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The budding yeast Saccharomyces cerevisiae is an excellent model organism to dissect the

maintenance and inheritance of phenotypes due to its asymmetric division. This requires

following individual cells over time as they go through divisions to define pedigrees. Here, we

provide a detailed protocol for collecting and analyzing time-lapse imaging data of yeast cells.

Themicrofluidics protocol can achieve improved time resolution for single-cell tracking to enable

characterization of maintenance and inheritance of phenotypes.
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SUMMARY

The budding yeast Saccharomyces cerevisiae is an excellent model organism to
dissect the maintenance and inheritance of phenotypes due to its asymmetric di-
vision. This requires following individual cells over time as they go through divi-
sions to define pedigrees. Here, we provide a detailed protocol for collecting and
analyzing time-lapse imaging data of yeast cells. The microfluidics protocol can
achieve improved time resolution for single-cell tracking to enable characteriza-
tion of maintenance and inheritance of phenotypes.
For complete details on the use and execution of this protocol, please refer to
Bheda et al. (2020a).
BEFORE YOU BEGIN

Preparation of yeast reporter strains

Timing: 1–2 weeks

1. Prepare yeast reporter strains. For fluorescence reporters, yeast can be transformed with self-

propagating plasmids or with linear DNA for integration with the appropriate selection markers

(Figures 1A–1C, Methods Video S1) (Brachmann et al., 1998; Gietz and Woods, 2002).

Note: In Bheda et al. (2020a) we created a reporter strain in the Y7092 background (Tong and

Boone, 2007) by fusing GFP at the C terminus of the endogenous GAL1 open reading frame

(ORF) on chromosome 2 (chrom II) by homologous recombination (Figure 1A). The reporter

cassette included a superfolder GFP (sfGFP) fused to a degron sequence from CLN2

(CLN2-PEST) to destabilize the reporter, followed by a terminator sequence from ADH1

(ADH1-term), which was cloned into a plasmid. The reporter cassette was directly followed

by the kanMX selection cassette, which is made of a TEF1 promoter sequence (TEF1-prom),

the G418-resistance sequence (G418R), and a TEF1 terminator (TEF1-term). The reporter +
STAR Protocols 1, 100228, December 18, 2020 ª 2020 The Author(s).
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Figure 1. S. cerevisiae strain construction with integrated reporter and lineage marker

(A) In Bheda et al. (2020a), we created a reporter strain by fusing GFP at the C terminus of the endogenous GAL1 open

reading frame (ORF) on chromosome 2 (chrom II) by homologous recombination. The reporter cassette included a

superfolder GFP (sfGFP) fused to a degron sequence from CLN2 (CLN2-PEST), followed by a terminator sequence

from ADH1 (ADH1-term) and a kanMX selection cassette, which is made of a TEF1 promoter sequence (TEF1-prom),

the G418-resistance sequence (G418R), and a TEF1 terminator (TEF1-term).

(B) Additionally we created a lineage marker by expressing NLS-2mCherry under the control of the constitutively

active TEF1 promoter (TEF1-prom) and a CYC1 terminator (CYC1-term) with a URA3 selection marker.

(C) Snapshot from Methods Video S1. Left: phase contrast. Middle: Galp-GFP. Right: nuclear 2mCherry.
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selection cassette was PCR amplified with oligonucleotides bearing homology to the C termi-

nus of GAL1 and transformed into yeast. Transformants were selected on YPD plates supple-

mented with G418 and reporter insertions were tested by junction PCRs and validated by

sequencing.

Note: For lineage analyses, we recommend including a second fluorescent reporter to facil-

itate pedigree mapping. Although some segmentation algorithms, such as the custom soft-

ware PhyloCell that we used for segmentation and lineage definition (see ‘‘Custom software

for cell-tracking microfluidics data processing’’ and the Key resources table for details), are

capable of reconstructing lineages without a lineage marker, using one reduces errors. As

yeast nuclear envelopes do not break down during cell division, a nuclear fluorescent re-

porter clearly shows the intact nucleus dividing and separating in two cells – i.e., a mother

cell and its daughter cell (Methods Video S1), facilitating pedigree definition. In Bheda et al.

(2020a), we used for this a nuclear localization signal (NLS) sequence fused to mCherry (Fig-

ures 1B and 1C, Methods Video S1) in order to sequester the fluorescent protein in the nu-

cleus and aid in lineage definition. Specifically we created this lineage marker by expressing

2 copies of monomeric mCherry (2mCherry) with an NLS fusion to the N terminus under the

control of the constitutively active TEF1 promoter (TEF1-prom) and a CYC1 terminator

(CYC1-term). This lineage marker cassette is located on an integrating plasmid with a

URA3 selection marker. The plasmid was linearized in the URA3 promoter, transformed in

a background strain with a URA3 deletion (ura3D0) on chromosome V (chrom V), and trans-

formants were selected on synthetic drop-out plates lacking uracil. Other suitable lineage

markers include the nuclear histone H2B gene Htb2p (Goulev et al., 2017; Meitinger

et al., 2014; Morlot et al., 2019) or the budneck markers Cdc10p and Myo1p (Charvin

et al., 2008).
Preparation of yeast media

Timing: 1–2 days
STAR Protocols 1, 100228, December 18, 2020
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2. Prepare a suitable amount of synthetic media prior to the experiment. See Materials and equip-

ment for media recipes used in Bheda et al. (2020a).

Note: We recommend preparing twice as much media to allow for potential flow rate prob-

lems. Make sure to account for each set of media tubing, flow rate, and length of time lapse.

For example, for a chip with 10 independent channels, a flow rate of 10 mL/min, and a 10 h

experiment, prepare 120 mL media.

10 channels 3
10 mL

min
3600 min3 2= 120 mL
Note: Synthetic media is preferable over rich media (e.g., YP) to minimize cellular

autofluorescence.

3. On the day of the microfluidics experiment, combinemedia components and sterile filter through

a 0.22 mm filter to remove particulate matter or precipitates from older media that could clog the

microfluidics microchambers/microchannels.
Microfluidic chip prep work

Timing: �2 weeks

4. Purchase or design and fabricate a microfluidics chip that is appropriate for your needs.

Note: A chip made from polydimethylsiloxane (PDMS) with a #1.5 glass coverslip is

recommended. The height of the microchannels where the cells will be trapped should be

�3–3.3 mm for haploid yeast with normal sizes. Mother cells typically have a long axis diameter

(as yeast cells are slightly oblong) between 4–6 mm (Kukhtevich et al., 2020).

The use of custom-made PDMS microfluidics chips for inheritance analyses of S. cerevisiae has been

previously described (Bheda et al., 2020a; Fehrmann et al., 2013; Garmendia-Torres et al., 2018;

Goulev et al., 2017; Paoletti et al., 2016; Xu et al., 2015). Our custom-designed PDMS microfluidics

chip allows haploid yeast cells to be trapped and tracked for �8 generations (Figure 2A and see

‘‘Limitations’’) (Bheda et al., 2020a; Goulev et al., 2017).

To prepare a custom-made PDMS chip as in Bheda et al. (2020a) start with mask fabrication of the

desired design (Figure 2B):

5. Prepare a high-resolution computer-aided-design (CAD) file with the desired microfluidics chip

design.

Note:Our design includes a 3-mm layer for trapping yeast and an �40-mm layer for the media

supply channels. The CAD file for the microfluidic chip design is available on Mendeley Data

(Bheda et al., 2020b).

6. Prepare photomasks of the microfluidics chip by printing the high-resolution CAD files for each

layer onto a polymer slide.

Note: We have outsourced this step (Selba, Switzerland).

