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On the hydrostatic limit of stably stratified fluids with isopycnal diffusivity

Roberta Bianchini and Vincent Duchêne

ABSTRACT. This article is concerned with the rigorous justification of the hydrostatic limit for continuously
stratified incompressible fluids under the influence of gravity.

The main peculiarity of this work with respect to previous studies is that no (regularizing) viscosity con-
tribution is added to the fluid-dynamics equations and only diffusivity effects are included. Motivated by
applications to oceanography, the diffusivity effects included in this work are induced by an advection term
whose specific form was proposed by Gent and McWilliams in the 90’s to model effective eddy correlations for
non-eddy-resolving systems.

The results of this paper heavily rely on the assumption of stable stratification. We provide the well-
posedness of the hydrostatic equations and of the original (non-hydrostatic) equations for stably stratified fluids,
as well as their convergence in the limit of vanishing shallow-water parameter. The results are established in
high but finite Sobolev regularity and keep track of the various parameters at stake.

A key ingredient of our analysis is the reformulation of the systems by means of isopycnal coordinates,
which allows to provide careful energy estimates that are far from being evident in the original coordinate
system.

1. Introduction

The following system describes the evolution of heterogeneous incompressible flows under the influence
of gravity,

∂tρ+ (u+ u?) · ∇xρ+ (w + w?)∂zρ = 0,

ρ
(
∂tu+ ((u+ u?) · ∇x)u+ (w + w?)∂zu

)
+∇xP = 0,

ρ
(
∂tw + (u+ u?) · ∇xw + (w + w?)∂zw

)
+ ∂zP + g ρ = 0,

∇x · u+ ∂zw = 0,

P |z=ζ − Patm = 0,

∂tζ + (u+ u?)|z=ζ · ∇xζ − (w + w?)|z=ζ = 0,

w|z=−H = 0.

(1.1)

Here, t and (x, z) are the time, and horizontal-vertical space variables, and we denote by ∇x,∆x the
gradient and Laplacian with respect to x. The vector field (u, w) ∈ Rd × R is the (horizontal and vertical)
velocity, ρ > 0 is the density, P ∈ R is the incompressible pressure, all being defined in the spatial domain

Ωt = {(x, z) : x ∈ Rd, −H < z < ζ(t,x)},

where ζ(t,x) describes the location of a free surface, andH is the depth of the layer at rest. The gravity field
is assumed to be constant and vertical, and g > 0 is the gravity acceleration constant. Finally, (u?, w?) ∈
Rd × R are correctors of the effective transport velocities that take into account eddy correlations in non-
eddy-resolving (large-scale) models. Their specific forms were proposed by Gent & McWilliams [13] and
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2 R. BIANCHINI AND V. DUCHÊNE

read as follows

u? = κ∂z

(
∇xρ
∂zρ

)
, w? = −κ∇x ·

(
∇xρ
∂zρ

)
, κ > 0 . (1.2)

Discarding the effective advection terms (i.e. setting κ = 0), one recovers the Euler equations for heteroge-
neous incompressible fluids under the influence of vertical gravity forces, where the last two lines of (1.1)
model the kinematic equation at the free surface and the impermeability condition of the rigid bottom re-
spectively.

In (1.1), the pressure P can be recovered from its (atmospheric) value at the surface, Patm, by solving
the elliptic boundary-value problem induced by the incompressibility constraint of divergence-free velocity
fields. Yet in the shallow-water regime, where the horizontal scale of the perturbation is large compared
with the depth of the layer H , formal computations (see below) suggest that vertical accelerations can be
neglected and that the pressure P approximately satisfies the hydrostatic balance law, that is

∂zP + g ρ = 0. (1.3)

Replacing the equation for the vertical velocity in (1.1) by the identity in (1.3) yields the so-called hydro-
static equations:

∂tρ+ u · ∇xρ+ w∂zρ = κ

[
∇x ·

(
∇xρ
∂zρ

)
∂zρ− ∂z

(
∇xρ
∂zρ

)
· ∇xρ

]
,

ρ
(
∂tu+ (u · ∇x)u+ w∂zu

)
+∇xP = κρ

[
∇x ·

(
∇xρ
∂zρ

)
∂zu− ∂z

(
∇xρ
∂zρ

)
· ∇xu

]
,

P = Patm + g

∫ ζ

z
ρ(z′, ·) dz′,

w = −
∫ z

−H
∇x · u(z′, ·) dz′,

∂tζ + u|z=ζ · ∇xζ − w|z=ζ = −κ
[
∇x ·

(
∇xρ
∂zρ

) ∣∣
z=ζ

+ ∂z

(
∇xρ
∂zρ

) ∣∣
z=ζ
· ∇xζ

]
.

(1.4)

Our aim in this work is to rigorously justify the hydrostatic equations (1.4) as an asymptotic model for the
non-hydrostatic equations (1.1)-(1.2) in the shallow-water regime, for regular and stably stratified flows.

Modeling aspects. Let us now discuss the relevance and our motivation behind the introduction of the
additional transport velocities u? and w? defined in (1.2). While taking into account viscosity effects is
standard in mathematical treatments of fluid mechanics, it should be mentioned that the aforementioned
shallow-water regime where horizontal scales are larger than vertical scales produces anisotropic viscosity
terms which are predominant in the vertical direction. However, it is worth pointing out that in theoretical
and laboratory studies on density-stratified geophysical flows, viscosity effects do not model molecular
viscosity but rather “turbulent” or “eddy” viscosities, and are widely reported to be anisotropic and only
relevant in the horizontal (or more precisely isopycnal) direction; see e.g. [17, Section 17.6]. In this work
we decide to neglect altogether viscosity effects and rather focus on diffusivity. The deterministic modeling
of effective diffusivity induced by eddy correlation that we adopt in this work takes its roots in the 90’s
and is due to Gent & McWilliams [13], see also [14, 15]. It adds suitable correctors, specifically sugges-
ting (1.2), to the advective velocity field of the system of inhomogeneous incompressible fluids submitted
to gravity as in (1.1). Since mesoscale eddies have an averaged dissipative effect on the large-scale flow at
the macroscopic level, then it is natural to consider our unknowns (ρ,u, w) as the large-scale components
of the density and the velocity field respectively, according to [13].

This work is motivated by studying theoretically the interplay between (stable) stratification, shallow
water limits, and diffusive effects, and leaves aside other important ingredients which are usually considered
in the so-called primitive equations modeling large-scale flows (see e.g. [17]): typically the rotational
effects, vertical boundaries, bathymetry and several tracers —say salinity and temperature— coupled by an
equation of state. Many of these constituents could be easily incorporated in our study at the price of blurring
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the main mechanisms at stake, while interesting singular limits (geostrophic balance, boundary layers, etc.)
would of course deserve a specific treatment.

Let us finally mention that there exists a huge mathematical literature dedicated to the investigation of
fluid-dynamics equations in the probabilistic setting, where the cumulative effect of mesoscale eddies on
the large-scale flow is modeled by means of suitable (additive or multiplicative) noises. For that context, we
refer to [9, 10], while our setting will be completely deterministic.

Previous mathematical results and motivation. At a technical level, the main reason to introduce
viscosity or diffusivity contributions in the equations is that, without any of them, the initial-value problem
for the hydrostatic equations is not known to be well-posed in finite-regularity functional spaces. In fact,
restricting to homogeneous flows (that is ρ being constant), ill-posedness was established by Renardy [30]
at the linear level, and Han-Kwan and Nguyen [18] at the nonlinear level. Yet if we additionally assume that
the initial data satisfies the Rayleigh condition of (strict) convexity/concavity in the vertical direction, well-
posedness is restored [3, 16, 25]. Now, assuming stably stratified flows, the celebrated Miles and Howard
criterion [19, 26] states that the linearized equations about equilibria (ρ(z),u′(z)) do not exhibit unstable
modes (in dimension d = 1, see [12, Remark 1.3] when d = 2) provided that the local Richardson number
is greater than 1/4 everywhere, that is

∀z ∈ [−H, 0], |u′(z)|2 ≤ 4g

(−ρ′(z)
ρ(z)

)
.

Notice that the stabilizing (resp. destabilizing) effect of the stable stratification (resp. shear velocity) is
clearly encoded by the above criterion. However, we underline again that the well-posedness of the (nonlin-
ear) hydrostatic equations for initial data (strictly) satisfying the above inequality is still an open problem.

This is in sharp contrast with the available results on the non-hydrostatic equations. In this context,
we mention the recent work by Desjardins, Lannes and Saut [7], which is close to our framework and
provides the well-posedness of the (inviscid and non-diffusive) non-hydrostatic equations in Sobolev spaces
(using the rigid-lid assumption). Even though the stabilizing effect of the stable stratification is also a
key ingredient of that work, it is not powerful enough to prove that the lifespan of the solutions to the
non-hydrostatic equations is uniform with respect to the shallow-water parameter measuring the ratio of
vertical to horizontal lengths, without additional smallness conditions on the initial data. A more detailed
comparison between [7] and our results is provided later on.

From the technical viewpoint, the reason of this discrepancy – in terms of the available results – between
the non-hydrostatic and hydrostatic equations is that the vertical velocity variable w changes its role passing
from prognostic (when it belongs to the set of unknowns) to diagnostic (when it is reconstructed from the
unknowns), whence losing one order of regularity; see the fourth equation in (1.4).

In order to overcome the difficulties related to this loss of derivatives, without restricting the analysis to
then analytic setting as already done in [21, 27], one natural approach is the introduction of (regularizing)
viscosity contributions. This is the framework of most of the theoretical studies concerning the hydrostatic
equations and/or the hydrostatic limit, starting with the work of Azérad and Guillén [1]. A landmark in the
theory is the work of Cao and Titi [6] where the global well-posedness of the initial-value problem for the
hydrostatic equations was proved in dimension d+ 1 = 3: this striking result should be compared with the
state of the art on the Navier-Stokes equations. Several mathematical studies, where partial viscosities and
diffusivities and/or more physically relevant boundary conditions are investigated, were established later
on. Rather than providing an extensive bibliography for this huge set of results, we limit ourselves to point
out the works [4, 5], which extended the previous results to the case where only horizontal viscosity and
diffusivity are added to the equations. We also mention [11, 23, 24] (in the homogeneous case) and [28, 29]
(in the heterogeneous case) for recent results on the hydrostatic limit and an extended list of references
(therein).
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A peculiarity of our analysis with respect to the previous ones (with the exception of [7]) is that we shall
crucially use the (stable) density stratification assumption, but we completely neglect viscosity-induced reg-
ularization and only allow for diffusivity effects. We shall also keep track of all relevant parameters in our
estimates, and in particular will use diffusivity-induced regularization only when crucially needed. This
allows to characterize the relevant convergence rates and timescales, and to exhibit a balance between the
destabilizing effect of shear velocities and the stabilizing result of diffusivity. Moreover, to the best of our
knowledge, this is the first rigorous mathematical study where the specific form of the diffusivity contribu-
tions, due to Gent and McWilliams [13] and modeling effective diffusivity induced by eddy correlation, is
taken into account. It is worth highlighting that the specific form of the effective advection terms in (1.2)
stems from isopycnal diffusivity: consistently, we will study equations (1.1) and (1.4) in the coordinate
system known as isopycnal coordinates (hence intrinsically relying on the stable stratification assumption).

In the following paragraph, we rewrite the equations passing to isopycnal coordinates. Our main results
are described and discussed thereafter, and proved in the next sections.

The model in isopycnal coordinates and non-dimensionalization. Let us consider smooth solutions
to (1.1) defined on a time interval It. Assuming that the flow is stably stratified, i.e.

inf(−∂zρ) > 0,

the density ρ : z → ρ(·, ·, z) is an invertible function of z. We denote its inverse η : %→ η(·, ·, %), so that

ρ(t,x, η(t,x, %)) = %, η(t,x, ρ(t,x, z)) = z.

We also assume that ρ(t,x,−H) = ρ1, ρ(t,x, ζ(t,x)) = ρ0 for (t,x) ∈ It × Rd, where ρ0 < ρ1 are two
fixed and positive constant reference densities. Then we have

η : It × Ω→ R with Ω := Rd × (ρ0, ρ1) and h := −∂%η > 0, (1.5)

the latter inequality accounting for the stable stratification assumption. We now introduce

ǔ(t,x, %) = u(t,x, η(t,x, %)), w̌(t,x, %) = w(t,x, η(t,x, %)), P̌ (t,x, %) = P (t,x, η(t,x, %)).

From the chain rule, we infer that system (1.1) in isopycnal coordinates reads

∂tη + ǔ · ∇xη − w̌ = κ∆xη,

%
(
∂tǔ+

(
(ǔ− κ∇xhh

)
· ∇x

)
ǔ
)

+∇xP̌ +
∇xη
h

∂%P̌ = 0,

%
(
∂tw̌ +

(
ǔ− κ∇xhh

)
· ∇xw̌

)
− ∂%P̌

h
+ g% = 0,

−h∇x · ǔ− (∇xη) · (∂%ǔ) + ∂%w̌ = 0,

P̌
∣∣
%=ρ0

= Patm, w̌
∣∣
%=ρ1

= 0.

(1.6)

Notice that differentiating with respect to % the first equation and using the fourth equation (stemming from
the incompressibility constraint), the mass conservation reads

∂th+∇x · (hǔ) = κ∆xh. (1.7)

At this point, we are ready to introduce a dimensionless version of the previous system. We are interested
in departures from steady solutions to the incompressible Euler equations with variable density:

(heq,ueq, weq, Peq) = (h(%),u(%), 0, P (%)),

which satisfy the equilibrium condition

∂%P (%) = g%h(%).
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Therefore, we consider (non-necessarily small) fluctuations of that steady solution, so that our unknowns
admit the following decomposition:

h(t,x, %)= h(%) + hpert(t,x, %), ǔ(t,x, %) = u(%) + upert(t,x, %),

w̌(t,x, %) = 0 + wpert(t,x, %), P̌ (t,x, %) = P (%) + Ppert(t,x, %).

Furthermore, we non-dimensionalize the equations through the following scaled variables: we set

h(t,x, %)

H
= h̃(%) + h̃(t̃, x̃, %) and

ǔ(t,x, %)√
gH

= ũ(%) + ũ(t̃, x̃, %),

and 1

λ

H

w̌(t,x, %)√
gH

= w̃(t̃, x̃, %),
P̌ (t,x, %)

gH
=
Patm

gH
+

∫ %

ρ0

%′h̃(%′) d%′ + P̃ (t̃, x̃, %),

where we use the following scaled coordinates2

x̃ =
x

λ
and t̃ =

√
gH

λ
t.

Introducing the dimensionless diffusion parameter, κ̃ and the shallowness parameter, µ, through

κ̃ =
κ

λ
√
gH

and µ =
H2

λ2
,

substituting the scaled coordinates/variables in system (1.6) and the subsequent equation and dropping the
tildes for the sake of readability yields

∂th+∇x ·
(
(h+ h)(u+ u)

)
= κ∆xh,

%
(
∂tu+

(
(u+ u− κ∇xhh+h ) · ∇x

)
u
)

+∇xP +
∇xη
h+ h

(%h+ ∂%P ) = 0, (1.8)

µ%
(
∂tw + (u+ u− κ∇xhh+h ) · ∇xw

)
− ∂%P

h+ h
+

%h

h+ h
= 0,

−(h+ h)∇x · u−∇xη · (u′ + ∂%u) + ∂%w = 0, (div.-free cond.)

η(·, %) =

∫ ρ1

%
h(·, %′) d%′, P

∣∣
%=ρ0

= 0, w
∣∣
%=ρ1

= 0. (bound. cond.)

The hydrostatic system is obtained by setting µ = 0 in (1.8). Specifically, plugging the hydrostatic
balance

∂%P

h+ h
=

%h

h+ h
and P

∣∣
%=ρ0

= 0

into the second equation of (1.8) yields

∂th+∇x · ((h+ h)(u+ u)) = κ∆xh,

%
(
∂tu+

(
(u+ u− κ∇xhh+h ) · ∇x

)
u
)

+∇xψ = 0,
(1.9a)

with

ψ(t,x, %) =

∫ %

ρ0

%′h(t,x, %′) d%′ + %

∫ ρ1

%
h(t,x, %′) d%′

= ρ0

∫ ρ1

ρ0

h(t,x, %′) d%′ +

∫ %

ρ0

∫ ρ1

%′
h(t,x, %′′) d%′′ d%′. (1.9b)

1Notice the different scaling between the horizontal and vertical velocity fields. There, λ is a reference horizontal length.
2We could scale also the %-coordinate. Adjusting accordingly the other variables, this amounts to setting ρ0 = 1 (say). In the

following we shall not discuss the dependency with respect to ρ1, and in particular the physically relevant limit of small density
contrast, ρ1−ρ0

ρ0
� 1; see [8] and references therein.
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We shall provide a rigorous proof of the convergence of (smooth) solutions to (1.8) towards (smooth) solu-
tions to (1.9) as µ↘ 0, under the stable stratification assumption, h+ h > 0.

Our main results. Our main results are stated and commented below. Some notations, and in particular
the Sobolev spacesHs,k(Ω), are introduced right after. First, we prove the existence, uniqueness and control
of the solutions to the hydrostatic system (1.9) for sufficiently smooth initial data. Let us point out that the
existence time of our solutions encodes the aforementioned stabilizing (resp. destabilizing) effect of the
stable stratification (resp. shear velocity).

THEOREM 1.1. Let s, k ∈ N be such that s > 2+ d
2 , 2 ≤ k ≤ s, andM,M,h?, h

? > 0 and 0 < ρ0 < ρ1

be fixed. Then there exists C > 0 such that for any κ ∈ (0, 1], any h,u ∈W k,∞((ρ0, ρ1)) satisfying∣∣h∣∣
Wk,∞
%

+
∣∣u′∣∣

Wk−1,∞
%

≤M

and any initial data (h0,u0) ∈ Hs,k(Ω), with η0(·, %) =
∫ ρ1
% h0(·, %′) d%′, satisfying the following estimate

M0 :=
∥∥η0

∥∥
Hs,k +

∥∥u0

∥∥
Hs,k +

∣∣η0

∣∣
%=ρ0

∣∣
Hs
x

+ κ1/2
∥∥h0

∥∥
Hs,k ≤M ;

and the stable stratification assumption

∀(x, %) ∈ Ω, h? ≤ h(%) + h0(x, %) ≤ h?,
there exists a unique (hh,uh) ∈ C0([0, T ];Hs,k(Ω)1+d) solution to (1.9) and (hh,uh)

∣∣
t=0

= (h0,u0),
where

T−1 = C
(
1 + κ−1

(∣∣u′∣∣2
L2
%

+M2
0

))
. (1.10)

Moreover, hh ∈ L2(0, T ;Hs+1,k(Ω)) and one has, for any t ∈ [0, T ],

∀(x, %) ∈ Ω, h?/2 ≤ h(%) + h(t,x, %) ≤ 2h?,

and, denoting ηh(·, %) =
∫ ρ1
% hh(·, %′) d%′,∥∥ηh(t, ·)

∥∥
Hs,k +

∥∥uh(t, ·)
∥∥
Hs,k +

∣∣ηh
∣∣
%=ρ0

(t, ·)
∣∣
Hs
x

+ κ1/2
∥∥hh(t, ·)

∥∥
Hs,k

+ κ1/2
∥∥∇xηh

∥∥
L2(0,T ;Hs,k)

+ κ1/2
∣∣∇xηh

∣∣
%=ρ0

∣∣
L2(0,T ;Hs

x)
+ κ
∥∥∇xhh

∥∥
L2(0,T ;Hs,k)

≤ CM0.

In our second main result, we prove that within the timescale defined by (1.10), there exist solutions to
the non-hydrostatic equations (1.8) for µ sufficiently small, and they converge towards the corresponding
solutions of the hydrostatic equations, with the expected O(µ) convergence rate.

THEOREM 1.2. There exists p ∈ N such that for any k = s ∈ N, M,M,h?, h
? > 0 and 0 < ρ0 < ρ1,

there exists C > 0 such that the following holds. For any 0 < M0 ≤M , 0 < κ ≤ 1, and µ > 0 such that

µ ≤ κ/(CM2
0 ),

for any for any (h,u) ∈W k+p,∞((ρ0, ρ1))2 satisfying∣∣h∣∣
Wk+p,∞
%

+
∣∣u′∣∣

Wk+p−1,∞
%

≤M ;

for any initial data (h0,u0, w0) ∈ Hs+p,k+p(Ω)2+d satisfying the boundary condition w0|%=ρ1 = 0 and the
incompressibility condition

−(h+ h0)∇x · u0 − (∇xη0) · (u′ + ∂%u0) + ∂%w0 = 0,

(denoting η0(·, %) =
∫ ρ1
% h0(·, %′) d%′), the inequality∥∥η0

∥∥
Hs+p,k+p +

∥∥u0

∥∥
Hs+p,k+p +

∣∣η0

∣∣
%=ρ0

∣∣
Hs+p
x

+ κ1/2
∥∥h0

∥∥
Hs+p,k+p = M0 ≤M

and the stable stratification assumption

∀(x, %) ∈ Ω, h? ≤ h(%) + h0(x, %) ≤ h?,
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the following holds. Denoting (hh,uh) ∈ C0([0, T h];Hs+p,k+p(Ω)1+d) the solution to the hydrostatic
equations (1.9) with initial data (hh,uh)

∣∣
t=0

= (h0,u0) provided by Theorem 1.1, there exists a unique
strong solution (hnh,unh, wnh) ∈ C([0, T h];Hs,k(Ω)2+d) to the non-hydrostatic equations (1.8) with initial
data (hnh,unh, wnh)

∣∣
t=0

= (h0,u0, w0). Moreover, one has∥∥hnh − hh
∥∥
L∞(0,Th;Hs,k)

+
∥∥unh − uh

∥∥
L∞(0,Th;Hs,k)

≤ C µ.

Strategy of the proofs. The proofs of our results rely mainly on the energy method, exhibiting the
structure of the systems of equations trough well-chosen energy functionals and making use of product,
commutator and composition estimates in the L2-based Sobolev spaces Hs,k(Ω) (that are summarized in
the Appendix).

The natural energy functional associated with the hydrostatic equations, (1.9) involves η, u as well
as η|%=ρ0 (that represents the free surface), and their derivatives. A key point is that we do not control
h = −∂%η (see 1.5) in the same regularity class of η, unless it is multiplied by the prefactor κ1/2. We
crucially use the diffusivity-induced regularization in order to control terms stemming from the commutator
between advection and density integration in the equation of mass conservation, i.e. the first equation
in (1.9). This explains why the time of existence of our solution in (1.10) vanishes as κ ↘ 0, yet with
a prefactor involving the shear velocity, u′(%) (since advection with a %-independent velocity commutes
with density integration). It is interesting to notice that the index of regularity with respect to the space
variable, s, and the one with respect to the density variable, k, are decoupled (yet only in the hydrostatic
framework). This is due to the fact that the isopycnal change of coordinate is semi-Lagrangian: the advection
in isopycnal coordinates occurs only in the horizontal space directions. It would be of utmost interest (but
outside of the scope of the present work) to decrease the regularity assumption with respect to the density
variable, so as to admit discontinuities, representing density interfaces.

Concerning the non-hydrostatic system, (1.8), the natural energy space involves additionally
√
µw and

its derivatives (hence the control vanishes as µ ↘ 0). In order to obtain suitable energy estimates, we
decompose the pressure as the sum of the hydrostatic contribution and the non-hydrostatic contribution, the
latter being of lower order in terms of regularity and/or smallness with respect to µ � 1. Then we use
the structure of the hydrostatic equations, which we complement with an additional symmetric structure
for the non-hydrostatic contributions. There, the difficulty consists in providing controls of the energy
norms that are uniform with respect to the vanishing parameter µ � 1. Our estimates concerning the non-
hydrostatic contribution of the pressure stem from elliptic estimates on a boundary-value problem. This
strategy is heavily inspired by the work of Desjardins, Lannes and Saut, and it is interesting to compare
our results with the analogous “large-time” well-posedness result in [7, Theorem 2]. Firstly, due to the
choice of isopycnal coordinates, our boundary-value problem is no longer an anisotropic Poisson equation
but involves a fully nonlinear elliptic operator. Since this operator involves h that is not controlled in the
energy space, we use again the diffusivity-induced regularization at this stage. On the plus side, using
isopycnal coordinates rather than Eulerian coordinates allows us to consider the free-surface framework
(since isopycnal coordinates readily set the domain as a flat strip, thanks to our assumption that the density
is constant at the surface and at the bottom) rather than the rigid-lid setting. We believe that our study can be
extended to the rigid-lid framework with small adjustments. Incidentally, we do not employ the often-used
Boussinesq approximation, since it is not useful in our context. Additionally, we do not rely on the use of
strong boundary conditions on the initial density and velocities and their derivatives at the surface and the
bottom, which instead are assumed in [7] (and in most of the other works, often put in a periodic framework)
and rather use only the natural no-slip boundary condition at the bottom; the former allow to cancel the trace
contributions resulting from vertical integration by parts. We also consider the general situation where the
velocity field is a perturbation of a non-zero background current, u. In turn, the price to pay to handle
this general framework manifests in terms of some restrictions on the length of the time of existence of our
solutions, which is inversely proportional with respect to the size of the fluctuations in [7, Theorem 2].

Our strategy for the proof of the convergence is as follows. Now we describe our strategy to prove the
convergence of the solutions to the non-hydrostatic system towards the hydrostatic one. First, we point out
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that a direct use of energy estimates as previously allows to obtain the existence of solutions of the non-
hydrostatic equations in a timescale uniform with respect to µ but not necessarily the same as the existence
time of the corresponding solution to the hydrostatic equations, and (for technical reasons) restricted to
sufficiently small data. To overcome these issues, we look at the hydrostatic solution as an approximate
solution to the non-hydrostatic system (in the sense of consistency, as it approximately solves the non-
hydrostatic equations), and deduce, using the aforementioned structure of the non-hydrostatic equations, an
energy inequality that controls the difference between the solution to the non-hydrostatic system and the
(respective) solution to the hydrostatic one. This stratey allows to bootstrap the control of the difference
of the two solutions (and hence the control of the solution to the non-hydrostatic equations) within the
timescale of existence (in a higher-regularity space) of the hydrostatic solution, provided that the parameter
µ is sufficiently small. However, the rate of convergence obtained by this method is not optimal. Therefore,
in a second step we implement another strategy to obtain the expected (optimal) convergence rate. It simply
consists in taking the opposite viewpoint: to look at the solution to the non-hydrostatic equations as an
approximate solution to the hydrostatic equations (again in the sense of consistency) and use the structure
of the hydrostatic equations to infer the O(µ) convergence rate. Both steps involve loss of derivatives,
described by the parameter p in Theorem 1.2.

Plan of the paper. Section 2 is dedicated to the proof of Theorem 1.1 concerning the initial-value
problem for the hydrostatic equations, (1.9).

In Section 3, we analyze the non-hydrostatic equations, (1.8). We first provide elliptic estimates for
the boundary-value problem of the pressure reconstruction (Lemma 3.1 and Corollary 3.2), and use them to
infer two partial results concerning the initial-value problem: Proposition 3.3 (restricted to small time) and
Proposition 3.8 (restricted to small data).

In Section 4, we show the convergence of solutions to the non-hydrostatic equations towards corre-
sponding solutions to the hydrostatic equations as µ↘ 0, concluding the proof of Theorem 1.2.

Finally, in Appendix A we provide product, commutator and composition estimates in the Sobolev
spaces Hs,k(Ω).

