyrosine containing tripeptides also stabilized PDA 

nanoparticles under oxidative conditions [62]. In fact, the oxidative polymerization, initiated 

for example by the enzymatic oxidation of tyrosine residues, can be tuned by the peptide 

sequence that self-assembles into supramolecular nanostructures with sequence-encoded 

properties, through non-covalent interactions [62].  

 

2.3 Enzymes to catalyze the oxidations of phenols, other catecholamines, and their use in film 

deposition 

Considering the great potential of polyphenol-based coatings for materials design (e.g., for 

metal–phenolic networks, universal coatings and underwater adhesives), for manipulating 

biological entities (including living cells), in biomedical and medicinal applications, several 

strategies have been used to develop a method that involves catecholamines as coating 

precursors. PDA film formation critically relies on the oxidation of catechol to 1,2-

benzoquinone and involvement of the amino group in the reaction and deposition. In the natural 

process of melanogenesis [63], the enzyme tyrosinase catalyzes both the hydroxylation of L-

tyrosine and the subsequent dehydrogenation of catechol to o-quinone, as well as the oxidation 

of 5-6-dihydroxyindole to indolequinone to form eumelanin (Scheme 1). Inspired by this 

natural process, enzymes have been used to catalyze the oxidative polymerization of phenols 

and catecholamines (e.g., tyramine, dopamine, norepinephrine, and DOPA) at roughly neutral 

pH.  
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Scheme 1.  Tyrosinase catalysed oxidation of tyrosine to eumelanin formation: hydroxylation 
of monophenol to o-diphenol (cresolasic activity) and dehydrogenation of catechol to o-quinone 
(catecholasic activity). 

 
Enzymes provide several outstanding characteristics such as unique substrate specificity, regio-

, chemo-, and stereoselectivity. In addition to increase the reaction rate, many enzymes are able 

to function in a non-physiological environment, can be used not only to activate or modify a 

substrate via direct catalysis but they can also be immobilized or integrated directly into 

materials [64].  

For example, the enzyme laccase activates the catechol groups of fourteen different naturally 

occurring catecholamines or polyphenols for subsequent polymerization [65]. As demonstrated 

by Dhand et al., their oxidative products were effective in improving surfaces, mechanical and 

the thermal properties of polyvinyl alcohol (PVA) films (Fig. 6). Interestingly, some of these 
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reinforced films, especially those obtained from pyrogallol and epinephrine, displayed excellent 

antimicrobial properties, inhibiting the growth of pathogenic Gram-positive and Gram-negative 

bacteria and yeasts strains for potential health care applications.  

 

Fig. 6. PVA films endowed with antimicrobial properties prepared by laccase-catalyzed 
polymerization of pyrogallol or norepinephrine in aqueous solution at room temperature for 24 
h. Adapted with permission from: “Multifunctional Polyphenols- and Catecholamines-Based 
Self-Defensive Films for Health Care Applications. ACS Applied Materials and Interfaces 
2016;8:1220–32.” Copyright American Chemical Society. 

 

Laccase-catalyzed polymerization of dopamine was also proposed as a new and efficient 

biomacromolecule-immobilization platform for electrochemical biosensing and biofuel cell 

applications. In several cases, enzymes bound to the film surface were stabilized and maintained 

high catalytic activity. Such biocomposite materials exhibited better performance toward 

hydroquinone (HQ) biosensing if compared with other laccase-entrapped polymeric 

nanocomposite modified electrodes (e.g., aniline, o-phenylenediamine, o-aminophenol) [66]. 

Similarly, horseradish peroxidase (HRP)-based enzymatic polymerization of L-DOPA, in the 

presence of hydrogen peroxide, has also been used to immobilize mono-/bi-enzymes for HQ-

mediated amperometric biosensing of H2O2 and uric acid [67].  