Using these masks, prepare a replica mold as follows (Figure 2B):
STAR Protocols 1, 100228, December 18, 2020 3



Figure 2. Cell-tracking microfluidics chip

(A) Cell- and lineage-tracking custom microfluidics design (figure modified from Figure 1A in Bheda et al., 2020a). The

chip is designed with 16 independent microchambers, with each having its own media and cell inlet and outlet

channels (represented by different colors), where different strains or conditions can be tested simultaneously. Each

microchamber has 8 microchannels for trapping the yeast such that 8 regions containing cells of interest can be

imaged per strain/condition (Goulev et al., 2017).

(B) Mold fabrication using photomasks and SU-8 photoresist. Photomasks are made from CAD files designed for each

layer of the microfluidics chip, then printed onto slides. The mold is made by 2-layer photolithography using a silicon

wafer. The process for each layer involves using a spin coater to evenly spread SU-8 photoresist on the wafer and UV

treatment through each photomask to transfer the design onto the wafer. This process results in a negative replica

mold that can be used repeatedly to prepare PDMS microfluidics chips.

(C) Preparation of a PDMS chip stepwise from left to right. Liquid PDMSmix is poured into the replica mold and baked.

The solidified PDMS is then assembled into a microfluidics chip by punching holes, treating with O2 plasma, and

attaching to a coverslip. For details see text.
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7. Start the process with the 3-mm layer for trapping yeast by cleaning a 4-inch silicon wafer with

100% isopropanol, then baking it at 120�C for �15 min to dry it out.

8. Use a spin coater to evenly spread 3 mL of SU-8 2002 photoresist onto the wafer at 400 rpm.

9. Soft bake the wafer for 2 min at 95�C.
10. Expose the SU-8 2002 on the wafer through the photomask with 100 mJ/cm2 UV at 365 nm.

11. For the post exposure bake, bake the wafer for 2 min at 95�C.
12. Develop the SU-8 2002 for 15–30 s in a bath of �50 mL SU-8 developer.

13. Rinse the wafer with 100% isopropanol and dry with compressed air.

14. Perform a hard bake by baking the wafer for 15 min at 150�C.
15. For the second, 40-mm layer for themedia supply channels, use the spin coater to spread 3mL of

SU-8 2025 on top of the first layer at 2,500 rpm.

16. Soft bake the wafer for 7 min at 95�C.
17. Align the second photomask with the first layer manually or with a mask aligner.

18. Expose the SU-8 2025 on the wafer through the second photomask with 160 mJ/cm2 UV at

365 nm.

19. For the post exposure bake, bake the wafer for 2 min at 65�C, followed by a 6 min bake at

95�C.
20. Develop the SU-8 2025 for 45–60 s in a bath of �50 mL SU-8 developer.

21. Rinse the wafer with 100% isopropanol and dry with compressed air.

22. Perform a hard bake by baking the wafer for 15 min at 150�C.

CRITICAL: This process is best carried out in a microelectronics cleanroom.

Pause Point: The replica mold can now be stored and reused indefinitely.

On the day of the experiment, prepare the PDMS microfluidics chip using the replica mold

(Figure 2C):

23. Weigh out 10:1 PDMS to curing agent (included in the PDMS kit) and mix well.

Note: 10 g PDMS + 1 g curing agent is sufficient for 1 chip. If cutting a larger area around the

chip, prepare up to 20 g PDMS + 2 g curing agent.

24. Degas PDMSmix using a vacuum pumping unit connected to a vacuum desiccator for 10–30min

with 15–20 mbar pressure until no air bubbles remain.

25. Pour the PDMS mix into the mold and let sit for 10 min to remove any remaining air bubbles.

Alternatives: the PDMS mix can be first poured into the mold and then degassed using the

vacuum desiccator.

26. Bake the microfluidics chip in the mold at 100�C in an incubator for 1 h to crosslink the PDMS.

Note: PDMS can be baked in the mold ahead of time and with different lengths of time, de-

pending on temperature. For every 10�C less, double the time (e.g., 2 h at 90�C, 4 h at 80�C,
8 h at 70�C, or 16 h at 60�C).

CRITICAL: Keep microfluidics chip in mold until use.

Pause Point: The PDMS chip in the replica mold can be stored indefinitely.

27. On the day of the cell-tracking microfluidics data collection, cut out the PDMS replica from the

mold using a scalpel.
STAR Protocols 1, 100228, December 18, 2020 5
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Caution: Use caution when cutting the chip out of the mold. Cut deep enough to remove chip,

while minimizing scratches to the mold.

Note: If you cut out a large area around the chip to remove from the mold, the edges should

be trimmed to the size of the coverslip that it will be attached to, using a scalpel or preferably a

long razor blade.

Caution: Avoid touching the surface of the microfluidics chip as the microchannels can easily

be damaged.

28. Place the microfluidics chip with the microchannels side up and punch out holes for connecting

tubing using a 1–1.5 mm biopsy puncher.

Note: The choice of biopsy puncher size depends on the type of tubing and connection to the

chip. If using Tygon tubing and bent needles with the specifications as in Bheda et al. (2020a)

and in the Media supplementation section and Key resources table, we suggest using the

1 mm biopsy puncher. We have also successfully used Teflon tubing directly inserted in the

chip. In this case, a larger hole is preferable; therefore, for this type of tubing connection to

the chip, we suggest using a 1.5 mm biopsy puncher.

29. Dust particles on the surface of the chip should be cleaned by gently attaching a piece of Scotch

tape evenly across the surface and peeling the tape away.

Caution: Dust particles on the surface of the chip can block media flow through the

microchannels.

30. Using forceps, wash a 24 3 50 mm #1.5 glass coverslip first by completely immersing in 100%

ethanol for�5 s, followed by immersing the coverslip in ddH2O for�5 s, and then dry with com-

pressed air.

Alternatives: Soak coverslips for at least 1 h in H2O2, rinse with ddH2O, and dry with com-

pressed air.

31. Treat the microfluidics chip (microchannel side up) and coverslip with O2 plasma cleaner surface

activation.

Note: Using the Zepto B model plasma cleaner from Diener, the microfluidics chip and cham-

ber can be treated with 6.0 power with the timer set to 0–40 (�2 min) under 0.8–1 mbar pres-

sure with 100% O2.

32. Assemble the chip by carefully placing the PDMS (microchannel side down) on top of the cover-

slip. Carefully press the chip and coverslip together to achieve full contact. Allow the chip to

bond to the glass for 10 min at 20�C–25�C.

CRITICAL: Do not push too hard on the chip otherwise the microchannels may be crushed.
You should be able to see a contrast between where the PDMS is in contact with the glass

and where it is still in contact with air. With careful pressing, the air front should spread and

disappear.
6

Pause Point: It is best to plasma clean and assemble the microfluidics chip just prior to

setting up the cell-tracking microfluidics experiment to retain hydrophilicity in the microchan-

nels that results from O2 plasma treatment, however the assembled chip can be stored for

days to weeks.
STAR Protocols 1, 100228, December 18, 2020
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Preparation of cell and media tubings

Timing: 1 day

To prepare tubing for media supplementation and to inject cells into the microfluidics chip as in

Bheda et al. (2020a):

33. Pull out the needle (18 gauge, 90� bent, blunt edge) from plastic used for syringe attachment.

34. Insert needle into one end of Tygon tubing with 0.02’’ inner dimension 3 0.060’’ outer dimen-

sion.

