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On the hydrostatic limit of stably stratified fluids

Roberta Bianchini and Vincent Duchéne

ABSTRACT. This article is concerned with the rigorous justification of the hydrostatic limit for continuously
stratified incompressible fluids under the influence of gravity. The main difference with respect to earlier works
is that we neglect viscosity effects but rather include diffusivity effects induced by an advection component
proposed by Gent and McWilliams in the 90’s to model effective eddy correlations for non-eddy-resolving
systems. We also crucially make use of the assumption that the fluid is stably stratified, work in functional
spaces of high (but finite) regularity and keep track of the various parameters at stake. A key ingredient of our
analysis is the reformulation of our problem using isopycnal coordinates, on which careful energy estimates are
performed.

1. Introduction

The following system describes the evolution of heterogeneous incompressible flows under the influence
of gravity.
8150 + (u + U*) . Vmp + (w + w*)azp == 0,
p(Oru+ ((u+ i) - Va)u + (w + wy)d.u) + Va P =0,
p(Bw + (u + uy) - Vyw + (0 + w,)d,w) +9,P +gp =0,
Ve -u+0,w=0, (1.1
P‘z:C - Patm = 07
0¢¢ + (u + u*)’zz( V(€ — (w + w*)|Z:C =0,
W= = 0.
Here, ¢t and (x, z) are the time, and horizontal-vertical space variables, and we denote by V,, A, the

gradient and Laplacian with respect to . The vector field (u,w) € R? x R is the (horizontal and vertical)
velocity, p > 0 is the density, P € R is the incompressible pressure, all being defined in the spatial domain

Q= {(x,2) : azE]Rd, —H < z<((t,x)},

where ((t, x) describes the location of a free surface, and H is the depth of the layer at rest. The gravity field
is assumed constant and vertical, and g > 0 is the gravity acceleration constant. Finally, (u,,w,) € RYx R
are correctors of the effective transport velocities which take into account eddy correlations in non-eddy-
resolving (large-scale) models, proposed by Gent & McWilliams [12], and read as follows

u, = k0, Vap , Wy =—KVy: M , k>0. (1.2)
82,0 azp

Disregarding the effective advection terms (i.e. setting x = 0), one recovers the Euler equations for het-
erogeneous incompressible fluids under the influence of vertical gravity forces, where the last two lines of
(1.1) model the kinematic equation at the free surface and the impermeability condition of the rigid bottom
respectively.

In (1.1), the pressure P can be recovered from its (atmospheric) value at the surface, Py, by solving

the elliptic boundary-value problem induced by the incompressibility constraint of divergence-free velocity
1
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fields. Yet in the shallow-water regime, where the horizontal scale of the perturbation is large compared
with the depth of the layer H, formal computations suggest that vertical accelerations can be neglected and
that the pressure P approximately satisfies the hydrostatic balance law, that is

0.P+gp=0. (1.3)

Using identity (1.3) in place of the evolution equation for the vertical velocity, (1.1) becomes the so-called
hydrostatic equations:

Oip+u-Vep+wo.p=+k |Vg- Vap 0zp — 0 Vap “Vap|,
0.p 0.p

p(atu +u-Veu+ w@zu) + VaP =kp {Vm . (gif) o, u — 0, (Z?) . qu] ,

¢
P = Pumtg / (2, ) de, (14)

w = —/ Ve u(?,-)dz,
—H

Vep Vep
8t< +U’Z:C . Vmc - 'U)|z:§ = —K |:Vm : <8::p> ‘Z: + az (ajp> ‘2:4 : VmC] .

Our aim in this work is to rigorously justify the hydrostatic equations (1.4) as an asymptotic model for the
non-hydrostatic equations (1.1)-(1.2) in the shallow-water regime, for regular and stably stratified flows.