Notation and conventions. We highlight the following conventions used throughout the paper.
• ρ0 and ρ1 are fixed constants such that 0 < ρ0 < ρ1, and the dependency with respect to these

constants is never explicitly displayed.
• For k, s ∈ N and k ≤ s, and Ω = Rd × (ρ0, ρ1), we define the functional space

Hs,k(Ω) =
{
f : ∀(α, j) ∈ Nd+1, |α|+ j ≤ s, j ≤ k, ∂αx ∂j%f ∈ L2(Ω)

}
, (1.11)

endowed with the topology of the norm∥∥f∥∥2

Hs,k :=

k∑
j=0

s−j∑
|α|=0

∥∥∂αx ∂j%f∥∥2

L2(Ω)
. (1.12)

When s′ ∈ R (and k ∈ N) we define Hs′,k(Ω) =
{
f : ∀j ∈ N, j ≤ k, Λs∂j%f ∈ L2(Ω)

}
and

∥∥f∥∥2

Hs′,k :=

k∑
j=0

∥∥Λs
′−j∂j%f

∥∥2

L2(Ω)
.

where Λ = (Id−∆x)1/2. Of course the two notations are consistent when s′ = s ∈ N, up to
harmless factors in the definition of the norm.
• We use both the equivalent notations Hs(Rd) = Hs

x (the usual L2-based Sobolev space on Rd)
and W k,∞(Rd) = W k,∞

x (the L∞-based Sobolev space on Rd), and similarly L2((ρ0, ρ1)) = L2
%

and W k,∞((ρ0, ρ1)) = W k,∞
% . For functions with variables in Ω we denote for instance

L2
%L
∞
x = L2(ρ0, ρ1;L∞(Rd)) = {f : ess supx∈Rd |f(·,x)| ∈ L2((ρ0, ρ1))}.
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Notice L2
%L

2
x = L2

xL
2
% = L2(Ω) and L∞% L

∞
x = L∞x L

∞
% = L∞(Ω). We use similar notations

for functions also depending on time. For instance, for k ∈ N, and X a Banach space as above,
Ck([0, T ];X) is the space of functions with values in X which are continuously differentiable up
to order k, and Lp(0, T ;X) the p-integrable X-valued functions. All these spaces are endowed
with their natural norms.
• For any operator A : f → Af , we denote by [A, f ]g = A(fg) − f(Ag) the usual commutator,

while [A; f, g] = A(fg)− f(Ag)− g(Af) is the symmetric commutator,
• C(λ1, λ2, . . . ) denotes a constant which depends continuously on its parameters.
• For any a, b ∈ R, we use the notation a . b (resp. a & b) if there exists C > 0, independent of

relevant parameters, such that a ≤ Cb (resp. a ≥ Cb). We write a ≈ b if a . b and a & b.
• We put a ∨ b := max(a, b). Finally,〈

Ba
〉
a>b

=

{
0 if a ≤ b ,
Ba otherwise,

and
〈
Ba
〉
a=b

=

{
0 if a 6= b ,

Ba otherwise.

2. The hydrostatic system

In this section we study the hydrostatic system in isopycnal coordinates. Specifically, we provide in this
section a well-posedness result on the initial-value problem, namely Theorem 1.1. The result follows from
careful a priori energy estimates, and the standard method of parabolic regularization. Therefore we will
first study the system

∂th+∇x · ((h+ h)(u+ u)) = κ∆xh,

∂tu+
(
(u+ u− κ∇xhh+h ) · ∇x

)
u+ 1

%∇xψ = ν∆xu,
(2.1)

with

∇xψ(t,x, %) := ρ0

∫ ρ1

ρ0

∇xh(t,x, %′) d%′ +

∫ %

ρ0

∫ ρ1

ρ′
∇xh(t,x, %′′) d%′′ d%′,

and ν > 0, and will rigorously establish the limit ν → 0.

2.1. Well-posedness of the regularized hydrostatic system. We start with proving the well-posedness
of the initial value problem.

PROPOSITION 2.1. Let s > 3
2 + d

2 , k ∈ N with 1 ≤ k ≤ s, and M , M0, h?, ν, κ > 0 and C0 > 1. Then
there exists T = T (s, k,M,M0, h?, ν, κ, C0) such that for any (h,u) = (h(%),u(%)) ∈ W k,∞((ρ0, ρ1))
and for any (h0,u0) = (h0(x, %),u0(x, %)) ∈ Hs,k(Ω) such that

inf
(x,%)∈Ω

(h(%) + h0(x, %)) ≥ h?,
∣∣(h,u)

∣∣
Wk,∞
%
≤M,

∥∥(h0,u0)
∥∥
Hs,k ≤M0,

there exists a unique solution (h,u) ∈ C0([0, T ];Hs,k(Ω)) to system (2.1) with (h,u)
∣∣
t=0

= (h0,u0).
Moreover, (h,u) ∈ L2(0, T ;Hs+1,k(Ω)) and, for a universal constant c0 > 0, the following estimates hold

∥∥h∥∥
L∞(0,T ;Hs,k)

+ c0κ
1/2
∥∥∇xh∥∥L2(0,T ;Hs,k)

< C0

∥∥h0

∥∥
Hs,k ;∥∥u∥∥

L∞(0,T ;Hs,k)
+ c0ν

1/2
∥∥∇xu∥∥L2(0,T ;Hs,k)

< C0

∥∥u0

∥∥
Hs,k ;

inf(t,x,%)∈(0,T )×Ω(h(%) + h(t,x, %)) > h?/C0.

(2.2)

PROOF. We will construct the solution as the fixed point of the Duhamel formula

h(t, ·) = eκt∆xh0 +

∫ t

0
eκ(t−τ)∆xf(h(τ, ·),u(τ, ·)) dτ,

u(t, ·) = eνt∆xu0 +

∫ t

0
eν(t−τ)∆x(f1 + f2)(h(τ, ·),u(τ, ·)) dτ
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where eαt∆x with α > 0 is the heat semigroup defined by F [eαt∆xf ](ξ) = e−αt|ξ|
2F [f ](ξ) where F is the

Fourier transform with respect to the variable x, and

f(h,u) = −∇x · ((h+ h)(u+ u)),

f1(h,u) = −
(
(u+ u− κ∇xhh+h ) · ∇x

)
u

f2(h,u) = −1

%

(
ρ0

∫ ρ1

ρ0

∇xh(·, %′) d%′ +

∫ %

ρ0

∫ ρ1

ρ′
∇xh(·, %′′) d%′′ d%′

)
.

Let us first recall the standard regularization properties of the heat flow. For any ν > 0, T > 0 and
for any u0 ∈ Hs,k(Ω) and g ∈ L1(0, T ;Hs,k(Ω)), there exists a unique u ∈ C0([0, T ];Hs,k(Ω)) ∩
L2(0, T ;Hs+1,k(Ω)) solution to ∂tu− ν∆xu = g with u(0, ·) = u0 which reads by definition

u = eνt∆xu0 +

∫ t

0
eν(t−τ)∆xg(τ, ·) dτ,

and we have ∥∥u∥∥
L∞(0,T ;Hs,k)

+ c0ν
1/2
∥∥∇xu∥∥L2(0,T ;Hs,k)

≤
∥∥u0

∥∥
Hs,k +

∥∥g∥∥
L1(0,T ;Hs,k)

,

where c0 > 0 is a universal constant. The existence and uniqueness of the solution as well as the above
estimate easily follow from solving the equation (for almost every % ∈ (ρ0, ρ1)) in Fourier space and using
Plancherel’s formula, then using that ∂% commutes with ∂t and ∆x, and invoking Minkowski’s integral
inequality (resp. Fubini’s theorem) to exchange the order of integration in the variables (t, %) (resp. (x, %)).
We also remark that, by the positivity of the heat kernel and the continuous embeddingHs−1,1(Ω) ⊂ L∞(Ω)
for s > 3

2 + d
2 (see Lemma A.1),

inf
Ω
u ≥ inf

Ω
u0 −

∥∥g∥∥
L1(0,T ;Hs−1,1)

.

Now we consider (f,f1 +f2) as a bounded operator from Hs+1,k(Ω)1+d to Hs,k(Ω)1+d. Indeed, there
exists Cs,k > 0 such that for any (h,u) ∈ Hs+1,k(Ω)1+d,∥∥f(h,u)

∥∥
Hs,k ≤

∥∥∇x · (hu+ hu+ hu)
∥∥
Hs,k

≤ Cs,k ×
(∣∣h∣∣

Wk,∞
%

∥∥u∥∥
Hs+1,k +

∣∣u∣∣
Wk,∞
%

∥∥h∥∥
Hs+1,k +

∥∥h∥∥
Hs,k

∥∥u∥∥
Hs+1,k +

∥∥h∥∥
Hs+1,k

∥∥u∥∥
Hs,k

)
,

where we used straightforward product estimates for the first two terms, and Lemma A.3 for the last ones.
Similarly, we have∥∥f1(h,u)

∥∥
Hs,k ≤

∥∥((u+ u− κ∇xhh+h ) · ∇x
)
u
∥∥
Hs,k

≤ Cs,k
(∣∣u∣∣

Wk,∞
%

+
∥∥u∥∥

Hs,k

)∥∥u∥∥
Hs+1,k

+ κCs,k
(∣∣h−1

∣∣
Wk,∞
%

+
∥∥ h
h(h+h)

∥∥
Hs,k

)∥∥(∇xh · ∇x)u
∥∥
Hs,k .

Using the constraint inf(ρ0,ρ1) h ≥ infΩ(h+h0) ≥ h? > 0 and Lemma A.6, we find that for any h? > 0 and
M0,M ≥ 0 there exists Cs,k(h?,M,M0, C0) such that for any h ∈ Hs,k(Ω) bounded by

∥∥h∥∥
Hs,k ≤ C0M0

and satisfying inf(x,%)∈Ω(h(%) + h(x, %)) ≥ h?/C0, one has∣∣h−1
∣∣
Wk,∞
%

+
∥∥ h
h(h+h)

∥∥
Hs,k ≤ Cs,k(h?,M,M0, C0).

Using the last estimates in Lemma A.3, since s > 3
2 + d

2 , we have∥∥(∇xh · ∇x)u
∥∥
Hs,k ≤

∥∥h∥∥
Hs,k

∥∥u∥∥
Hs+1,k +

∥∥h∥∥
Hs+1,k

∥∥u∥∥
Hs,k .

Finally, from the continuous embedding L∞((ρ0, ρ1)) ⊂ L2((ρ0, ρ1)) ⊂ L1((ρ0, ρ1)) we immediately infer∥∥f2(h,u)
∥∥
Hs,k ≤ Cs,k

∥∥h∥∥
Hs+1,k .
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Altogether, we find that for any h?, C0 > 0 and M,M0 ≥ 0 there exists Cs,k(h?,M,M0, C0) such that for
any (h,u) ∈ Hs+1,k(Ω)1+d satisfying

∥∥(h,u)
∥∥
Hs,k ≤ C0M0 and inf(x,%)∈Ω(h(%) + h(x, %)) ≥ h?/C0,

we have ∥∥(f(h,u),f1(h,u),f2(h,u)
)∥∥
Hs,k ≤ Cs,k(h?,M,M0, C0) (1 + κ)

∥∥(h,u)
∥∥
Hs+1,k .

By similar considerations, we find that for any h?, C0 > 0 andM,M0 ≥ 0 there existsCs,k(h?,M,M0, C0)

such that for any (h1,u1, h2,u2) ∈ Hs+1,k(Ω)2(1+d) satisfying the bound
∥∥(hi,ui)

∥∥
Hs,k ≤ C0M0 as well

as inf(x,%)∈Ω(h(%) + hi(x, %)) ≥ h?/C0 (with i ∈ {1, 2}), one has∥∥(f(h2,u2)− f(h1,u1),f1(h2,u2)− f1(h1,u1),f2(h2,u2)− f2(h1,u1)
)∥∥
Hs,k

≤ Cs,k(h?,M,M0, C0)(1 + κ)
(∥∥(h2 − h1,u2 − u1)

∥∥
Hs+1,k

+
∥∥(h1, h2,u1,u2)

∥∥
Hs+1,k

∥∥(h2 − h1,u2 − u1)
∥∥
Hs,k

)
.

From the above estimates, we easily infer that for T > 0 sufficiently small (uniquely depending on
s, k,M0,M, h?, ν, κ, C0),

T :

(
h
u

)
7→
(

eκt∆xh0 +
∫ t

0 e
κ(t−τ)∆xf(h(τ, ·),u(τ, ·)) dτ

eνt∆xu0 +
∫ t

0 e
ν(t−τ)∆x(f1 + f2)(h(τ, ·),u(τ, ·)) dτ

)
is a contraction mapping on

X =
{

(h,u) ∈ C0([0, T ];Hs,k(Ω)) ∩ L2(0, T ;Hs+1,k(Ω)) : (2.2) holds
}
.

The Banach fixed point theorem provides the existence and uniqueness of a fixed point (and hence solution
to (2.1)) in X , and uniqueness in C0([0, T ];Hs,k(Ω)) is easily checked (for instance by the energy method).

�

REMARK 2.2. It should be emphasized that the time of existence provided by Proposition 2.1 is not
uniform with respect to the parameters κ, ν > 0. More precisely, the proof provides a lower bound as

T & min({1, κ, ν}), i.e. T−1 . 1 + κ−1 + ν−1.

2.2. Quasilinearization. In the result below, we apply spatial derivatives to system (2.1) and rewrite
it in such a way that the linearized equations satisfied by the highest-order terms exhibit a skew-symmetric
structure, which will allow us to obtain improved energy estimates in the subsequent section.

LEMMA 2.3. Let s, k ∈ N such that s > 2 + d
2 and 2 ≤ k ≤ s, and M,M,h? > 0. Then there exists

C = C(s, k,M,M, h?) > 0 such that for any κ ∈ [0, 1], ν ≥ 0, for any (h,u) ∈W k,∞((ρ0, ρ1)) such that∣∣h∣∣
Wk,∞
%

+
∣∣u′∣∣

Wk−1,∞
%

≤M ;

and any (h,u) ∈ L∞(0, T ;Hs,k(Ω)) solution to (2.1) with some T > 0 and satisfying for almost every
t ∈ [0, T ]∥∥h(t, ·)

∥∥
Hs−1,k−1 +

∥∥η(t, ·)
∥∥
Hs,k +

∥∥u(t, ·)
∥∥
Hs,k +

∣∣η(t, ·)
∣∣
%=ρ0

∣∣
Hs
x

+ κ1/2
∥∥h(t, ·)

∥∥
Hs,k ≤M

(where η(t,x, %) :=
∫ ρ1
% h(t,x, %′) d%′) and

inf
(x,%)∈Ω

h(%) + h(t,x, %) ≥ h?,

the following holds. Denote, for any multi-index α ∈ Nd, η(α) = ∂αx η, u
(α) = ∂αxu.
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• For any α ∈ Nd with 0 ≤ |α| ≤ s, we have that

∂tη
(α) + (u+ u) · ∇xη(α) +

∫ ρ1

%
(u′ + ∂%u) · ∇xη(α) d%′

+

∫ ρ1

%
(h+ h)∇x · u(α) d%′ = κ∆xη

(α) +Rα,0,

∂tu
(α) +

(
(u+ u− κ∇xhh+h ) · ∇x

)
u(α)

+
ρ0

%
∇xη(α)

∣∣
%=ρ0

+
1

%

∫ %

ρ0

∇xη(α) d%′ = ν∆xu
(α) +Rα,0,

(2.3a)

where for almost every t ∈ [0, T ], (Rα,0(t, ·),Rα,0(t, ·)) ∈ C0([ρ0, ρ1];L2(Rd))× L2(Ω)d and∥∥Rα,0∥∥L2(Ω)
+
∥∥Rα,0∥∥L2(Ω)

+
∣∣Rα,0∣∣%=ρ0

∣∣
L2
x
≤ CM

(
1 + κ

∥∥∇xh∥∥Hs,k

)
. (2.3b)

• For any j ∈ N, 1 ≤ j ≤ k and any α ∈ Nd, 0 ≤ |α| ≤ s− j, it holds

∂t∂
j
%η

(α) + (u+ u) · ∇x∂j%η(α) = κ∆x∂
j
%η

(α) +Rα,j ,

∂t∂
j
%u

(α) +
(
(u+ u− κ∇xhh+h ) · ∇x

)
∂j%u

(α) = ν∆x∂
j
%u

(α) +Rα,j ,
(2.4a)

where for almost every t ∈ [0, T ], (Rα,j(t, ·),Rα,j(t, ·)) ∈ L2(Ω)× L2(Ω)d and∥∥Rα,j∥∥L2(Ω)
+
∥∥Rα,j∥∥L2(Ω)

≤ CM
(
1 + κ

∥∥∇xh∥∥Hs,k

)
. (2.4b)

• For any j ∈ N, 0 ≤ j ≤ k and any multi-index α ∈ Nd, 0 ≤ |α| ≤ s− j, it holds

∂t∂
j
%h

(α) + (u+ u) · ∇x∂j%h(α) = κ∆x∂
j
%h

(α) + rα,j +∇x · rα,j , (2.5a)

where for almost every t ∈ [0, T ], (rα,j(t, ·), rα,j(t, ·)) ∈ L2(Ω)1+d and

κ1/2
∥∥rα,j∥∥L2(Ω)

+
∥∥rα,j∥∥L2(Ω)

≤ CM. (2.5b)

PROOF. In this proof, we denote s0 = s− 2 > d
2 .

Estimate of Rα,0. First we notice the identity by integration by parts in %,

(u+ u) · ∇xη(α) +

∫ ρ1

%
(u′ + ∂%u) · ∇xη(α) d%′ =

∫ ρ1

%
(u+ u) · ∇xh(α) d%′.

Hence, recalling the notation [P ;u, v] = P (uv)− u(Pv)− v(Pu) and integrating by parts in %, we get

Rα,0 := −
∫ ρ1

%
[∂αx ,u] · ∇xh+ [∂αx , h]∇x · u d%′

= −
∫ ρ1

%
[∂αx ;u,∇xh] + u(α) · ∇xh+ [∂αx ;h,∇x · u] + h(α)(∇x · u) d%′

= −[∂αx ;u,∇xη]− η(α)∇x · u

−
∫ ρ1

%
[∂αx ; ∂%u,∇xη] + u(α) · ∇xh+ [∂αx ;h,∇x · u] + η(α)∇x · ∂%u d%′.

By the standard Sobolev embedding Hs0(Rd) ⊂ L∞(Rd) and Lemma A.1, one gets∥∥η(α)∇x · u
∥∥
L2(Ω)

≤
∥∥η(α)

∥∥
L2(Ω)

∥∥∇x · u∥∥L∞(Ω)
.
∥∥η∥∥

Hs,0

∥∥u∥∥
Hs0+

3
2 ,1
.

and ∣∣(η(α)∇x · u
)∣∣
%=ρ0

∣∣
L2
x
.
∣∣η∣∣

%=ρ0

∣∣
Hs
x

∥∥u∥∥
Hs0+

3
2 ,1
.
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By Lemma A.7(3), and Lemma A.1, we have∥∥[∂αx ;u,∇xη]
∥∥
L2(Ω)

.
∥∥u∥∥

L∞% H
s−1
x

∥∥∇xη∥∥L2
%H

s0+1
x

+
∥∥u∥∥

L∞% H
s0+1
x

∥∥∇xη∥∥L2
%H

s−1
x

.
∥∥u∥∥

Hs− 1
2 ,1

∥∥η∥∥
Hs0+2,0 +

∥∥u∥∥
Hs0+

3
2 ,1

∥∥η∥∥
Hs,0 ,∣∣[∂αx ;u

∣∣
%=ρ0

,∇xη
∣∣
%=ρ0

]
∣∣
L2
x
.
∣∣u∣∣

%=ρ0

∣∣
Hs−1
x

∣∣∇xη∣∣%=ρ0

∣∣
H
s0+1
x

+
∣∣u∣∣

%=ρ0

∣∣
H
s0+1
x

∣∣∇xη∣∣%=ρ0

∣∣
Hs−1
x

.
∥∥u∥∥

Hs− 1
2 ,1

∣∣η∣∣
%=ρ0

∣∣
H
s0+2
x

+
∥∥u∥∥

Hs0+
3
2 ,1

∣∣η∣∣
%=ρ0

∣∣
Hs
x
,

and using additionally the Cauchy-Schwarz inequality,∥∥[∂αx ; ∂%u,∇xη]
∥∥
L1
%L

2
x
.
∥∥∂%u∥∥L2

%H
s−1
x

∥∥∇xη∥∥L2
%H

s0+1
x

+
∥∥∂%u∥∥L2

%H
s0+1
x

∥∥∇xη∥∥L2
%H

s−1
x

.
∥∥u∥∥

Hs,1

∥∥η∥∥
Hs0+2,0 +

∥∥u∥∥
Hs0+2,1

∥∥η∥∥
Hs,0 ,∥∥[∂αx ;h,∇x · u]

∥∥
L1
%L

2
x
.
∥∥h∥∥

L2
%H

s−1
x

∥∥∇x · u∥∥L2
%H

s0+1
x

+
∥∥h∥∥

L2
%H

s0+1
x

∥∥∇x · u∥∥L2
%H

s−1
x

.
∥∥h∥∥

Hs−1,0

∥∥u∥∥
Hs0+2,0 +

∥∥h∥∥
Hs0+1,0

∥∥u∥∥
Hs,0 ,

and ∥∥u(α) · ∇xh
∥∥
L1
%L

2
x
.
∥∥u∥∥

Hs,0

∥∥h∥∥
Hs0+1,0 ,∥∥η(α)(∇x · ∂%u)

∥∥
L1
%L

2
x
.
∥∥η∥∥

Hs,0

∥∥u∥∥
Hs0+2,1 .

Altogether, using the continuous embeddingL∞((ρ0, ρ1)) ⊂ L2((ρ0, ρ1)) ⊂ L1((ρ0, ρ1)), the Minkowski
and triangle inequalities and s ≥ s0 + 2, we get∣∣Rα,0∣∣%=ρ0

∣∣
L2
x

+
∥∥Rα,0∥∥L2(Ω)

. (
∥∥η∥∥

Hs,0 +
∥∥h∥∥

Hs−1,0 +
∣∣η∣∣

%=ρ0

∣∣
Hs
x
)
∥∥u∥∥

Hs,1 . (2.6)

Estimate of Rα,j for 1 ≤ j ≤ k. We have

Rα,j := −[∂αx ∂
j−1
% ∇x·,u+ u]h− ∂αx ∂j−1

% ∇x · (h(u+ u))

= −
d∑
i=1

[∂αx ∂xi∂
j−1
% ,ui]h− [∂j−1

% ,u] · ∂αx∇xh− ∂j−1
% · (h∂αx∇xu),

where ui is the ith component of u. By Lemma A.8 and since (|α|+ 1) + (j − 1) ≤ s and j − 1 ≤ k − 1,
and s ≥ s0 + 3

2 , we find for 2 ≤ k − 1 ≤ s∥∥[∂αx ∂xi∂
j−1
% ,ui]h

∥∥
L2(Ω)

.
∥∥h∥∥

Hs−1,k−1

∥∥u∥∥
Hs,k .

There remains to consider 1 ≤ j ≤ k ≤ 2. If j = 1 we have by Lemma A.7(2) and since |α| ≤ s − 1 and
s ≥ s0 + 3

2∥∥[∂αx ∂xi ,ui]h
∥∥
L2(Ω)

.
∥∥h∥∥

L∞% H
s0
x

∥∥u∥∥
L2
%H

s
x

+
∥∥h∥∥

L2
%H

s−1
x

∥∥u∥∥
L∞% H

s0+1
x
.
∥∥h∥∥

Hs−1,1

∥∥u∥∥
Hs,1 .

If j = k = 2, and since |α| ≤ s− 2 and s ≥ s0 + 3
2 ,∥∥[∂αx ∂xi∂

j−1
% ,ui]h

∥∥
L2(Ω)

≤
∥∥[∂αx ∂xi ,ui]∂%h

∥∥
L2(Ω)

+
∥∥∂αx ∂xi(h∂%ui)∥∥L2(Ω)

.
∥∥∂%h∥∥L2

%H
s0
x

∥∥u∥∥
L∞% H

s−1
x

+
∥∥∂%h∥∥L2

%H
s−2
x

∥∥u∥∥
L∞% H

s0+1
x

+
∥∥h∥∥

L∞% H
s0
x

∥∥∂%u∥∥L2
%H

s−1
x

+
∥∥h∥∥

L2
%H

s−1
x

∥∥∂%u∥∥L∞% Hs0
x

.
∥∥h∥∥

Hs−1,1

∥∥u∥∥
Hs,2 .
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Finally, we have immediately∥∥[∂j−1
% ,u] · ∂αx∇xh

∥∥
L2(Ω)

.
∣∣u′∣∣

W j−2,∞
%

∥∥h∥∥
Hs−1,j−2 ,∥∥∂j−1

% (h∂αx∇x · u)
∥∥
L2(Ω)

.
∣∣h∣∣

W j−1,∞
%

∥∥u∥∥
Hs,j .

Altogether, we find that for any 1 ≤ j ≤ k∥∥Rα,j∥∥L2(Ω)
. (
∣∣h∣∣

Wk−1,∞
%

+
∣∣u′∣∣

Wk−2,∞
%

+
∥∥h∥∥

Hs−1,k−1)
(∥∥u∥∥

Hs,k +
∥∥h∥∥

Hs−1,k−2

)
. (2.7)

Estimate of rα,j and rα,j for 0 ≤ j ≤ k. We have (2.5a) with

rα,j := −[∂j%,u]∂αx h− ∂αx ∂j%(hu)− (∂αx ∂
j
%u)h,

rα,j := −[∂α∂j%∇x·;u, h] + (∂αx ∂
j
%u) · ∇xh.

We have immediately (since |α|+ j ≤ s, j ≤ k, and using Lemma A.1)∥∥[∂j%,u]∂αx h
∥∥
L2(Ω)

.
∣∣u′∣∣

Wk−1,∞
%

∥∥h∥∥
Hs−1,k−1 ,∥∥∂αx ∂j%(hu)

∥∥
L2(Ω)

.
∣∣h∣∣

Wk,∞
%

∥∥u∥∥
Hs,k ,∥∥(∂αx ∂

j
%u)h

∥∥
L2(Ω)

.
∥∥u∥∥

Hs,k

∥∥h∥∥
Hs0+

1
2 ,1
.

By Lemma A.9 and since |α|+ j + 1 ≤ s+ 1, j ≤ k ≤ s, s+ 1 ≥ s0 + 5
2 , we find for 2 ≤ k ≤ s∥∥[∂α∂j%∇x·;u, h]

∥∥
L2(Ω)

.
∥∥h∥∥

Hs,k

∥∥u∥∥
Hs,k ,

and we have by Lemma A.1 ∥∥(∂αx ∂
j
%u) · ∇xh

∥∥
L2(Ω)

.
∥∥u∥∥

Hs,k

∥∥h∥∥
Hs0+

3
2 ,1
.

Altogether, we find that for any 0 ≤ j ≤ k∥∥rα,j∥∥L2(Ω)
. (
∣∣h∣∣

Wk,∞
%

+
∣∣u′∣∣

Wk−1,∞
%

+
∥∥h∥∥

Hs−1,k−1)
(∥∥u∥∥

Hs,k +
∥∥h∥∥

Hs−1,k−1

)
, (2.8)∥∥rα,j∥∥L2(Ω)

.
∥∥u∥∥

Hs,k

∥∥h∥∥
Hs,k . (2.9)

Estimate ofRα,0. The precise expression of the second remainder in (2.3a) is the following:

Rα,0 := −
(
[∂αx ,u] · ∇x

)
u+ κ[∂αx ,

1
h+h ](∇xh · ∇x)u+ κ

h+h

(
[∂αx ,∇xh] · ∇x

)
u.

By Lemma A.7(2) and Lemma A.1 we have∥∥([∂αx ,u] · ∇x
)
u
∥∥
L2(Ω)

.
∥∥u∥∥

L∞% H
s0+1
x

∥∥u∥∥
L2
%H

s
x
.
∥∥u∥∥

Hs0+
3
2 ,1

∥∥u∥∥
Hs,0 .

Next, appealing again to A.7(2), we have

κ
∥∥[∂αx ,

1
h+h ](∇xh · ∇x)u

∥∥
L2(Ω)

. κ
∥∥∇x 1

h+h

∥∥
L∞% H

s0
x

∥∥(∇xh · ∇x)u
∥∥
L2
%H

s−1
x

+ κ
∥∥∇x 1

h+h

∥∥
L2
%H

s−1
x

∥∥(∇xh · ∇x)u
∥∥
L∞% H

s0
x
.

Now, by Lemma A.2(2) and Lemma A.4, one has for any t ≥ 0 that∣∣∇x 1
h+h

∣∣
Ht
x

=
∣∣ ∇xh

(h+h)2

∣∣
Ht
x
≤
∣∣∇xh
h2

∣∣
Ht
x

+
∣∣( 1
h2
− 1

(h+h)2
)∇xh

∣∣
Ht
x

. (h?)
−2
∣∣∇xh∣∣Ht

x
+
∣∣ 1
h2
− 1

(h+h)2

∣∣
H
s0
x

∣∣∇xh∣∣Ht
x

+
〈∣∣ 1

h2
− 1

(h+h)2

∣∣
Ht
x

∣∣∇xh∣∣Hs0
x

〉
t>s0

≤ C(h?,
∣∣h∣∣

H
s0
x

)
∣∣∇xh∣∣Ht

x
, (2.10)

where in the last step we used that, by Lemma A.4,∣∣ 1
h2
− 1

(h+h)2

∣∣
H
s0
x
≤ C(h?,

∣∣h∣∣
H
s0
x

)
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and, provided that t > s0,∣∣ 1
h2
− 1

(h+h)2

∣∣
Ht
x
≤
∣∣ 1
h2
− 1

(h+h)2

∣∣
H
s0
x

+
∣∣∇x 1

(h+h)2

∣∣
Ht−1
x
,

and a finite induction on t, until
∣∣∇x 1

(h+h)2

∣∣
L2
x

=
∣∣∇xh
h+h

∣∣
L2
x
≤ h−2

?