Pause Point: Cell and media tubings can be stored and reused indefinitely.
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

Drop-out Mix Complete w/o yeast
nitrogen Bbase

US Biological Cat# D9515

Yeast Nitrogen Base without amino
acids

Becton-Dickinson Cat# 291940

D-(+)-Raffinose Sigma-Aldrich Cat# 83400

D-(+)-Galactose Sigma-Aldrich Cat# G6404

D-(+)-Glucose Sigma-Aldrich Cat# G8270

Polydimethylsiloxane (PDMS) kit
Sylgard 184

Dow Corning Cat# 2646340

SU-8 2002 photoresist MicroChem Cat# SU-8 2002

SU-8 2025 photoresist MicroChem Cat# SU-8 2025

SU-8 developer MicroChem Cat# Y020100

Experimental models: organisms/strains

Saccharomyces cerevisiae n/a n/a

Software and algorithms

PhyloCell Gilles Charvin https://github.com/gcharvin
Goulev et al., 2017

Autotrack Gilles Charvin https://github.com/gcharvin
Goulev et al., 2017

Single-cell lineage analysis sample
code

Diana Aguilar-Gómez https://github.com/aguilar-gomez/
SingleCellLineageAnalysis

MATLAB MathWorks versions R2009a, R2016a, and R2016b

Python Python Software Foundation versions 2.7 and 3.6.3

R R Foundation for Statistical
Computing

version 3.4.4

Nikon NIS Elements Nikon Microscope Solutions version 4.51.c1

Other

1 mm biopsy puncher Integra Miltex, USA Cat# 33-31AA-P/25

1.5 mm biopsy puncher Integra Miltex, USA Cat# 33-31A-P/25

Vacuum pumping unit Vacuubrand, Germany Cat# PC 3004 VARIO

Vacuum desiccator Nalgene, USA Cat# 5311-0250

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Incubator Binder, Germany Cat# ED 56

Scotch Magic invisible tape 3M, USA Cat# 810

Steritop 0.22 mm PES filter Millipore, USA Cat# 2GPT02RE

1 mL syringe B. Braun, Germany Cat# 9166017V

22 gauge 0.5 inch blunt edge needle Adhesive Dispensing, UK Cat# AD722050

Thermoelectric modules RS, France Cat# 490-1317

Temperature regulator Oven Industries, USA Cat# 5R6-900

Spin coater Mikasa, Japan Cat#MS-B100

O2 plasma cleaner Diener Electronic, Germany Cat# Zepto B

24 3 50 mm #1.5 glass coverslip Knittel Glass, Germany Cat# VD12450Y1A.01

Tygon tubing 0.02 inch ID3 0.060 inch
OD

Cole-Parmer, Germany Cat# GZ-06419-01

18 gauge 0.5 inch bent 90� blunt
needle

Techcon, USA Cat# TE718050B90PK

Microfluidic flow controller Elveflow, France Cat# OB1 MK3+

Microfluidic flow sensor Elveflow, France Cat# MFS 3

Port selector valve Idex, USA Cat# MXX778-605

Peristaltic pump Ismatec, Switzerland Cat# ISM 931

Objective heater Okolab, Italy n/a

Heating chip holder custom-built n/a

Epifluorescence microscope Nikon, Japan Cat# Eclipse Ti-E

Objective Nikon, Japan Cat# plan-apo l 1003/1.45 NA Ph3 oil
immersion

Light engine Lumencor, USA Cat# SPECTRA X

EMCCD camera Andor, UK Cat# iXon Ultra 888

CAD file for mask fabrication Bheda et al., 2020b https://data.mendeley.com/datasets/
yr2nrysyyx/1
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Equipment

Media supplementation equipment

For automated media supplementation in Bheda et al. (2020a), we used a pressure microfluidic flow

controller with a flow sensor. Automatedmedia changes were controlled by a port selector valve sys-

tem (Figure 3A). Media is supplied via tubing prepared with bent needles (see connected to the mi-

crofluidics chip (Figure 3B, left).

Inverted epifluorescence microscope

Phase contrast and fluorescence images in Bheda et al. (2020a) were captured with Nikon NIS Ele-

ments software from an inverted Nikon Eclipse Ti-E epifluorescence microscope using a plan-apo l

1003/1.45 NA Ph3 oil immersion objective, SPECTRA X light engine illumination, and an Andor iXon

Ultra 888 EMCCD camera.

Temperature control equipment

An objective heater is important to maintain the temperature (normally 30�C for yeast cells) during a

microfluidics experiment. We used an objective heater and also a custom-built microfluidic chip

holder with standard thermoelectric modules controlled by temperature regulation devices (Figures

3A and 3B) (Charvin et al., 2008). The heating chip holder is designed with holes so that bars or

holders can be screwed in to hold the chip in place, which is important to prevent movement so
8 STAR Protocols 1, 100228, December 18, 2020
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Figure 3. Cell-tracking microfluidics setup

(A) Schematic of microfluidics setup. Top: red lines indicate regulation by controlling units. Gray lines indicate flow of

air. Blue lines indicate tubing for media flow. Software on the computer controls the pressure controller, valve, and

microscope. The pressure controller also receives input from the flow sensor, allowing it to adjust the pressure in case

flow is too high or low. The heating chip holder and the objective heater are regulated by independent controllers.

Bottom: zoomed in schematic of custom-built heating chip holder with thermoelectric modules, objective heater,

tubing with bent needles, and screws + holders.

(B) Left: photo of tubing with bent needle inserted in PDMS. Middle: photo of heating chip holder. Right: photo of 3D-

printed holders.

ll
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that cells of interest are continually tracked and remain in focus. We have used custom 3D-printed

holders (Figure 3B, right). We have found that the objective heater is the most important tempera-

ture regulation equipment – the heating chip holder is not necessary, but helps to buffer major tem-

perature changes.
Recipes

Synthetic complete (SC) media

We recommend first preparing the media components by autoclaving the amino acid mix plus yeast

nitrogen base together and separately sterile filtering the carbon source (sugar). To prepare media

as in Bheda et al. (2020a):
1.253 SC stock

Reagent Final concentration Per liter

Drop-out Mix Complete w/o Yeast Nitrogen
Base

1.253 2.75 g

Yeast Nitrogen Base without Amino Acids 1.253 8.375 g

autoclaved ddH2O up to 1 L
Note: autoclave on the same day that it is prepared
STAR Protocols 1, 100228, December 18, 2020 9



20% raffinose

Reagent Final concentration Per liter

raffinose 20% 200 g

autoclaved ddH2O up to 1 L
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Note: sterile filter through a 0.22 mm filter on the same day that it is prepared
20% glucose

Reagent Final concentration Per liter

glucose 20% 200 g

autoclaved ddH2O up to 1 L
Note: sterile filter through a 0.22 mm filter on the same day that it is prepared
15% galactose/15% raffinose

Reagent Final concentration Per liter

galactose 15% 150 g

raffinose 15% 150 g
Note: sterile filter through a 0.22 mm filter on the same day that it is prepared

On the day of the microfluidics experiment, combine media components and sterile filter to remove

particulatematter or precipitates from older media that could clog themicrofluidicsmicrochambers/

microchannels.

autoclaved ddH2O up to 1 L
SC+2% raffinose

Reagent Final concentration Per liter

1.253 SC stock 13 800 mL

20% raffinose 2% 100 mL

autoclaved ddH2O 100 mL

SC+

Re

1.2

20

SC+

Re

1.2

15

au

10
Note: prepare and sterile filter through a 0.22 mm filter on the day of the experiment
2% glucose

agent Final concentration Per liter

53 SC stock 13 800 mL

% glucose 2% 100 mL
Note: prepare and sterile filter through a 0.22 mm filter on the day of the experiment

autoclaved ddH2O 100 mL
1.5% galactose/1.5% raffinose

agent Final concentration Per liter

53 SC stock 13 800 mL

% galactose/15% raffinose 1.5%/1.5% 100 mL

toclaved ddH2O 100 mL

STAR Protocols 1, 100228, December 18, 2020



ll
OPEN ACCESSProtocol
Note: prepare and sterile filter through a 0.22 mm filter on the day of the experiment

Custom software for cell-tracking microfluidics data processing

Cells were segmented and mapped from frame to frame and nuclei were segmented to build ped-

igrees from the single-cell tracking microfluidics data in Bheda et al. (2020a) using the custom soft-

ware PhyloCell and Autotrack (https://github.com/gcharvin) that operates in MATLAB. These soft-

ware have been previously implemented for lineage analyses of S. cerevisiae (Bheda et al., 2020a;

Fehrmann et al., 2013; Garmendia-Torres et al., 2018; Goulev et al., 2017; Paoletti et al., 2016;

Xu et al., 2015). For help using these software, there are available files on Github as HTMLweb pages

(https://github.com/gcharvin/phyloCell/help/html/index.html). In addition, there is a demo project

that can be launched from PhyloCell to try out the features of the software (https://github.com/

gcharvin/phyloCell/demo).