Modeling aspects. Let us now discuss the relevance and our motivation behind the introduction of the
additional transport velocities u, and w, defined in (1.2). While taking into account viscosity effects is
standard in mathematical treatments of fluid mechanics, it should be mentioned that the aforementioned
shallow-water regime where horizontal scales are larger than vertical scales produces anisotropic viscosity
terms which are predominant in the vertical direction. However, it is worth pointing out that in theoretical
and laboratory studies on density-stratified geophysical flows, viscosity effects do not model molecular
viscosity but rather “turbulent” or “eddy” viscosities, and are widely reported to be anisotropic and only
relevant in the horizontal (or more precisely isopycnal) direction; see e.g. [16, Section 17.6]. In this work
we decide to neglect altogether viscosity effects and rather focus on diffusivity. The deterministic modeling
of effective diffusivity caused by eddy correlation that we adopt originated in the 90’s and is due to Gent &
McWilliams [12], see also [13,14]. It adds certain correctors, specifically suggesting (1.2), to the velocity
field of the system of inhomogeneous incompressible fluids submitted to gravity as in (1.1). Since mesoscale
eddies have an averaged dissipative effect on the large-scale flow at the macroscopic level, then it is natural
to consider our unknowns (p,u,w) as the large-scale components of the density and the velocity field
respectively, according to [12].

Let us acknowledge that ruling out the Coriolis force when modeling large-scale flows is certainly
arguable. This work is motivated by studying theoretically the interplay between (stable) stratification,
shallow water limits, and diffusive effects, and leaves aside other important mechanisms (such as boundaries
and bathymetry. We could also consider several tracers —say salinity and temperature— and an equation of
state for the density). Returning to the effect of rotation, adding these terms would not substantially modify
our local-in-time results, but the rapid rotation limit would deserve a specific treatment.

Let us also mention that there exists a huge mathematical literature dedicated to the investigation of
fluid-dynamics equations in the probabilistic setting, where the cumulative effect of mesoscale eddies on
the large-scale flow is modeled by means of suitable (additive or multiplicative) noises. For that context, we
refer to [8, 9], while our setting will be completely deterministic.

Previous mathematical results and motivation. At a technical level, the main reason for introducing
either viscosity or diffusivity components in the equations is that in their absence, the initial-value problem
for the hydrostatic equations are not known to be well-posed in finite-regularity functional spaces. In fact,
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restricting to homogeneous flows (that is p being constant), ill-posedness was established by Renardy [29]
at the linear level, and Han-Kwan and Nguyen [17] at the nonlinear level. Yet if we assume additionally
that the initial data satisfies the Rayleigh condition of (strict) convexity/concavity in the vertical direction,
well-posedness can be restored [3, 15,24]. Now, assuming stably stratified flows, the celebrated Miles and
Howard criterion [18, 25] states that the linearized equations about equilibria (p(z),u'(z)) do not exhibit
unstable modes provided (in dimension d = 1, see [11, Remark 1.3] when d = 2) as soon as the local
Richardson number is greater than 1/4 everywhere, that is
/
Vie [-H,0, |u(z)P< 9L )
p(2)

The criterion clearly exhibits the stabilizing (resp. destabilizing) effect of stable stratification (resp. shear
velocity). While one would like to obtain the well-posedness at the nonlinear level of the hydrostatic equa-
tions for initial data satisfying (strictly) the above inequality, let us repeat that such result is for now open.

This is in sharp constract with known results concerning the non-hydrostatic equations. The result
closest to our framework is the one of Desjardins, Lannes and Saut [7], where the authors prove the well-
posedness of the (inviscid and non-diffusive) non-hydrostatic equations in Sobolev spaces (using the rigid-lid
assumption). The authors do exhibit a stabilizing effect of stable stratification, which is however insufficient
to prove that the time of existence of solutions is uniform with respect to the shallowness parameter mea-
suring the ratio of vertical to horizontal lengths, without corresponding smallness assumptions on the data.
We discuss in more details their result in comparison with ours later on. At a technical level, the reason
for this discrepancy between the non-hydrostatic and hydrostatic equations is that, as the vertical velocity
w variable changes from prognostic (namely it belongs to the set of unknowns) to diagnostic (namely it is
reconstructed from the unknowns), it loses one order of regularity; see the fourth equation in (1.4).

In order to compensate with this loss of derivatives, and if one does not wish to restrict the analysis
to analytic data as in [20, 26], one natural solution consists in adding regularizing viscosity contributions.
This is the framework of most theoretical studies concerning the hydrostatic equations and/or hydrostatic
limit, starting with the work of Azérad and Guillén [1]. A landmark in the theory is the work of Cao
and Titi [6] where the global well-posedness of the initial-value problem for the hydrostatic equations was
proved in dimension d+ 1 = 3, a feature which should be contrasted with the current knowledge concerning
the Navier-Stokes equations. Many works followed, considering partial viscosities and diffusivities and/or
more physical boundary conditions. Instead of mentioning all of them, let us point out [4, 5] which extended
the preceding result in the presence of only horizontal velocity and diffusivity, and [10, 22, 23] (in the
homogeneous case) and [27, 28] (in the heterogeneous case) for recent results on the hydrostatic limit,
including an extended list of references.