∣∣∇xh∣∣L2
x

. Then, by Lemma A.2(2) and
Lemma A.1, we have∥∥(∇xh · ∇x)u

∥∥
L2
%H

s−1
x
.
∥∥∇xh∥∥L2

%H
s−1
x

∥∥u∥∥
L∞% H

s0+1
x

+
∥∥∇xh∥∥L∞% Hs0

x

∥∥u∥∥
L2
%H

s
x

.
∥∥h∥∥

Hs,0

∥∥u∥∥
Hs0+

3
2 ,1

+
∥∥h∥∥

Hs0+
3
2 ,1

∥∥u∥∥
Hs,0

and ∥∥(∇xh · ∇x)u
∥∥
L∞% H

s0
x
.
∥∥∇xh∥∥L∞% Hs0

x

∥∥u∥∥
L∞% H

s0+1
x
.
∥∥h∥∥

Hs0+
3
2 ,1

∥∥u∥∥
Hs0+

3
2 ,1
.

Finally, we have by Lemma A.7(2) and Lemma A.1∥∥([∂αx ,∇xh] · ∇x
)
u
∥∥
L2(Ω)

.
∥∥∇xh∥∥L∞% Hs0+1

x

∥∥∇xu∥∥L2
%H

s−1
x

+
∥∥∇xh∥∥L2

%H
s
x

∥∥∇xu∥∥L∞% Hs0
x

.
∥∥∇xh∥∥

Hs0+
3
2 ,1

∥∥u∥∥
Hs,0 +

∥∥∇xh∥∥Hs,0

∥∥u∥∥
Hs0+

3
2 ,1
.

Collecting the estimates above and using that s ≥ s0 + 3
2 , we obtain∥∥Rα,0∥∥L2(Ω)

.
∥∥u∥∥

Hs,0

∥∥u∥∥
Hs,1 + κC(h?,

∥∥h∥∥
Hs0+

1
2 ,1

)
(∥∥h∥∥2

Hs,1 +
∥∥∇xh∥∥Hs,1

)∥∥u∥∥
Hs,1 . (2.11)

Estimate ofRα,j for 1 ≤ j ≤ k. The explicit expression of the second remainder in (2.4a) is the following

Rα,j := −
(
[∂αx ∂

j
%,u+ u] · ∇x

)
u+ κ[∂αx ∂

j
%,

1
h+h ]

(
(∇xh · ∇x)u

)
+ κ

h+h

(
[∂αx ∂

j
%,∇xh] · ∇x

)
u

+ ∂j%∂
α
x

(
ρ0

%

∫ ρ1

ρ0

∇xh d%′ +
1

%

∫ %

ρ0

∇xη d%′
)
.

By Lemma A.8 we have for s ≥ s0 + 3
2 and since 0 ≤ |α| ≤ s− j and j ≤ k with k ≥ 2, that∥∥([∂αx ∂j%,u] · ∇x

)
u
∥∥
L2(Ω)

.
∥∥u∥∥

Hs,k

∥∥∇xu∥∥Hs−1,k .

Then, ∥∥([∂αx ∂j%,u] · ∇x
)
u
∥∥
L2(Ω)

=
∥∥[∂j%,u] · ∇x∂αxu

∥∥
L2(Ω)

.
∣∣u′∣∣

W j−1,∞
%

∥∥u∥∥
Hs,j−1 .

Next, using Lemma A.3,∥∥[∂j%,
1
h ]∂αx

(
(∇xh · ∇x)u

)∥∥
L2(Ω)

. C(h?)
∣∣h′∣∣

W j−1,∞
%

∥∥(∇xh · ∇x)u
∥∥
Hs−1,j−1

. C(h?)
∣∣h′∣∣

W j−1,∞
%

∥∥h∥∥
Hs,j

∥∥u∥∥
Hs,j ,

and by Lemma A.8, since s ≥ s0 + 3
2 and 2 ≤ j ≤ s, |α|+ j ≤ s, Lemma A.6 and Lemma A.3,∥∥[∂αx ∂

j
%,

1
h+h −

1
h ]
(
(∇xh · ∇x)u

)∥∥
L2(Ω)

.
∥∥ 1
h+h −

1
h

∥∥
Hs,k

∥∥(∇xh · ∇x)u
∥∥
Hs−1,min({k,s−1})

. C(h?,
∣∣h′∣∣

Wk−1,∞
%

,
∥∥h∥∥

Hs−1,k−1)
∥∥h∥∥2

Hs,k

∥∥u∥∥
Hs,k .

By Lemma A.8 we have for s ≥ s0 + 3
2 and since |α|+ j ≤ s and 2 ≤ j ≤ s∥∥([∂αx ∂j%,∇xh] · ∇x

)
u
∥∥
L2(Ω)

.
∥∥∇xh∥∥Hs,k

∥∥u∥∥
Hs,k .

We have immediately since |α| ≤ s− j ≤ s− 1 ,∥∥∂j%∂αx (ρ0

%

∫ ρ1

ρ0

∇xh d%′
)∥∥

L2(Ω)
.
∣∣∂αx∇xη∣∣%=ρ0

∣∣
L2
x
.
∣∣η∣∣

%=ρ0

∣∣
Hs
x

and since (|α|+ 1) + (j − 1) ≤ s,∥∥∂j%(1

%

∫ %

ρ0

∂αx∇xη d%′
)∥∥

L2(Ω)
.

j−1∑
i=0

∥∥∂i%∂αx∇xη∥∥L2(Ω)
.
∥∥η∥∥

Hs,j−1 .
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Collecting the estimates above we obtain for 1 ≤ j ≤ k∥∥Rα,j∥∥L2(Ω)
.
∣∣η∣∣

%=ρ0

∣∣
Hs
x

+
∥∥η∥∥

Hs,k−1 +
(∣∣u′∣∣

Wk−1,∞
%

+
∥∥u∥∥

Hs,k

)∥∥u∥∥
Hs,k

+ κC(h?,
∣∣h′∣∣

Wk−1,∞
%

,
∥∥h∥∥

Hs−1,k−1)
(∥∥h∥∥2

Hs,k +
∥∥∇xh∥∥Hs,k

)∥∥u∥∥
Hs,k . (2.12)

We infer the bound (2.3b) from (2.6) and (2.11), the bound (2.4b) from (2.7) and (2.12), and the
bound (2.5b) from (2.8) and (2.9), and the proof is complete. �

2.3. A priori energy estimates. In this section we provide a priori energy estimates associated with
the equations featured in Lemma 2.3. We start with the transport-diffusion equations in (2.4a) and (2.5a),
which we rewrite as

∂tḣ+ u · ∇xḣ = κ∆xḣ+ r +∇x · r. (2.13)

LEMMA 2.4. There exists a universal constant C0 > 0 such that for any κ > 0 and T > 0, for any
u ∈ L∞(0, T ;L∞(Ω)) with ∇x · u ∈ L1(0, T ;L∞(Ω)), for any (r, r) ∈ L2(0, T ;L2(Ω)) and for any
ḣ ∈ L∞(0, T ;L2(Ω)) with ∇xḣ ∈ L2(0, T ;L2(Ω)), such that (2.13) holds in L2(0, T ;H1,0(Ω)′), we have∥∥ḣ∥∥

L∞(0,T ;L2(Ω))
+ κ1/2

∥∥∇xḣ∥∥L2(0,T ;L2(Ω))

≤ C0

(∥∥ḣ∣∣
t=0

∥∥
L2(Ω)

+
∥∥r∥∥

L1(0,T ;L2(Ω))
+ κ−1/2

∥∥r∥∥
L2(0,T ;L2(Ω))

)
× exp

(
C0

∫ T

0

∥∥∇x · u(t, ·)
∥∥
L∞(Ω)

dt
)
. (2.14)

PROOF. Testing the equation against ḣ and integrating by parts (with respect to the variable x) yields

1

2

d

dt

∥∥ḣ∥∥2

L2(Ω)
+ κ
∥∥∇xḣ∥∥2

L2(Ω)
=

1

2

∫∫
Ω

(∇x · u)ḣ2 dx d%+

∫∫
Ω
rḣdxd%−

∫∫
Ω
r · ∇xḣdxd%.

The estimate follows from the Cauchy-Schwarz inequality and Gronwall’s Lemma. �

Next, we consider system (2.3a), which we rewrite as

∂tη̇ + (u+ u) · ∇xη̇ +

∫ ρ1

%
(u′ + ∂%u) · ∇xη̇ d%′ +

∫ ρ1

%
(h+ h)∇x · u̇d%′ = κ∆xη̇ +R,

%
(
∂tu̇+

(
(u+ u− κ∇xhh+h ) · ∇x

)
u̇
)

+ ρ0∇xη̇
∣∣
%=ρ0

+

∫ %

ρ0

∇xη̇ d%′ = %ν∆xu̇+R.

(2.15)

For the sake of readability, we introduce the following notations

X0 := C0([ρ0, ρ1];L2(Rd))× L2(Ω)d; X1 := C0([ρ0, ρ1];H1(Rd))×H1,0(Ω)d. (2.16)

LEMMA 2.5. Let h?, h?,M > 0 be fixed. There exists C(h?, h
?,M) > 0 such that for any κ > 0

and ν ∈ [0, 1], for any (h,u) ∈ W 1,∞((ρ0, ρ1)), for any T > 0 and (h,u) ∈ L∞(0, T ;W 1,∞(Ω)) with
∆xh ∈ L1(0, T ;L∞(Ω)) satisfying (2.1) and, for almost every t ∈ [0, T ], the upper bound∥∥h(t, ·)

∥∥
L∞(Ω)

+
∥∥∇xh(t, ·)

∥∥
L∞x L

2
%

+ ν1/2
∥∥∇xh(t, ·)

∥∥
L∞(Ω)

+
∥∥∇x · u(t, ·)

∥∥
L∞(Ω)

≤M

and the lower and upper bounds

∀(x, %) ∈ Ω, h? ≤ h(%) + h(t,x, %) ≤ h?;
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and for any (η̇, u̇) ∈ C0([0, T ];X0) ∩ L2(0, T ;X1), with X0, X1 in (2.16), and (R,R) ∈ L2(0, T ;X0)
satisfying system (2.15) in L2(0, T ;X1)′, the following estimate holds:

E(η̇(t, ·), u̇(t, ·))1/2 + κ1/2
∥∥∇xη̇∥∥L2(0,t;L2(Ω))

+ κ1/2
∣∣∇xη̇∣∣%=ρ0

∣∣
L2(0,t;L2

x)
+ ν
∥∥∇xu̇∥∥2

L2(Ω)

≤
(
E(η̇(0, ·), u̇(0, ·))1/2 + C

∫ t

0
E(R(τ, ·),R(τ, ·))1/2 dτ

)
× exp

(
C

∫ t

0

(
1 + κ−1

∥∥u′ + ∂%u(τ, ·)
∥∥2

L∞x L
2
%

)
dτ
)
,

where we denote

E(η̇, u̇) :=
1

2

∫ ρ1

ρ0

∫
Rd
η̇2 + %(h+ h)

∣∣u̇∣∣2 dx d% +
ρ0

2

∫
Rd
η̇2
∣∣
%=ρ0

dx.

PROOF. We test the first equation against η̇ ∈ L2(0, T ;H1,0(Ω)), its trace on {(x, ρ0),x ∈ Rd} against
ρ0η̇
∣∣
%=ρ0

∈ L2(0, T ;H1(Rd)), and the second equation against (h+h)u̇ ∈ L2(0, T ;H1,0(Ω)). This yields,
after integration by parts

d

dt
E(η̇, u̇) + κ

∥∥∇xη̇∥∥2

L2(Ω)
+ ρ0κ

∣∣∇xη̇∣∣%=ρ0

∣∣2
L2
x

+ ν

d∑
i=1

∫
Ω
%(h+ h)|∂xiu̇|2 dx d%

= − ((u+ u) · ∇xη̇, η̇)L2(Ω) −
(∫ ρ1

%
(u′ + ∂%u) · ∇xη̇ d%′, η̇

)
L2(Ω)

(i)

−
(∫ ρ1

%
(h+ h)∇x · u̇ d%′, η̇

)
L2(Ω)

+
(
R, η̇

)
L2(Ω)

(ii)

− (%(u+ u) · ∇xu̇, (h+ h)u̇)L2(Ω) + κ (%(∇xh · ∇x)u̇, u̇)L2(Ω) (iii)

−
(
ρ0∇xη̇

∣∣
%=ρ0

, (h+ h)u̇
)
L2(Ω)

−
( ∫ %

ρ0

∇xη̇ d%′, (h+ h)u̇
)
L2(Ω)

(iv)

− ν
(
%(∇xh · ∇)u̇, u̇

)
L2(Ω)

+
(
%R, (h+ h)u̇

)
L2(Ω)

(v)

− ρ0

((
(u+ u) · ∇xη̇

)∣∣
%=ρ0

, η̇
∣∣
%=ρ0

)
L2
x

− ρ0

(∫ ρ1

ρ0

(u′ + ∂%u) · ∇xη̇ d%′, η̇
∣∣
%=ρ0

)
L2
x

(vi)

− ρ0

(∫ ρ1

ρ0

(h+ h)∇x · u̇d%′, η̇
∣∣
%=ρ0

)
L2
x

+ ρ0

(
R
∣∣
%=ρ0

, η̇
∣∣
%=ρ0

)
L2
x

(vii)

+ 1
2(%(∂th)u̇, u̇)L2(Ω). (viii)

We consider first the second terms in (i) and (vi). We have by an immediate application of Cauchy-
Schwarz inequality and the continuous embedding L∞((ρ0, ρ1)) ⊂ L2((ρ0, ρ1))∣∣∣∣∣

(∫ ρ1

%
(u′ + ∂%u) · ∇xη̇ d%′, η̇

)
L2(Ω)

∣∣∣∣∣+ ρ0

∣∣∣∣∣
(∫ ρ1

ρ0

(u′ + ∂%u) · ∇xη̇ d%′, η̇
∣∣
%=ρ0

)
L2
x

∣∣∣∣∣
.
∥∥u′ + ∂%u

∥∥
L∞x L

2
%

∥∥∇xη̇∥∥L2(Ω)

(∥∥η̇∥∥
L2(Ω)

+
∣∣η̇∣∣

%=ρ0

∣∣
L2
x

)
. (2.17)

Notice that the right-hand side (2.17) cannot be bounded by the energy functional E(η̇, u̇), and this is exactly
the point where we use the assumption κ > 0. Let us now estimate all other terms.
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Using integration by parts in the variable x, we estimate the first addend of (i) and (vi) as follows:∣∣∣((u+ u) · ∇xη̇, η̇)L2(Ω)

∣∣∣+ ρ0

∣∣∣∣(((u+ u) · ∇xη̇
)∣∣
%=ρ0

, η̇
∣∣
%=ρ0

)
L2
x

∣∣∣∣
.
∥∥∇x · u∥∥L∞(Ω)

∥∥η̇∥∥2

L2(Ω)
+
∣∣∇x · u∣∣%=ρ0

∣∣
L∞x

∣∣η̇∣∣
%=ρ0

∣∣2
L2
x
.

The contributions in (iii) and (viii) compensate after integration by parts inx, using the first equation in (2.1).
Now consider the first addend of (ii) together with the second addend of (iv). By application of Fubini’s
theorem we have∫
Rd

∫ ρ1

ρ0

(∫ %

ρ0

∇xη̇(%′) d%′
)
·(h+h)(%)u̇(%) d% dx =

∫
Rd

∫ ρ1

ρ0

(∫ ρ1

%′
(h+ h)(%)u̇(%) d%

)
·∇xη̇(%′) d%′ dx

and hence, integrating by parts in x, we infer∣∣∣∣∣
∫
Rd

∫ ρ1

ρ0

∫ ρ1

%
(h+ h)(%′)∇x · u̇(%′) d%′ η̇(%) d% dx

+

∫
Rd

∫ ρ1

ρ0

(∫ %

ρ0

∇xη̇(%′) d%′
)
· (h+ h)(%)u̇(%) d% dx

∣∣∣∣∣
=

∣∣∣∣∣
∫
Rd

∫ ρ1

ρ0

∫ ρ1

%
(∇xh)(%′) · u̇(%′)η̇(%) d%′ d% dx

∣∣∣∣∣ . ∥∥∇xh∥∥L∞x L2
%

∥∥u̇∥∥
L2(Ω)

∥∥η̇∥∥
L2(Ω)

.

Concerning first addend of (iv) and the first addend of (vii), we have after integrating by parts with respect
to the x variable and using Cauchy-Schwarz inequality∣∣∣∣∣−(ρ0∇xη̇

∣∣
%=ρ0

, (h+ h)u̇
)
L2(Ω)

− ρ0

(∫ ρ1

ρ0

(h+ h)∇x · u̇d%, η̇
∣∣
%=ρ0

)
L2
x

∣∣∣∣∣
= ρ0

∣∣∣∣∣
(∫ ρ1

ρ0

(∇xh) · u̇d%, η̇
∣∣
%=ρ0

)
L2
x

∣∣∣∣∣ . ∥∥∇xh∥∥L∞x L2
%

∥∥u̇∥∥
L2(Ω)

∣∣η̇∣∣
%=ρ0

∣∣
L2
x
.

Concerning the first addend of (v), we have for an arbitrarily large constant K > 0,

ν
∣∣∣(%(∇xh · ∇)u̇, u̇

)
L2(Ω)

∣∣∣ ≤ 1

2K
ν
∥∥∇u̇∥∥2

L2(Ω)
+
Kρ2

1

2
ν
∥∥∇xh∥∥2

L∞(Ω)

∥∥u̇∥∥2

L2(Ω)
.

The last contributions, namely∣∣∣(R, η)L2(Ω)
+
(
R, %(h+ h)u̇

)
L2(Ω)

+ ρ0

(
R
∣∣
%=ρ0

, η̇
∣∣
%=ρ0

)
L2
x

∣∣∣,
are easily controlled by means of Cauchy-Schwarz inequality. Collecting all of the above, and using that

E(η̇, u̇) ≈
∥∥η̇∥∥2

L2(Ω)
+
∥∥u̇∥∥2

L2(Ω)
+
∣∣η̇∣∣

%=ρ0

∣∣2
L2
x

and

ν

d∑
i=1

∫
Ω
%(h+ h)|∂xiu̇|2 dx d% & ν

∥∥∇xu̇∥∥2

L2(Ω)

since ρ0h? ≤ %(h+ h) ≤ ρ1h
?, we obtain (choosing K sufficiently large)

d

dt
E(η̇, u̇) + κ

∥∥∇xη̇∥∥2

L2(Ω)
+ ρ0κ

∣∣∇xη̇∣∣%=ρ0

∣∣2
L2
x

≤ C E(η̇, u̇) + C
∥∥u′ + ∂%u

∥∥
L∞x L

2
%
E(η̇, u̇)1/2

∥∥∇xη̇∥∥L2(Ω)

+ CE(η̇, u̇)1/2E(R,R)1/2,
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with C = C(h?, h
?,M). We deduce (augmenting C if necessary)

d

dt
E(η̇, u̇) +

κ

2

∥∥∇xη∥∥2

L2(Ω)
+ ρ0κ

∣∣∇xη̇∣∣%=ρ0

∣∣2
L2
x

≤ C
(
1 + κ−1

∥∥u′ + ∂%u
∥∥2

L∞x L
2
%

)
E(η̇, u̇) + CE(η̇, u̇)1/2E(R,R)1/2,

and the desired estimate follows by Gronwall’s inequality. �

2.4. Large-time existence; proof of Theorem 1.1. We prove the large-time existence and energy esti-
mates on solutions to the regularized system (2.1) in the following result. Compared with Proposition 2.1,
we provide an existence time which is uniformly bounded (from below) with respect to the artificial regula-
rization parameter ν > 0, and specify the dependency with respect to the diffusivity parameter κ, in relation
with the size of the data. It is in this sense that the existence of strong solutions to the hydrostatic system
holds for large times. We then complete the proof of Theorem 1.1 at the end of this section.

PROPOSITION 2.6. Let s, k ∈ N be such that s > 2 + d
2 , 2 ≤ k ≤ s, and M,M?, h?, h

? > 0. Then,
there exists C > 0 such that, for any 0 < ν ≤ κ ≤ 1, and

• for any (h,u) ∈W k,∞((ρ0, ρ1)) such that∣∣h∣∣
Wk,∞
%

+
∣∣u′∣∣

Wk−1,∞
%

≤M ;

• for any initial data (h0,u0) = (h0(x, %),u0(x, %)) ∈ Hs,k(Ω) with

M0 :=
∥∥η0

∥∥
Hs,k +

∥∥u0

∥∥
Hs,k +

∣∣η0

∣∣
%=ρ0

∣∣
Hs
x

+ κ1/2
∥∥h0

∥∥
Hs,k ≤M?,

and

∀(x, %) ∈ Ω, h? ≤ h(%) + h0(x, %) ≤ h?,

the following holds. Denoting

T−1 = C
(
1 + κ−1

(∣∣u′∣∣2
L2
%

+M2
0

))
,

there exists a unique strong solution (h,u) ∈ C([0, T ];Hs,k(Ω)1+d) to the Cauchy problem associated
with (2.1) and initial data (h,u)

∣∣
t=0

= (h0,u0). Moreover, h ∈ L2(0, T ;Hs+1,k(Ω)) and one has, for any
t ∈ [0, T ], the lower and the upper bounds

∀(x, %) ∈ Ω, h?/2 ≤ h(%) + h(t,x, %) ≤ 2h?,

and the estimate

F(t) :=
∥∥η(t, ·)

∥∥
Hs,k +

∥∥u(t, ·)
∥∥
Hs,k +

∣∣η∣∣
%=ρ0

(t, ·)
∣∣
Hs
x

+ κ1/2
∥∥h(t, ·)

∥∥
Hs,k

+ κ1/2
∥∥∇xη∥∥L2(0,t;Hs,k)

+ κ1/2
∣∣∇xη∣∣%=ρ0

∣∣
L2(0,t;Hs

x)
+ κ
∥∥∇xh∥∥L2(0,t;Hs,k)

≤ CM0.

PROOF. Let us denote by T ? ∈ (0,+∞] the maximal time of existence of (h,u) ∈ C0([0, T ?);Hs,k(Ω))
as provided by Proposition 2.1, and

T? = sup
{

0 < T < T ? : ∀t ∈ (0, T ), h?/2 ≤ h(%)+h(t,x, %) ≤ 2h? and F(t) ≤ C0M0

}
,

where C0 > 1 will be determined later on. By the continuity in time of the solution, and using that the
linear operator h 7→ η :=

∫ ρ1
% h(·, %′) d%′ (resp. h 7→ η

∣∣
%=ρ0

) is well-defined and bounded from Hs,k(Ω)

to itself (resp. Hs
x(Rd)) we have T? > 0. Using Lemma 2.3, 2.4 and 2.5 and, therein, the inequalities∥∥h∥∥

Hs−1,k−1 =
∥∥∂%η∥∥Hs−1,k−1 ≤

∥∥η∥∥
Hs,k , and (since ν ≤ κ) ν1/2

∥∥∇xh∥∥L∞(Ω)
≤ κ1/2

∥∥h∥∥
Hs,k , we find
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that there exists c0 > 1 depending only on ρ0h?, ρ1h
?; and C > 0 depending on M,h?, h

?, C0M0 such that
for any 0 < t < T?,∥∥η(t, ·)

∥∥
Hs,0 +

∥∥u(t, ·)
∥∥
Hs,0 +

∣∣η∣∣
%=ρ0

(t, ·)
∣∣
Hs
x

+ κ1/2
∥∥∇xη∥∥L2(0,t;Hs,0)

+ κ1/2
∣∣∇xη∣∣%=ρ0

∣∣
L2(0,t;Hs

x)

≤ c0

(∥∥η0

∥∥
Hs,0 +

∥∥u0

∥∥
Hs,0 +

∣∣η0

∣∣
%=ρ0

∣∣
Hs
x

+ C C0M0

(
t+
√
t
))

× exp
(
C

∫ t

0

(
1 + κ−1

∥∥u′ + ∂%u
∥∥2

L∞x L
2
%

)
dτ
)

; (2.18)

and (using a slightly adapted version of Lemma 2.5 which does not involve the trace of ∂j%η at the surface)
for any 1 ≤ j ≤ k∥∥∂j%η(t, ·)

∥∥
Hs−j,0 + κ1/2

∥∥∇x∂j%η∥∥L2(0,t;Hs−j,0)

≤
(∥∥∂j%η(0, ·)

∥∥
Hs−j,0 + C C0M0

(
t+
√
t
))

× exp
(
C

∫ t

0

∥∥∇x · u(τ, ·)
∥∥
L∞(Ω)

dτ
)
, (2.19)

and∥∥∂j%u(t, ·)
∥∥
Hs−j,0 + ν1/2

∥∥∇x∂j%u∥∥L2(0,t;Hs−j,0)

≤
(∥∥∂j%u(0, ·)

∥∥
Hs−j,0 + C C0M0

(
t+
√
t
))

× exp
(
C

∫ t

0

∥∥∇x · (u− κ∇xhh+h

)
(τ, ·)

∥∥
L∞(Ω)

dτ
)

; (2.20)

and finally for any 0 ≤ j ≤ k

κ1/2
∥∥∂j%h(t, ·)

∥∥
Hs−j,0 + κ

∥∥∇x∂j%h∥∥L2(0,t;Hs−j,0)

≤
(
κ1/2

∥∥∂j%h(0, ·)
∥∥
Hs−j,0 + C C0M0

(
t+
√
t
))

× exp
(
C

∫ t

0

∥∥∇x · u(τ, ·)
∥∥
L∞(Ω)

dτ
)
. (2.21)

By the continuous embeddingsHs0+ 1
2
,1 ⊂ L∞% Hs0 ⊂ L∞(Ω) for any s0 > d/2 (see Lemma A.1) and since

k ≥ 1 and s > 3
2 + d

2 , we have∥∥∇x · u∥∥L∞(Ω)
+
∥∥∇x · (u− κ∇xhh+h

)∥∥
L∞(Ω)

≤ C(h?)
(∥∥u∥∥

Hs,k + κ
∥∥h∥∥2

Hs,k + κ
∥∥∇xh∥∥Hs,k

)
.

We deduce that

F(t) ≤ c
(
M0 + C C0M0

(
t+
√
t
))
× exp

(
C
(
t+
√
t+ κ−1

∫ t

0

∥∥u′ + ∂%u(τ, ·)
∥∥2

L∞x L
2
%

dτ
))
,

where we recall that c0 > 1 depends only on h? and h?; and C > 0 depends on M,C0M0, h?, h
?. Hence

choosing C0 = 2c0 and using that (by Lemma A.1 and since k ≥ 2 and s > 3
2 + d

2 )∥∥u′ + ∂%u
∥∥
L∞x L

2
%
≤
∥∥u′ + ∂%u

∥∥2

L2
%L
∞
x
.
∣∣u′∣∣2

L2
%

+
∥∥u∥∥2

Hs,k ≤
∣∣u′∣∣2

L2
%

+ (C0M0)2,

we find that there exists C0 ≥ 1 depending only on M,M?, h?, h
? such that

t
(
1 + κ−1

(∣∣u′∣∣2
L2
%

+M2
0

))
≤ C−1

0 =⇒ F(t) ≤ 3

4
C0M0.

Now we remark that since

∂th+ u · ∇xh = κ∆xh+ g with g = −∇x · (hu+ hu)



ON THE HYDROSTATIC LIMIT OF STABLY STRATIFIED FLUIDS 21

and by the positivity of the heat kernel we have

inf
Ω
h(t, ·) ≥ inf

Ω
h0 −

∥∥g∥∥
L1(0,t;L∞(Ω))

, sup
Ω
h(t, ·) ≤ sup

Ω
h0 +

∥∥g∥∥
L1(0,t;L∞(Ω))

.

Now, by the continuous embedding Hs−1,1(Ω) ⊂ L∞(Ω) (since s > 3
2 + d

2 ), we have that∥∥g∥∥
L∞(Ω)

.
∣∣h∣∣

W 1,∞
%

∥∥u∥∥
Hs,1 +

∥∥h∥∥
Hs,1

∥∥u∥∥
Hs,1 ≤ C(M)(1 + κ−1M2

0 ).

Hence augmenting C0 if necessary we find that

t(1 + κ−1M2
0 ) ≤ C−1

0 =⇒ ∀(x, %) ∈ Ω,
2

3
h? ≤ h(%) + h(t,x, %) ≤ 3

2
h?.