Alternatives

Microfluidic chip

Commercially available microfluidics chips for yeast, such as CellASIC ONIX plates from Millipore,

are available.

Microscope

Other inverted epifluorescence microscopes are compatible with time-lapse microfluidics imaging.

We have also successfully used a Zeiss AxioObserver.

Media supplementation

Other media flow systems can be used with time-lapse microfluidics imaging. We have also success-

fully used a peristaltic pump instead of a pressure flow controller.

Temperature control equipment

We have also used a heated box around the microscope for experiments where rapid increases in

temperature are important, such as temperature-sensitive mutants that are grown under tempera-

ture-permissive conditions and then changed to temperature-restrictive conditions. The heated

box helps to facilitate the temperature change, but this equipment is not absolutely required.

Segmentation software

There are many alternative segmentation software programs for budding yeast cells, some of which

can also track cells and lineages, such as CellStar (Versari et al., 2017).

STEP-BY-STEP METHOD DETAILS

Cell-tracking microfluidics data collection

Timing: 36 h/1.5 days

This step describes how to collect microfluidics data for single-cell tracing.

Day 1

1. Set up yeast cultures by inoculating 3 mL synthetic media of choice in a 15-mL tube with

yeast from a freshly streaked plate (less than 1 month old) and grow at 30�C with shaking at

250–300 rpm for 10–15 h.

Day 2

2. Filter media through a 0.22 mm filter to remove particulate matter or precipitates from older me-

dia that could clog the microfluidics microchambers/microchannels.
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3. Dilute cells by inoculating a fresh culture of 3 mL media with 25–50 mL culture from step 1 and

grow at 30�C with shaking at 250–300 rpm for �4 h (�2 doublings) until cells reach low log phase

(�3–9 3 106 cells/mL).

Note:Many strains of S. cerevisiae grown in typical growth media are in log phase with a con-

centration of �0.3–3 3 107 cells/mL. In most spectrophotometers, this corresponds to an op-

tical density (OD) from 0.1 to 1; however, this should be previously determined. Using spec-

trophotometers where S. cerevisiae log phase is 0.1–1, low log phase corresponds to OD

readings between 0.1 and 0.3.

4. Place microfluidics chip in the heating chip holder and secure the chip with screws + holders.

CRITICAL: The chip should be sufficiently tightly secured such that movement is not
possible during the time-lapse experiment; however, take care not to apply toomuchpres-

sure on the chip, as this can cause the coverslip to break. Securing the chip is important to

prevent movement so that cells of interest are continually tracked and remain in focus.
5. Connect all tubings (media and cell) to the chip and prime with media.

Note:We recommend using �10 cm of tubing for cell inlet and outlet. The tubing lengths for

media inlet and outlet will depend on your setup, but �50 cm tubing should be sufficient for

most setups.

Note: We recommend priming the chip and tubings with enough media until a continuous

flow is observed into the waste (see Figure 3A).

Optional: Tape the tubings onto the stage. Tubings can move during the experiment and

affect the focus of the cells.

6. Carefully inject cells obtained from the low log phase culture into each microchamber using a

1 mL syringe and a 22 gauge blunt edge needle inserted into 1 of the 2 cell tubes attached to

each microchamber (the other cell tube allows uncaptured cells and media to flow out of the

chip) such that each microchannel has very few cells.

CRITICAL: It is best that the starting cells that will be captured and tracked have a bud. This
helps to avoid capturing old/sick/arrested/dying cells. In case unwanted cells are captured,

they can be flushed out by injecting more culture with a slightly harder push on the syringe.
Note:Choose the number of starting cells depending on the purpose and length of the exper-

iment. For example, in a memory experiment as in Bheda et al. (2020a), we started the exper-

iment with �2 budding cells in each region of interest to capture �8 generations.

7. Start pumping media through chip.

Note: We recommend a flow rate of 10–50 mL/min. Higher flow rates can lead to loss of cells

(see ‘‘Troubleshooting’’).

8. Choose positions to image. Set focus for each position. Collect images with 3-min resolution with

phase contrast and any filters for fluorescent molecules of interest.

Note: For segmentation and analysis by PhyloCell, we recommend the following order of

acquisition: (channel 1) phase contrast, (channel 2) fluorescent protein of interest, (channel

3) lineage marker.
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Note: Exposure levels and times will need to be determined for each protein of interest such

that signal is not saturated and there is minimal photobleaching.

Note: According to our experience, capturing images every 3 min provides enough time res-

olution for cell mapping and to capture budding events for lineage tracking without resulting

in severe phototoxicity (see ‘‘Limitations’’).

CRITICAL: We have successfully used the Perfect Focus System (Nikon) and the Definite
Focus (Zeiss) autofocus systems to minimize focus loss. Even with autofocus systems,

there can be focus loss due to e.g., tubing movement, channel clogging, or thermal expan-

sion. Therefore, we recommend checking the progress of the experiment after 30 min to

1 h to ensure that cells are still in focus.
Day 3

9. After the experiment is complete, clean media and cell tubings by pumping first ddH2O, then

80% ethanol, and then drying them completely by letting air run through.

Note: We recommend a flow rate of �300 mL/min for 20 min for each step, therefore running

�6 mL of each liquid through the tubings.
Cell-tracking microfluidics data processing

This step describes how images collected from the single-cell tracking microfluidics data should be

processed prior to quantification and statistical analyses. We have used the custom software Phylo-

Cell (see ‘‘Materials and equipment’’ above for further details).

10. Segment cells using fluorescence or phase contrast images.

Note: To use PhyloCell for this step, the images should first be imported to generate a seg-

mentation project. We recommend JPEG image files. PhyloCell can generate a segmentation

project in a number of ways. For more details, please access the help files available for Phylo-

Cell on Github (see ‘‘Loading images and generating segmentation projects with PhyloCell’’).

For Nikon NIS Elements users, we have a function available to convert the ND2 file format into

a PhyloCell project with JPEG images.

Optional: Segment lineage markers.

11. Map cells so that they are tracked from frame to frame.

12. Build pedigrees based on mother-bud proximity or lineage markers (see ‘‘Preparation of yeast

reporter strains’’ in ‘‘Before you begin’’ above).

13. Correct any segmentation, mapping, or lineage errors.

14. Measure fluorescence in segmented cells.

Note: This information can be used as absolute fluorescence or as normalized to cell area.

15. Subtract cellular autofluorescence and/or background fluorescence to determine fluorescence

signal of interest.

Note:Different kinds of media (e.g., synthetic vs rich or glucose vs galactose) result in different

autofluorescence levels. Therefore, rather than subtracting autofluorescence signal in the

strain of interest from a non-inducing medium, it is preferable to use a strain with the same

background lacking the reporter.
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Figure 4. Expected outcomes

(A) Cells captured in the microfluidics chip are tracked over time with live imaging. In Bheda et al. (2020a), reporter

cells with constitutively expressed NLS-2mCherry lineage marker were repeatedly exposed to galactose, resulting in

induction of Gal1p-GFP.