A specificity of our analysis compared with previous ones (with the exception of [7]) is that we shall
crucially use (stable) density stratification, and that we disregard viscosity-induced regularization to consider
only diffusivity. What is more, the specific form of the diffusivity contributions we consider, motivated by
the work of Gent and McWilliams, had not been examined in theoretical works as far we know. Indeed, the
specific form of the effective advection terms in (1.2) introduced therein stems from isopycnal diffusivity
and, consistently, we will study the systems (1.1) and (1.4) using isopycnal coordinates (which inherently
relies on stratification).

In the following paragraph, we rewrite the equations using isopycnal coordinates. Our main results are
described in the subsequent one, and comment on them and their proof thereafter.

The model in isopycnal coordinates and non-dimensionalization. Let us consider smooth solutions
to (1.1) defined on a time interval I;. Assuming that the flow is stably stratified, i.e.

inf(—0,p) > 0,
the density p : z — p(-, -, z) is an invertible function of z. We denote its inverse 7 : 0 — 7(, -, 0), so that

pt,x,n(t,x,0) =0, ntxz ptx z2)==z



4 R. BIANCHINI AND V. DUCHENE

We also assume that p(t, z, —H) = p1, p(t,x,((t,x)) = po for (t,z) € I; x R, where pg < p; are two
fixed and positive constant reference densities. Then we have
n:I; xR x (pg,p1) =R, and h:= —0,n > 0,

the latter inequality accounting for the stable stratification assumption. We now introduce

u(t,x, 0) = u(t,z,n(t,z,0)), w(t,x,0) =wt zn(two) Pt =DPtrmnlz.o).
From the chain rule, we infer that system (1.1) in isopycnal coordinates reads

Om+1-Vgen — w0 = KAgn,

g(@tﬁ + ((w— s¥el) - Vm)u> + VP + V;L’nagp =0,

d,P
Q(aﬂb—l— (u — r¥el) -Vmw) — 97-1-99:0, (L.5)
—hVg - — (Van) - (Op@) + p0 = 0,
p‘ o Patrm w| = 0.
e=ro 0=p1

Notice that differentiating with respect to g the first equation and using the fourth equation (stemming from
the incompressibility constraint), the mass conservation reads

Oth + Vg - (hit) = kAgh. (1.6)

At this point, we are ready to introduce a dimensionless version of the previous system. We are interested
in departures from steady solution to the incompressible Euler equations with variable density:

(heqa Ueq; Weq, Peq) = (ﬁ(@)a Q(Q)a 0, B(Q))a
which satisfies the equilibrium condition
9oP(0) = goh(e).

Therefore, we consider (non-necessarily small) fluctuations of that steady solution, so that our unknowns
admit the following decomposition:

h(t, x, 0)= h(0) + hpert(t, z, 0), a(t, ,0) = u(0) + Upert (1, %, 0),
w(t, @, 0) = 0+ wpert (t, 2, 0), P(t,z,0) = P(0) + Bpert(t, . 0).
Furthermore, we non-dimensionalize the equations through the following scaled variables: we set
W = h(o) + h(f,&,0) and w =a(o) +ult, z, 0),
and ' 5
20D iz, PEEE PP+ poPlE 2, 0),

H /gH gH gH
where we use the following scaled coordinates’

.z - VgH
£=~ an 3
Introducing the dimensionless diffusion parameter, ~ and the shallowness parameter, i, through
K H?

and ,U/:ﬁ7

MgH
INotice the different scaling between the horizontal and vertical velocity fields. There, A is a reference horizontal length.
ZNotice we could scale also the o-coordinate. Adjusting accordingly the definition of the pressure, this does not modify the
resulting equations.
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substituting the scaled coordinates/variables in system (1.5) and the subsequent equation and dropping the
tildes for the sake of readability yields

Oh + Vg (h+h)(u+w)) = kAgh,

Van(oh + po0,P)

Vah _

Q(atu+((ﬂ+’U/—liﬁ+h)'vw)U) + poVazP + W h 2 =0, (L.7)
ug(@tw—&—(g—ku /<;h+h) Vmw> Wtk +7h7—|—h70’

—(h+h)Vg-u—Vgn- (4 + dyu) + d,w =0, (div.-free cond.)
p1
= . / / —
n(-,0) = /g h(-,0")do, P‘Q 0 = =0, w{gzm =0, (bound. cond.)