By a continuity argument we infer T? ≥
(
C
(
1 + κ−1

(∣∣u′∣∣2
L2
%

+M2
0

)))−1
, and the proof is complete. �

Completion of the proof of Theorem 1.1

In order to complete the proof of Theorem 1.1, there remains to consider vanishing viscosity limit,
ν ↘ 0, in Proposition 2.6. Let us briefly sketch the standard argument. By Proposition 2.6, we construct
a family (hν ,uν) ∈ C0([0, T ];Hs,k(Ω)) of solutions to (2.1) with (hν ,uν)

∣∣
t=0

= (h0,u0) indexed by the
parameter ν > 0. Notice that the time of existence and associated bounds provided by Proposition 2.6
are uniform with respect to the parameter ν > 0. Hence by the Banach-Alaoglu theorem there exists a
subsequence which converges weakly towards (h,u) ∈ L∞(0, T ;Hs,k(Ω)1+d), satisfying the estimates of
Proposition 2.6. Using the equations, we find that (∂tζν , ∂tuν) are uniformly bounded in L∞(0, T ;Hs−2,k).
The Aubin-Lions lemma (see [31]) implies that, up to extracting a subsequence, the convergence holds
strongly in (h,u) ∈ C0([0, T ];Hs′,k(B)1+d) for any 0 ≤ s′ < s for any bounded B ⊂ Rd × (ρ0, ρ1).
Choosing s′ > 3/2 + d/2 and using Lemma A.1 and Sobolev embedding, we can pass to the limit in the
nonlinear terms of the equation and infer that that (h,u) is a strong solution to (2.1) with ν = 0. Moreover,
since (h,u) ∈ C0([0, T ];Hs−2,k(Ω)1+d), we have (h,u) ∈ C0([0, T ];Hs′,k(Ω)1+d) for any 0 ≤ s′ < s.

Uniqueness of the solution (h,u) ∈ L∞(0, T ;Hs,k(Ω)1+d) follows by using Lemma 2.5 on the differ-
ence between two solutions, and Gronwall’s Lemma.

There remains to prove that (h,u) ∈ C0([0, T ];Hs,k(Ω)1+d). We prove the equivalent statement that for
anyα ∈ Nd and j ∈ N such that 0 ≤ |α|+j ≤ s and 0 ≤ j ≤ k, (∂j%∂αx h, ∂

j
%∂αxu) ∈ C0([0, T ];L2(Ω)1+d).

By Lemma 2.3, as long as κ > 0, we can write

∂t(∂
j
%∂
α
x h)− κ∆x(∂j%∂

α
x h) = rα,j +∇x · rα,j ,

∂t(∂
j
%∂
α
xu) + (v · ∇x)(∂j%∂

α
xu) = Rα,j ,

with (rα,j , rα,j , Rα,j) ∈ L2(0, T ;L2(Ω))1+2d and v(·, %) := u(%)+
(
u−κ∇xhh+h

)
(·, %) ∈W k,∞((ρ0, ρ1))d+

L2(0, T ;Hs,k(Ω))d. In other words, ∂j%∂αx h satisfies a heat equation and continuity in time stems from the
Duhamel formula, as already used in Proposition 2.1; and ∂j%∂αxu satisfies a transport equation and continu-
ity in time is standard, see e.g. [2, Th. 3.19]. Let us acknowledge however that our situation is slightly differ-
ent, since Ω is neither the Euclidean space or the torus, and advection occurs only in the direction x (and not
%). It is however easy to adapt the proof of [2, Th. 3.19] to infer ∂j%∂αxu ∈ L2(ρ0, ρ1; C0([0, T ];L2(Rd)))d ⊂
C0([0, T ];L2(Ω))d from the facts that Rα,j ∈ L2(0, T ;L2(Ω))d ⊂ L2(ρ0, ρ1;L1(0, T ;L2(Rd)))d and
∇xv ∈ L2(0, T ;Hs−1,k(Ω))d×d ⊂ L1(0, T ;L∞(ρ0, ρ1;Hs−3/2(Rd)))d×d and s− 3/2 > d/2, the contin-
uous embeddings following from Minkowski inequality and Lemma A.1.

This concludes the proof of Theorem 1.1.
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3. The non-hydrostatic system

In this section we study the local well-posedness theory for the non-hydrostatic system in isopycnal
coordinates, which we recall below.

∂th+∇x ·
(
(h+ h)(u+ u)

)
= κ∆xh,

%
(
∂tu+

(
(u+ u− κ∇xhh+h ) · ∇x

)
u
)

+∇xP +
∇xη
h+ h

(∂%P + %h) = 0,

µ%
(
∂tw +

(
u+ u− κ∇xhh+h

)
· ∇xw

)
− ∂%P

h+ h
+

%h

h+ h
= 0,

−(h+ h)∇x · u−∇xη · (u′ + ∂%u) + ∂%w = 0, (div.-free cond.)

η(·, %) =

∫ ρ1

%
h(·, %′) d%′, P

∣∣
%=ρ0

= 0, w
∣∣
%=ρ1

= 0. (bound. cond.)

(3.1)

3.1. The pressure reconstruction. The first step of our analysis consists in showing how the pressure
variable, P , can be uniquely reconstructed (thanks to the “divergence-free” incompressibility constraint)
from prognostic variables u, w and h (or, equivalently, η), through an elliptic boundary-value problem.
Differentiating the “divergence-free” incompressibility constraint in (3.1) with respect to time yields

−(h+ h)∇x · ∂tu− (∇xη) · (∂%∂tu) + ∂%∂tw = (∂th)(∇x · u) + (∇x∂tη) · (u′ + ∂%u).

We plug the expressions for ∂tu, ∂tw, ∂th, ∂tη provided by (3.1) inside the above identity. Reorganizing
terms, this yields the following

(h+ h)∇x ·
(

1
%∇xP +

∇xη(∂%P+%h)
%(h+h)

)
+ (∇xη) ·

(
∂%

(
1
%∇xP +

∇xη(∂%P+%h)
%(h+h)

))
+ ∂%

(
∂%P+%h
µ%(h+h)

)
= −(h+ h)∇x ·

((
(u+ u− κ∇xhh+h ) · ∇x

)
u
)
− (∇xη) ·

(
∂%

((
(u+ u− κ∇xhh+h ) · ∇x

)
u
))

+ ∂%

((
u+ u− κ∇xhh+h

)
· ∇xw

)
+
(
κ∆xh−∇x ·

(
(h+ h)(u+ u)

))
(∇x · u)

+
(
κ∇x∆xη −∇x

∫ ρ1
% ∇x · ((h+ h)(u+ u)) d%′

)
· (u′ + ∂%u).

Using that ∂%∇xη = −∇xh we can rewrite the left-hand side in a compact formulation as

(LHS) =
1

µ

(√
µ∇x
∂%

)
·

((
h+h
% Id

√
µ∇xη
%√

µ∇>x η
%

1+µ|∇xη|2
%(h+h)

)(√
µ∇x
∂%

)
(P + P eq)

)
,

with P eq :=
∫ %
ρ0
%′h(%′) d%′. As for the right-hand side, we denote

u? := −κ ∇xh
h+ h

, (3.2)

and we infer

(RHS) = −(h+ h)∇x ·
((

(u+ u+ u?) · ∇x
)
u
)
− (∇xη) ·

(
∂%
((
u+ u+ u?

)
· ∇xu

))
+ ∂%

((
u+ u+ u?

)
· ∇xw

)
−∇x · ((h+ h)(u+ u+ u?))(∇x · u)

−
(
∇x
∫ ρ1
% ∇x · ((h+ h)(u+ u+ u?)) d%′

)
· (u′ + ∂%u).

Notice the identity (reminiscent of (1.7))∫ ρ1

%
∇x · ((h+ h)(u+ u+ u?)) d%′ = (u+ u+ u?) · ∇xη − w − w?, (3.3)

where
w? := κ∆xη − κ

∇xh · ∇xη
h+ h

, (3.4)
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which is obtained by integrating with respect to % the divergence-free identities

−(h+ h)∇x · u− (∇xη) · (u′ + ∂%u) + ∂%w = 0,

−(h+ h)∇x · u? − (∇xη) · (∂%u?) + ∂%w? = 0,

integrating by parts with respect to %, using the boundary condition w|%=ρ1 = 0 = w?|%=ρ1 and h = −∂%η.
Hence the above can be equivalently written as

(RHS) = −(h+ h)∇x ·
((
u+ u+ u?

)
· ∇xu

)
− (∇xη) ·

(
∂%
((
u+ u+ u?

)
· ∇xu

))
+ ∂%

((
u+ u+ u?

)
· ∇xw

)
−∇x · ((h+ h)(u+ u+ u?))(∇x · u)

− (∇x ((u+ u+ u?) · ∇xη − w − w?)) · (u′ + ∂%u). (3.5)

Taking into account the boundary conditions in (3.1), we find that the pressure satisfies the following prob-
lem (recalling P eq :=

∫ %
ρ0
%′h(%′) d%′):

1

µ

(√
µ∇x
∂%

)
·

((
h+h
% Id

√
µ∇xη
%√

µ∇>x η
%

1+µ|∇xη|2
%(h+h)

)(√
µ∇x
∂%

)
(P + P eq)

)
= (RHS),

P
∣∣
%=ρ0

= 0, (∂%P )
∣∣
%=ρ1

= ρ1h
∣∣
%=ρ1

.

(3.6)

This boundary value problem corresponds to [7, (7)] written in isopycnal coordinates, adapting the boundary
conditions to the free-surface framework, and taking into account the effective transport velocities from eddy
correlation. Following [7], we shall infer the existence and uniqueness as well as estimates on the pressure
P from the elliptic theory applied to the above boundary value problem, as stated below.

LEMMA 3.1. Let s0 > d/2, s, k ∈ N such that s ≥ s0 + 5
2 and 1 ≤ k ≤ s. Let M,M,h? > 0. There

exists C > 0 such that for any µ ∈ (0, 1], and for any h, h, η satisfying the following bound∣∣h∣∣
W 1∨k−1,∞
%

≤M,
∥∥h∥∥

Hs−1,1∨k−1 +
√
µ
∥∥∇xη∥∥Hs−1,1∨k−1 ≤M ;

(where we recall the notation a ∨ b = max(a, b)) and the stable stratification assumption

inf
(x,%)∈Ω

h(%) + h(x, %) ≥ h?;

and for any (Q0, Q1,R) ∈ Hs,k−1(Ω)2 ×Hs,k(Ω)d+1, there exists a unique P ∈ Hs+1,k+1(Ω) solution to{
∇µx,% ·

(
Aµ∇µx,%P

)
= Q0 +

√
µΛQ1 +∇µx,% ·R

P
∣∣
%=ρ0

= 0, ed+1 · (A∇µx,%P )
∣∣
%=ρ1

= ed+1 ·R
∣∣
%=ρ1

(3.7)

where we denote Λ := (Id−∆x)1/2,

∇µx,% :=

(√
µ∇x
∂%

)
; Aµ :=

(
h+h
% Id

√
µ∇xη
%√

µ∇>x η
%

1+µ|∇xη|2
%(h+h)

)
,

and one has, denoting
∥∥(Q0, Q1,R)

∥∥
r,j

:=
∥∥Q0

∥∥
Hr,j−1 +

∥∥Q1

∥∥
Hr,j−1 +

∥∥R∥∥
Hr,j ,∥∥P∥∥

L2(Ω)
+
∥∥∇µx,%P∥∥Hs,k ≤ C ×

(∥∥(Q0, Q1,R)
∥∥
s,k

+
(∥∥h∥∥

Hs,k +
√
µ
∥∥∇xη∥∥Hs,k

) ∥∥(Q0, Q1,R)
∥∥
s−1,1∨k−1

)
(3.8)

and, when k ≥ 2, ∥∥P∥∥
L2(Ω)

+
∥∥∇µx,%P∥∥Hs−1,k−1 ≤ C

∥∥(Q0, Q1,R)
∥∥
s−1,k−1

. (3.9)
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PROOF. Testing (3.7) with P , using integration by parts and the boundary conditions, we find

−
∫
Rd

∫ ρ1

ρ0

Aµ∇µx,%P · ∇µx,%P d% dx =

∫
Rd

∫ ρ1

ρ0

Q0P +Q1(
√
µΛP )− R̃ · ∇µx,%P d% dx.

For (Q0, Q1,R) ∈ L2(Ω)2+d+1, the existence and uniqueness of a (variational) solution to (3.7) in the
functional space

H1
0 (Ω) := {P ∈ L2(Ω) : ∇x,%P ∈ L2(Ω), P

∣∣
%=ρ0

= 0}
classically follows from the Lax-Milgram Lemma thanks to the boundedness and the coercivity of the matrix
A (recall that h+ h ≥ h? > 0 and the embedding of Lemma A.1), and the Poincaré inequality

∀P ∈ H1
0 (Ω),

∥∥P∥∥2

L2(Ω)
=

∫
Rd

∫ ρ1

ρ0

∣∣∣∣∫ %

ρ0

∂%′P d%′
∣∣∣∣2 d%dx ≤ (ρ1 − ρ0)2

∥∥∂%P∥∥2

L2(Ω)
, (3.10)

and we have ∥∥∇µx,%P∥∥L2(Ω)
.
∥∥Q0

∥∥
L2(Ω)

+
∥∥Q1

∥∥
L2(Ω)

+
∥∥R∥∥

L2(Ω)
. (3.11)

The desired regularity for (Q0, Q1,R) ∈ Hs,k−1(Ω)2×Hs,k(Ω)d+1 is then deduced following the standard
approach for elliptic equations (notice the domain is flat) from the estimates which we obtain below. For
more details, we refer for instance to [22, Chapter 2] where a very similar elliptic problem is thoroughly
studied. We now focus on the estimates, assuming a priori the needed regularity to justify the following
computations.

First, we provide an estimate for
∥∥∇x,%P∥∥Hr,0(Ω)

for 1 ≤ r ≤ s. One readily checks that Pr := ΛrP

with Λr := (Id−∆x)r/2 satisfies (3.7) with Q0 ← ΛrQ0, Q1 ← ΛrQ1 and R ← ΛrR − [Λr, Aµ]∇x,%P .
We focus now on the contribution of Pr := [Λr, Aµ]∇µx,%P . By continuous embedding (Lemma A.1) and
commutator estimates (Lemma A.7), we have∥∥Pr∥∥L2(Ω)

.
∥∥∇xAµ∥∥

Hs0+
1
2 ,1

∥∥∇µx,%P∥∥Hr−1,0 +
〈∥∥∇xAµ∥∥Hr−1,0

∥∥∇µx,%P∥∥Hs0+
1
2 ,1

〉
r>s0+1

.

Hence, using product (Lemma A.2,A.3) and composition (Lemma A.4,A.6) estimates, we deduce∥∥Pr∥∥L2(Ω)
≤ C

(∥∥∇µx,%P∥∥Hr−1,0 +
〈(∥∥h∥∥

Hr,0 +
√
µ
∥∥∇xη∥∥Hr,0

)∥∥∇µx,%P∥∥Hs0+
1
2 ,1

〉
r>s0+1

)
(3.12)

with C = C(h?,
∣∣h∣∣

W 1,∞
%

,
∥∥(h,
√
µ∇xη)

∥∥
Hs0+

3
2 ,1

).

Plugging (3.12) in (3.11) and using continuous embedding (Lemma A.1) and s0 + 3
2 ≤ s− 1 yields∥∥∇µx,%P∥∥Hr,0 .

∥∥Q0

∥∥
Hr,0 +

∥∥Q1

∥∥
Hr,0 +

∥∥R∥∥
Hr,0 +

∥∥∇µx,%P∥∥Hr−1,0

+ C
(∥∥h∥∥

Hr,0 +
∥∥∇xη∥∥Hr,0

) 〈∥∥∇x,%P∥∥
Hs0+

1
2 ,1

〉
r>s0+1

, (3.13)

where we denote, here and thereafter, a . b for a ≤ Cb with

C = C(h?,
∣∣h∣∣

W 1,∞
%

,
∥∥h∥∥

Hs−1,1 ,
√
µ
∥∥∇xη∥∥Hs−1,1) = C(h?,M,M).

Next we provide an estimate for
∥∥∇x,%P∥∥Hr,1(Ω)

appearing in the above right-hand side. This term
involves ∂2

%P , which we control by rewriting (3.7) as

1+µ|∇xη|2
%(h+h) ∂2

%P = −∂%
(1+µ|∇xη|2

%(h+h)

)
(∂%P )−∇µx,% ·A

µ
0∇

µ
x,%P +Q0 +

√
µΛQ1 +∇µx,% ·R =: R̃ (3.14)

where we denote

∇µx,% ·A
µ
0∇

µ
x,%P := ∇µx,% ·

((
h+h
% Id

√
µ∇xη
%√

µ∇>x η
% 0

)
∇µx,%P

)
=
µ

%
∇x ·

(
h∇xP + (∇xη)(∂%P )

)
+ ∂%

(µ
%

(∇xη) · (∇xP )
)
.
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When estimating the above, we use product estimates (Lemma A.2) and then continuous embedding (Lemma A.1),
treating differently terms involving ∆xP or∇x∂%P : for instance∥∥Λr−1(h∆xP )

∥∥
L2(Ω)

.
∥∥h∥∥

Hs0+
1
2 ,1

∥∥∆xP
∥∥
Hr−1,0 +

〈∥∥h∥∥
Hr− 1

2 ,1

∥∥∆xP
∥∥
Hs0,0

〉
r−1>s0

;

and terms involving only∇xP or ∂%P : for instance∥∥Λr−1((∆xη)(∂%P ))
∥∥
L2(Ω)

.
∥∥∆xη

∥∥
Hs0+

1
2 ,1

∥∥∂%P∥∥Hr−1,0 +
〈∥∥∆xη

∥∥
Hr−1,0

∥∥∂%P∥∥
Hs0+

1
2 ,1

〉
r−1>s0

.

We infer, using Lemma A.1, µ ∈ (0, 1] and s0 + 3
2 ≤ s− 1, that for any 1 ≤ r ≤ s,

∥∥∂2
%P
∥∥
Hr−1,0 .

∥∥Q0

∥∥
Hr−1,0 +

∥∥Q1

∥∥
Hr,0 +

∥∥R∥∥
Hr,1 +

∥∥∇µx,%P∥∥Hr,0

+
(∥∥h∥∥

Hr,1 +
√
µ
∥∥∇xη∥∥Hr,1

) 〈∥∥∇µx,%P∥∥Hs0+1,1

〉
r>s0+1

. (3.15)

By combining (3.13) and (3.15) we obtain∥∥∇µx,%P∥∥Hr,1 .
∥∥Q0

∥∥
Hr,0 +

∥∥Q1

∥∥
Hr,0 +

∥∥R∥∥
Hr,1 +

∥∥∇µx,%P∥∥Hr−1,0

+ C
〈(∥∥h∥∥

Hr,1 +
√
µ
∥∥∇xη∥∥Hr,1

) ∥∥∇µx,%P∥∥Hs0+1,1

〉
r>s0+1

which, after finite induction on 1 ≤ r ≤ s and using (3.11) for the initialization, yields∥∥∇µx,%P∥∥Hr,1 .
∥∥Q0

∥∥
Hr,0 +

∥∥Q1

∥∥
Hr,0 +

∥∥R∥∥
Hr,1

+
(∥∥h∥∥

Hr,1 +
√
µ
∥∥∇xη∥∥Hr,1

)
×
〈∥∥Q0

∥∥
Hr−1,0 +

∥∥Q1

∥∥
Hr−1,0 +

∥∥R∥∥
Hr−1,1

〉
r>s0+1

. (3.16)

This, together with (3.10), proves (3.8) when k = 1.

We now proceed to estimate higher %-derivatives. In what follows, we denote

C = C(h?,
∣∣h∣∣

Wk−1,∞
%

,
∥∥h∥∥

Hs−1,k−1 ,
√
µ
∥∥∇xη∥∥Hs−1,k−1) = C(h?,M,M).

Let 2 ≤ j ≤ k. By definition, and using µ ∈ (0, 1], we have∥∥∇µx,%P∥∥Hs,j ≤
∥∥∇µx,%P∥∥Hs,j−1 +

∥∥∂%∇µx,%P∥∥Hs−1,j−1 .
∥∥∇µx,%P∥∥Hs,j−1 +

∥∥∂2
%P
∥∥
Hs−1,j−1 .

We shall also use, when j ≤ k − 1, the corresponding estimate∥∥∇µx,%P∥∥Hs−1,j .
∥∥∇µx,%P∥∥Hs−1,j−1 +

∥∥∂2
%P
∥∥
Hs−2,j−1 .

By using (3.14) (according to which ∂2
%P = %(h+h)

1+µ|∇xη|2 R̃), and since 1 ≤ j − 1 ≤ s− 1, using Lemma A.3
and Lemma A.5 yields∥∥∂2

%P
∥∥
Hs−1,j−1 .

∥∥ %(h+h)
1+µ|∇xη|2

∥∥
Hs−1,j−1

∥∥R̃∥∥
Hs−1,j−1 ≤ C

∥∥R̃∥∥
Hs−1,j−1 .

If moreover j ≤ k − 1 ≤ s− 1, then∥∥∂2
%P
∥∥
Hs−2,j−1 .

∥∥ %(h+h)
1+µ|∇xη|2

∥∥
Hs−2,j−1

∥∥R̃∥∥
Hs−2,j−1 ≤ C

∥∥R̃∥∥
Hs−2,j−1 .

Applying Lemma A.3 and Lemma A.5 to R̃ defined in (3.14), we obtain∥∥R̃∥∥
Hs−1,j−1 ≤

∥∥Q0

∥∥
Hs−1,j−1 +

∥∥Q1

∥∥
Hs,j−1 +

∥∥R∥∥
Hs,j

+ C
∥∥∇µx,%P∥∥Hs,j−1 + C ×

(∥∥h∥∥
Hs,j +

√
µ
∥∥∇xη∥∥Hs,j

) ∥∥∇µx,%P∥∥Hs−1,j−1

and, if moreover j ≤ k − 1 ≤ s− 1,∥∥R̃∥∥
Hs−2,j−1 ≤

∥∥Q0

∥∥
Hs−2,j−1 +

∥∥Q1

∥∥
Hs−1,j−1 +

∥∥R∥∥
Hs−1,j + C

∥∥∇µx,%P∥∥Hs−1,j−1 .

From the second set of inequalities, (3.16) with r = s− 1 and finite induction on 2 ≤ j ≤ k − 1 we infer∥∥∇µx,%P∥∥Hs−1,j ≤ C
(∥∥Q0

∥∥
Hs−1,j−1 +

∥∥Q1

∥∥
Hs−1,j−1 +

∥∥R∥∥
Hs−1,j

)
.
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Then, from the first set of inequalities, (3.16) with r = s and the previous result, we infer by finite induction
on 2 ≤ j ≤ k∥∥∇µx,%P∥∥Hs,j ≤ C

(∥∥Q0

∥∥
Hs,j−1 +

∥∥Q1

∥∥
Hs,j−1 +

∥∥R∥∥
Hs,j

)
+ C

(∥∥h∥∥
Hs,j +

√
µ
∥∥∇xη∥∥Hs,j

) (∥∥Q0

∥∥
Hs−1,j−2 +

∥∥Q1

∥∥
Hs−1,j−2 +

∥∥R∥∥
Hs−1,j−1

)
.

The result is proved. �

We now apply Lemma 3.1 to obtain several estimates on the solution to (3.5)-(3.6).

COROLLARY 3.2. Let s0 > d/2, s, k ∈ N such that s ≥ s0 + 5
2 and 2 ≤ k ≤ s. Let M,M,h? > 0.

There exists C > 0 such that for any µ ∈ (0, 1] and κ ∈ R, for any (h,u) ∈ W k,∞((ρ0, ρ1))1+d, and for
any (h,u, w) ∈ Hs+1,k(Ω)×Hs,k(Ω)d ×Hs,k−1(Ω) satisfying (denoting η(·, %) :=

∫ ρ1
% h(·, %′) d%′)

• the following bounds ∣∣h∣∣
Wk,∞
%

+
∣∣u′∣∣

Wk−1,∞
%

≤M,∥∥h∥∥
Hs−1,k−1 +

∥∥∇xη∥∥Hs−1,k−1 +
∥∥u∥∥

Hs,k +
√
µ
∥∥w∥∥

Hs,k−1 ≤M ;

• the stable stratification assumption

inf
(x,%)∈Ω

h(%) + h(x, %) ≥ h?;

• the incompressibility condition

−(h+ h)∇x · u− (∇xη) · (u′ + ∂%u) + ∂%w = 0,

there exists a unique solution P ∈ Hs+1,k+1(Ω) to (3.5)-(3.6) and one has∥∥P∥∥
L2(Ω)

+
∥∥∇µx,%P∥∥Hs,k ≤ C (1 +

∥∥h∥∥
Hs,k +

√
µ
∥∥∇xη∥∥Hs,k)

×
(∥∥h∥∥

Hs,k +
√
µ
∥∥∇xη∥∥Hs,k +

∥∥(u,u?)
∥∥
Hs,k +

√
µ
∥∥(w,w?)

∥∥
Hs,k−1

)
(3.17)

where we recall the notations u? := −κ∇xhh+h and w? := κ∆xη − κ∇xh·∇xηh+h .
Moreover, decomposing

P = Ph + Pnh, Ph :=

∫ %

ρ0

%′h(·, %′) d%′,

we have∥∥Pnh

∥∥
L2(Ω)

+
∥∥∇µx,%Pnh

∥∥
Hs−1,k−1 ≤ C

√
µ
(∥∥∇xη∥∥Hs−1,k−1 +

∣∣η∣∣
%=ρ0

∣∣
Hs
x

+
∥∥(u,u?)

∥∥
Hs,k +

√
µ
∥∥(w,w?)

∥∥
Hs,k−1

)
, (3.18)

and, setting Λµ = 1 +
√
µ|D|,∥∥Pnh

∥∥
L2(Ω)

+
∥∥∇µx,%Pnh

∥∥
Hs−1,k−1 ≤ C µ

(∥∥(Λµ)−1∇xη
∥∥
Hs,k−1 +

∣∣(Λµ)−1η
∣∣
%=ρ0

∣∣
Hs+1
x

+
(∣∣u′∣∣

Wk−1,∞
%

+
∥∥u∥∥

Hs,k

)(∥∥(u,u?)
∥∥
Hs,k +

∥∥(w,w?)
∥∥
Hs,k−1

)
+
∥∥u?∥∥Hs,k

∥∥w∥∥
Hs,k−1

)
. (3.19)

PROOF. In view of Lemma 3.1, we shall first estimate (RHS), defined in (3.5). We decompose

(RHS) = R1 +R2

where R1 is constituted by terms involving maximum one derivative on h, η,u,u?, w, w?, while

R2 := −(h+ h)
((
u+ u+ u?

)
· ∇x(∇x · u)

)
− (∇xη) ·

((
u+ u+ u?

)
· ∇x∂%u

)
+
(
u+ u+ u?

)
· ∇x∂%w − ((u+ u+ u?) · ∇x(∇xη)) · (u′ + ∂%u).
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Appealing to the incompressibility condition

−(h+ h)∇x · u− (∇xη) · (u′ + ∂%u) + ∂%w = 0,

we have simply
R2 =

((
u+ u+ u?

)
· (∇xh)

)
(∇x · u).

As a matter of fact, this term compensates with the second addend ofR1, so that contributions from h are not
differentiated. By inspecting the remaining terms and using Lemma A.3, we infer that for any r ≥ s0 + 1/2
and 1 ≤ j ≤ r ≤ s− 1,∥∥(RHS)

∥∥
Hr,j . (1 +

∣∣h∣∣
W j,∞
%

+
∥∥h∥∥

Hr,j +
∥∥∇xη∥∥Hr,j )

×
((∣∣u′∣∣

W j,∞
%

+
∥∥u∥∥

Hr+1,j+1

)(∥∥(u,u?)
∥∥
Hr+1,j+1 +

∥∥(w,w?)
∥∥
Hr+1,j

)
+
∥∥w∥∥

Hr+1,j

∥∥u?∥∥Hr+1,j+1

)
.

(3.20)

Owing to the fact that contributions from (h, η, w,w?) to (RHS) are affine, and µ ∈ (0, 1], we have for
any r ≥ s0 + 3/2 and 2 ≤ j ≤ r ≤ s
√
µ
∥∥(RHS)

∥∥
Hr−1,j−1 . (1 +

∣∣h∣∣
W j−1,∞
%

+
√
µ
∥∥h∥∥

Hr−1,j−1 +
√
µ
∥∥∇xη∥∥Hr−1,j−1)

×
((∣∣u′∣∣

W j−1,∞
%

+
∥∥u∥∥

Hr,j

)(∥∥(u,u?)
∥∥
Hr,j +

√
µ
∥∥(w,w?)

∥∥
Hr,j−1

)
+
√
µ
∥∥w∥∥

Hr,j−1

∥∥u?∥∥Hr,j

)
.