Alternatively, poly(L-DOPA)-based enzyme electrodes, prepared by casting an aqueous 

mixture of L-DOPA and tyrosinase on a carbon electrode, exhibited improved biosensing 

performance and higher mass-specific bioactivity of the immobilized tyrosinase than those 

based on similarly biosynthesized polydopamine and poly(L-tyrosine) as well as chitosan and 

Nafion, commonly used for enzyme immobilization and biosensing [68]. Interestingly, the 

localized deposition of dopamine and pyrocatechol at the target catalytic sites of HRP allowed 

the fabrication of biosensors with improved sensitivity in biological detection and remarkably 
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concentrated colorimetric signal for spatial biomarker labeling [69]. However, HRP-labeled 

biomarker still requires multiple inconvenient washing steps, which represents one of the major 

limitation for commercialization. 

The use of tyrosinases was also recently reported as a simple enzyme-mediated strategy for 

assembling various monophenols, including small molecules and biopolymers (e.g., peptides, 

proteins) on various surfaces [70–72]  (Fig. 7). The active site of tyrosinase, in fact, catalyzes 

the oxidative hydroxylation of the phenol moiety to the catechol, which is central in the 

following molecular assembly for film deposition accomplished by the adhesion between the 

catechol moieties and the substrate via covalent and coordination cross-linking. Compared to 

PDA coating, this method was fast and efficient and uniform films were formed with various 

functions depending on the original monophenol-containing building blocks (e.g., radical 

scavenging, enzymatic catalysis, fluorescence, cytocompatibility). Importantly, the resulting 

coatings providing various functional groups, could act as a platform for surface-confined 

reactions to further tailor the surface properties leading for example to metal oxide films, 

multimetal-protein coatings and covalently conjugated films (e.g., N-hydroxysuccinimide 

(NHS)-containing molecules such as Alexa Fluor 488TM (AF488) or 633 NHS ester (AF633)) 

(Fig. 7). Moreover, the confinement or immobilization of tyrosinase into alginate gels 

represents a mild, versatile, efficient and clean protocol for the generation of adhesive PDA-

type films starting from tyramine, with considerable material savings and without undesirable 

substrate-consuming autoxidation processes, which limit cost-effectiveness and may interfere 

with the film deposition procedure [70] (Fig. 7).  
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Fig. 7. (A) In situ conversion of a wide range of monophenols into catechols via tyrosinase. 
The films formed on various surfaces via covalent and coordination cross-linking represent 
chemically reactive platforms for secondary surface-confined reactions (e.g., biomineralization, 
Cu and Al ion chelation and N-hydroxysuccinimide containing molecules conjugation). (B) 
Site-specific enzymatic deposition of PDA-type film by tyrosinase catalyzed oxidation of 
tyramine in phosphate buffer at pH 6.8.  
    

The Layer-by-Layer (LbL) technique, based on the consecutive deposition of oppositely 

charged polyelectrolytes onto a surface, was also proposed as a general and versatile tool for 

the chemo-physical immobilization of tyrosinase on a large variety of surfaces. The 

immobilized LbL enzyme retained about 87 % of its catalytic activity and was applied for the 

efficient and selective synthesis of bioactive catechol derivatives by oxidation, under mild 

conditions, of a large panel of substituted phenols [73].  

Additionally, the combination of glucose oxidase (GOx) and HRP has recently been reported 

[74] as a simple and fast approach that enables film formation of amine group-absent o-

diphenols, such as protocatechuic aldehyde and pyrocatechol without requiring multiple 

deposition steps of enzymes and polyphenols as in the LbL technique [73,75]. First, in the 

presence of molecular oxygen, GOx catalyzes the oxidation of D-(+)-glucose generating 

hydrogen peroxide among other things. Then, HRP oxidizes o-diphenols leading to the 

formation of thin, self-adherent melanin-like species films and shells (Fig. 8). Moreover, the 

encapsulation of individual cells in these artificial shells endows the cell with exogenous 
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properties such as UV filtration, immunogenic shielding, and enhances their resistance to 

external aggressors.  

Notably, hydrogen peroxide, produced in the GOx-catalyzed reaction of glucose, accelerated 

the oxidation of Fe2+ to Fe3+ in the Fe2+-tannic acid complex providing a facile route for surface 

functionalization [76]. Moreover, the concomitant incorporation of GOx, with retained catalytic 

activity during film formation also allowed the catalytic single-cell nanoencapsulation.  