(B) Top: single-cell traces of Gal1-GFP expression over two inductions during time lapse. Each colored line represents

a different single cell. Bottom: mean Gal1-GFP expression, error bars indicate SEM.

(C) Example pedigree of mother cells and their progeny with Gal1-GFP expression depicted by heat map to visualize

induction inheritance over time. Vertical black lines indicate daughter cell birthtimes.
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Note: Background fluorescence can be calculated using a contour in the image that does not

contain any cells.
EXPECTED OUTCOMES

The microfluidics setup described in the protocol above will allow you to capture and image cells to

track them using segmentation andmapping over time.With high time resolution and the aid of line-

age markers, it is possible not only to track the cells, but also define the pedigree of all the cells (Fig-

ure 4). In Bheda et al. (2020a), we tracked a Gal1p-GFP reporter yeast strain that was repeatedly

exposed to galactose. Mother cells were present throughout the whole experiment, resulting in

two inductions of Gal1p-GFP. These cells were segmented and their lineages (daughter cells)

were defined by the constitutively expressed NLS-2mCherry marker (Figure 4A). By measuring the

fluorescence in each of the cells, we observed memory by higher expression during a second induc-

tion in both mother cells and previously unexposed daughter cells (Figure 4B). Building a pedigree

of mother cells and their progeny allowed us to visualize the inheritance of phenotypes (Figure 4C).

Together, this provides the basis of the single-cell quantification and statistical analyses in the

following sections to dissect maintenance and inheritance of phenotypes.
QUANTIFICATION AND STATISTICAL ANALYSIS

We describe here different possible ways (A to D below) with which data from the single-cell tracking

microfluidics experiments can be analyzed for single-cell behavior and/or lineage evaluation, mainly

following what has been implemented in Bheda et al. (2020a) (Figure 5A). We have used these cal-

culations to compare memory in individual mother cells to themselves during two inductions (main-

tenance of memory) or to analyze memory transmittance from mother to daughter cells by using the

lineage information (inheritance of memory). Furthermore, we have compared maintenance and
STAR Protocols 1, 100228, December 18, 2020



Figure 5. Overview of possible options for single-cell lineage-tracking analysis

(A) Cell-tracking microfluidics data can be quantified and statistically analyzed in myriad ways. Here we depict various

possibilities A–D described in the text within the section on Quantification and statistical analysis. These analyses, and

the sub-analyses listed beneath are not hierarchical, but can be applied independently of each other, based on the

required analysis of the collected data.

(B) The strength of the cell-tracking microfluidics setup implemented is the ability to dissect transmission of

phenotypes into maintenance in mother cells (M) and inheritance into their specific daughter cells (D). Maintenance is

measured by analyzing differences between a mother cell at an initial time point (M1) and the same cell at a later time

point (M2) (top panel). Inheritance is measured between mothers and daughters at the same time point after the birth

of the daughter (M2 and D2). Maintenance and inheritance analyses are depicted by blue arrows, which are compared

against controls such as shuffled pairs of mothers or mother-daughter pairs as depicted by the red arrows. In addition,

maintenance and inheritance in wild-type (WT) cells can be compared to different conditions or mutants (bottom

panel). We employed these analyses to dissect maintenance and inheritance of phenotypes during repeated

inductions and found e.g., asymmetric inheritance as depicted in mutant 1/condition 1 and gain-of-memory such as in

mutant 2/condition 2. Please note, these analyses can be modified to address other important questions on single-cell

inheritance in yeast and even other cell types.
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inheritance of memory between a wild-type strain and several mutant strains (Figure 5B). However,

the calculations and analyses listed below are applicable to a wide variety of topics beyondmemory,

but are by no means exhaustive and depend on the question(s) of interest.

Overview of the data

Simple plots can be generated for an overall visualization of the microfluidics experiment results.

1. Organize data using the package pandas (McKinney, 2010) in Python which works with dataframe

resulting in two-dimensional data structures with a tabular format. Pandas can be used to read

tab separated files, among other file formats, into dataframes (e.g., DataFrame = pandas.read_

table(‘input.tsv’)). Using pandas, data can be easily grouped by a specified variable and this can
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Figure 6. Analysis figures option A: comparing strains/conditions/generations at single time points

(A–C) (A) Boxplots with linear scale, (B) boxplots with log scale, and (C) violinplots to visualize the same data. These

figures were generated in R using the functions boxplot() and vioplot(). Boxplot elements are as follows: center line,

median; diamond, mean; box limits, upper and lower quartiles; whiskers, 1.53 interquartile range; crosses, outliers.

Violinplot elements are as follows: white circle, median; box limits, upper and lower quartiles; whiskers, 1.53

interquartile range; violin, rotated kernel density.
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facilitate statistical analysis or plotting of data. For example, useful functions to do this in pandas

are DataFrame.set_index() and DataFrame.groupby().

2. Plot single-cell traces to observe the phenotype(s) (e.g., fluorescence signal) over time (Figure 4B,

top). In Python, some useful packages for plotting are seaborn (Waskom et al., 2014) andmatplot-

lib (Hunter, 2007). The lineplot function from seaborn (available from seaborn v0.10.0 onwards,

previously tsplot()) allows to plot time series with error bands, confidence intervals, and data

ranges, among many other features. An example using this function on microfluidics data over

200 data points, 3 different cell strains, and more than 450 cells, is available in the TimeSeriesPlot

directory on Github (https://github.com/aguilar-gomez/SingleCellLineageAnalysis/).

3. Calculate the mean or the median of the phenotype(s). Include confidence intervals, standard de-

viation, or other measurements to represent the variation (Figure 4B, bottom). Useful packages to

perform these statistical analyses in Python are scipy (Virtanen et al., 2020) and numpy (Harris

et al., 2020).

4. Plot pedigree of mother cells and their progeny according to a heatmap of the phenotype to

observe the phenotype(s) over time and its potential inheritance (Figure 4C). This can be done

in the PhyloCell GUI with Plot Pedigree/Parentage from the Analyze tab.
Method A: Comparing strains/conditions/generations at single time points

To compare single-cell phenotypes (e.g., different strains, or the same strain at different time points

or in different conditions, or mothers vs daughters), distributions at single time points of interest can

be visualized.

1. Plot data for phenotype of interest grouped by e.g., strain or condition using boxplots, violin-

plots, kernel densities, or histograms (Figures 6A–6C). As mentioned above, the seaborn and

matplotlib packages in Python are useful for data visualization, including the functions matplot-

lib.pyplot.boxplot() and seaborn.boxplot(). Examples using these functions are available on the

provided Github link (https://github.com/aguilar-gomez). An alternative package for plotting

data using a language other than Python is ggplot2 in R (Wickham, 2011).

Note: Depending on the type of data some plots might be favored:

Quantitative (numerical) data: histograms, boxplots, violinplots, and scatterplots might be

preferred. Boxplots depict where most of the data lies, as the box represents the 25th to 75th percen-

tiles. Violinplots are very similar to boxplots, but additionally they have a rotated kernel density on

each side.
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Categorical (ordinal and nominal) data: bar charts and dot charts. The counts of each categorical

data can be plotted with bar charts. Dot plots can be used to plot the difference in proportions

per category.

2. Perform statistical tests to confirm actual differences between groups.

Note: For more information on choosing statistical tests, refer to section on Assessing statis-

tical significance.