(3.21)

For the first estimate, we write (3.6) as (3.7) with Q0 = 0, Q1 =
√
µΛ−1(RHS) and

R =

(
−√µh∇xη

h
h+h(1 + µ|∇xη|2)− µ|∇xη|2

)
where we used the identities

1 + µ|∇xη|2

%(h+ h)
∂%P eq =

h(1 + µ|∇xη|2)

h+ h
= 1 + µ|∇xη|2 −

h

h+ h
(1 + µ|∇xη|2).

Product (Lemma A.3) and composition (Lemma A.6) estimates yield if r ≥ s0 +1/2 and 1 ≤ j ≤ r ≤ s−1∥∥R∥∥
Hr,j ≤ C(h?,

∣∣h∣∣
W j,∞
%

,
∥∥h∥∥

Hr,j ,
√
µ
∥∥∇xη∥∥Hr,j )×

(∥∥h∥∥
Hr,j +

√
µ
∥∥∇xη∥∥Hr,j

)
; (3.22)

and, if r ≥ s0 + 3/2 and 2 ≤ j ≤ r ≤ s, using the tame estimates, we obtain∥∥R∥∥
Hr,j ≤ C(h?,

∣∣h∣∣
W j,∞
%

,
∥∥h∥∥

Hr−1,j−1 ,
√
µ
∥∥∇xη∥∥Hr−1,j−1)×

(∥∥h∥∥
Hr,j +

√
µ
∥∥∇xη∥∥Hr,j

)
. (3.23)

Plugging in (3.8) the estimates (3.21) and (3.23) with (r, j) = (s, k), and (3.22) with (r, j) = (s−1, k−1),
yields (3.17).

For the next set of estimates, we notice that, by (3.6), P −Ph satisfies (3.7) with ed+1 ·R
∣∣
%=ρ1

= 0 and

Q0 +
√
µΛQ1 +∇µx,% ·R = µ(RHS) +∇µx,% · R̃ where

R̃ := −
(√

µ%−1(h+ h)∇xψ
µ%−1(∇xη) · (∇xψ)

)
, ψ :=

∫ %

ρ0

η(·, %′) d%′ + ρ0η
∣∣
%=ρ0

.

Indeed, we have immediately ed+1 · R̃
∣∣
%=ρ1

= 0 = ∂%
(
P − Ph)

∣∣
%=ρ1

and we infer

−∇µx,% · R̃ = ∇µx,% ·
(
Aµ∇µx,%(P eq + Ph)

)
from (integrating by parts as in (1.9b))

Ph :=

∫ %

ρ0

%′h(·, %′) d%′ = −%η +

∫ %

ρ0

η(·, %′) d%′ + ρ0η
∣∣
%=ρ0

. (3.24)
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By product estimates (Lemma A.3), we infer immediately for any r ≥ s0 + 1/2 and 1 ≤ j ≤ r∥∥R̃∥∥
Hr,j .

(∣∣h∣∣
W j,∞
%

+
∥∥h∥∥

Hr,j +
√
µ
∥∥∇xη∥∥Hr,j

)(√
µ
∥∥∇xη∥∥Hr,j +

√
µ
∣∣η∣∣

%=ρ0

∣∣
Hr+1
x

)
. (3.25)

Moreover, using the identity

∇µx,% · R̃ = µ∇xη · ∂%(%−1∇xψ) + µ%−1(h+ h)∇x · ∇xψ

we infer for any r ≥ s0 + 1/2 and 1 ≤ j ≤ r∥∥∇µx,% · R̃∥∥Hr,j . µ
(∣∣h∣∣

W j,∞
%

+
∥∥h∥∥

Hr,j +
∥∥∇xη∥∥Hr,j

)(∥∥∇xη∥∥Hr+1,j +
∣∣η∣∣

%=ρ0

∣∣
Hr+2
x

)
. (3.26)

Finally, recalling Λµ = 1 +
√
µ|D| and introducing

R̃0 := −
(√

µ%−1(h+ (Λµ)−1h)((Λµ)−1∇xψ)
µ%−1((Λµ)−1∇xη) · ((Λµ)−1∇xψ),

)
proceeding as for (3.25) and (3.26) and using Id−(Λµ)−1 =

√
µ|D|(Λµ)−1 and

∥∥(Λµ)−1
∥∥
L2
x→L2

x
= 1, for

any r ≥ s0 + 1/2 and 1 ≤ j ≤ r one has∥∥R̃− R̃0

∥∥
Hr,j +

∥∥∇µx,% · R̃0

∥∥
Hr,j . µ

(∣∣h∣∣
W j,∞
%

+
∥∥h∥∥

Hr,j +
∥∥∇xη∥∥Hr,j

)
×
(∥∥(Λµ)−1∇xη

∥∥
Hr+1,j +

∣∣(Λµ)−1η
∣∣
%=ρ0

∣∣
Hr+2
x

)
. (3.27)

We obtain (3.18), by setting Q0 = µ(RHS) and Q1 = 0, and plug in (3.9) the estimates (3.21) with
(r, j) = (s, k), and (3.25) with (r, j) = (s−1, k−1). For (3.19), we set insteadQ0 = µ(RHS)+∇µx,% ·R̃0

andQ1 = 0,R = R̃−R̃0, and plug in (3.9) the estimates (3.20) and (3.27) with (r, j) = (s−1, k−1). �

3.2. Small-time well-posedness. We infer small-time existence and uniqueness of regular solutions to
the Cauchy problem associated with the non-hydrostatic problem, (3.1), proceeding as for the hydrostatic
system in Section 2, that is considering the system as the combination of a transport-diffusion equation
and transport equations, coupled through order-zero source terms (by the estimate (3.17) in Corollary 3.2).
Specifically, we rewrite (3.1) as

∂th+∇x ·
(
(h+ h)(u+ u)

)
= κ∆xh,

∂tu+
(
(u+ u− κ∇xhh+h ) · ∇x

)
u+

1

%
∇xP +

(
1 +

∂%P − %h
%(h+ h)

)
∇xη = 0,

∂tw +
(
u+ u− κ∇xhh+h

)
· ∇xw −

1

µ

∂%P − %h
%(h+ h)

= 0,

(3.28)

where η(·, %) =
∫ ρ1
% h(·, %′) d%′ and P is defined by Corollary 3.2. Systems (3.1) and (3.28) are equivalent

(for sufficiently regular data) by the computations of Section 3.1, and in particular regular solutions to (3.28)
satisfy the boundary condition w

∣∣
%=ρ1

= 0 and the incompressibility constraint

(h+ h)∇x · u+∇xη · (u′ + ∂%u)− ∂%w = 0 (3.29)

provided these identities hold initially.

PROPOSITION 3.3. Let s0 > d/2, s, k ∈ N such that s ≥ s0+ 5
2 and 2 ≤ k ≤ s. Let h?,M,M, µ, κ > 0

and C0 > 1. There exists T > 0 such that for any (h,u) ∈ W k,∞((ρ0, ρ1))1+d, and for any initial data
(h0,u0, w0) ∈ Hs+1,k(Ω)×Hs,k(Ω)d ×Hs,k(Ω) satisfying

• the following bounds (where η0(·, %) :=
∫ ρ1
% h0(·, %′) d%′)∣∣h∣∣

Wk,∞
%

+
∣∣u′∣∣

Wk−1,∞
%

≤M

M0 :=
∥∥h0

∥∥
Hs,k +

∥∥∇xη0

∥∥
Hs,k +

∥∥u0

∥∥
Hs,k +

∥∥w0

∥∥
Hs,k ≤M,
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• the stable stratification assumption

inf
(x,%)∈Ω

h(%) + h0(x, %) ≥ h?,

• the boundary condition w0|%=ρ1 = 0 and the incompressibility condition

−(h+ h0)∇x · u0 − (∇xη0) · (u′ + ∂%u0) + ∂%w0 = 0,

there exists a unique (h,u, w) ∈ C0(0, T ;Hs,k(Ω)2+d) and P ∈ L2(0, T ;Hs+1,k+1(Ω)) solution to (3.28)
satisfying the initial data (h,u, w)

∣∣
t=0

= (h0,u0, w0). Moreover, the conditions w|%=ρ1 = P |%=ρ0 = 0
and the incompressibility condition (3.29) hold on [0, T ] (and hence the solution satisfies (3.1)) and one has
η ∈ L∞(0, T ;Hs+1,k(Ω)) and (h,∇xη) ∈ L2(0, T ;Hs+1,k(Ω)) and

Fs,k,T :=
∥∥h∥∥

L∞(0,T ;Hs,k)
+
∥∥∇xη∥∥L∞(0,T ;Hs,k)

+
∥∥u∥∥

L∞(0,T ;Hs,k)
+
∥∥w∥∥

L∞(0,T ;Hs,k)

+ c0κ
1/2
∥∥h∥∥

L2(0,T ;Hs,k)
+ c0κ

1/2
∥∥∇2

xη
∥∥
L2(0,T ;Hs,k)

≤ C0M0

with c0 a universal constant.

PROOF. Since a very similar proof has been detailed in the hydrostatic framework in Section 2, we
will only briefly sketch the main arguments. As aforementioned, thanks to Corollary 3.2, we may consider
the contributions of the pressure as zero-order source terms in the energy space displayed in the statement,
and (3.28) is then interpreted as a standard set of evolution equations. We now explain how to infer the
necessary bounds on all contributions to Fs,k,T , assuming enough regularity.

The desired control of
∥∥h∥∥

L∞(0,T ;Hs,k)
+ c0κ

1/2
∥∥∇xh∥∥L2(0,T ;Hs,k)

is a direct consequence of the first
equation of (3.28), and the regularization properties of the heat semigroup already summoned in Proposi-
tion 2.1. The corresponding control of

∥∥∇xη∥∥L∞(0,T ;Hs,k)
+ c0κ

1/2
∥∥∇2

xη
∥∥
L2(0,T ;Hs,k)

demands an addi-
tional structure. We recall (see (1.7) or (3.3)) that by the identity (3.29) and integrating the first equation
of (3.28), one has

∂tη + (u+ u) · ∇xη − w = κ∆xη. (3.30)
By the regularization properties of the heat semigroup, we infer (with c0 a universal constant)∥∥∇xη∥∥L∞(0,T ;Hs,k)

+c0κ
1/2
∥∥∇2

xη
∥∥
L2(0,T ;Hs,k)

≤
∥∥∇xη0

∥∥
Hs,k +

1

c0κ1/2

∥∥(u+u) ·∇xη−w
∥∥
L2(0,T ;Hs,k)

,

and the right-hand side is estimated by product estimates (Lemma A.3). Finally, the desired a priori es-
timates on

∥∥u∥∥
L∞(0,T ;Hs,k)

and
∥∥w∥∥

L∞(0,T ;Hs,k)
for sufficiently regular solutions follow by the energy

method (that is integrating by parts in the variable x) on the second and third equations of (3.28), which can
be seen as transport equations with source terms. More precisely, by (3.17) in Corollary 3.2, we have the
existence and uniqueness of P ∈ L2(0, T ;Hs+1,k+1(Ω)), satisfying the bound∥∥P∥∥

L2(0,T ;Hs+1,k+1)
≤ C(h?, µ, κ,M,Fs,k,T )Fs,k,T .

Moreover, the advection velocity is controlled (using Lemma A.1, s− 2 ≥ s0 + 1
2 , k ≥ 1) by∥∥∇ · (u+ u− κ∇xhh+h

)∥∥
L∞(0,T ;L∞(Ω))

≤ C(h?, κ,Fs,k,T ),

and using commutator (Lemma A.8) and composition (Lemma A.6) estimates, one has for any f ∈ Hs,k(Ω),
and any α ∈ Nd, j ∈ N with 0 ≤ j ≤ k and |α|+ j ≤ s,∥∥[∂αx ∂

j
%,u+ u− κ∇xhh+h ]∇xf

∥∥
L2(0,T ;L2(Ω))

≤ C(h?, κ,M,Fs,k,T )
∥∥f∥∥

Hs,k .

It follows ∥∥u∥∥
Hs,k +

∥∥w∥∥
Hs,k ≤

(∥∥u0

∥∥
Hs,k +

∥∥w0

∥∥
Hs,k + C

√
T
)

exp(CT ),

with C = C(h?, µ, κ,M,Fs,k,T ).
Altogether, and using standard continuity arguments, we find that for any C0 > 1 we can restrict the

time T = T (h?, µ, κ,M,C0M0) > 0 so that all sufficiently regular solutions to (3.28) satisfy the bound
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Fs,k,T ≤ C0M0. We may infer the existence of solutions using for instance the parabolic regularization
approach (see the closing paragraph of Section 2), and uniqueness is straightforward. This concludes the
proof. �

REMARK 3.4. Proposition 3.3 does not provide any lower bound on the time of existence (and control)
of solutions with respect to either µ� 1 or κ� 1, hence the “small-time” terminology.

3.3. Quasi-linearization of the non-hydrostatic system. In this section we extract the leading-order
terms of the equations satisfied by the spatial derivatives of the solutions to system (3.28). This will allow
us to obtain improved energy estimates in the subsequent section. Notice that starting from here, our study
is restricted to the situation k = s.

LEMMA 3.5. Let s, k ∈ N such that k = s > 5
2 + d

2 and M,M,h? > 0. Then there exists C > 0 such
that for any µ, κ ∈ (0, 1], and for any (h,u) ∈W k,∞((ρ0, ρ1))×W k+1,∞((ρ0, ρ1)) satisfying∣∣h∣∣

Wk,∞
%

+
∣∣u′∣∣

Wk,∞
%
≤M ;

and any (h,u, w) ∈ L∞(0, T ;Hs,k(Ω)d+2) solution to (3.28) (with P defined by Corollary 3.2) with any
T > 0 and satisfying for almost every t ∈ [0, T ],∥∥h(t, ·)

∥∥
Hs−1,k−1+

∥∥η(t, ·)
∥∥
Hs,k+

∣∣η∣∣
%=ρ0

(t, ·)
∣∣
Hs
x
+
∥∥u(t, ·)

∥∥
Hs,k+

√
µ
∥∥w(t, ·)

∥∥
Hs,k+κ1/2

∥∥h(t, ·)
∥∥
Hs,k ≤M

(where η(t,x, %) :=
∫ ρ1
% h(t,x, %′) d%′) and

inf
(t,x,%)∈(0,T )×Ω

h(%) + h(t,x, %) ≥ h?,

the following results hold.
Denote, for any multi-index α ∈ Nd and any j ∈ N such that |α| + j ≤ s, h(α,j) = ∂j%∂αx h, η

(α,j) =

∂j%∂αx η, u
(α,j) = ∂j%∂αxu, w

(α,j) = ∂j%∂αxw, and P (α)
nh = ∂j%∂αxPnh, with

Pnh := P − Ph, Ph :=

∫ %

ρ0

%′h(·, %′) d%′.

We have

∂tη
(α,j) + (u+ u) · ∇xη(α,j) − w(α,j) − κ∆xη

(α,j) = R̃α,j ,

∂tη
(α,j) + (u+ u) · ∇xη(α,j) +

〈∫ ρ1

%
(u′ + ∂%u) · ∇xη(α,j) d%′

+

∫ ρ1

%
(h+ h)∇x · u(α,j) d%′

〉
j=0
− κ∆xη

(α,j) = Rα,j ,

∂tu
(α,j) +

(
(u+ u− κ∇xhh+h ) · ∇x

)
u(α,j) +

〈ρ0

%
∇xη(α,j)

∣∣
%=ρ0

+
1

%

∫ %

ρ0

∇xη(α,j) d%′
〉
j=0

+
1

%
∇xP (α,j)

nh +
∇xη

%(h+ h)
∂%P

(α,j)
nh = Rnh

α,j ,

√
µ
(
∂tw

(α,j) + (u+ u− κ∇xhh+h ) · ∇xw(α,j)
)
− 1
√
µ

∂%P
(α,j)
nh

%(h+ h)
= Rnh

α,j ,

−∂%w(α) + (h+ h)∇x · u(α,j) + (∇xη) · (∂%u(α,j))

+(∇x · u)h(α,j) + (u′ + ∂%u) · ∇xη(α,j) = Rdiv
α,j ,
(3.31a)
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where for almost every t ∈ [0, T ], one has (Rα,j(t, ·),Rnh
α,j(t, ·), Rnh

α,j(t, ·), Rdiv
α,j(t, ·)) ∈ L2(Ω)d+3 and

Rα,0(t, ·) ∈ C((ρ0, ρ1);L2(Rd)), and∥∥Rα,j∥∥L2(Ω)
+
∣∣Rα,0|%=ρ0

∣∣
L2
x

+
∥∥R̃α,j∥∥L2(Ω)

+
∥∥Rdiv

α,j

∥∥
L2(Ω)

≤ CM ,∥∥Rnh
α,j

∥∥
L2(Ω)

+
∥∥Rnh

α,j

∥∥
L2(Ω)

≤ CM
(
1 + κ

∥∥∇xh∥∥Hs,k

)
+ C

(∥∥h∥∥
Hs,k +

√
µ
∥∥∇xη∥∥Hs,k

)(
M +

∥∥u?∥∥Hs,k +
√
µ
∥∥w?∥∥Hs,k−1

)
,

(3.31b)
and

∂th
(α,j) + (u+ u) · ∇xh(α,j) = κ∆xh

(α,j) + rα,j +∇x · rα,j , (3.32a)

where for almost every t ∈ [0, T ], one has (rα,j(t, ·), rα,j(t, ·)) ∈ L2(Ω)1+d and

κ1/2
∥∥rα,j∥∥L2(Ω)

+
∥∥rα,j∥∥L2(Ω)

≤ CM. (3.32b)

PROOF. Let us first point out that the estimates for
∣∣Rα,0|%=ρ0

∣∣
L2
x

,
∥∥Rα,j∥∥L2(Ω)

,
∥∥rα,j∥∥L2(Ω)

and∥∥rα,j∥∥L2(Ω)
have been stated and proved in Lemma 2.3. Thus we only need to focus on the other terms. In

the following, we denote s0 = s− 5
2 >

d
2 .

Using the identity (already pointed out in (3.30))

∂tη + (u+ u) · ∇xη − w = κ∆xη,

and the commutator estimate in Lemma A.8, we find immediately

R̃α,j = [∂j%∂
α
x ,u+ u] · ∇xη,

∥∥R̃α,j∥∥L2(Ω)
.
(∣∣u′∣∣

Wk−1,∞
%

+
∥∥u∥∥

Hs,k

)∥∥η∥∥
Hs,k .

Using the decomposition P = Ph + Pnh as in Corollary 3.2 and the identity (3.24) we have

∇xPh :=

∫ %

ρ0

%′∇xh(·, %′) d%′ = −%∇xη + ρ0∇xη|%=ρ0 +

∫ %

ρ0

∇xη(·, %′) d%′,

and hence the evolution equation for u reads

∂tu+
(
(u+ u− κ∇xhh+h ) · ∇x

)
u+

ρ0

%
∇xη|%=ρ0 +

1

%

∫ %

ρ0

∇xη(·, %′) d%′

+
1

%
∇xPnh +

∇xη
%(h+ h)

∂%Pnh = 0.

Differentiating α times with respect to x and j times with respect to % yields the corresponding equations
in (3.31a), with remainder terms

Rnh
α,j := Rα,j −

[
∂j%∂

α
x ,

∇xη
%(h+h)

]
∂%Pnh,

using the notation Rα,j for the hydrostatic contributions introduced in Lemma 2.3. The first addends have
been estimated in Lemma 2.3, (2.3b) (when j = 0) and (2.4b) (when j ≥ 1). We now estimate the second
addend as follows. By the commutator estimate in Lemma A.8 with k = s ≥ s0 + 3/2, we have∥∥[∂j%∂αx , ∇xη%(h+h)

]
∂%Pnh

∥∥
L2(Ω)

.
∥∥ ∇xη
%(h+h)

∥∥
Hs,k

∥∥∂%Pnh

∥∥
Hs−1,k−1 .

Then by tame product estimate Lemma A.3 and composition estimates in Lemma A.6, we have∥∥ ∇xη
%(h+h)

∥∥
Hs,k ≤ C(h?,

∣∣h∣∣
Wk,∞ ,

∥∥h∥∥
Hs−1,k−1)(

∥∥h∥∥
Hs,k

∥∥∇xη∥∥Hs−1,k−1 +
∥∥∇xη∥∥Hs,k)

and there remains to use estimate (3.18) in Corollary 3.2 to infer∥∥Rnh
α,j

∥∥
L2(Ω)

≤ C(h?,M,M)M
(
1 + κ

∥∥∇xh∥∥Hs,k

)
+ C(h?,M,M)

√
µ (
∥∥h∥∥

Hs,k +
∥∥∇xη∥∥Hs,k)

(
M +

∥∥u?∥∥Hs,k +
√
µ
∥∥w?∥∥Hs,k−1

)
.
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Now consider

Rnh
α,j := −√µ[∂j%∂

α
x ,u+ u] · ∇xw + κ

√
µ
[
∂j%∂

α
x ,
∇xh
h+h

]
· ∇xw + 1√

µ [∂j%∂
α
x ,

1
%(h+h) ]∂%P.

We have, by Lemma A.8 with k = s ≥ s0 + 3/2,
√
µ
∥∥[∂j%∂

α
x ,u+ u] · ∇xw

∥∥
L2(Ω)

.
√
µ
(∣∣u′∣∣

Wk−1,∞
%

+
∥∥u∥∥

Hs,k

)∥∥∇xw∥∥Hs−1,k−1 ,

and similarly, using tame product estimate Lemma A.3 and composition estimates in Lemma A.6 as above,

κ
√
µ
∥∥[∂j%∂αx , ∇xhh+h

]
· ∇xw

∥∥
L2(Ω)

≤ κ√µC(h?,M,M)(
∥∥h∥∥2

Hs,k +
∥∥∇xh∥∥Hs,k)

∥∥w∥∥
Hs,k−1 .

and
1√
µ

∥∥[∂j%∂
α
x ,

1
%(h+h) ]∂%Pnh

∥∥
L2(Ω)

≤ 1√
µC(h?,M,M)

∥∥h∥∥
Hs,k

∥∥∂%Pnh

∥∥
Hs−1,k−1 .

Collecting the above and using estimate (3.18) in Corollary 3.2 yields∥∥Rnh
α,j

∥∥
L2(Ω)

≤ C(h?,M,M)M
(
1 + κ

∥∥∇xh∥∥Hs,k

)
+ C(h?,M,M)

∥∥h∥∥
Hs,k

(
M +

∥∥u?∥∥Hs,k +
√
µ
∥∥w?∥∥Hs,k−1

)
.

Finally, we consider the remainder (stemming from differentiating the incompressibility condition (3.29))

Rdiv
α,j =

(
∂j%∂

α
x (h∇x · u)− (h(α,j))∇x · u− h∇x · u(α,j)

)
+
(
∂j%∂

α
x ((∂%u) · (∇xη))− (∂%u

(α,j)) · (∇xη)− (∂%u) · (∇xη(α,j))
)

+
(
∂j%∂

α
x (h∇x · u)− h∇x · u(α,j)

)
+
(
∂j%∂

α
x (u′ · ∇xη)− u′ · ∇xη(α,j)

)
.

Using Lemma A.9 for the first two terms and direct estimates for the last to terms, and k = s ≥ s0 + 5/2,∥∥Rdiv
α,j

∥∥ . ∥∥h∥∥
Hs−1,k−1

∥∥∇x · u∥∥Hs−1,k−1 +
∥∥∂%u∥∥Hs−1,k−1

∥∥∇xη∥∥Hs−1,k−1

+
∥∥h∥∥

Wk,∞
%

∥∥∇x · u∥∥Hs−1,k−1 +
∥∥u′∥∥

Wk,∞
%

∥∥∇xη∥∥Hs−1,k−1

.
(∥∥h∥∥

Wk,∞
%

+
∥∥u′∥∥

Wk,∞
%

+
∥∥h∥∥

Hs−1,k−1 +
∥∥u∥∥

Hs,k

)(∥∥η∥∥
Hs,k−1 +

∥∥u∥∥
Hs,k−1

)
.

This concludes the proof. �

3.4. A priori energy estimates. In this section we provide a priori energy estimates associated with the
equations featured in Lemma 3.5. We point out that such estimates concerning h(α,j) solving the transport-
diffusion equation (3.32a) have been provided in Lemma 2.4. Corresponding estimates for ∇xη stemming
from the first equation of (3.31a) are easily obtained. Hence we consider the remaining equations in (3.31a).
Specifically, recalling the notation η̇ = η(α,j), ḣ = h(α,j), u̇ = u(α,j), ẇ = w(α,j), Ṗnh = P

(α,j)
nh , we

consider the following linearized system:

∂tη̇ + (u+ u) · ∇xη̇ +

∫ ρ1

%

(
(u′ + ∂%u) · ∇xη̇ + (h+ h)∇x · u̇

)
d%′ − κ∆xη̇ = R,

%
(
∂tu̇+

(
(u+ u− κ∇xhh+h ) · ∇x

)
u̇
)

+ ρ0∇xη̇|%=ρ0 +

∫ %

ρ0

∇xη̇ d%′ +∇x ˙Pnh +
∇xη
h+ h

∂% ˙Pnh = Rnh,

√
µ%
(
∂tẇ + µ

(
u+ u− κ∇xhh+h

)
· ∇xẇ

)
− 1
√
µ

∂% ˙Pnh

h+ h
= Rnh,

−∂%ẇ + (h+ h)∇x · u̇+∇xη · ∂%u̇− (∂%η̇)∇x · u+∇xη̇ · (u′ + ∂%u) = Rdiv,
(3.33)

where we denote as always η(·, %) =
∫ ρ1
% h(·, %) d%.

We shall use the following definitions of the spaces Y 0 and Y 1

Y 0 := C0([ρ0, ρ1];L2(Rd))× L2(Ω)d × L2(Ω)× L2(Ω) , and

Y 1 :=
{

(η,u, w, P ) ∈ H1,1(Ω)d+3 : η
∣∣
%=ρ0

∈ H1(Rd), w
∣∣
%=ρ1

= 0, P
∣∣
%=ρ0

= 0
}
.