The hydrostatic system is obtained by setting © = 0 in (1.7). Specifically, plugging the hydrostatic

balance
pod, P oh

h+h — h+h
into the second equation of (1.7) yields

and P‘g o0 =0

Oth+ Vg - (h+h)(u+u)) =rAzh,

(1.8a)

Q(@tu+((g+u—fih+h u)+Vw1,Z):0,

with
) p1
Y(t, z, o) =/ o'h(t,x,0) d@’+@/ h(t,z, o) do’
P 4
’ p1 o [,
= PO/ h(t,z, o) dg’—l—/ / h(t,z,0")do" do'. (1.8b)
£0 po o

We shall provide a rigorous proof that regular solutions to (1.7) converge towards solutions to (1.8) as p ~\, 0,
under the stable stratification assumption, b + h > 0.

Our main results. Our main results are given below. Some notations, and in particular the Sobolev
spaces H**((2), are defined in a subsequent paragraph. First, we prove the existence, uniqueness and
control of solutions to the hydrostatic system (1.8) for sufficiently regular initial data. Let us point out that
the existence time of our result exhibits the aforementioned stabilizing (resp. destabilizing) effect of stable
stratification (resp. shear velocity).

THEOREM 1.1. Let s,k € N be such that s > 2 + 5 492 <k<s and M, M, h,,h* > 0 be fixed. Then
there exists C > 0 such that for any r € (0, 1], any h, Q € Wk ((po, p1)) sansfymg

me+mmHm§M
and any initial data (ho,uo) € H**(Q), with no(- fpl ho(-, 0') Ao/, satisfying
o the following estimate
Mo := [0l g + [0 o+ 0] Lz 1P| o < M
o the stable stratification assumption
V(®,0) €Q,  he < h(0) + oz, 0) < b7,
there exists a unique (b, u) € L>(0,T; HSk(Q)Hd) N CO([0,T]; H* *(Q)'*Y) (for any 0 < s’ < s)

strong solution to (1.8) with initial data (h®, u" ‘t 0 = (ho, ug), where

T =0 (L (D))
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Moreover, h® € L*(0,T; H¥*V%(Q)) and one has, for any t € [0,T],
V(z,0) €2 he/2 < h(o) +h(t,®,0) <207,
and, denoting n"(-, o) = fgpl Rh(-, o) do,
th(ta ')HHSJC + Huh(ta ')HHSJC + ‘nh‘ (tv )‘H; + /fl/2Hhh(t7 )HHsk

+ R1/2Hv‘”nhHL2(0,T;HS”“) + Hl/z‘vwnh}ﬁtpo|L2(O,T;Hi) + ’ivahhHLQ(O,T;HS"") < CMo.

0=p0

In our second main result, we prove that on the timescale defined by the previous proposition, solu-
tions to the non-hydrostatic equations (1.7) exist when w is sufficiently small, and converge towards the
corresponding solution of the hydrostatic equations, with the expected O(u) convergence rate.

THEOREM 1.2. There exists p € N such that for any k = s € Nand M, M, h,,h* > 0, there exists
C > 0 such that the following holds. For any 0 < My < M, 0 < k < 1, and p > 0 such that

p < K/(CM7),
for any for any (h,w) € W*tP>((pg, p1))? satisfying
‘mwﬁw + W‘W;“*F*LOO < M;
for any initial data (hg, o, wo) € HPRP(Q)2+ satisfying the boundary condition wo|,—,, = 0 and the
incompressibility condition
—(h+ho)Va - ug — (Vano) - (& + Opuo) + dpwo = 0,
(denoting no (-, 0) = f;l ho(+, ') do’), the bounds

HHOHHHP»HP + HUOHHSH%HP + ‘770}
and the stable stratification assumption
V(z,0) €Q,  he <h(o) +ho(z,0) < I,

the following holds. Denoting (hh, uh) the corresponding solution to the hydrostatic equations (1.8) as
provided by Theorem 1.1 with (s, k) = (s + p, k 4+ p), C" > 0 the corresponding constant and

(T = C" (14 m7! (||, + M),

9=po{H§fp + RI/QHhOHHsme =My <M

there exists a unique strong solution (h™ u™® w™) € C([0, T"]; H**(Q)'+9) to the non-hydrostatic equa-
tions (1.7) with initial data (h™®, u™®, w™?) ‘t:o = (hg, ug, wo). Moreover, one has

thh - hhHLOO(O,Th;HS»k) + Hunh - uhHLOO(O,Th;Hsﬂ’C) < Chp

Strategy of the proofs. In order to obtain our results, we mainly use energy estimates, and product,
commutator and composition estimates in the L2-based Sobolev spaces H**(0).