Coefficient of variation at single time point

1. Calculate a coefficient of variation ðCVÞ for all cells within a population at a specific time point

to determine how noisy (variable) gene expression is in each population. To obtain the mean

and standard deviation, numpy functions can be used such as numpy.mean() and numpy.std(),

respectively.
CV =
s

m

Where s indicates the standard deviation and m indicates the mean. For N cells with the observed

phenotypes ðx1; x2; ::xnÞ the CV is calculated in the following way:

CVðx1; x2; ::xnÞ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i = 1
ðm�xiÞ2
N

r
m

2. Bootstrap cells in each time point to create a distribution of CVs and to calculate error bars by the

standard error of the mean (SEM) or the standard deviation (SD). For our applications we used

1,000 replicates, but for time or memory consuming processes, 100 may be enough to get a

rough estimate (Pattengale et al., 2010). Although there are no strict rules regarding the number

of bootstrap replicates that should be applied, in general 599 bootstrap replicates are recom-

mended for a wide range of applications (Wilcox, 2010). The functions bootstrap() and errorbars()

that have been used are available in the Python notebook (SLCV.ipynb) within the directory

Sublineage_CV on Github (https://github.com/aguilar-gomez/SingleCellLineageAnalysis).

3. Perform statistical tests to confirm actual differences between groups.

Method B: Determining association of conditions/generations at single time points

To determine whether two phenotypes that have been observed are related, the data for one

phenotype can be plotted as a function/relative to the second phenotype (e.g., different strains,

or the same strain at different time points or in different conditions, or mothers vs daughters).

1. Plot the phenotypes as a scatter plot against each other, with one observation on the x axis and

the other along the y axis (Figure 7A). A function calledmatplotlib.pyplot.scatter() can be used to

generate scatterplots in Python, or alternatively the geom_point() function within ggplot2 in R.

Correlations at single time points

1. Calculate correlations to determine how closely associated (linear) two phenotypes ðx and yÞ are
(Figure 7A).

Note:We used Pearson’s correlation in Bheda et al. (2020a), but there are other types such as

Spearman’s.

Pearson’s correlation assumes a linear relationship (constant rate and same direction) between the

variables. Spearman’s rank correlation assumes monotonic relationship (same direction not neces-

sarily same rate), but is in fact a special case of Pearson’s correlation.
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Figure 7. Analysis figures option B: determining association of conditions/generations at single time points

(A) Scatter plot with correlation coefficient and linear regression. In Bheda et al. (2020a), we plotted the delay until

detectable Gal1-GFP expression for mother cells to themselves in a first versus second induction and calculated a

corresponding correlation coefficient of R = 0.42 and a linear regression with a slope m = 0.3.

(B) Relative difference calculations. We also used relative difference (RD) as a measure for relatedness by the

difference in delay until detectable Gal1-GFP expression in mother-daughter pairs for different strains (from

Figure 4A in Bheda et al., 2020a). These figures were generated in Python using the functions library Matplotlib.

Boxplot elements are as follows: center line, median; diamond, mean; box limits, upper and lower quartiles; whiskers,

1.53 interquartile range; crosses, outliers.
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R =
covðx; yÞ
sxsy

The cov is the covariance between x and y and s indicates the standard deviation. R indicates

how well correlated the variables are, where 1 equals a perfect correlation. R2, which is also

known as the coefficient of determination, indicates the proportion of the variance in the vari-

able that is predictable from the explanatory variables. Pearson’s coefficient of correlation could

be calculated using the function pearsonr() found within the statistical functions library scipy.stats

in Python.

Linear regressions at single time points

1. Calculate linear regressions to determine whether one phenotype can be predicted by (or is

dependent on) another (single, Figure 7A) or several explanatory variables (multiple).

For n cells with two phenotypes or npairs of cells, there are ndatapoints:fðxi;yiÞ;i = 1;.; ng, where xi
is the one phenotype of cell i and yi is another phenotype of the same cell (or of the other cell in the

pair). The function that relates xi and yi is:

yi = a+ bxi + ei

Linear regressions seek to find a linear model that fits best all of the cells, minimizing ei; which is the

residue of each datapoint to the line of the model.

y = a+ bx

The offset ðaÞ reflects the independent scaling difference between the variables. The slope ðbÞ
reflects the relation of proportion between variables and often provides the most interesting

information about their relationship. For example, a positive slope indicates a directly proportional

relationship, which means that if one of the variables increases, the other one does as well. Linear

regression using least squares can be performed in Python by importing numpy and using the func-

tion numpy.linalg.lstsq(), which takes x and y as parameters and returns the coefficients (including

the offset) and the residuals.
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Relative difference at single time points

1. Calculate relative differences ðRDÞ as a measure for how similar or different two single-cell phe-

notypes are (Figure 7B).

RD =
jx � yj
jf ðx; yÞj

To avoid bias due to the values themselves, the difference in the phenotype values is divided by

some reference value f ðx;yÞ, which, for example, can be the mean ðmÞ so that both cells contribute

equally, and is then a similar measurement to CV (dividing the RD by 2, or rescaling the values on a

scale from 0 to 1 is equivalent to calculating a CV for two values).

2. Perform statistical tests to confirm actual differences between groups.

Method C: Comparing trajectories of cells over time

With time-lapse data, correlations can be calculated over multiple time points, e.g., to compare a

single cell to itself during two inductions or using the lineage information for analyzing inheritance

from pairs of mother and daughter cells.

1. As previously, plot the phenotypes as a scatter plot against each other, with one observation

on the x axis and the other along the y axis, and now use a color scale for the time (Figure 8A)

or make a 3D plot where the z axis is time and each cell is plotted with a different color/symbol

(Figure 8B). These figures can be generated in MATLAB using the function for plotting in 3D axis

scatter3D(); an example of this application is provided within scatter3d_Compare2intervals.m un-

der the directory PHYLOCELLcomplenent on Github (https://github.com/aguilar-gomez/

SingleCellLineageAnalysis).

Correlations and partial correlations over time

1. Calculate correlations or partial correlations for each cell to itself over two time periods (e.g., two

inductions) or pairs of cells (mothers and daughters) over their time trajectories to obtain a distri-

bution of correlations.

2. Plot as e.g., boxplots or violinplots (Figures 8C and 8D).

3. Perform statistical tests to confirm actual differences between groups.

Note: When the phenotype of all of the cells follows the same trend through the experiment

(such as steadily increasing gene expression during an induction), this results in extremely high

values of correlation as the overall trend plays a greater role in determining similarity than

other underlying variables (e.g., relatedness, age, cell cycle, etc.) (Figure 8C). To minimize

this effect, calculate partial correlations (Figure 8D).

Partial correlation measures the degree of association (strength and direction) between two contin-

uous variables, while removing the effect of a third controlling variable. In order to subtract this ef-

fect, calculate an average of the phenotype in the population through time, and use it as the control-

ling variable. For each of the continuous variables that you want to compare, perform a linear

regression to the controlling variable and obtain the residuals.

For a cell xk , the linear regression (ak ) is calculated by testing models (a) where prediction (which is

calculated as the scalar product between themodel and the population average x ), is most similar to

xk , meaning the residues of the subtraction are minimized:

ak = argmin

(XN
i = 1

�
xki � ða,xÞ�2

)
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Figure 8. Analysis figures option C: comparing trajectories of cells over time

(A and B) (A) Single-cell phenotypes plotted on the x axis and y axis, and time with color scale or (B) time on the z axis.

Each dot represents a single cell at a given time point. (A) and (B) were generated in MATLAB, using the functions

plot(x,y) and scatter3(), respectively.

(C) Cells undergoing similar phenotype changes (e.g., induction) over time will have high correlation, regardless of

whether they are related (MD = mother-daughter pairs) or unrelated (UMD = unrelated mother-daughter pairs).

Boxplot elements are as follows: center line, median; diamond, mean; box limits, upper and lower quartiles; whiskers,

1.53 interquartile range; crosses, outliers.