(3.34)



ON THE HYDROSTATIC LIMIT OF STABLY STRATIFIED FLUIDS 33

LEMMA 3.6. Let M,h?, h
? > 0 be fixed. There exists C(M,h?, h

?) > 0 such that for any κ > 0 and
µ > 0, and for any (h,u) ∈ W 1,∞((ρ0, ρ1))1+d and any T > 0 and (h,u, w) ∈ L∞(0, T ;W 1,∞(Ω)) with
∆xh ∈ L1(0, T ;L∞(Ω)) satisfying (3.28) and, for almost any t ∈ [0, T ], the estimate∥∥h(t, ·)

∥∥
L∞(Ω)

+
∥∥∇xh(t, ·)

∥∥
L∞x L

2
%

+
∥∥∇x · u(t, ·)

∥∥
L∞(Ω)

≤M

and the upper and lower bounds

∀(x, %) ∈ Ω, h? ≤ h(%) + h(t,x, %) ≤ h?;

and for any (η̇, u̇, ẇ, ˙Pnh) ∈ C0([0, T ];Y 0) ∩ L2(0, T ;Y 1) and (R,Rnh, Rnh, Rdiv) ∈ L2(0, T ;Y 0) satis-
fying system (3.33) in L2(0, T ;Y 1)′, the following inequality holds:

d

dt
E(η̇, u̇, ẇ) + κ

2

∥∥∇xη̇∥∥2

L2(Ω)
+ ρ0κ

∣∣∇xη̇∣∣%=ρ0

∣∣2
L2
x

≤C (1 + κ−1
∥∥u′ + ∂%u

∥∥2

L∞x L
2
%
)E(η̇, u̇, ẇ)

+ C
(
M +

∥∥u′ + ∂%u
∥∥
L∞x L

∞
%

)∥∥ ˙Pnh

∥∥
L2(Ω)

(∥∥∂%η̇∥∥L2(Ω)
+
∥∥∇xη̇∥∥L2(Ω)

)
+
∥∥ ˙Pnh

∥∥
L2(Ω)

∥∥Rdiv
∥∥
L2(Ω)

+ C E(η̇, u̇, ẇ)1/2E(R,Rnh, Rnh)1/2,

where we denote

E(η̇, u̇, ẇ) =
1

2

∫ ρ1

ρ0

∫
Rd
η̇2 + %(h+ h)|u̇|2 + µ%(h+ h)ẇ2 dxd%+

1

2

∫
Rd
η̇2|%=ρ0 dx. (3.35)

PROOF. We test the first equation against η̇ ∈ L2(0, T ;H1,1(Ω)) and its trace on {(x, ρ0), x ∈ Rd}
against ρ0η̇|%=ρ0 ∈ L2(0, T ;H1

x(Rd)), the second equation against (h+h)u̇ ∈ L2(0, T ;H1,1(Ω)d) and the
third equation against

√
µ(h+ h)ẇ ∈ L2(0, T ;H1,1(Ω)). This yields:

d

dt
E(η̇, u̇, ẇ) + κ

∥∥∇xη̇∥∥2

L2(Ω)
+ κ
∣∣∇xη̇|%=ρ0

∣∣2
L2
x

= −
(
(u+ u) · ∇xη̇, η̇

)
L2(Ω)

−
(∫ ρ1

%
(u′ + ∂%u) · ∇xη̇ d%′, η̇

)
L2(Ω)

(i)

−
(∫ ρ1

%
(h+ h)∇x · u̇ d%′, η̇

)
L2(Ω)

+
(
R, η̇

)
L2(Ω)

(ii)

−
(
%(u+ u) · ∇xu̇, (h+ h)u̇

)
L2(Ω)

+ κ
(
%(∇xh · ∇x)u̇, u̇

)
L2(Ω)

(iii)

−
(
ρ0∇xη̇|%=ρ0 , (h+ h)u̇

)
L2(Ω)

−
(∫ %

ρ0

∇xη̇ d%′, (h+ h)u̇

)
L2(Ω)

(iv)

−
(
∇x ˙Pnh, (h+ h)u̇

)
L2(Ω)

−
(
(∂% ˙Pnh)∇xη, u̇

)
L2(Ω)

+
(
Rnh, (h+ h)u̇

)
L2(Ω)

(v)

− µ
(
%(u+ u) · ∇xẇ, (h+ h)ẇ

)
L2(Ω)

+ µκ
(
%(∇xh · ∇x)ẇ, ẇ

)
L2(Ω)

(vi)

+
(
∂% ˙Pnh, ẇ

)
L2(Ω)

+
√
µ
(
Rnh, (h+ h)ẇ

)
L2(Ω)

(vii)

− ρ0 ((u+ u)(∇xη̇|%=ρ0), η̇|%=ρ0)L2
x
− ρ0

(∫ ρ1

ρ0

(u′ + ∂%u) · ∇xη̇ d%′, η̇|%=ρ0

)
L2
x

(viii)

− ρ0

(∫ ρ1

ρ0

(h+ h)(∇x · u̇) d%′, η̇|%=ρ0

)
L2
x

+
(
R|%=ρ0 , η̇|%=ρ0

)
L2
x

(ix)

+
1

2

(
%(∂th)u̇, u̇

)
L2(Ω)

+
µ

2

(
%(∂th)ẇ, ẇ

)
L2(Ω)

. (x)

Some terms have already been treated in the course of the proof of Lemma 2.5: the second term in (i) and
the second term in (viii) require κ > 0; the first terms in (i), (viii) are advection terms; the first addend of
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(ii) together with the second term in (iv) after integration by parts; the first addend of (iv) with the first term
in (ix). The contributions in (iii) compensate with the first addend of (x), using the first equation of (3.28)
and, in the same way, the contributions in (vi) compensate with the second addend of (x). It remains only to
deal with the contribution frm the non-hydrostatic pressure terms in (v) and (vii), and remainder terms.

Consider the sum of the first two terms in (v) and the first term in (vii). We integrate by parts in x the
first term and in % in the last two terms. Thus we have

−
(
∇x ˙Pnh, (h+ h)u̇

)
L2(Ω)

−
(
(∂% ˙Pnh)∇xη, u̇

)
L2(Ω)

+
(
∂% ˙Pnh, ẇ

)
L2(Ω)

=
(

˙Pnh, (h+ h)∇x · u̇
)
L2(Ω)

+
(

˙Pnh∇xη, ∂%u̇
)
L2(Ω)

−
(

˙Pnh, ∂%ẇ
)
L2(Ω)

,

where we used the identity h = −∂%η and the boundary conditions ˙Pnh|%=ρ0 = η̇|%=ρ1 = ẇ|%=ρ1 = 0 when
integrating by parts with respect to %. Using the last equation in (3.33) (stemming from the incompressibility
condition), the above term reads(

˙Pnh, (∇x · u)(∂%η̇)− (u′ + ∂%u) · ∇xη̇ +Rdiv
)
L2(Ω)

.

These terms, alike remainder terms∣∣(R, η̇)
L2(Ω)

∣∣+
∣∣(R|%=ρ0 , η̇|%=ρ0

)
L2
x

∣∣+
∣∣(Rnh, (h+ h)u̇

)
L2(Ω)

∣∣+
√
µ
∣∣(Rnh, (h+ h)ẇ

)
L2(Ω)

∣∣ ,
are bounded by Cauchy-Schwarz inequality and using ρ0h? ≤ %(h+ h) ≤ ρ1h

?.
Altogether, we obtain the differential inequality

d

dt
E(η̇, u̇, ẇ) + κ

∥∥∇xη∥∥2

L2(Ω)
+ ρ0κ

∣∣∇xη∣∣%=ρ0

∣∣2
L2
x

≤C E(η̇, u̇, 0) + C
∥∥u′ + ∂%u

∥∥
L2
%L
∞
x
E(η̇, u̇, 0)1/2

∥∥∇xη̇∥∥L2(Ω)

+ C
(
M +

∥∥u′ + ∂%u
∥∥
L∞% L

∞
x

)∥∥ ˙Pnh

∥∥
L2(Ω)

(∥∥∂%η̇∥∥L2(Ω)
+
∥∥∇xη̇∥∥L2(Ω)

)
+
∥∥ ˙Pnh

∥∥
L2(Ω)

∥∥Rdiv
∥∥
L2(Ω)

+ CE(η̇, u̇, ẇ)1/2E(R,Rnh, Rnh)1/2

with C = C(h?, h
?,M), and the desired estimate follows straightforwardly. �

REMARK 3.7. Lemma 3.6 will be applied to the system (3.31a)-(3.31b) appearing in Lemma 3.5, when
j = 0. A similar result holds for the simplified system when j 6= 0. The main difference is that the result
does not require nor provide the control of the trace ∂j%η

∣∣
%=ρ0

.

3.5. Large-time well-posedness. We prove the large-time existence of strong solutions to system (3.1).
As for the hydrostatic system, large time underlines the fact that the existence time that is provided by the
following result is uniformly bounded (from below) with respect to the vanishing parameter µ ∈ (0, 1].
Besides, the result below keeps track of the dependency of this large time-scale on the diffusivity parameter
κ ∈ [µ, 1].

PROPOSITION 3.8. Let s, k ∈ N be such that k = s > 5
2 + d

2 and M,M,h?, h
? > 0. Then, there exists

C > 0 such that, for any 0 < µ ≤ κ ≤ 1, and any (h,u) ∈W k,∞((ρ0, ρ1))×W k+1,∞((ρ0, ρ1))d such that∣∣h∣∣
Wk,∞
%

+
∣∣u′∣∣

Wk,∞
%
≤M ;

for any initial data (h0,u0, w0) ∈ Hs,k(Ω)d+2 with

M0 :=
∥∥η0

∥∥
Hs,k +

∥∥u0

∥∥
Hs,k +

√
µ
∥∥w0

∥∥
Hs,k +

∣∣η0

∣∣
%=ρ0

∣∣
Hs
x

+κ1/2
∥∥h0

∥∥
Hs,k +µ1/2κ1/2

∥∥∇xη0

∥∥
Hs,k ≤M ,

and satisfying the boundary condition w0|%=ρ1 = 0 and the incompressibility condition

−(h+ h0)∇x · u0 − (∇xη0) · (u′ + ∂%u0) + ∂%w0 = 0,

the lower and upper bounds

∀(x, %) ∈ Ω, h? ≤ h(%) + h0(x, %) ≤ h? ,
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and the smallness assumption
Cκ−1

(∣∣u′∣∣2
L∞%

+M2
0 ) ≤ 1 ,

the following holds. Denoting by

T−1 = C
(
1 + κ−1

(∣∣u′∣∣2
L2
%

+M2
0

))
,

there exists a unique (h,u, w) ∈ C0([0, T ];Hs,k(Ω)2+d) and P ∈ L2(0, T ;Hs+1,k+1(Ω)) strong solution
to (3.28) with initial data (h,u, w)

∣∣
t=0

= (h0,u0, w0). Moreover, one has η ∈ L∞(0, T ;Hs+1,k(Ω)) and
(h,∇xη) ∈ L2(0, T ;Hs+1,k(Ω)) and , for any t ∈ [0, T ], the lower and the upper bounds hold

∀(x, %) ∈ Ω, h?/2 ≤ h(%) + h(t,x, %) ≤ 2h? ,

and the estimate below holds true

F(t) : =
∥∥η(t, ·)

∥∥
Hs,k +

∥∥u(t, ·)
∥∥
Hs,k + µ1/2

∥∥w(t, ·)
∥∥
Hs,k +

∣∣η∣∣
%=ρ0

(t, ·)
∣∣
Hs
x

+ κ1/2
∥∥h(t, ·)

∥∥
Hs,k + µ1/2κ1/2

∥∥∇xη(t, ·)
∥∥
Hs,k

+ κ1/2
∥∥∇xη∥∥L2(0,t;Hs,k)

+ κ1/2
∣∣∇xη∣∣%=ρ0

∣∣
L2(0,t;Hs

x)

+ κ
∥∥∇xh∥∥L2(0,t;Hs,k)

+ µ1/2κ
∥∥∇2

xη
∥∥
L2(0,t;Hs,k)

≤ CM0. (3.36)

PROOF. As for the large-time existence for the hydrostatic system (see Proposition 2.6), the proof is
based on a bootstrap argument on the functional F . Recalling that the (short-time) existence and uniqueness
of the solution has been provided in Proposition 3.3, we denote by T ? the maximal existence time, and set

T? = sup{0 < T < T ? : ∀ t ∈ (0, T ), h?/2 ≤ h(%) + h(t,x, %) ≤ 2h? and F(t) ≤ C0M0}, (3.37)

with C0 = C(h?, h
?,M,M) sufficiently large (to be determined). Henceforth, we restrain to 0 < T < T?,

and and denote by C any positive constant depending uniquely on M,h?, h
?, C0M0 and s, k.

By means of (3.32a)-(3.32b) in Lemma 3.5 and Lemma 2.4, we infer as in the proof of Proposition 2.6
the control

κ1/2
∥∥h∥∥

L∞(0,T ;Hs,k)
+κ
∥∥∇xh∥∥L2(0,T ;Hs,k)

≤
(
c0M0 + C C0M0

(
T +
√
T
))
×exp

(
CC0M0 T

)
(3.38)

with the same notations as above and c0 a universal constant. In the non-hydrostatic situation, additional
controls can be inferred on η. Indeed, from the first equation in in Lemma 3.5, (3.31a)-(3.31b), we find that

∂tη
(α,j) + (u+ u) · ∇xη(α,j) = κ∆xη

(α) + R̃α,j + w(α,j)

with √
µ
∥∥R̃α,j + w(α,j)

∥∥
L2(Ω)

≤ C C0M0 .

Differentiating once with respect to the space variables and proceeding as in Lemma 2.4, we infer

µ1/2κ1/2
∥∥∇xη∥∥L∞(0,T ;Hs,k)

+ µ1/2κ
∥∥∇2

xη
∥∥
L2(0,T ;Hs,k)

≤
(
c0M0 + CC0M0(T +

√
T )
)
× exp

(
CC0M0T

)
. (3.39)

Next we use again Lemma 3.5, (3.31a)-(3.31b), together with Lemma 3.6 (see also Remark 3.7) to obtain
that the functional

Es,k :=
1

2

k∑
j=0

s−j∑
|α|=0

∫∫
Ω

(∂j%∂
α
x η)2+%(h+h)|∂j%∂αxu|2+µ%(h+h)(∂j%∂

α
xw)2 dxd%+

1

2

s∑
|α|=0

∫
Rd

(∂αx η|%=ρ0)2 dx,

satisfies the differential inequality

d

dt
Es,k + κ

2

∥∥∇xη∥∥2

Hs,k + ρ0κ
∣∣∇xη∣∣%=ρ0

∣∣2
Hs
x
≤ C

(
R1 +R2 +R3

)
; (3.40)
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with

R1 := (1 + κ−1
∥∥u′ + ∂%u

∥∥2

L∞x L
2
%
)Es,k,

R2 :=
(
C0M0 +

∥∥u′ + ∂%u
∥∥
L∞% L

∞
x

)∥∥Pnh

∥∥
Hs,k

(∥∥h∥∥
Hs,k +

∥∥∇xη∥∥Hs,k

)
,

R3 :=
∥∥Pnh

∥∥
Hs,k

∥∥Rdiv
s,k

∥∥
L2(Ω)

+ (Es,k)1/2
∥∥Rs,k∥∥L2(Ω)

,

and ∥∥Rdiv
s,k

∥∥
L2(Ω)

≤ C C0M0 , (3.41)∥∥Rs,k∥∥L2(Ω)
≤ C C0M0

(
1 + κ

∥∥∇xh∥∥Hs,k

)
+ C

(∥∥h∥∥
Hs,k + µ1/2

∥∥∇xη∥∥Hs,k

)(
C0M0 +

∥∥u?∥∥Hs,k + µ1/2
∥∥w?∥∥Hs,k

)
. (3.42)

By (3.37), we have obviously for any 0 < t < T?,
1

2ρ1h?
Es,k(t) ≤

∥∥η(t, ·)
∥∥2

Hs,k +
∥∥u(t, ·)

∥∥2

Hs,k + µ
∥∥w(t, ·)

∥∥2

Hs,k +
∣∣η∣∣

%=ρ0
(t, ·)

∣∣2
Hs
x
≤ 2

ρ0h?
Es,k(t).

Moreover, we have the following control on u? := −κ∇xhh+h and w? := κ∆xη − κ∇xh·∇xηh+h stemming from
(tame) product and composition estimates (Lemma A.3 and A.6), and using that µ ≤ κ ≤ 1:∥∥u?∥∥L2(0,T ;Hs,k)

+ µ1/2
∥∥w?∥∥L2(0,T ;Hs,k)

≤ C C0M0(1 +
√
T ) . (3.43)

Finally, using estimate (3.18) in Corollary 3.2 yields∥∥Pnh

∥∥
Hs,k ≤

∥∥Pnh

∥∥
L2 +

∥∥∇x,%Pnh

∥∥
Hs−1,k−1 ≤

∥∥Pnh

∥∥
L2 + µ−1/2

∥∥∇µx,%Pnh

∥∥
Hs−1,k−1

≤ C
(∥∥∇xη∥∥Hs−1,k−1 +

∣∣η∣∣
%=ρ0

∣∣
Hs
x

+
∥∥(u,u?)

∥∥
Hs,k + µ1/2

∥∥(w,w?)
∥∥
Hs,k−1

)
,

from which we infer, using the controls (3.37) and (3.43), that∥∥Pnh

∥∥
L2(0,T ;Hs,k)

≤ C C0M0(1 +
√
T ). (3.44)

From (3.37) and (3.41)-(3.42)-(3.43)-(3.44) we infer∫ T

0
R1(t) dt ≤ C (C0M0)2(1 + κ−1

∣∣u′∣∣2
L2
%

+ κ−1(C0M0)2)T,∫ T

0
R2(t) dt ≤ C κ−1/2

(
C0M0 +

∣∣u′∣∣
L∞%

)
(C0M0)2(1 +

√
T )2 ,∫ T

0
R3(t) dt ≤ C (C0M0)2(T +

√
T ) + C (C0M0)2

(
T + C0M0

√
T + κ−1/2(C0M0)(T +

√
T )
)
.

Hence there exists C > 0, depending on M,h?, h
?, C0,M0 (and s, k), such that if

C T
(
1 + κ−1(

∣∣u′∣∣2
L2
%

+M2
0 )) ≤ 1,

and imposing additionally 3 that

C κ−1/2
(
C0M0 +

∣∣u′∣∣
L∞%

)
≤ 1

16ρ0h? (3.45)

we have, when integrating the differential inequality (3.40) and combine with (3.38) and (3.39),

Es,k(t) ≤ Es,k(0) + 1
8(ρ0h?)(C0M0)2 .

Now, setting C0 = max({4(ρ1h
?

ρ0h?
)1/2, 8c0}, and C accordingly, one has F(t) ≤ C0M0/2 for all

0 < t < T . We obtain as in the proof of Proposition 2.6 the lower and upper bounds 2h?/3 ≤ h(%) +

3We point out that the only term requiring the above smallness condition (3.45) on the initial data is (the time integral of) R2,
and more precisely the product

∥∥Pnh
∥∥
Hs,k

∥∥∇xη∥∥Hs,k , where both terms are only square-integrable in time.



ON THE HYDROSTATIC LIMIT OF STABLY STRATIFIED FLUIDS 37

h(t,x, %) ≤ 3h?/2, augmenting C if necessary, and the standard continuity argument allows to conclude
the proof. �

4. Convergence

This section is devoted to the proof of the convergence of regular solutions to the non-hydrostatic equa-
tions (1.8) towards the corresponding solutions to the limit hydrostatic equations (1.9), namely Theorem 1.2.
Our convergence result holds in the strong sense and “with loss of derivatives”: we prove that the solutions
to the approximating (non-hydrostatic) equations converge towards the solutions to the limit (hydrostatic)
equations in a suitable strong topology that is strictly weaker than the one measuring the size of the initial
data.

For a given set of initial data, we use the apex h to refer to the solution to the hydrostatic equations
(provided by the analysis of Section 2 culminating with Theorem 1.1), and the apex nh for the corresponding
solution to the non-hydrostatic equations (provided by the analysis of Section 3, specifically Proposition 3.3).
The apex d denotes the difference between the non-hydrostatic solution and the hydrostatic one, whose size
will be controlled in the limit µ↘ 0.

While we can appeal to Theorem 1.1 to obtain the existence, uniqueness and control of solutions to
the hydrostatic equations over a large time interval, Proposition 3.3 provides only a time interval which a
priori vanishes as µ ↘ 0, and Proposition 3.8 only applies to sufficiently small initial data. The standard
strategy (used for instance in [20] in the context of weakly compressible flows) that we apply here relies on
a bootstrap argument to control the difference between the non-hydrostatic solution and the hydrostatic one
in the time-interval provided by the hydrostatic solution, from which the existence and control of the non-
hydrostatic solution (again, with loss of derivatives) can be inferred. We perform this analysis in Sections 4.1
to 4.3, where we first provide a consistency result (Lemma 4.1), then exhibit the (non-hydrostatic) quasilin-
ear structure of the equations satisfied by the difference (Lemma 4.2), and finally infer the uniform control
of the non-hydrostatic solution and the strong convergence towards the corresponding hydrostatic solution
(Proposition 4.3). In a last step, in Section 4.4, we use this uniform control to offer an improved convergence
rate based this time on the structure of the hydrostatic equations (Proposition 4.4). Propositions 4.3 and 4.4
immediately yield Theorem 1.2.

4.1. Consistency. In the following result we prove that solutions to the hydrostatic equations (1.9)
emerging from smooth initial data satisfy (suitably defining the horizontal velocity and pressure variables)
the non-hydrostatic equations (1.8), up to small remainder terms.

LEMMA 4.1. There exists p ∈ N such that for any s, k ∈ N with 0 ≤ k ≤ s, the following holds.
Let M,M,h?, h

? > 0 be fixed. Then there exists C0 > 0 and C1 > 0 such that for any κ ∈ (0, 1], any
(h,u) ∈W k+p,∞((ρ0, ρ1))1+d satisfying∣∣h∣∣

Wk+p,∞
%

+
∣∣u′∣∣

Wk+p−1,∞
%

≤M,

and any initial data (h0,u0) ∈ Hs+p,k+p(Ω) satisfying the following estimate

M0 :=
∥∥η0

∥∥
Hs+p,k+p +

∥∥u0

∥∥
Hs+p,k+p +

∣∣η0

∣∣
%=ρ0

∣∣
Hs+p
x

+ κ1/2
∥∥h0

∥∥
Hs+p,k+p ≤M

(where we denote η0(·, %) :=
∫ ρ1
% h0(·, %′) d%′) and the stable stratification assumption

inf
(x,%)∈Ω

h? ≤ h(%) + h0(x, %) ≤ h?,

there exists a unique (hh,uh) ∈ C0([0, T ];Hs+p,k+p(Ω)1+d) strong solution to (1.9) with initial data
(hh,uh)

∣∣
t=0

= (h0,u0), where

T−1 = C0

(
1 + κ−1

(∣∣u′∣∣2
L2
%

+M2
0

))
.
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Moreover, one has for all t ∈ [0, T ],

∀(x, %) ∈ Ω, h?/2 ≤ h(%) + hh(t,x, %) ≤ 2h?,

and, denoting ηh(·, %) :=
∫ ρ1
% hh(·, %′) d%′ and

wh(·, %) := −
∫ ρ1

%
(h(%′) + hh(·, %′))∇x · uh(·, %′) +∇xηh(·, %′) · (u′(%′) + ∂%u

h(·, %′)) d%′ , (4.1)

P h(·, %) :=

∫ %

ρ0

%′hh(·, %′) d%′ , (4.2)

one has for any t ∈ [0, T ],∥∥(hh(t, ·), ηh(t, ·),uh(t, ·), wh(t, ·), P h(t, ·)
)∥∥
Hs+1,k+1 ≤ C1M0 , (4.3)

and

∂th
h +∇x ·

(
(h+ hh)(u+ uh)

)
= κ∆xh

h,

%
(
∂tu

h +
(
(u+ uh − κ∇xhh

h+hh
) · ∇x

)
uh
)

+∇xP h +
∇xηh

h+ hh
(∂%P

h + %hh) = 0,

µ%
(
∂tw

h +
(
u+ uh − κ∇xhh

h+hh

)
· ∇xwh

)
− ∂%P

h

h+ hh
+

%hh

h+ hh
= µRh,

−(h+ hh)∇x · uh −∇xηh · (u′ + ∂%u
h) + ∂%w

h = 0,

(4.4a)

with Rh(t, ·) ∈ C0([0, T ];Hs,k(Ω)) and satisfying for any t ∈ [0, T ],∥∥Rh(t, ·)
∥∥
Hs,k ≤ C1M0. (4.4b)

PROOF. From Theorem 1.1 we infer immediately (for p > 2 + d/2) the existence, uniqueness and
control of the hydrostatic solution (hh,uh) ∈ C0([0, T ];Hs+p,k+p(Ω)1+d), and C0 > 0. From the for-
mula (4.1), (4.2) and product estimates (Lemma A.3) in the spaceHs+p′,k+p′(Ω) (for 1 ≤ p′ ≤ p sufficiently
large) we infer the estimate (4.3).

We obtain similarly the desired consistency estimate, (4.4a)-(4.4b), using the identity (recall (3.24))

P h + %ηh =

∫ %

ρ0

ηh(·, %′) d%′ + ρ0η
h
∣∣
%=ρ0

,

and denoting

Rh := %
(
∂tw

h +
(
u+ uh − κ∇xhh

h+hh

)
· ∇xwh

)
,

differentiating with respect to time the identity (4.1), and using (1.9) to infer the control of ∂tuh and ∂twh.
�

As a corollary to the above, we can write the equations satisfied by the difference between (hh,uh, wh),
i.e. the maximal solution to the hydrostatic equations emerging from given regular, well-prepared initial
data, and (hnh,unh, wnh), i.e. the maximal solution to the non-hydrostatic with the same data (see Proposi-
tion 3.3). Specifically, under the assumptions and using the notations of Lemma 4.1, we have that

hd := hnh − hh; ud := unh − uh; wd := wnh − wh;
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satisfies (hd,ud, wd)
∣∣
t=0

= (0, 0, 0) and

∂th
d +∇x ·

(
(u+ unh)hd + (h+ hh)ud

)
= κ∆xh

d,

∂tη
d + (u+ unh) · ∇xηd +

∫ ρ1

%
(u′ + ∂%u

nh) · ∇xηd d%′ +

∫ ρ1

%
(h+ hnh)∇x · ud d%′

+

∫ ρ1

%
ud · ∇xhh + hd∇x · uh d%′ = κ∆xη

d,

∂tu
d +

(
(u+ unh − κ∇xhnh

h+hnh
) · ∇x

)
ud +

ρ0

%
∇xηd|%=ρ0 +

1

%

∫ %

ρ0

∇xηd d%′

+
(
(ud − κ(∇xh

nh

h+hnh
− ∇xhh

h+hh
)) · ∇x

)
uh +

∇xPnh

%
+
∇xηnh

%(h+ hnh)
∂%Pnh = 0,

µ
(
∂tw

d +
(
u+ unh − κ∇xhnh

h+hnh

)
· ∇xwd + (ud − κ(∇xh

nh

h+hnh
− ∇xhh

h+hh
)) · ∇xwh

)
− ∂%Pnh

%(h+ hnh)
= −µRh,

−(h+ hnh)∇x · ud − hd∇x · uh −∇xηd · (u′ + ∂%u
nh)−∇xηh · (∂%ud) + ∂%w

d = 0,
(4.5)

where we denote as usual ηh(·, %) =
∫ ρ1
% hh(·, %′) d%′ (and analogously ηnh, ηd), and define the non-

hydrostatic pressure Pnh(·, %) := P nh(·, %)−
∫ %
ρ0
%′hnh(·, %′) d%′ where P nh is defined by Corollary 3.2.

4.2. Quasi-linearization. In this section we extract the leading order terms of the system (4.5), in the
spirit of Lemma 3.5.