 

Fig. 8. Schematic representation for melanin-like species synthesis from o-diphenols by 
glucose oxidase (Gox)/horseradish peroxidase (HRP) mediated oxidative reactions.  
 

3. Polydopamine and oligonucleotides/DNA or RNA  

Nucleic acids, the genetic database of Nature, possess characteristic molecular features such as 

their polyanionic character, π-π nucleobase interactions and programmable molecular 

recognition, thus making them attractive candidates to impart complex functionalities into 

synthetic materials. Each of these molecular venues can be exploited by PDA to form a 

synergistic relationship where their combination would result in a unique nano-bio interface for 

a wide variety of applications in nanotechnology, sensing and biomedicine (Fig. 9A).  

As PDA typically consists of assembled oligomeric species, where π-interactions govern the 

interaction of the oligomeric aggregates into a supramolecular cross-linked material, it can 

possess a wide range of affinities towards the π-conjugated nucleobases of DNA. The affinity 

arises due to spatial complementarity where the inter-assembly spacing of PDA (~ 3.4 – 3.7 Å) 
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[46] closely matches that of the duplex rise of DNA helices (3.4 Å) [77]. Using these 

interactions, Ding et al. described the capability to direct the assembly of PDA aggregates with 

DNA to form nanoplatelets (Fig. 9B) [78]. The deposition of PDA on DNA may also be 

dependent on the incorporation of positive counteranions at the interface between both anionic 

materials. 

 The mechanism for the two-dimensional control uses the duplex grooves of DNA to pre-

arrange the PDA aggregates such that the supramolecular polymerization is favored along the 

DNA axis. An increase in concentration leads to the assembly of micrometer size sheets 

whereas the sheet thickness (~10 nm – 25 nm) is dependent on the weight ratio of 

DNA/dopamine. The precision of arranging PDA at the nanoscale can be enhanced by initiating 

the polymerization of dopamine directly at the DNA interface (Fig. 9C). Instead of promoting 

oxidative polymerization through ambient oxygen in basic solutions, dopamine molecules can 

be activated by reactive oxygen species produced using DNAzymes in situ [79–81]. A typical 

DNAzyme consist of a G-quadruplex sequence (5’-TTGGGTAGGGCGGGTTGGG-3’) 

embedded either with a metal-porphyrin complex (e.g. hemin) or photosensitizer 

(protoporphyrin IX, Eosin Y) [82]. Depending on the catalytic center, reactive oxygen can be 

produced with H2O2 (hemin) or the irradiation of light corresponding to the photosensitizer. As 

dopamine molecules oxidize in the proximity of the DNAzymes into PDA aggregates, the 

affinity between PDA and DNA is simultaneously created, causing them to immediately 

assemble with the DNA duplex. By patterning DNAzymes on DNA-origami, a DNA folding 

technique to access different geometric nano-objects, the growth of PDA can be programmed 

to assimilate into different shapes such as crosses, lines, rings and even numbers [80,81,83]. 

The challenge of stopping PDA formation and aggregation in many studies can be alleviated 

by photochemical control, where polymerization only proceeds upon a specific color of light 

(Fig. 9D) [79]. As a direct consequence, photo-controlled systems provide the possibility to 

accurately manipulate the extent of PDA deposition and thus the dimensions of the object in 

high resolution.  
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Fig. 9. (A) General schematic and points of interactions of PDA (and derivatives) with DNA. 

(B) DNA imparts directionality into oligomeric PDA sheets such that the growth axis of PDA 

is preferentially aligned [78]. Adapted with permission from “Ding T, Xing Y, Wang Z, Guan 

H, Wang L, Zhang J, et al. Structural Complementarity from DNA for Directing Two-

Dimensional Polydopamine Nanomaterials with Biomedical Applications. Nanoscale Horiz. 