(D) Same dataset as in (C), except calculated with partial correlation. Partial correlation helps to differentiate

underlying sources of similarity by subtracting the population effect. The boxplots of (C) and (D) were generated in

Python using the Matplotlib function matplotlib.pyplot.boxplot().

(E and F) (E) Comparing different strains for coefficient of variation over time for the population of cells at each time

point and (F) within sublineages, which is defined by the lineage of each mother cell at any given time point. Error bars

in E and F are calculated from bootstrapping (31,000) and they are drawn using the standard deviation of the

bootstrap samples. Error bars in (E) and (F) were plotted using the errobar() function in Matplotlib.
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Next, the residue, which represents the part of the phenotype that cannot be explained by the pop-

ulation effect, is calculated for each cell:

rk = xk � ðak , xÞ
Finally, Pearson correlation coefficient is calculated using the residues of two cells:

Partial correlationðr1; r2Þ = covðr1; r2Þ
sr1sr2
Note: The analysis implemented in our previous work (Bheda et al., 2020a) is available on Gi-

thub (https://github.com/aguilar-gomez/SingleCellLineageAnalysis) under the directory Par-

tial Correlationwhich contains a jupyter notebook (PartialCorrelations.ipynb) with the function

partial_corr() used to calculate partial correlations. This function takes three arguments which

all must be vectors of the same size, from which two vectors are used for the correlation and a
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third used as a controlling variable. This analysis returns the Pearson correlation coefficient of

the residuals.

Coefficient of variation over time

1. Calculate coefficients of variation for all cells within the population at each time point to deter-

mine how the noise in expression in the population is changing over time (Figure 8E).

2. For data with lineage information, calculate coefficients of variation between sublineages of cells

ðSLCVÞ. Compare with the population CV to determine whether the population is differentiating

on a single-cell level or on a lineage level (Figure 8F) (Ni et al., 2012).

SLCVðs; tÞ =
ffiffiffiffiffiffi
Nt
Ns

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Ns

PNs

i = 1ðxi � msÞ2
q

ms

Where s and t are time points, and s<t. The second time point t, should be enough time after s to

allow cells to divide at least once. Ns is the number of cells at time s, which are defined as mother

cells, and each mother cell will divide and have its own sublineage. Therefore, Ns is the number

of cells at time s and also the number of sublineages at time t. At time t, Nt is the total number of

cells Ns plus their progeny. The phenotype for each cell is denoted as xki ði = 1;Ns; k = 1;niÞ, where
i indicates the sublineage of a cell and k the number of cells within that sublineage. Then, xi is the

average phenotype among cells of a sublineage and ms is the average across all xi .

3. Bootstrap cells in each time point to create a distribution of CVs and to calculate error bars by the

standard error of the mean (SEM) or the standard deviation (STD).

Note: A Python notebook is available on Github with an example on how to perform this

analysis (https://github.com/aguilar-gomez/SingleCellLineageAnalysis/blob/master/Sublineage_

CV/SLCV.ipynb).
Method D: Asymmetric division of phenotypes

To probe asymmetric inheritance of a phenotype, there are methods to determine whether mother

and daughter cells behave equally, or if there is a bias toward one or the other.

Binomial test

1. Perform a binomial test as a simple method to determine potential asymmetry of memory

inheritance.

Transform the data into a categorical variable by counting the cases k out of the total number of pairs

of related cellsN (mother-daughter relationships) where the mother has higher/lower values than its

daughter. Then, a binomial test can be performed to test the probability ðPÞ that the trait is symmet-

rically inherited ðp = 50%Þ or higher in mothers or daughters.

P =
N!

k!ðN� kÞ! p
k
�
1� p

�n�k
Note: R base has the function biom.test(k,N,p) to perform the test. An example of this analysis

is provided on Github (https://github.com/aguilar-gomez/SingleCellLineageAnalysis) within

the script AsymmetricDivision.R.

Bayesian statistics

1. Assess asymmetric inheritance of a trait with Bayesian Statistics (Figure 9). For this you can

calculate the posterior distribution Pðp��k;NÞ where p is the probability that the mother has
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Figure 9. Analysis figures option D: asymmetric division of phenotypes by posterior distributions

Bayesian statistics can be used to determine the probability that mothers or daughters have a certain phenotype. For

symmetric inheritance, this will be close to 0.5. It is also possible, for example, to compare the probability that a

mutant strain has a different inheritance pattern than aWT. In Bheda et al. (2020a), we implemented these calculations

to determine whether there was a bias in mother cells expressing Gal1-GFP before their daughter cells and identified

a mutant (cit1D) with asymmetric inheritance. The x axis shows the probability of mother cells expressing faster than

their daughters (p). The y axis shows the posterior probability [P(p|k,N)], which is the probability of asymmetric

inheritance (p) given the observed mother cells that started expressing earlier (k) out of the total pair of cells analyzed

(N). This figure was plotted in R using plot() and lines().
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a certain phenotype (e.g., higher expression or faster induction) than its daughter given the data

ðk;NÞ:

P
�
p
��k;N�

=
L
�
k
��p;N�

,p
�
p
�

R
L
�
k
��p;N�

,p
�
p
�
dp

Where L is a binomial likelihood, and pðpÞ is a Beta ð1;1Þ flat prior distribution.

By integrating the distribution in a range [a; b] you can calculate the probability of having a value

anywhere in that range. To determine the probability that the mothers express higher more than

50% of the time, calculate the posterior probability that p is larger than 0.5 by integrating

Pðp��k;NÞ on the interval [0.5,1]. A probability outcome of 0.5 would then indicate that mothers or

daughters express equally (Figure 9), where CDF is the cumulative distribution function.

Z 1

0:5

P
�
p
��k;N�

dp =
1�
Z 0:5

0

P
�
p
��k;N�

dp =
= 1� CDFð0:5Þ
To compare strains/conditions to a control/WT, calculate the probability that p of the mutant is

larger than p of the wild type (taking into account posterior uncertainty) with Dx = xi + 1 � xi as the

step size. Z
PWT

�
p = x

�
,Pmutant

�
p> x

�
dx =
Z
PWT

�
p = x

�
,ð1�CDFmutantðxÞÞdx =
zDx
XN
i = 0

PWT

�
p = xi

�
,ð1�CDFmutantðxiÞÞ
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Where PWT and Pmutant are the posterior distributions of the WT and the mutant strains, respectively.

Note: The code is available within the AsymmetricDivision.R script mentioned above. The

function dbeta() in R is used to calculate and plot the distributions, and the function pbeta()

is used to calculate probability values against an expected outcome.
Method E: Assessing statistical significance

Here we suggest a few tests and considerations for data from the protocol and analyses above to

compare different strains/conditions/samples and determine whether they are statistically signifi-

cant from each other.

Sample size

1. Ensure that the number of cells does not differ greatly between the groups and that there are not

too many observations in each group.

Note: For comparisons from cell-tracking microfluidics experiments, we have compared

�30–300 single cells/pairs of cells from each group.

Note: Large numbers of data can affect the p-value in a way such that everything appears to be

statistically significant, resulting in false positive differences due to e.g., technical variability

between experiments and not true biological differences. If you are interested in identifying

differences in strains or conditions, one way to account for this is to include multiple technical

and biological replicates of a reference (usually WT) strain/condition. This also highlights the

importance of considering the effect sizes (Sullivan and Feinn, 2012). For more on this see

below.

Control samples

2. Create a control sample to compare related cells by reshuffling pairs of cells (same cell at

different time points or in different conditions, or mothers vs daughters) into unrelated pairs

to differentiate between population effects and effects on maintenance/inheritance of pheno-

types.

Note: Related and unrelated pairs may behave similarly if the phenotype is not inherited or

there is not variability in gene expression in the population.