LEMMA 4.2. There exists p ∈ N such that for any s, k ∈ N such that k = s > 5
2 + d

2 andM,M,h? > 0,
there exists C > 0 and C1 > 0 such that the following holds. For any 0 < µ ≤ κ ≤ 1, and for any
(h,u) ∈W k+p,∞((ρ0, ρ1))1+d satisfying∣∣h∣∣

Wk+p,∞
%

+
∣∣u′∣∣

Wk+p−1,∞
%

≤M ;

and any (hnh,unh, wnh) ∈ C0([0, T nh];Hs,k(Ω)d+2) andP nh ∈ L2(0, T nh;Hs+1,k+1(Ω)) solution to (3.28)
with some T nh > 0 and satisfying for any t ∈ [0, T nh]∥∥hnh(t, ·)

∥∥
Hs−1,k−1 +

∥∥ηnh(t, ·)
∥∥
Hs,k +

∣∣ηnh(t, ·)
∣∣
%=ρ0

∣∣
Hs
x

+
∥∥unh(t, ·)

∥∥
Hs,k + µ1/2

∥∥wnh(t, ·)
∥∥
Hs,k

+ κ1/2
∥∥hnh(t, ·)

∥∥
Hs,k + µ1/2κ1/2

∥∥∇xηnh(t, ·)
∥∥
Hs,k ≤M

(where ηnh(t,x, %) :=
∫ ρ1
% hnh(t,x, %′) d%′), the stable stratification assumption

inf
(x,%)∈Ω

h(%) + hnh(t,x, %) ≥ h?,

and the initial bound

M0 :=
∥∥ηnh

∣∣
t=0

∥∥
Hs+p,k+p +

∥∥unh
∣∣
t=0

∥∥
Hs+p,k+p +

∣∣(ηnh
∣∣
%=ρ0

)
∣∣
t=0

∣∣
Hs+p
x

+ κ1/2
∥∥hnh

∣∣
t=0

∥∥
Hs+p,k+p ≤M,

we have the following.
Denote (hh,uh, wh) ∈ C0([0, T h];Hs+1,k+1(Ω)2+d) the corresponding strong solution to the hydro-

static equations (2.1) (see Lemma 4.1) satisfying∥∥hh(t, ·)
∥∥
Hs+1,k+1 +

∥∥uh(t, ·)
∥∥
Hs+1,k+1 +

∥∥ηh(t, ·)
∥∥
Hs+1,k+1 +

∥∥wh(t, ·)
∥∥
Hs+1,k+1 ≤ C1M0

and, for any multi-index α ∈ Nd and j ∈ N such that 0 ≤ |α|+ j ≤ s,

η(α,j) := ∂αx ∂
j
%η

nh − ∂αx ∂j%ηh; u(α,j) := ∂αx ∂
j
%u

nh − ∂αx ∂j%uh; w(α,j) := ∂αx ∂
j
%w

nh − ∂αx ∂j%wh;

and P (α,j)
nh (·, %) = ∂αx ∂

j
%

(
P nh(·, %)−

∫ %
ρ0
%′hnh(·, %′) d%′

)
.
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Then restricting to t ∈ [0,min(T h, T nh)] and such that

Fs,k :=
∥∥hd

∥∥
Hs−1,k−1 +

∥∥ηd
∥∥
Hs,k +

∣∣ηd
∣∣
%=ρ0

∣∣
Hs
x

+
∥∥ud

∥∥
Hs,k + µ1/2

∥∥wd
∥∥
Hs,k

+κ1/2
∥∥hd

∥∥
Hs,k + µ1/2κ1/2

∥∥∇xηd
∥∥
Hs,k ≤ κ1/2M

we have

∂tη
(α,j) + (u+ unh) · ∇xη(α,j) + w(α,j) − κ∆xη

(α) = R̃α,j ,

∂tη
(α,j) + (u+ unh) · ∇xη(α,j) +

〈∫ ρ1

%
(u′ + ∂%u

nh) · ∇xη(α,j) d%′

+

∫ ρ1

%
(h+ hnh)∇x · u(α,j) d%′

〉
j=0
− κ∆xη

(α,j) = Rα,j ,

∂tu
(α,j) +

(
(u+ unh − κ∇xhnh

h+hnh
) · ∇x

)
u(α,j) +

〈ρ0

%
∇xη(α,j)

∣∣
%=ρ0

+
1

%

∫ %

ρ0

∇xη(α,j) d%′
〉
j=0

+
1

%
∇xP (α,j)

nh +
∇xηnh

%(h+ hnh)
∂%P

(α,j)
nh = Rnh

α,j ,

µ1/2
(
∂tw

(α,j) + (u+ unh − κ∇xhnh
h+hnh

) · ∇xw(α,j)
)
− 1

µ1/2

∂%P
(α,j)
nh

%(h+ hnh)
= Rnh

α,j ,

−∂%w(α,j) + (h+ hnh)∇x · u(α,j) + (u′ + ∂%u
nh) · ∇xη(α,j)

+(∇x · unh)h(α,j) + (∇xηnh) · (∂%u(α,j)) = Rdiv
α,j ,

(4.6a)
where (Rα,j(t, ·),Rnh

α,j(t, ·), Rnh
α,j(t, ·), Rdiv

α,j) ∈ L2(Ω)d+3, Rα,0(t, ·) ∈ C((ρ0, ρ1);L2(Rd)) and∥∥Rα,j∥∥L2(Ω)
+
∣∣Rα,0∣∣%=ρ0

∣∣
L2
x

+
∥∥R̃α,j∥∥L2(Ω)

+
∥∥Rdiv

α,j

∥∥
L2(Ω)

≤ C Fs,k, (4.6b)∥∥Rnh
α,j

∥∥
L2(Ω)

+
∥∥Rnh

α,j

∥∥
L2(Ω)

≤ C
(
Fs,k + κ

∥∥∇xhd
∥∥
Hs,k + µ1/2κ

∥∥∆xη
d
∥∥
Hs,k

)
+ C µ1/2M, (4.6c)

and
∂th

(α,j) + (u+ unh) · ∇xh(α,j) − κ∆xh
(α,j) = rα,j +∇x · rα,j , (4.7a)

where (rα,j(t, ·), rα,j(t, ·)) ∈ L2(Ω)1+d and

κ1/2
∥∥rα,j∥∥L2(Ω)

+
∥∥rα,j∥∥L2(Ω)

≤ C Fs,k. (4.7b)

PROOF. Explicit expressions for the remainder terms follow from (4.5). Specifically, the following
equation is obtained by combining the second and last equation (recall (3.30))

∂tη
d + (u+ unh) · ∇xηd + ud · ∇xηh − wd = κ∆xη

d

and hence
R̃α,j := −[∂αx ∂

j
%,u+ unh] · ∇xηd − ∂αx ∂j%(ud · ∇xηh),

and it follows from product (Lemma A.3) and commutator (Lemma A.8) estimates∥∥R̃α,j∥∥L2(Ω)
.
(∣∣u′∣∣

Wk−1,∞
%

+
∥∥unh

∥∥
Hs,k +

∥∥ηh
∥∥
Hs+1,k

) (∥∥ηd
∥∥
Hs,k−1 +

∥∥ud
∥∥
Hs,k

)
.

Then, from the second equation we have

Rα,j := R
(i)
α,j +R

(ii)
α,j

with R(i)
α,j := −[∂αx ∂

j
%,u+ unh] · ∇xηd and

R
(ii)
α,j :=

{
−
∫ ρ1
% [∂αx , ∂%u

nh] · ∇xηd + [∂αx , h
nh]∇x · ud + ∂αx

(
ud · ∇xhh + hd∇x · uh

)
d%′ if j = 0,

∂j−1
% ∂αx

(
(u′ + ∂%u

nh) · ∇xηd + (h+ hnh)∇x · ud + ud · ∇xhh + hd∇x · uh
)

if j ≥ 1.
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Using Lemma A.3, Lemma A.8 and the continuous embeddingL∞((ρ0, ρ1)) ⊂ L2((ρ0, ρ1)) ⊂ L1((ρ0, ρ1))
we find∥∥Rα,j∥∥L2(Ω)

.
(∣∣u′∣∣

Wk−1,∞
%

+
∥∥unh

∥∥
Hs,k+

∥∥hnh
∥∥
Hs−1,k−1+

∥∥ηnh
∥∥
Hs,k−1+

∥∥hh
∥∥
Hs+1,k−1+

∥∥uh
∥∥
Hs+1,k−1

)
×
(∥∥ηd

∥∥
Hs,k−1 +

∥∥ud
∥∥
Hs,k−1 +

∥∥hd
∥∥
Hs−1,k−1

)
where for j = 0 we used the identities (and Lemma A.1 and Lemma A.7,(3) and (3))∫ ρ1

%
[∂αx , ∂%u

nh] · ∇xηd + [∂αx , h
nh]∇x · ud d%′ =

∫ ρ1

%
[∂αx ; ∂%u

nh,∇xηd] + [∂αx ;hnh,∇x · ud] d%′

+

∫ ρ1

%
∂αxu

nh · ∇xhd + (∂αx η
nh)(∇x · ∂%ud) d%′ + ∂αxu

nh · ∇xηd + (∂αx η
nh)(∇x · ud)

and ∫ ρ1

%
∂αx (hd∇x · uh) d%′ =

∫ ρ1

%
[∂αx ,∇x · uh]hd + (∂αx η

d)(∇x · ∂%uh) d%′ + (∂αx η
d)(∇x · uh).

This yields the desired estimate for
∥∥Rα,j∥∥L2(Ω)

and the corresponding estimate for
∣∣Rα,0|%=ρ0

∣∣
L2
x

relies
on the additional estimate (stemming from Lemma A.7(2) and Lemma A.1)∣∣(R(i)

α,0 + ∂αxu
nh · ∇xηd)|%=ρ0

∣∣
L2
x

=
∣∣[∂αx ;unh|%=ρ0 ,∇xηd|%=ρ0 ]

∣∣
L2
x
.
∥∥unh

∥∥
Hs,1

∣∣ηd|%=ρ0

∣∣
Hs
x
.

Then, we have

Rdiv
α,j := [∂αx ∂

j
%, h]∇x · ud + [∂αx ∂

j
%,u

′] · ∇xηd

+ [∂αx ∂
j
%, h

nh]∇x · ud + [∂αx ∂
j
%,∇x · uh]hd +∇x · (uh − unh)∂αx ∂

j
%h

d

+ [∂αx ∂
j
%, ∂%u

nh] · ∇xηd + [∂αx ∂
j
%,∇xηh] · ∂%ud +∇x(ηh − ηnh) · ∂αx ∂j%∂%ud.

Decomposing hnh = hh+hd, ∂%unh = ∂%u
h+∂%u

d, some manipulations of the terms to exhibit symmetric
commutators and the use of Lemma A.8 and A.9 lead to∥∥Rdiv

α,j

∥∥
L2(Ω)

.
(∣∣h∣∣

Wk,∞
%

+
∣∣u′∣∣

Wk,∞
%

+
∥∥hd

∥∥
Hs−1,k−1 +

∥∥∂%ud
∥∥
Hs−1,k−1

+
∥∥hh

∥∥
Hs,k +

∥∥∇xηh
∥∥
Hs,k +

∥∥uh
∥∥
Hs+1,k+1

)
×
(∥∥ud

∥∥
Hs,k +

∥∥ηd
∥∥
Hs,k−1 +

∥∥hd
∥∥
Hs−1,k−1

)
which concludes the estimate (4.6b).

We focus now on
∥∥Rnh

α,j

∥∥
L2(Ω)

and
∥∥Rnh

α,j

∥∥
L2(Ω)

. We have

Rnh
α,j := [∂αx ∂

j
%, (u+ unh − κ∇xhnh

h+hnh
) · ∇x]ud +

〈
∂αx ∂

j
%

(ρ0
% ∇xη

d|%=ρ0 + 1
%

∫ %
ρ0
∇xηd d%′

)〉
j≥1

+ ∂αx ∂
j
%

((
(ud − κ(∇xh

nh

h+hnh
− ∇xhh

h+hh
)) · ∇x

)
uh
)

+ [∂αx ∂
j
%,

1
% ]∇xPnh + [∂αx ∂

j
%,
∇xηnh
%(h+hnh)

]∂%Pnh,

Rnh
α,j := µ1/2[∂αx ∂

j
%,
(
u+ unh − κ∇xhnh

h+hnh

)
· ∇x]wd + µ1/2∂αx ∂

j
%

(
(ud − κ(∇xh

nh

h+hnh
− ∇xhh

h+hh
)) · ∇xwh

)
− 1

µ1/2
[∂αx ∂

j
%,

1
%(h+hnh)

]∂%Pnh − µ1/2∂αx ∂
j
%R

h,

where Rh is the consistency remainder introduced in Lemma 4.1, (4.4a) and estimated in (4.4b), namely∥∥∂αx ∂j%Rh
∥∥
L2(Ω)

.M0 ≤M.

Let us estimate each contribution. In the following, we shall use repeatedly that Fs,k ≤ κ1/2M and hence∥∥hd
∥∥
Hs,k ≤M . As a consequence, by Lemma A.6 and triangular inequality,∥∥ hnh

h+hnh

∥∥
Hs,k ≤ C(h?,

∣∣h∣∣
Wk,∞
%

∥∥hnh
∥∥
Hs−1,k−1)

∥∥hnh
∥∥
Hs,k ≤ C(h?,M,M)M.
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By Lemma A.8, we have∥∥[∂αx ∂
j
%, (u+ unh) · ∇x]ud

∥∥
L2(Ω)

+ µ1/2
∥∥[∂αx ∂

j
%, (u+ unh) · ∇x]wd

∥∥
L2(Ω)

.
(∣∣u′∣∣

Wk−1,∞
%

+
∥∥unh

∥∥
Hs,k

)(∥∥∇xud
∥∥
Hs−1,k−1 + µ1/2

∥∥∇xwd
∥∥
Hs−1,k−1

)
≤ C(M,M)Fs,k.

By Lemma A.9, Lemma A.3 and Lemma A.6∥∥[∂αx ∂
j
%,
(∇xhnh
h+hnh

· ∇x
)
]ud
∥∥
L2(Ω)

.
∥∥∇xhnh
h+hnh

∥∥
Hs,k

∥∥∇xud
∥∥
Hs−1,k−1

.
∥∥∇xhnh

h

∥∥
Hs,k

(
1 +

∥∥ hnh

h+hnh

∥∥
Hs,k

)
Fs,k

≤ C(h?,M,M)
(
M +

∥∥∇xhd
∥∥
Hs,k

)
Fs,k.

In the same way, we have

µ1/2
∥∥[∂αx ∂

j
%,
(∇xhnh
h+hnh

· ∇x
)
]wd
∥∥
L2(Ω)

≤ C(h?,M,M)
(
M +

∥∥∇xhd
∥∥
Hs,k

)
Fs,k.

When j ≥ 1,∥∥∂αx ∂j%(ρ0

%
∇xηd|%=ρ0

)∥∥
L2(Ω)

+
∥∥∂αx ∂j%(1

%

∫ %

ρ0

∇xηd d%′
)∥∥
L2(Ω)

.
∣∣∇xηd|%=ρ0

∣∣
Hs−1
x

+
∥∥∇xηd

∥∥
Hs−1,k−1 ≤ Fs,k.

By Lemma A.3, we have∥∥∂αx ∂j%((ud · ∇x)uh
)∥∥
L2(Ω)

+ µ1/2
∥∥∂αx ∂j%((ud · ∇x)wh

)∥∥
L2(Ω)

.
∥∥ud

∥∥
Hs,k

(∥∥∇xuh
∥∥
Hs,k + µ1/2

∥∥∇xwd
∥∥
Hs,k

)
≤ C(M,M)Fs,k.

By repeated use of tame estimates in Lemma A.3 and Lemma A.5, we find∥∥∂αx ∂j%((∇xhnhh+hnh
− ∇xhh

h+hh
) · ∇x

)
uh
)∥∥
L2(Ω)

.
∥∥∇xhd
h+hh

+ hd∇xhnh
(h+hnh)(h+hh)

∥∥
Hs,k

∥∥∇xuh
∥∥
Hs,k

≤ C(h?,M,M)M(
∥∥∇xhd

∥∥
Hs,k +M

∥∥hd
∥∥
Hs,k),

and similarly

µ1/2
∥∥∂αx ∂j%((∇xhnhh+hnh

− ∇xhh
h+hh

) · ∇x
)
wh
)∥∥
L2(Ω)

≤ C(h?,M,M)M(
∥∥∇xhd

∥∥
Hs,k +M

∥∥hd
∥∥
Hs,k).

Contributions from the pressure remain. By direct inspection, and since |α|+ j − 1 ≤ s− 1,∥∥[∂αx ∂
j
%,

1
% ]∇xPnh

∥∥
L2(Ω)

.
∥∥∇xPnh

∥∥
Hs−1,k−1 .

By Lemma A.8 and since s = k > 5
2 + d

2 , using the above and Lemma A.1∥∥[∂αx ∂
j
%,
∇xηnh
%(h+hnh)

]∂%Pnh

∥∥
L2(Ω)

.
∥∥ ∇xηnh
%(h+hnh)

∥∥
Hs,k

∥∥∂%Pnh

∥∥
Hs−1,k−1

≤ C(h?,M,M)
(
M +

∥∥∇xηd
∥∥
Hs,k

)∥∥∂%Pnh

∥∥
Hs−1,k−1 .

Similarly, ∥∥[∂αx ∂
j
%,

1
%(h+hnh)

]∂%Pnh

∥∥
L2(Ω)

.
(∣∣ 1
%h

∣∣
Wk,∞
%

+
∥∥ hnh

%(h+hnh)

∥∥
Hs,k

)∥∥∂%Pnh

∥∥
Hs−1,k−1

≤ C(h?,M,M)
∥∥∂%Pnh

∥∥
Hs−1,k−1 .

Altogether, and using Fs,k ≤ κ1/2M and µ ≤ κ, we find∥∥Rnh
α,j

∥∥
L2(Ω)

+
∥∥Rnh

α,j

∥∥
L2(Ω)

≤ C(h?,M,M)
(
Fs,k+κ

∥∥∇xhd
∥∥
Hs,k +µ−1/2

∥∥∇µx,%Pnh

∥∥
Hs−1,k−1

)
. (4.8)
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Now, we use Corollary 3.2, specifically (3.19):∥∥∇µx,%Pnh

∥∥
Hs−1,k−1 ≤ C(h?,M,M)µ

(∥∥(Λµ)−1∇xηnh
∥∥
Hs,k +

∣∣(Λµ)−1ηnh
∣∣
%=ρ0

∣∣
Hs+1
x

+
∥∥(unh,unh

? )
∥∥
Hs,k +

∥∥(wnh, wnh
? )
∥∥
Hs,k−1 +

∥∥unh
?

∥∥
Hs,k

∥∥wnh
∥∥
Hs,k−1

)
.

where we recall the notations Λµ := 1 +
√
µ|D|, unh

? := −κ∇xhnh
h+hnh

and wnh
? := κ∆xη

nh − κ∇xh
nh·∇xηnh
h+hnh

.
Then we use on one hand that∥∥(Λµ)−1hnh

∥∥
Hs,k−1 ≤

∥∥hh
∥∥
Hs,k−1 + µ−1/2

∥∥hd
∥∥
Hs−1,k−1 .M + µ−1/2Fs,k,

and, similarly,∥∥(Λµ)−1∇xηnh
∥∥
Hs,k ≤

∥∥∇xηh
∥∥
Hs,k + µ−1/2

∥∥∇xηd
∥∥
Hs−1,k .M + µ−1/2Fs,k,∣∣(Λµ)−1ηnh

∣∣
%=ρ0

∣∣
Hs+1
x
≤
∣∣ηh
∣∣
%=ρ0

∣∣
Hs+1
x

+ µ−1/2
∣∣ηd
∣∣
%=ρ0

∣∣
Hs
x
.M + µ−1/2Fs,k.

On the other hand,∥∥wnh
∥∥
Hs,k−1 ≤

∥∥wh
∥∥
Hs,k−1 +

∥∥wd
∥∥
Hs,k−1 . C(M,M)M + µ−1/2Fs,k

where, for the first contribution, we applied the product estimates to the expression in (4.1). Then, we have∥∥unh
?

∥∥
Hs,k ≤ κ

∥∥∇xhnh
h+hnh

∥∥
Hs,k ≤ κ

(∥∥∇xhnh
∥∥
Hs,k +

∥∥hnh
∥∥2

Hs,k

)
≤ C(h?,M,M)

(
M + κ

∥∥∇xhd
∥∥
Hs,k

)
,∥∥wnh

?

∥∥
Hs,k−1 ≤ κ

∥∥∆xη
nh
∥∥
Hs,k−1 + C(h?,M,M)κ

∥∥∇xhnh
∥∥
Hs,k−1

∥∥∇xηnh
∥∥
Hs,k−1

≤ C(h?,M,M)
(
M + κ

∥∥∆xη
d
∥∥
Hs,k−1 + κ1/2M

∥∥∇xhd
∥∥
Hs,k−1

)
.

Altogether, this yields

µ−1/2
∥∥∇µx,%Pnh

∥∥
Hs−1,k−1 ≤ C0

(
µ1/2M + Fs,k + µ1/2κ1/2

∥∥∇xhd
∥∥
Hs,k + µ1/2κ

∥∥∆xη
d
∥∥
Hs,k

+
(
M + κ

∥∥∇xhd
∥∥
Hs,k

) (
µ1/2M + Fs,k

))
.

Plugging this estimate in (4.8), using Fs,k ≤ κ1/2M and µ ≤ κ, we obtain (4.6c).

Finally, we set

rα,j := −[∂αx ∂
j
%,u+ unh]hd − ∂αx ∂j%

(
(h+ hh)ud

)
, rα,j := −(∂αx ∂

j
%h

d)∇x · unh.

By Lemma A.3 and Lemma A.8 and since s ≥ s0 + 3
2 and 2 ≤ k = s, we have∥∥rα,j∥∥L2(Ω)

.
(∣∣u′∣∣

Wk−1,∞
%

+
∥∥unh

∥∥
Hs,k

)∥∥hd
∥∥
Hs−1,k−1 +

(∣∣h∣∣
Wk,∞
%

+
∥∥hh

∥∥
Hs,k

)∥∥ud
∥∥
Hs,k

and (by Lemma A.1) ∥∥rα,j∥∥L2(Ω)
.
∥∥hd

∥∥
Hs,k

∥∥unh
∥∥
Hs,k .

This yields immediately (4.7b). The proof is complete. �

4.3. Strong convergence. In this section, we prove that for µ sufficiently small and starting from regu-
lar and well-prepared initial data, the solution to the non-hydrostatic equations exists at least within the
existence time of the solution to the hydrostatic equation. We also prove the strong convergence of the
non-hydrostatic system to the hydrostatic one as µ↘ 0.

PROPOSITION 4.3. There exists p ∈ N such that for any s, k ∈ N such that k = s > 5
2 + d

2 and any
M,M,h?, h

? > 0, there exists C = C(s, k,M,M, h?, h
?) > 0 such that the following holds. For any

0 < M0 ≤M , 0 < κ ≤ 1, and µ > 0 such that

µ ≤ κ/(CM2
0 ),
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for any (h,u) ∈W k+p,∞((ρ0, ρ1))1+d satisfying∣∣h∣∣
Wk+p,∞
%

+
∣∣u′∣∣

Wk+p−1,∞
%

≤M ;

for any initial data (h0,u0, w0) ∈ Hs,k(Ω)2+d satisfying the boundary condition w0|%=ρ1 = 0 and the
incompressibility condition

−(h+ h0)∇x · u0 − (∇xη0) · (u′ + ∂%u0) + ∂%w0 = 0,

(denoting η0(·, %) =
∫ ρ1
% h0(·, %′) d%′), the bounds∥∥η0

∥∥
Hs+p,k+p +

∥∥u0

∥∥
Hs+p,k+p +

∣∣η0

∣∣
%=ρ0

∣∣
Hs+p
x

+ κ1/2
∥∥h0

∥∥
Hs+p,k+p = M0 ≤M

and the stable stratification assumption

inf
(x,%)∈Ω

h? ≤ h(%) + h0(x, %) ≤ h?,

the following holds. Denoting

(T h)−1 = Ch
(
1 + κ−1

(∣∣u′∣∣2
L2
%

+M2
0

))
,

as in Lemma 4.1 there exists a unique strong solution (hnh,unh, wnh) ∈ C0([0, T h];Hs,k(Ω)1+d) to the
non-hydrostatic equations (1.8) with initial data (hnh,unh, wnh)

∣∣
t=0

= (h0,u0, w0). Moreover, one has
hnh ∈ L2(0, T h;Hs+1,k(Ω)), ηnh ∈ L2(0, T h;Hs+2,k(Ω)) and, for any t ∈ [0, T h], the lower and the
upper bounds hold

inf
(x,%)∈Ω

h(%) + hnh(t,x, %) ≥ h?/3, sup
(x,%)∈Ω

h(%) + hnh(t,x, %) ≤ 3h?,

and the estimate below holds true∥∥ηnh(t, ·)
∥∥
Hs,k +

∥∥unh(t, ·)
∥∥
Hs,k + µ1/2

∥∥wnh(t, ·)
∥∥
Hs,k +

∣∣ηnh
∣∣
%=ρ0

(t, ·)
∣∣
Hs
x

+ κ1/2
∥∥hnh(t, ·)

∥∥
Hs,k + µ1/2κ1/2

∥∥∇xηnh(t, ·)
∥∥
Hs,k

+ κ1/2
∥∥∇xηnh

∥∥
L2(0,t;Hs,k)

+ κ1/2
∣∣∇xηnh

∣∣
%=ρ0

∣∣
L2(0,t;Hs

x)

+ κ
∥∥∇xhnh

∥∥
L2(0,t;Hs,k)

+ µ1/2κ
∥∥∇2

xη
nh
∥∥
L2(0,t;Hs,k)

≤ CM0, (4.9)

and (hnh,unh) converges strongly in L∞(0, T ;Hs,k(Ω)1+d) towards (hh,uh) the corresponding solution
to the hydrostatic equations (1.9), as µ↘ 0.

PROOF. We closely follow the proof of Proposition 3.8 and exhibit a bootstrap argument on the func-
tional

F(t) : =
∥∥ηd(t, ·)

∥∥
Hs,k +

∥∥ud(t, ·)
∥∥
Hs,k + µ1/2

∥∥wd(t, ·)
∥∥
Hs,k +

∣∣ηd
∣∣
%=ρ0

(t, ·)
∣∣
Hs
x

+ κ1/2
∥∥hd(t, ·)

∥∥
Hs,k + µ1/2κ1/2

∥∥∇xηd(t, ·)
∥∥
Hs,k

+ κ1/2
∥∥∇xηd

∥∥
L2(0,t;Hs,k)

+ κ1/2
∣∣∇xηd

∣∣
%=ρ0

∣∣
L2(0,t;Hs

x)

+ κ
∥∥∇xhd

∥∥
L2(0,t;Hs,k)

+ µ1/2κ
∥∥∇2

xη
d
∥∥
L2(0,t;Hs,k)

where we denote

hd := hnh − hh; ηd := ηnh − ηh; ud := unh − uh; wd := wnh − wh
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with the usual notation for ηnh, ηh, and wh is defined by (4.1). Denoting by T ? the maximal existence time
of the non-hydrostatic solution provided by Proposition 3.3, we set

T nh = sup
{

0 < T < min(T ?, T h) : ∀ t ∈ (0, T ), h?/3 ≤ h(%) + hnh(t,x, %) ≤ 3h?

and F(t) ≤ µ1/2M0 exp(C0t), F(t) ≤ κ1/2M0

}
, (4.10)

withC0 sufficiently large (to be determined later on). We will show by the standard continuity argument that
T nh = min(T ?, T h), which in turns yields T ? > T h and shows the result. Indeed, the converse inequality
T nh = T ? ≤ T h yields a contradiction by Proposition 3.3 and the desired estimates immediately follow
from the control of F , the bound∥∥hh(t, ·)

∥∥
Hs+1,k+1 +

∥∥uh(t, ·)
∥∥
Hs+1,k+1 +

∥∥ηh(t, ·)
∥∥
Hs+1,k+1 +

∥∥wh(t, ·)
∥∥
Hs+1,k+1 ≤ ChM0 (4.11)

provided by Lemma 4.1, and triangular inequality (when C is chosen sufficiently large).
Let us now derive from Lemma 4.2 the necessary estimates for the bootstrap argument. In the following

we repeatedly use the triangular inequality to infer from (4.10) and (4.11) the corresponding control (4.9)
with C depending only Ch, T h (and κ ≤ 1). We shall denote by C a constant depending uniquely on
s, k,M,M, h?, h

? and Ch, T h, but not on C0, and which may change from line to line.
By means of (4.7a)-(4.7b) and Lemma 2.4, we infer from (4.10)-(4.11)

κ1/2
∥∥hd

∥∥
L∞(0,T ;Hs,k)

+ κ
∥∥∇xhd

∥∥
L2(0,T ;Hs,k)

≤ C
(∣∣F∣∣

L1
T

+
∣∣F∣∣

L2
T

)
.

Next, by differentiating with respect to space the first equation of (4.6a) using (4.6b) and Lemma 2.4, we
infer

µ1/2κ1/2
∥∥∇xηd

∥∥
L∞(0,T ;Hs,k)

+ µ1/2κ
∥∥∇2

xη
d
∥∥
L2(0,T ;Hs,k)

≤ C
(∣∣F∣∣

L1
T

+
∣∣F∣∣

L2
T

)
.

Now, we use (4.6a)-(4.6b)-(4.6c) and proceeding as in the proof of Proposition 3.8 (together with the above
estimates) we infer that for any t ∈ (0, T ),

F(t) ≤ C1

∣∣F∣∣
L1
t

+ C2

∣∣F∣∣
L2
t

+ C3 µ
1/2M0 t

with Ci (i ∈ {1, 2, 3}) depending uniquely on s, k,M,M, h?, h
? and Ch, T h. By using the inequality

F(t) ≤ µ1/2M0 exp(C0t) from (4.10) and the inequality τ ≤ exp(τ) (for τ ≥ 0), we deduce

F(t) ≤ C1µ
1/2M0C

−1
0 exp(C0t) + C2µ

1/2M0(2C0)−1/2 exp(C0t) + C3µ
1/2M0C

−1
0 exp(C0t).

There remains to choose C0 sufficiently large so that C1C
−1
0 + C2(2C0)−1/2 + C3C

−1
0 < 1, and restrict

to µ sufficiently small so that µ1/2M0 exp(C0T
h) ≤ µ1/2M0C

1/2/2 ≤ κ1/2/2. The upper and lower
bounds for h + hnh follow immediately from the corresponding ones for h + hh provided by Lemma 4.1
and triangular inequality, augmenting C if necessary. Then the usual continuity argument yields, as desired,
T nh = min(T ?, T h). �

4.4. Improved convergence rate. Proposition 4.3 established the strong convergence for regular well-
prepared initial data of the solution to the non-hydrostatic equations, (1.8), towards the corresponding solu-
tion to the hydrostatic equations, (1.9), as µ ↘ 0. The convergence rate displayed in the proof is O(µ1/2).
The aim of this section is to provide an improved and optimal convergence rate O(µ). The strategy is based
on the interpretation of the non-hydrostatic solution as an approximate solution to the hydrostatic equations
(in the sense of consistency) and the use of the uniform control obtained in Proposition 4.3.

PROPOSITION 4.4. There exists p ∈ N such that for any s, k ∈ N with k = s > 5
2 + d

2 and
M,M,h?, h

? > 0, there exists C = C(s, k,M,M, h?, h
?) > 0 such that under the assumptions of Propo-

sition 4.3 and using the notations therein,∥∥hnh − hh
∥∥
L∞(0,Th;Hs−1,k−1)

+
∥∥ηnh − ηh

∥∥
L∞(0,Th;Hs,k)

+
∥∥unh − uh

∥∥
L∞(0,Th;Hs,k)

≤ C µ.
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COROLLARY 4.5. Incrementing p ∈ N, we find that for any s, k ∈ N such that k = s > 3
2 + d

2 ,∥∥hnh − hh
∥∥
L∞(0,Th;Hs,k)

+
∥∥ηnh − ηh

∥∥
L∞(0,Th;Hs+1,k+1)

+
∥∥unh − uh

∥∥
L∞(0,Th;Hs+1,k+1)

≤ C µ

with C = C(s+ 1, k + 1,M,M, h?, h
?) > 0.