The natural energy functional associated with the hydrostatic equations, (1.8), involves 7 ,u as well as
N|o=p, (the latter representing the free surface), and their derivatives. A key comment is that we do not
control h with the same level of regularity, except when multiplied with the prefactor x/2. We crucially
use the diffusivity-induced regularization in order to control terms stemming from the commutator between
advection and density integration. This explains why the time of existence vanishes as k£ \, 0, yet with a
prefactor involving the shear velocity, »’ (since in that case the advection with velocity w commutes with
density integration). It is interesting to notice that the index of regularity with respect to the space variable, s,
and the one with respect to the density variable, k, are decoupled (yet only for in the hydrostatic framework).
This is due to the fact that the isopycnal change of coordinate is semi-Lagrangian: the advection in isopycnal
coordinates occurs only with in the horizontal space directions. It would be of utmost interest (but outside
of the scope of the present work) to decrease the regularity assumption with respect to the density variable,
so as to admit discontinuities, representing density interfaces.
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Concerning the non-hydrostatic system, (1.7), the natural energy space involves additionally /pw and
its derivatives (hence the control vanishes as p ™\, 0). In order to obtain suitable energy estimates, we
decompose the pressure as the sum of the hydrostatic contribution and the non-hydrostatic contribution, the
latter being of lower order in terms of regularity and/or smallness with respect to u < 1. Then we use
the structure of the hydrostatic equations, which we complement with an additional symmetric structure for
the non-hydrostatic contributions. There, the difficulty consists in getting controls in the energy norms and
uniform with respect to © < 1 at the same time. Our estimates concerning the non-hydrostatic pressure
contribution stem from elliptic estimates on a boundary-value problem. This strategy is heavily inspired
by the work of Desjardins, Lannes and Saut, and it is interesting to compare our results with the analogous
“large-time” well-posedness result in [7, Theorem 2]. Firstly, due to the choice of isopycnal coordinates, our
boundary-value problem is no longer an anisotropic Poisson equation but involves a fully nonlinear elliptic
operator. Because this operator involves i which is not controlled in the energy space, we use again use the
diffusivity-induced regularization at this stage. However, using isopycnal coordinates rather than Eulerian
coordinates allow use to consider the free-surface framework (since isopycnal coordinates readily set the
domain as a flat strip, thanks to our assumption that the density is constant at the surface and at the bottom)
rather than the rigid-lid situation. We believe that our study can be extended to the rigid-lid framework with
little adjustments. Incidentally, we do not employ the often-used Boussinesq approximation, since it is not
useful in our context. Additionally, we do not rely on strong boundary conditions concerning initial density
and velocities and their derivatives at the surface and the bottom, as used in [7] (and most other works, often
put in a periodic framework) and rather use only the natural no-slip boundary condition at the bottom; the
former are used to cancel the trace contributions in vertical integration by parts. We also consider the general
situation where the velocity field is a deviation of a non-zero background current, w. The price to pay for
this general framework manifests in terms of restrictions on the length of the time of existence of solutions,
which is inversely proportional with respect to the size of the fluctuations in [7, Theorem 2].

Our strategy for the proof of the convergence is as follows. The above strategy allows to obtain the
existence of solutions of the non-hydrostatic equations in a timescale uniform with respect to p but not
necessarily the same as the existence time of the corresponding solution to the hydrostatic equations, and
(for technical reasons) restricted to sufficiently small data. In order to deal with these issues, we consider the
hydrostatic solution as an approximate solution to the non-hydrostatic system (in the sense of consistency,
that is solving approximately the equations), and control the difference between the two solutions using
the aforementioned structure of the non-hydrostatic equations. This allows to bootstrap the control of the
difference (and hence the control of the solution to the non-hydrostatic equations) as long as the hydrostatic
solution is controlled (in a higher-regularity space) and provided the parameter p is sufficiently small. Yet
the rate of convergence obtained by this method is not optimal. As a second step, we consider the constructed
solution to the non-hydrostatic equations as an approximate solution to the hydrostatic equations (again in
the sense of consistency) and use the structure of the hydrostatic equations to infer the O(u) convergence
rate. Both steps involve loss of derivatives, described by the parameter p in Theorem 1.2.