2019;4:652–7.” Copyrights 2018 Royal Society of Chemistry. (C) Formation of a G-quadruplex 

containing DNA origami where the oxidation capabilities of the catalytic center initiates 

dopamine polymerization [81]. Adapted with permission from “Tokura Y, Harvey S, Chen C, 

Wu Y, Ng DYW, Weil T. Fabrication of Defined Polydopamine Nanostructures by DNA 

Origami-Templated Polymerization. Angew. Chem. 2018;57:1587–91.” Copyrights 2018 The 

Authors. (D) Controlling PDA growth at the nanoscale with light of specific wavelengths paired 

with specific photosensitizers within the G-quadruplex [79]. Adapted with permission from 

“Winterwerber P, Whitfield CJ, Ng DYW, Weil T. Multiple Wavelength Photopolymerization 

of Stable Poly(Catecholamines)-DNA Origami Nanostructures. Angew. Chem. Int. Ed. 

2022:e202111226.”  
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Non-specific π-π interactions between PDA and DNA can additionally be used to functionalize 

PDA coated materials with DNA as a facile manner to create DNA-appended nanomaterials. 

As such, complex DNA based biofunctions such as that of tailor made DNAzymes using rolling 

circle amplification can be attached onto nanomaterials easily without the need of typical 

conjugation chemistry [84]. Similarly, the attachment of aptamers, short DNA sequences 

capable of exhibiting customized binding and recognition properties, have enabled efficient 

biosensing of changes in renal interstitial fibrosis (Fig. 10A). In addition to π-π interactions, 

Cai and coworkers interestingly demonstrated that mesopores formed from a modified PDA 

synthesis pathway are able to host short ssDNA chains within [85]. Functioning as a nano-

containment device, the nanopores facilitate the hybridization of the ssDNA towards its 

complementary partner with greater selectivity and efficiency, reaching a dissociation constant 

in the femtomolar range. Intuitively, such methods have been particularly attractive for the 

delivery of smart nanoparticle systems where several components i.e. drugs, biomolecules, 

polymers and metals can be assembled together with relative ease [86]. The consequence of 

such a strategy commonly achieves combinatorial effects, where properties of several 

components exhibit cooperative functions to achieve a therapeutic aim. In this respect, Shen 

and coworkers integrated the photothermal behaviour of PDA nanospheres with S. aureus 

targeting fluorescent aptamer that self-reports its specific bacteriacidal effects on persistent 

biofilms (Fig. 10 B, C) [87]. The manifold functions are easily assembled by standard PDA 

coating techniques coupled with the coating’s intrinsic non-covalent interactions with the DNA 

aptamer. For drug delivery applications in cancer, PDA was recently found to enable lysosomal 

escape, which is crucial for efficient delivery of drugs into the cytosol [88]. Hence, by taking 

advantage of this capability, small interfering RNA (siRNA) functionalized onto the PDA 

surface was delivered into the cytosol exhibiting efficient gene silencing (~65%). Combined 

with the photothermal effects of PDA, anti-cancer effects can be compounded to reach 

improved therapeutic efficacy [88].  
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Fig. 10. (A): Functionalization of DNAzymes onto PDA-coated MnO2 nanoparticles, 

demonstrating lysosomal release, photothermal effects and DNA recognition properties [84]. 

Adapted with permission from “Zhao H, Zhang Z, Zuo D, Li L, Li F, Yang D. A Synergistic 

DNA-Polydopamine-MnO2 Nanocomplex for Near-Infrared-Light-Powered DNAzyme-

Mediated Gene Therapy. Nano Lett. 2021;21:5377–85.” Copyrights 2021 American Chemical 

Society. (B) Assembly of fluorescent DNA aptamers onto PDA nanospheres as a self-reporting 

system, taking advantage of PDA’s quenching effect on conjugated fluorophores [87]. Adapted 

with permission from “Ye Y, Zheng L, Wu T, Ding X, Chen F, Yuan Y, et al. Size-Dependent 

Modulation of Polydopamine Nanospheres on Smart Nanoprobes for Detection of Pathogenic 

Bacteria at Single-Cell Level and Imaging-Guided Photothermal Bactericidal Activity. ACS 

Appl. Mater. Interfaces 2020;12:35626–37.” Copyrights 2020 American Chemical Society. 