PROOF. Since all arguments of the proof have been already used in slightly different contexts, we only
quickly sketch the argument.

For any p′ ∈ N, we may use Proposition 4.3 with indices s+ p′ and k + p′ to infer the existence of the
non-hydrostatic solution (hnh,unh, wnh) ∈ C([0, T h];Hs+p′,k+p′(Ω)2+d) and the control

sup
t∈[0,Th]

(∥∥ηnh(t, ·)
∥∥
Hs+p′,k+p′ +

∥∥unh(t, ·)
∥∥
Hs+p′,k+p′ +

∣∣ηnh
∣∣
%=ρ0

(t, ·)
∣∣
Hs+p′
x

)
≤ CM0.

By using hnh = −∂%ηnh and the divergence-free condition

wnh = (u+ unh) · ∇xηnh −
∫ ρ1

%
∇x · ((h+ hnh)(u+ unh)) d%′

we obtain (augmenting C if necessary)

sup
t∈[0,Th]

(∥∥hnh(t, ·)
∥∥
Hs+p′−1,k+p′−1 +

∥∥wnh(t, ·)
∥∥
Hs+p′−1,k+p′−1

)
≤ CM0

and hence, by Corollary 3.2 (specifically (3.19)), Poincaré inequality (3.10) and choosing p′ sufficiently
large, that Pnh(·, %) := P nh(·, %)−

∫ %
ρ0
%′hnh(·, %′) d%′ satisfies

sup
t∈[0,Th]

∥∥Pnh(t, ·)
∥∥
Hs+1,k+1 ≤ C µM0.

From this estimate we infer (by Lemma 4.1) that hd := hnh − hh and ud := unh − uh satisfies

∂tη
d + (u+ unh) · ∇xηd +

∫ ρ1

%
(u′ + ∂%u

nh) · ∇xηd d%′ +

∫ ρ1

%
(h+ hnh)∇x · ud d%′

+

∫ ρ1

%
ud · ∇xhh + hd∇x · uh d%′ = κ∆xη

d,

∂tu
d +

(
(u+ unh − κ∇xhnh

h+hnh
) · ∇x

)
ud +

ρ0

%
∇xηd|%=ρ0 +

1

%

∫ %

ρ0

∇xηd d%′

+
(
(ud − κ(∇xh

nh

h+hnh
− ∇xhh

h+hh
)) · ∇x

)
uh = Rnh,

(4.12)
withRnh := −∇xPnh

% − ∇xηnh
%(h+hnh)

∂%Pnh satisfying (by Lemma A.3 and Lemma A.6) the bound

sup
t∈[0,Th]

∥∥Rnh(t, ·)
∥∥
Hs,k ≤ C µM0.

From this, inspecting the proof of Lemma 4.2, we infer that as long as

Fs,k :=
∥∥hd

∥∥
Hs−1,k−1 +

∥∥ηd
∥∥
Hs,k +

∣∣ηd
∣∣
%=ρ0

∣∣
Hs
x

+
∥∥ud

∥∥
Hs,k + κ1/2

∥∥hd
∥∥
Hs,k ≤ κ1/2M0,
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one has for any α ∈ Nd and j ∈ N such that |α| + j ≤ s that η(α,j) := ∂αx ∂
j
%ηd, u(α,j) := ∂αx ∂

j
%ud and

h(α,j) := ∂αx ∂
j
%hd satisfy

∂tη
(α,j) + (u+ unh) · ∇xη(α,j) +

〈∫ ρ1

%
(u′ + ∂%u

nh) · ∇xη(α,j) d%′

+

∫ ρ1

%
(h+ hnh)∇x · u(α,j) d%′

〉
j=0
− κ∆xη

(α,j) = Rα,j ,

∂tu
(α,j) +

(
(u+ unh − κ∇xhnh

h+hnh
) · ∇x

)
u(α,j) +

〈ρ0

%
∇xη(α,j)

∣∣
%=ρ0

+
1

%

∫ %

ρ0

∇xη(α,j) d%′
〉
j=0

= Rnh
α,j ,

and
∂th

(α,j) + (u+ u) · ∇xh(α,j) = κ∆x∂
j
%h

(α,j) + rα,j +∇x · rα,j ,
with ∥∥Rα,j∥∥L2(Ω)

+
∥∥Rnh

α,j

∥∥
L2(Ω)

≤ C
(
Fs,k +M0κ

∥∥∇xhd
∥∥
Hs,k

)
+ C µM0

and
κ1/2

∥∥rα,j∥∥L2(Ω)
+
∥∥rα,j∥∥L2(Ω)

≤ C Fs,k.
We may then proceed as in the proof of Proposition 2.6, and bootstrap the control

Fs,k(t) + κ1/2
∥∥∇xηd

∥∥
L2(0,t;Hs,k)

+ κ1/2
∣∣∇xηd

∣∣
%=ρ0

∣∣
L2(0,t;Hs

x)
+ κ
∥∥∇xhd

∥∥
L2(0,t;Hs,k)

≤ C µM0

(choosing C large enough) on the time interval [0, T h]. This concludes the proof. �

Appendix A. Product, composition and commutator estimates

In this section we collect useful estimates in the spaces Hs,k(Ω) introduced in (1.12). Our results
will follow from standard estimates in Sobolev spaces Hs(Rd) (see e.g. [22, Appendix B] and references
therein), and the following continuous embedding. Henceforth we denote Ω = Rd × (ρ0, ρ1).

LEMMA A.1. For any s ∈ R and ρ0 < ρ1, Hs+1/2,1(Ω) ⊂ C0([ρ0, ρ1];Hs(Rd)) and there exists C > 0

such that for any F ∈ Hs+1/2,1(Ω),

max
%∈[ρ0,ρ1]

∣∣F (·, %)
∣∣
Hs
x
≤ C

∥∥F∥∥
Hs+1/2,1 .

More generally, for any k ≥ 1, Hs+1/2,1(Ω) ⊂
⋂k−1
j=0 Cj([ρ0, ρ1];Hs−j(Rd)), and in particular, for any

s0 > d/2 and j ∈ N, Hj+s0+ 1
2
,j+1(Ω) ⊂

(
Cj(Ω) ∩W j,∞(Ω)

)
.

PROOF. By a density argument, we only need to prove the inequality for smooth functions F . Set
φ : [ρ0, ρ1] → R+ a smooth function such that φ(ρ0) = 0 and φ(%) = 1 if % ≥ ρ0+ρ1

2 , and deduce that for
any % ≥ ρ0+ρ1

2 , recalling the notation Λs := (Id−∆x)s/2,∫
Rd

(ΛsF )2(x, %) dx =

∫
Rd

∫ %

ρ0

∂%
(
φ(%′)(ΛsF )2(x, %′)

)
d%′ dx

≤ 2
∣∣φ∣∣

L∞%

∫ ρ1

ρ0

∣∣ΛsF (·, %)
∣∣
H

1/2
x

∣∣Λs∂%F (·, %)
∣∣
H
−1/2
x

d%

+
∣∣φ′∣∣

L∞

∫ ρ1

ρ0

∣∣ΛsF (·, %)
∣∣
L2

∣∣ΛsF (·, %)
∣∣
L2 d%

.
∥∥F∥∥2

Hs+1/2,0 +
∥∥∂%F∥∥2

Hs−1/2,0

Using symmetrical considerations when % < ρ0+ρ1
2 , we prove the claimed inequality, which yields the first

continuous embedding. Higher-order embeddings follow immediately. �
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Recall the notation

As +
〈
Bs
〉
s>s?

=

{
As if s ≤ s? ,
As +Bs otherwise.

Product estimates. Recall the standard product estimates in Sobolev spaces Hs(Rd).

LEMMA A.2. Let d ∈ N?, s0 > d/2.

(1) For any s, s1, s2 ∈ R such that s1 ≥ s, s2 ≥ s and s1 + s2 ≥ s+ s0, there exists C > 0 such that
for any f ∈ Hs1(Rd) and g ∈ Hs2(Rd), fg ∈ Hs(Rd) and∣∣fg∣∣

Hs ≤ C
∣∣f ∣∣

Hs1

∣∣g∣∣
Hs2

.

(2) For any s ≥ −s0, there exists C > 0 such that for any f ∈ Hs(Rd) and g ∈ Hs(Rd) ∩Hs0(Rd),
fg ∈ Hs(Rd) and ∣∣fg∣∣

Hs ≤ C
∣∣f ∣∣

Hs0

∣∣g∣∣
Hs + C

〈∣∣f ∣∣
Hs

∣∣g∣∣
Hs0

〉
s>s0

.

(3) For any s1, . . . , sn ∈ R such that si ≥ 0 and s1 + · · ·+ sn ≥ (n− 1)s0, there exists C > 0 such
that for any (f1, . . . , fn) ∈ Hs1(Rd)× · · · ×Hsn(Rd),

∏n
i=1 fi ∈ L2(Rd) and∣∣ n∏

i=1

fi
∣∣
L2 ≤ C

n∏
i=1

∣∣fi∣∣Hsi
.

Let us turn to product estimates in Hs,k(Ω) spaces.

LEMMA A.3. Let d ∈ N?, s0 > d/2. Let s, k ∈ N such that s ≥ s0 + 1
2 and 1 ≤ k ≤ s. Then Hs,k(Ω)

is a Banach algebra and there exists C > 0 such that for any F,G ∈ Hs,k(Ω),∥∥FG∥∥
Hs,k ≤ C

∥∥F∥∥
Hs,k

∥∥G∥∥
Hs,k .

Moreover, if s ≥ s0 + 3
2 and 2 ≤ k ≤ s, then there exists C ′ > 0 such that for any F,G ∈ Hs,k(Ω),∥∥FG∥∥

Hs,k ≤ C ′
∥∥F∥∥

Hs,k

∥∥G∥∥
Hs−1,k−1 + C ′

∥∥F∥∥
Hs−1,k−1

∥∥G∥∥
Hs,k ,

and if s ≥ s0 + 3
2 and k = 1, then there exists C ′′ > 0 such that for any F,G ∈ Hs,k(Ω),∥∥FG∥∥

Hs,1 ≤ C ′′
∥∥F∥∥

Hs,1

∥∥G∥∥
Hs−1,1 + C ′′

∥∥F∥∥
Hs−1,1

∥∥G∥∥
Hs,1 .

PROOF. We set two multi-indices β = (βx,β%) ∈ Nd+1 and γ = (γx,γ%) ∈ Nd+1 being such that
|β|+ |γ| ≤ s and β% + γ% ≤ k. Let us first assume furthermore that γ% ≤ k − 1 and |γ| ≤ s− 1. Then∥∥(∂βF )(∂γG)

∥∥2

L2(Ω)
.
∫ ρ1

ρ0

∣∣∂βF (·, %)
∣∣2
H
s−|β|
x

∣∣∂γG(·, %)
∣∣2
H
s−|γ|− 1

2
x

d%

.
∥∥∂βF∥∥2

Hs−|β|,0

∥∥∂γG∥∥2

Hs−|γ|,1 ≤
∥∥F∥∥2

Hs,k

∥∥G∥∥2

Hs,k .

where we used Lemma A.2(1) with (s, s1, s2) = (0, s − |β|, s − |γ| − 1
2), and Lemma A.1. If γ% = k or

|γ| = s, and since 1 ≤ k ≤ s, we have β% ≤ k− 1 and |β| ≤ s− 1 and we may make use of the symmetric
estimate. Hence the proof of the first statement follows from Leibniz rule.

For the second statement, we assume first that max({β%,γ%}) ≤ k − 1 and max({|β|, |γ|}) ≤ s − 1.
Then, using Lemma A.2 with (s, s1, s2) = (0, s−|β|− 1

2 , s−|γ|−1) (recall s ≥ s0 + 3
2 ), and Lemma A.1,∥∥(∂βF )(∂γG)

∥∥
L2(Ω)

.
∣∣∣∣∂βF (·, %)

∣∣
H
s−|β|− 1

2
x

∣∣∂γG(·, %)
∣∣
H
s−|γ|−1
x

∣∣
L2
%

.
∥∥F∥∥

Hs,β%+1

∥∥G∥∥
Hs−1,γ% ≤

∥∥F∥∥
Hs,k

∥∥G∥∥
Hs−1,k−1 ,
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Then if β% = k or |β| = s, we have (since s ≥ k ≥ 2) γ% ≤ k − 2 and |γ| ≤ s− 2, and we infer∥∥(∂βF )(∂γG)
∥∥
L2(Ω)

.
∣∣∣∣∂βF (·, %)

∣∣
H
s−|β|
x

∣∣∂γG(·, %)
∣∣
H
s−|γ|− 3

2
x

∣∣
L2
%

.
∥∥F∥∥

Hs,β%

∥∥G∥∥
Hs−1,γ%+1 ≤

∥∥F∥∥
Hs,k

∥∥G∥∥
Hs−1,k−1 .

Of course we have the symmetrical result when γ% = k or |γ| = s, which complete the proof.
Finally, for the last statement, we consider first the case β% = 0 and max({|β|, |γ|}) ≤ s− 1, and infer

as above∥∥(∂βF )(∂γG)
∥∥
L2(Ω)

.
∣∣∣∣∂βF (·, %)

∣∣
H
s−|β|− 1

2
x

∣∣∂γG(·, %)
∣∣
H
s−|γ|−1
x

∣∣
L2
%
.
∥∥F∥∥

Hs,1

∥∥G∥∥
Hs−1,1 .

The case β% = 1 (and hence γ% = 0) and max({|β|, |γ|}) ≤ s−1 is treated symmetrically. Then if |β| = s
we have γ% = |γ| = 0, and we infer∥∥(∂βF )(∂γG)

∥∥
L2(Ω)

.
∣∣∣∣∂βF (·, %)

∣∣
H
s−|β|
x

∣∣∂γG(·, %)
∣∣
H
s−|γ|− 3

2
x

∣∣
L2
%
.
∥∥F∥∥

Hs,1

∥∥G∥∥
Hs−1,1 .

The case |γ| = s is treated symmetrically, and the proof is complete. �

Composition estimates. Let us recall the standard composition estimate in Sobolev spaces Hs(Rd).

LEMMA A.4. Let d ∈ N?, s0 > d/2. For any ϕ ∈ C∞(R;R) such that ϕ(0) = 0, and any M > 0, there
exists C > 0 such that for any f ∈ Hs0(Rd) ∩Hs(Rd) with

∣∣f ∣∣
Hs0
≤M , one has ϕ(f) ∈ Hs(Rd) and∣∣ϕ(f)

∣∣
Hs ≤ C

∣∣f ∣∣
Hs .

We now consider composition estimates in Hs,k(Ω).

LEMMA A.5. Let d ∈ N?, s0 > d/2. Let s, k ∈ N with s ≥ s0 + 1
2 and 1 ≤ k ≤ s, and M > 0. There

exists C > 0 such that for any ϕ ∈ W s,∞(R;W k,∞((ρ0, ρ1))) with ϕ(0; ·) ≡ 0, and any F ∈ Hs,k(Ω)
such that

∥∥F∥∥
Hs,k ≤M , then ϕ ◦ F : (x, %) 7→ ϕ(F (x, %); %) ∈ Hs,k(Ω) and∥∥ϕ ◦ F∥∥

Hs,k ≤ C
∣∣ϕ∣∣

W s,∞(R;Wk,∞((ρ0,ρ1)))

∥∥F∥∥
Hs,k .

If moreover s ≥ s0 + 3
2 and 2 ≤ k ≤ s, then there exists C ′ > 0 such that for any F ∈ Hs,k(Ω) such that∥∥F∥∥

Hs−1,k−1 ≤M , ∥∥ϕ ◦ F∥∥
Hs,k ≤ C ′

∣∣ϕ∣∣
W s,∞(R;Wk,∞((ρ0,ρ1)))

∥∥F∥∥
Hs,k .

PROOF. Let α = (αx,α%) ∈ Nd+1 \ {0} with 0 ≤ |α| ≤ s and 0 ≤ α% ≤ k. We have by Faà di
Bruno’s formula ∥∥∂α(ϕ ◦ F )

∥∥
L2(Ω)

.
∑∥∥((∂i1∂j2ϕ) ◦ F

)
(∂α

i,j
1 F ) · · · (∂α

i,j
i F )

∥∥
L2(Ω)

,

where i, j ∈ N with i + j ≤ |α| ≤ s, and the multi-indices αi,j` = (αi,j`,x,α
i,j
`,%) ∈ Nd+1 \ {0} satisfy∑i

`=1α
i,j
`,x = αx and j +

∑i
`=1α

i,j
`,% = α%. If i = 0 then we have from the mean value theorem that for

any 0 ≤ j ≤ k∥∥(∂j2ϕ) ◦ F
∥∥
L2(Ω)

=
∥∥(∂j2ϕ) ◦ F − (∂j2ϕ) ◦ 0

∥∥
L2(Ω)

≤
∣∣∂1∂

j
2ϕ
∣∣
L∞(R×(ρ0,ρ1))

∥∥F∥∥
L2(Ω)

.

The case i = 1 is straightforward, and we now focus on the case i ≥ 2. We assume without loss of
generality that |αi,j1,%| ≥ |α

i,j
2,%| ≥ · · · ≥ |α

i,j
i,%| and remark that for ` 6= 1, |αi,j`,%| ≤ k − 1 (otherwise

|αi,j1,%|+ |α
i,j
`,%| = 2k > k ≥ |α%|) and |αi,j` | ≤ s− |α

1,j
1 | ≤ s− 1. Hence we have∥∥∏i

`=1(∂α
i,j
` F )

∥∥
L2(Ω)

.
∣∣∣∣∂αi,j1 F ∣∣

H
s−|αi,j1 |
x

(∏i
`=2

∣∣∂αi,j` F ∣∣
H
s−|αi,j2 |−

1
2

x

)∣∣
L2
%

.
∥∥F∥∥

H
s,α

i,j
1,%

(∏i
`=2

∥∥F∥∥
H
s,α

i,j
`,%

+1

)
≤
∥∥F∥∥i

Hs,k

where we used Lemma A.2(3) and (i− 1)(s− 1
2) ≥ (i− 1)s0 and Lemma A.1. The first claim follows.
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Now we assume additionally that k ≥ 2 and s ≥ s0 + 3
2 . The cases i ∈ {0, 1} can be treated exactly as

above and we deal only with the case i ≥ 2, ordering |αi,j1,%| ≥ |α
i,j
2,%| ≥ · · · ≥ |α

i,j
i,%| as above. Assume first

that |αi,j1,%| = k ≥ 2. Then for all ` 6= 1, |αi,j`,%| = 0 and |αi,j` | ≤ s− 2, and we conclude as before with∥∥∏i
`=1(∂α

i,j
` F )

∥∥
L2(Ω)

.
∣∣∣∣∂αi,j1 F ∣∣

H
s−|αi,j1 |
x

(∏i
`=1

∣∣∂αi,j` F ∣∣
H
s−|αi,j

`
|− 3

2
x

)∣∣
L2
%
.
∥∥F∥∥

Hs,k

∥∥F∥∥i−1

Hs−1,1 .

Otherwise we have |αi,j2,%| ≤ |α
i,j
1,%| ≤ k − 1 and |αi,j2 | ≤ s − |αi,j1 | ≤ s − 1 and notice that for ` ≥ 3,

|αi,j`,%| ≤ k − 2 (since otherwise we have the contradiction |αi,j1,%|+ |α
i,j
2,%|+ |α

i,j
3,%| ≥ 3(k − 1) ≥ k + 1 ≥

|α%|+ 1) and |αi,j` | ≤ s− |α
i,j
1 | − |α

i,j
2 | ≤ s− 2. Hence∥∥∏i

`=1(∂α
i,j
` F )

∥∥
L2(Ω)

.
∣∣∣∣∂αi,j1 F ∣∣

H
s−|αi,j1 |−

1
2

x

∣∣∂αi,j2 F ∣∣
H
s−|αi,j2 |−1
x

(∏i
`=3

∣∣∂αi,j` F ∣∣
H
s−|αi,j

`
|− 3

2
x

)∣∣
L2
%

.
∥∥F∥∥

H
s,α

i,j
1,%+1

∥∥F∥∥
H
s−1,α

i,j
2,%

(∏i
`=3

∥∥F∥∥
H
s−1,α

i,j
`,%

+1

)
.
∥∥F∥∥

Hs,k

∥∥F∥∥i−1

Hs−1,k−1 .

This concludes the proof. �

We shall apply the above to estimate quantities such as (but not restricted to)

Φ : (x, %) ∈ Ω 7→ h(x, %)

h(%) + h(x, %)
,

with h ∈ W k,∞((ρ0, ρ1)) and h ∈ Hs,k(Rd) satisfying the condition inf(x,%)∈Ω h(%) + h(x, %) ≥ h? > 0.
Let us detail the result and its proof for this specific example.

LEMMA A.6. Let d ∈ N?, s0 > d/2. Let s, k ∈ N with s ≥ s0 + 1
2 and 1 ≤ k ≤ s, and M,M,h? > 0.

There exists C > 0 such that for any h ∈ W k,∞((ρ0, ρ1)) with
∣∣h∣∣

Wk,∞
%
≤ M and any h ∈ Hs,k(Ω) with∥∥h∥∥

Hs,k ≤M and satisfying the condition inf(x,%)∈Ω h(%) + h(x, %) ≥ h?, then

Φ : (x, %) 7→ h(x, %)

h(%) + h(x, %)
∈ Hs,k(Ω),

and ∥∥Φ
∥∥
Hs,k ≤ C

∥∥h∥∥
Hs,k .

If moreover s > d
2 + 3

2 and 2 ≤ k ≤ s, then the above holds for any h ∈ Hs,k(Ω) with
∥∥h∥∥

Hs−1,k−1 ≤M .

PROOF. We can write Φ = ϕ ◦ h with ϕ(·, %) = f(·, h(%)) where f ∈ C∞(R2) is set such that
f(y, z) = y

y+z on ω := {(y, z) : |y| ≤
∥∥h∥∥

L∞(Ω)
, |z| ≤

∣∣h∣∣
L∞((ρ0,ρ1))

, y + z ≥ h?}. We can construct

f as above such that the control of
∣∣ϕ∣∣

W s,∞(R;Wk,∞((ρ0,ρ1)))
depends only on

∥∥h∥∥
L∞(Ω)

(which is bounded

appealing to Lemma A.1, if h ∈ Hs,k with s > d
2 + 1

2 , 1 ≤ k ≤ s),
∣∣h∣∣

Wk,∞((ρ0,ρ1))
and h? > 0. The result

is now a direct application of Lemma A.5. �

Commutator estimates. We now recall standard commutator estimates in Hs(Rd).

LEMMA A.7. Let d ∈ N?, s0 > d/2 and s ≥ 0.
(1) For any s1, s2 ∈ R such that s1 ≥ s, s2 ≥ s − 1 and s1 + s2 ≥ s + s0, there exists C > 0 such

that for any f ∈ Hs1(Rd) and g ∈ Hs2(Rd), [Λs, f ]g := Λs(fg)− fΛsg ∈ L2(Rd) and∣∣[Λs, f ]g
∣∣
L2 ≤ C

∣∣f ∣∣
Hs1

∣∣g∣∣
Hs2

.

(2) There exists C > 0 such that for any f ∈ L∞(Rd) such that ∇f ∈ Hs−1(Rd) ∩Hs0(Rd) and for
any g ∈ Hs−1(Rd), one has [Λs, f ]g ∈ L2(Rd) and∣∣[Λs, f ]g

∣∣
L2 ≤ C

∣∣∇f ∣∣
Hs0

∣∣g∣∣
Hs−1 + C

〈∣∣∇f ∣∣
Hs−1

∣∣g∣∣
Hs0

〉
s>s0+1

.
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(3) There exists C > 0 such that for any f, g ∈ Hs(Rd) ∩ Hs0+1(Rd), the symmetric commutator
[Λs; f, g] := Λs(fg)− fΛsg − gΛsf ∈ L2(Rd) and∣∣[Λs; f, g]

∣∣
L2 ≤ C

∣∣f ∣∣
Hs0+1

∣∣g∣∣
Hs−1 + C

∣∣f ∣∣
Hs−1

∣∣g∣∣
Hs0+1 .

The validity of the above estimates persist when replacing the operator Λs with the operator ∂α withα ∈ Nd
a multi-index such that |α| ≤ s.

We conclude with commutator estimates in the spaces Hs,k(Ω).

LEMMA A.8. Let d ∈ N?, s0 > d/2. Let s ≥ s0 + 3
2 and k ∈ N such that 2 ≤ k ≤ s. Then there exists

C > 0 such that for any α = (αx,α%) ∈ Nd+1 with |α| ≤ s and α% ≤ k, one has∥∥[∂α, F ]G
∥∥
L2(Ω)

≤ C
∥∥F∥∥

Hs,k

∥∥G∥∥
Hs−1,min({k,s−1}) .

PROOF. We set two multi-indices β = (βx,β%) ∈ Nd+1 and γ = (γx,γ%) ∈ Nd+1 with β + γ = α,
and |γ| ≤ s− 1. Assume first that β% ≤ k − 1 and |β| ≤ s− 1. Then∥∥(∂βF )(∂γG)

∥∥
L2(Ω)

.
∣∣∣∣∂βF (·, %)

∣∣
H
s−|β|− 1

2
x

∣∣∂γG(·, %)
∣∣
H
s−|γ|−1
x

∣∣
L2
%

.
∥∥F∥∥

Hs,β%+1

∥∥G∥∥
Hs−1,γ% ≤

∥∥F∥∥
Hs,k

∥∥G∥∥
Hs−1,min({k,s−1}) ,

where we used Lemma A.2(1) with (s, s1, s2) = (0, s− |β| − 1
2 , s− |γ| − 1), and Lemma A.1. Otherwise

γ% = 0 and |γ| ≤ s− |β| ≤ s− 2, and we have∥∥(∂βF )(∂γG)
∥∥
L2(Ω)

.
∣∣∣∣∂βF (·, %)

∣∣
H
s−|β|
x

∣∣∂γG(·, %)
∣∣
H
s−|γ|− 3

2
x

∣∣
L2
%

.
∥∥F∥∥

Hs,β%

∥∥G∥∥
Hs−1,1 ≤

∥∥F∥∥
Hs,k

∥∥G∥∥
Hs−1,min({k,s−1}) .

The claim follows from decomposing [∂α, F ]G as a sum of products as above. �

LEMMA A.9. Let d ∈ N?, s0 > d/2. Let s ≥ s0 + 5
2 and k ∈ N such that 2 ≤ k ≤ s. Then there exists

C > 0 such that for any α = (αx,α%) ∈ Nd+1 with |α| ≤ s and α% ≤ k, one has∥∥[∂α;F,G]
∥∥
L2(Ω)

≤ C
∥∥F∥∥

Hs−1,min({k,s−1})

∥∥G∥∥
Hs−1,min({k,s−1}) .

PROOF. We can decompose

[∂α;F,G] =
∑

β+γ=α

(∂βF )(∂γG)

with multi-indicesβ = (βx,β%) ∈ Nd+1 and γ = (γx,γ%) ∈ Nd+1 such that |β|+|γ| ≤ s andβ%+γ% ≤ k,
and 1 ≤ |β|, |γ| ≤ s− 1. Assume furthermore that β% ≤ k − 1 and |β| ≤ s− 2. Then∥∥(∂βF )(∂γG)

∥∥
L2(Ω)

.
∣∣∣∣∂βF (·, %)

∣∣
H
s−|β|− 3

2
x

∣∣∂γG(·, %)
∣∣
H
s−|γ|−1
x

∣∣
L2
%

.
∥∥F∥∥

Hs−1,β%+1

∥∥G∥∥
Hs−1,γ% ≤

∥∥F∥∥
Hs−1,min({k,s−1})

∥∥G∥∥
Hs−1,min({k,s−1}) ,

where we used Lemma A.2(1) with (s, s1, s2) = (0, s−|β|− 3
2 , s−|γ|−1), and Lemma A.1. By symmetry,

the result holds if γ% ≤ k− 1 and |γ| ≤ s− 2. Hence there remains to consider the situation where (β% = k
or |β| = s−1) and (γ% = k or |γ| = s−1). Since s > 2 and |β|+|γ| ≤ s, we cannot have |β| = |γ| = s−1.
In the same way, we cannot have β% = γ% = k since k > 0. Furthermore , we cannot have β% = k and
|γ| = s− 1, since the former implies |β| ≥ β% = k ≥ 2 and the latter implies |β| ≤ 1. Symmetrically, we
cannot have γ% = k and |β| = s− 1. This concludes the proof. �
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