Plan of the paper. Section 2 is dedicated to the proof of Theorem 1.1 concerning the initial-value
problem for the hydrostatic equations, (1.8).

In Section 3, we analyze the non-hydrostatic equations, (1.7). We first provide elliptic estimates for
the boundary-value problem of the pressure reconstruction (Lemma 3.1 and Corollary 3.2), and use them
to infer two results partial results concerning the initial-value problem : Proposition 3.3 (restricted to small
time) and Proposition 3.8 (restricted to small data).

In Section 4, we show the convergence of solutions to the non-hydrostatic equations towards corre-
sponding solutions to the hydrostatic equations as y \, 0, concluding the proof of Theorem 1.2.

Finally, in Appendix A we provide product, commutator and composition estimates in the Sobolev
spaces H**(Q).

Notation and conventions. We highlight the following conventions used throughout the paper.
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e Fork,s € Nand k < s,and 2 = R x (po, p1), we define the functional space

Ho*(Q) = {f L V(a,j) NP a4+ 5 < s, <k, 8200f € LQ(Q)}, (1.9)
endowed with the topology of the norm
k s—j
Hinzk = Z Z HagaéfH;(Q)' (1.10)
J=0 |a|=0

When s’ € R (and k € N) we define H**(Q) = {f cVjeN, j<k, Asagf € LZ(Q)} en-
dowed with

k
1l e = > Il ﬁaéinZ(Q)'
i=0

where A = (Id —Am)l/ 2. Of course the two notations are consistent when s’ = s € N, up to
harmless factors in the definition of the norm.
e We use both the equivalent notations H*(R%) = H3 (the usual L2-based Sobolev space on R?)

and Wk (RY) = W2 (the L>-based Sobolev space on R?), and similarly L?((po, p1)) = LZ

and W*((pg, p1)) = Wf ">, For functions with variables in Q we denote for instance

LoLy = L*(po, pr; L®(RY) = {f : esssupgepa |f( )| € L*((po, p1))}-

Notice L2L2 = L2L2 = L*(Q) and LPLy = LFLY = L*(Q). We use similar notations
for functions also depending on time. For instance, for £ € N, and X a Banach space as above,
C*([0,T]; X) is the space of functions with values in X which are continuously differentiable up
to order k, and LP(0,T; X) the p-integrable X -valued functions. All these spaces are endowed
with their natural norms.

For any operator A : f — Af, we denote by [A, flg = A(fg) — f(Ag) the usual commutator,
while [4; f,g] = A(fg) — f(Ag) — g(Af) is the symmetric commutator,

Sometimes we tacitly use the following formula 7(-, 0) := | : "h(-, o) do.

C(A1, A2, ... ) denotes a constant which depends continuously on its parameters.

For any a,b € R, we use the notation a < b (resp. a 2 b) if there exists C' > 0, independent of
relevant parameters, such that a < Cb (resp. a > Cb). We write a = bifa < band a 2 b.

We put a V b := max(a, b). Finally,

(B = 0 ifa<b, (B = 0 ifa#b,
“/a>b " ) B, otherwise, “/a=b ) B, otherwise.

2. The hydrostatic system

In this section we study the hydrostatic system in isopycnal coordinates. Specifically, we provide in this
section a well-posedness result on the initial-value problem, namely Theorem 1.1. The result follows from
careful a priori energy estimates, and the standard method of parabolic regularization. Therefore we will
first study the system

Bih+ Vg - (B +h)(u+u)) = kAgh,
(2.1)

Oru + ((ﬂ +u— an_’Z) . Vw)u + évw =vAzu,
with
P1 o [rp1
Vaultw.o)i=p [ Vahltw,d)dd + [ [7 Vahite o) dd e
po Jp

PO /
and v > 0, and will rigorously establish the limit v — 0.
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2.1. Well-posedness of the regularized hydrostatic system. We start with proving the well-posedness
of the initial value problem.