(C): Mechanism of biofilm destruction using PDA nanosphere-aptamer particles [87]. Adapted 

with permission from “Ye Y, Zheng L, Wu T, Ding X, Chen F, Yuan Y, et al. Size-Dependent 

Modulation of Polydopamine Nanospheres on Smart Nanoprobes for Detection of Pathogenic 

Bacteria at Single-Cell Level and Imaging-Guided Photothermal Bactericidal Activity. ACS 

Appl. Mater. Interfaces 2020;12:35626–37.” Copyrights 2020 American Chemical Society. 
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 Polydopamine and other biomolecules: polysaccharides and lipid assemblies 

4.1 PDA and polysaccharides 

In comparison to proteins and oligonucleotides, polysaccharides have been much less 

investigated with respect to their interactions or blending with polydopamine. Chitosan films 

have been functionalized with PDA [89] and some composite membranes have been formed 

between polydopamine and nanocellulose for applications in wastewater treatment [90].  

4.2 PDA and lipids 

 Lipid bilayers could be easily formed on PDA films by vesicle adhesion and rupture as 

on many hydrophilic materials [91].  

In a reverse way, PDA can be deposited on a phospholipid bilayer separating two aqueous 

compartments either using dissolved oxygen or sodium periodate as an oxidant with the 

interesting finding to markedly improve the bilayer stability against voltage pulses [90]. When 

dopamine was oxidized with dissolved O2 at pH = 8.5, the current flowing across the single 

porin membrane protein embedded in the lipid bilayer decreased to the noise level in between 

4 to 5 h, which resulted in a total closure of the protein’s channel. However, when dopamine 

was oxidized at pH = 5.0 in the presence of a much stronger oxidant, NaIO4, the same effect 

was obtained in less than 2h. Moreover, the lipid bilayer coated with the PDA-NaIO4 films was 

more prone to the appearance of voltage induced defects than the lipid bilayer coated with PDA-

O2 for transmembrane voltages larger than 350 mV [92]. These preliminary investigations 

suggest that lipid bilayers coated with PDA on only one face of the membrane could be an 

excellent alternative to other lipid bilayer stabilization methods like the coating with an actin 

network or S layer proteins.  

 

4.3 PDA-containing biomembrane composites 

 Polyelectrolyte multilayer films prepared by the layer-by-layer deposition method can 

display an exponential growth of their thickness as a function of the number of layer pairs 

deposited. Such films are highly hydrated and can be used for many applications such as cell 

encapsulation and drug delivery but are intrinsically soft displaying extremely low Young 

moduli and are hence difficult to handle [93]. To solve this challenge, it has been found that 

exponentially growing films made from the alternate deposition of hyaluronic acid (HA) and 

poly-L-lysine (PLL) can be detached from their substrate as self-standing membranes after 24 

h of contact in dopamine solution at pH = 8.5. Fluorescence recovery after photobleaching 
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experiments were used to estimate the diffusion coefficient and the fraction of mobile 

fluorescence labelled PLL in the polyelectrolyte multilayer film. The diffusion coefficient and 

fraction of mobile PLL chains were markedly decreased after PDA formation most probably 

due to covalent bond formation between amino groups from PLL and quinones in PDA via a 

Michael addition or Schiff base reaction [94]. It was assumed that the presence of reactive PDA 

aggregates generated in situ in the polyelectrolyte multilayer architecture was responsible for 

its ability to be detached from the glass substrate as a free-standing membrane in the presence 

of sodium hydroxide solutions, a treatment which induced dissolution of the film in the absence 

of PDA. 

Recently, ultrathin free-standing membranes composed of PDA were achieved by 

electropolymerization [95]. These freestanding PDA films remained stable even at the air/air 

interface with very high elastic moduli in the GPa range. The PDA film thickness was within 

the range of cellular membranes, which allowed the incorporation of protein nanopores, so-

called “nanodiscs” as functional entities. These nanodiscs contained phospholipids and the 

transmembrane domain of glycophorin A, an antigen-presenting membrane protein found at the 

surface of human erythrocytes [95]. These films revealed semi-permeable properties and 

transport through the film was controlled by the embedded protein nanodiscs. 