Note: Reshuffling to form unrelated pairs results in a number of combinations that is much

greater than the number of related cells. If the total number of cells in the population is N,

then we have NðN�1Þ
2 possible pairs. Then if we have x related pairs of cells, we would have

NðN�1Þ
2 � x unrelated pairs of cells. To keep sample sizes similar, you can sample the unrelated

pairs of cells by randomly selecting the same number of pairs that you have for the related

cells.

Test for normality

3. Determine whether your data are normally distributed.

Note: You can use graphical methods like the quantile-quantile plot or a histogram of your

data and check whether the shape of the histogram looks like a normal probability curve. How-

ever, if you want a formal method you can use a one-sample Kolmogorov-Smirnov test, the

Shapiro–Wilk test, or the Anderson–Darling test.
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Comparing two samples

4. To determine whether two samples have been drawn from the same distribution you can use the

common t-test if your data are continuous variables, normally distributed, and homogenous in

variance. If the data are not normally distributed, then non-parametric statistical tests, such as

the Mann-Whitney U test or a two-sample Kolmogorov-Smirnov test, are recommended.

Note: All these tests are available in multiple software packages, here we just list a few: R base

has the following functions for t-test, Mann-Whitney U (also known as Wilcoxon rank sum test)

and Kolmogorov-Smirnov: t.test(), wilcox.test(), ks.test(). In Python the scipy.statsmodule con-

tains ttest_ind(),mannwhitneyu(), ks_2samp() for the equivalent tests. In all of the tests the null

hypothesis is that the samples have been drawn from the same distribution. The alternative

hypothesis default is ‘‘two-sided,’’ but there is a parameter that can be changed to ‘‘greater’’

or ‘‘lower’’ if you want to test for that specifically. For comparing more than two samples

ANOVA can be used, or several other pairwise tests can be performed.

Effect size

5. Consider the size of the effect and whether it is large enough for the effect to be considered

meaningful. The effect size is the magnitude of the difference between groups.

Note: The magnitude that would be meaningful requires some domain knowledge of the

specific question and the units of the phenotype that is being measured. There are different

ways of assessing the effect size. One of the simplest ways is to subtract the means of the

different groups and divide by the standard deviation of either group (Cohen’s d). The effect

size with this calculation is considered roughly in the following way: small-0.2, medium-0.5,

large-0.8, very large-1.3. One of the advantages of the two-sample Kolmogorov-Smirnov

tests is that besides calculating a p-value, the tests quantifies a distance between samples

(D statistic).

Correcting p values for multiple testing

6. Correct p values for multiple testing when comparing multiple strains/conditions/samples, as the

incidence of a falsely significant p-value increases with each test.

Note: There are several methods for multiple correction testing. It is recommended to choose

a method of correction that does not favor the results toward a desired conclusion. The Bon-

ferroni correction method can be easily implemented by multiplying the original p values by

the number of tests performed. This is the most conservative correction method. Another

popular and less stringent correction method is False Discovery Rate (FDR). FDR has greater

power than Bonferroni, which means it is better at avoiding type II errors (false negatives). The

power comes at a cost of increased number of type I errors (false positives) compared to Bon-

ferroni. R base contains the function pdjust() where the parameter method is used to specify

whichmethod (Bonferroni, FDR, etc) of correction is desired. Python has amodule called stats-

models.stats.multitest with a function multipletests() that works the same way, having a

parameter to specify the correction method.
LIMITATIONS

The microfluidics chip used in Bheda et al. (2020a) is suitable for tracking lineages of cells, but is

limited by a maximum number of cells before cell tracking becomes very difficult and prone to

numerous errors. If the time lapse is started with �2 cells in the field of interest, then all cells in

�8 generations can be accounted for and reasonably tracked with 3-min image resolution.
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Depending on the question of interest, you may want to use fluorescence reporters as in Bheda et al.

(2020a), although there are reports of cell-tracking data using microfluidics where fluorescence re-

porters are not used and, for example, they rather follow individual cell or colony growth (Cerulus

et al., 2018).

If you employ fluorescence reporters, it is possible that prolonged light exposure from taking mul-

tiple phase contrast and fluorescence images with high time resolution could affect the fitness of the

cells.

To determine whether this is a problem in your experiments, you can compare the well-being of the

cells in your cell-tracking microfluidics experiments to yeast that have not been exposed to excita-

tion light, e.g., subjected to only phase contrast images taken every 15 min to 1 h. For this, you can

examine whether there are any noticeable phenotypic differences, e.g., increase in the number of

vacuoles or cell death. For a more quantitative test, you can also calculate and compare growth rates

for the cells with and without fluorescence excitation (Schmidt et al., 2018). If you are comparing your

data between a wild-type strain and other conditions or mutants, and your growth and imaging con-

ditions are the same, the light incidence is also identical for all strains, and therefore it would be un-

likely that your results are affected by the imaging procedure. Additionally, you may want to validate

your data with other methods, such as testing bulk expression by RT-qPCR analyses.
TROUBLESHOOTING

Problem

Too many cells are captured in each microchannel at the start of the microfluidics experiment.
Potential solution

Cell cultures that are in low log phase do not need to be diluted prior to injecting into a microcham-

ber. However, if too many cells are being captured in the microchannels, it may help to dilute the

cultures in the same media prior to the injection. Additionally, captured cells can be flushed out

by injecting more culture with a slightly harder push on the syringe.
Problem

Cells are lost/washed out or images lose focus during the microfluidics experiment.
Potential solution

Flow rates that are too high can cause cells to be lost, especially those growing at the periphery of

the colony. For this reason, we recommend using a flow rate between 10–50 mL. Problems with high

pressure can also result in sudden, small delaminations of the PDMS chip from the glass coverslip.

Small changes in the height of the microfluidics channels can cause cells to be flushed away or im-

aging to lose focus. This could occur due to clogging of the microchamber/microchannel with dust

particles/debris from the media. To eliminate this issue, we recommend filtering the media with a

0.22 mmfilter just prior to use, such that particulate matter that could clog the channels are removed.
Problem

There are too many cell mapping errors toward the end of the experiment, making manual correc-

tion of cell identities in the segmentation files very time-consuming.
Potential solution

Long cell-tracking microfluidics experiments face the problem that toward the end of the experi-

ment, there are many cells that are all growing and dividing and pushing each other. This makes

it difficult for any mapping algorithm to function properly, as they use a limited cellular displacement

to aid in mapping. If this is a problem in your experiments, start with fewer cells in each microchannel

at the beginning of the experiment.
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be ful-

filled by the Lead Contact, Poonam Bheda (poonam.bheda@helmholtz-muenchen.de, poonam.j.

bheda@gmail.com).

Materials availability

The reagents generated in this study are available upon request from the Lead Contact, Poonam

Bheda (poonam.bheda@helmholtz-muenchen.de, poonam.j.bheda@gmail.com). The CAD file for

the microfluidics chip design used in Bheda et al. (2020a) is available at Mendeley Data (https://

data.mendeley.com/datasets/yr2nrysyyx/1) (Bheda et al., 2020b).

Data and code availability

Analysis scripts for cell-tracking microfluidics are available on Github (https://github.com/

aguilar-gomez/SingleCellLineageAnalysis). On this Github we have some sample datasets available,

in the directory Partial Correlations, the fileMotherDaughterWT.txt contains single-cell data over

time for a second galactose induction of yeast cells and includes lineage information (mother cell

specified). The directories Sublineage_CV and TimeSeriesPlot also contain sample datasets of sin-

gle-cell data over two galactose inductions of the WT strain and unspecified mutants (labeled

Mutant1 and Mutant2). Additional sample datasets are available from the authors upon request.

PhyloCell and Autotrack software are available on Github (https://github.com/gcharvin).

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.xpro.2020.100228.
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