Moreover, these few-nanometer thick PDA membranes revealed very fast light-to-motion 

conversion stimulated by visible light. Light-induced heating of PDA leads to desorption of 

water molecules and very fast contraction of the membranes within micro seconds, whereas 

switching off light leads to a spontaneous expansion due to heat dissipation and water 

adsorption. These multi-responsive pristine PDA membranes could serve as robust building 

blocks for soft, micro, and nanoscale actuators stimulated by light, temperature, and moisture 

level [92]. The interest of the PDA membranes produced at the water-air interface stems also 

from their lamellar structure, their analogy with carbon-based materials and their outstanding 

mechanical properties with a Young modulus (measured by nanoindentation) and hardness 

equal to (13 ±4) GPa and (0.21 ±0.03) GPa respectively [96]. 

 

4. Polydopamine and living cells  

 

 In the last years, intense research has been directed to increase cellular stability and to 

control the interactions of cells with synthetic extracellular matrices [97]. Encapsulation of 



22 

 

individual living cells with reactive, functionalizable, organic shells increases the stability and 

durability of living cells, also in harsh environments, and provides controllability in the cell 

cycle, reactivity for cell-surface modification and protection against foreign aggression. For 

example, encapsulation of yeast (such as Saccharomyces cerevisiae) with either one or two 

deposition steps of polydopamine (Fig. 11), formed by covalent bonding between PDA and 

thiol or amine moieties of glycoproteins in the cell wall, allowed to prolong the duration of the 

quiescent stage preceeding the division of the yeast cells up to 86 h and also to protect them 

against degradation by lyticase [98]. Moreover, the active catechol and amine groups in PDA 

allow further functionalization of yeast cells with biomolecules (e.g. avidin, exogenous flavin 

mononucleotide) [98,99]. In a study by Wang et al., PDA nanocoatings of Rhodotorula glutinis 

significantly enhanced native cells’ performance about their biocatalytic activity, stability and 

reusability in asymmetric reduction [100]. Liu and co-workers have besides demonstrated that 

S. xiamenensis-PDA coating could improve the transfer of electrons during extracellular 

respiration and could also promote mediated electron transfer by adsorbing self-secreted flavin 

molecules [99]. In addition, living electroactive bacteria could be easily encapsulated by PDA 

(50-200 nm film thickness) without affecting their activity, biofilm growth and biological 

electron transfer [101]. It is worth to mention that PDA coatings could protect bacteria from 

organic solvents, sonication, heat treatment and especially extreme acid shocks (pH 0.5 and 

1.5) that generally cause damage to cell structures [101].  

Mammalian cells like bone marrow derived mesenchymal stem cell (MSC) [102,103], human 

fibrosarcoma (HT1080) [104], mouse preosteoblasts (MC3T3-E1) [104] and mouse fibroblasts 

(NIH-3T3) [104] can selectively adhere, maintaining their morphology, to polydopamine strips 

(100 µm wide) patterned on poly-(dimethylsiloxane) (PDMS) substrates known to be 

hydrophobic and highly resistant to the cells’ attachment. In addition, the cell nuclei tend to 

adopt a preferential orientation parallel to the direction of the PDA layer not observed on 

unpatterned polydopamine deposited on PDMS [102,104]. Various films consisting of PDA 

and poly(L-lysine) [105] as well as PDA coated on a polystyrene-based standard tissue culture 

plate (TCP) [106] and PDA incorporated into hydroxyapatite collagen calcium silicate materials 

[107], were found to aid endothelial cells adhesion [105] and proliferation, to enhance MSC 

attachment, proliferation and differentiation effective in in vitro and in vivo bone [107], and to 

boost fibronectin deposition enhancing thus migration ability mediated by integrin [106]. 

Noteworthy, as recently demonstrated by Deng et al., PDA-coated substrates could 

significantly lower the levels of intracellular total reactive oxygen species (ROS) and 

superoxide in the cell microenvironment for 7 days if compared with uncoated materials and 
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also reduce the mitochondrial damage in replicative senescent MSCs [108]. ROS accumulation 

in stem cells, in fact, leads to proliferation and differentiation arrest and loss of homeostasis. In 

particular, after a 2 or 24 h coating times, PDA/TCP coated-substrates, with 0.1 or 0.5 mg/mL 

dopamine concentrations, were able to prevent cellular senescence up to 2 weeks as 

demonstrated through the quantification and staining of the senescence-associated β-

galactosidase activity, the control of the levels of senescence-associated inflammatory 

components (such as interleukin 6) and the regulation of cellular senescence-specific genes 

(e.g., p53 and p21) [108].  

 

Fig. 11. PDA coating of individual yeast cells. (A): Immobilization of avidin functionalized 
PDA-encapsulated yeast cells. (B): TEM micrograph of microtome-sliced PDA-encapsulated 
yeast cell. (C): Growth curve of native yeast (▲), single-layer PDA- encapsulated yeast cells 
(◼), and multi-layer PDA- encapsulated yeast cells (●). (D): Survival of native yeast (▲), 
single-layer PDA- encapsulated yeast cells (◼), and multi-layer PDA- encapsulated yeast cells 
(●) in the presence of lyticase.  Adapted with permission from: “Mussel-Inspired Encapsulation 
and Functionalization of Individual Yeast Cells. J. Am. Chem. Soc. 2011, 133 (9), 2795–2797.” 
Copyright (2011) American Chemical Society.  
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Furthermore, PDA coating on tobacco mosaic virus nanoparticles decreases the interactions 

with specific antibodies and allows for a prolonged stability in the organism when compared to 

the uncoated virus [109].  

Neonatal rat cardomyocytes were seed in gelatin methacrylate hydrogels doped with low 

concentration of PDA-graphene oxide (rGO) (from 0.5 to 1.5 mg/mL). The conductivity and 

Young modulus of the hydrogels increased upon the addition of the PDA-rGO material (0.012-

0.023 MPa) and allowed for excellent cell viability, improved alignment of α-actinin and a 

significant increase of the cardiomyocytes beating velocity when compared to the pristine 

gelatin based hydrogels [110]. Young’s modulus was further increase to ca. 2.8 MPa in 

polyurethane scaffolds coated with PDA or PDA/porcine skin t gelatin A. Notably, this system 

significantly improved the adhesion and spreading of human umbilical vein endothelial cells 

colonizing the entire PDA-coated surfaces within 1-3 days post-endothelialization [111].  

 

Conclusion and perspectives 

The possibility to produce new functional materials during the oxidation of dopamine or other 

catecholamines in the presence of biomolecules has emerged in the last few years. Of major 

interest is the possibility to use specific peptide sequences to modify the self-assembly of 

polydopamine to yield new bioactive nanomaterials. There is strong evidence that the elemental 

composition and structure of polydopamine films produced in the absence of biomolecules is 

strongly influenced by the used oxidant and by the nature of the substrate itself. We cannot 

exclude, at this level, that the same holds true for the polydopamine colloidal material produced 

in the presence of biomolecules. For instance, concerning polydopamine produced in the 

presence of KE containing peptide or proteins the question remains open if the peptide or 

protein form a shell around polydopamine or is uniformly distributed in the obtained 

nanoparticles. 

The interaction of oligonucleotides with polydopamine during its polymerization /self-

assembly process has also been highlighted. The stability of lipid assembly seems to be notably 

increased in the presence of polydopamine formation offering the possibility to use 

polydopamine as a substituent for S layer proteins to produce stable lipid-based assemblies. 

The same holds true for polydopamine–cell assemblies where the metabolic fate of many cell 

types can be strongly altered and controlled in the presence of polydopamine.  Despite these 

successful investigations and possible applications, many efforts are still required to understand 
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the interactions between nucleotides, polysacharides and specific peptide sequences with 

polydopamine along its reaction pathway in oxidative conditions. The use of biomolecule 

conjugates, for instance peptide-oligonucleotide conjugates seems also of the highest interest 

to provide new opportunities in terms of applications. In addition, owing to the low number of 

investigations aimed to simulate the self-assembly or polymerization of polydopamine in the 

presence of biomolecules, it is of urgent interest to implement theoretical calculations at a 

multiscale level to better understand the structure-properties relationships of this eumelanin like 

material grown in an environment of biological interest. 
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