PROPOSITION 2.1. Let s > % + %, ke Nwithl <k <s,and M, My, hy, v, k > 0and Cy > 1. Then
there exists T = T(s,k, M, My, hy, v, &, Cy) such that for any (h,u) = (h(0),u(0)) € W*>((pg, p1))
and for any (ho,uo) = (ho(x, 0), ug(x, 0)) € H**(Q) such that

(mlér)l)feQ(h(g) + hO(wa Q)) > h*a ‘(h, H)‘Wéfaoo < Ma H(h07u0)HH5,k < MO7

there exists a unique solution (h,u) € C°([0,T]; H**(2)) to system (2.1) with (h, u)}tzo = (ho, uo).

Moreover, (h,u) € L*(0,T; HSTYk(Q)) and, for a universal constant cy > 0, the following estimates hold

HhHLC’O(O,T;Hsvk) + COHIMvahHH(O,T;Hs’k) < COHhOHHsvk;
HuHLw(o,T;H&k) + 60”1/2vauHIﬁ(o,T;Hsvk) < COHUOHH&M 2.2)
inf(t,m,g)G(O,T)XQ(ﬁ(Q) + h(t’ Z, Q)) > h*/CO'

PROOF. We will construct the solution as the fixed point of the Duhamel formula
t
h(t,”) = e ho + / e"=m)8= f(h(r, ), u(r,))dr,
0
t
u(t,) = e""Brug + / "I (fy + £o)(h(7, ), u(r, ) dr
0

where 2= with o > 0 is the heat semigroup defined by F[e®2= f](£) = e~€I” F[f](&) where F is the
Fourier transform with respect to the variable x, and

f(hyu) = Vg - (b +h)(u+u)),
filthyu) = —((w+u—wyeg) - Va)u

1 P / / e P /! /! /
falhow) == (0 [ Vahle ) e +// Vah(,¢")d"dd ).
po Jp

P0 /

Let us first recall the standard regularization properties of the heat flow. For any v > 0, T > 0 and
for any ug € H**(Q) and g € L'(0,T; H**(Q)), there exists a unique v € C°([0,T]; H>*(Q)) N
L?(0,T; H*+t1Hk(Q)) solution to dyu — vAgu = g with u(0, -) = ug which reads by definition

t
u = "By + / e”(t_T)Amg(T, ) dr,
0
and we have

H“HLO@(O,T;HM) + 607/1/2va“HH(o,T;H&k) < |[uol| o + HQHLl(o,T;Hsz)’

where cp > 0 is a universal constant. The existence and uniqueness of the solution as well as the above
estimate easily follow from solving the equation (for almost every o € (po, p1)) in Fourier space and using
Plancherel’s formula, then using that 9, commutes with J; and A, and invoking Minkowski’s integral
inequality (resp. Fubini’s theorem) to exchange the order of integration in the variables (t, o) (resp. (x, 0)).
We also remark that, by the positivity of the heat kernel and the continuous embedding H*~11(Q) C L>(Q)
for s > % + % (see Lemma A.1),

igfu = ingO - HQHLI(O,T;Hs—lJ)‘
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Now we consider (f, f1 + f2) as a bounded operator from H*+1%(Q)1+4 to F5*(Q)'*+¢, Indeed, there
exists Cy ;> 0 such that for any (h,u) € H5THkE(Q)1Hd,

[ £(h,w)|| ok < ||V - (hu + b + haw)|| ;.

< Cue % (|hypoo sl o + a8l oo Il s - A g el g+ 1l g el )

where we used straightforward product estimates for the first two terms, and Lemma A.3 for the last ones.
Similarly, we have

[ F1(h )| o < ([ ((w +u — w320) - Va)ul| .
< Co (Julye + el ) l[tl]ges s

+ 1 Con (|07 e + ey o) 1 (Vo Va)ul| -

Using the constraint inf(po’pl) h > info(h+hop) > hy > 0and Lemma A.6, we find that for any h, > 0 and
Moy, M > 0 there exists C ;,(h., M, My, Cp) such that for any h € H**(Q) bounded by HhHHek < CoMy
and satisfying inf , ,ycq(h(0) + h(x, 0)) > h./Co, one has

‘ﬁil‘wgwm + Hﬁ”]_]s,k S Cs,k<h*7Ma M07 CO)

Using the last estimates in Lemma A.3, since s > % + %, we have

1(Vah - Va)u| yon < Bl

wllell o

Finally, from the continuous embedding L>°((po, p1)) C L*((po, p1)) € L*((po, p1)) we immediately infer

H.f?(h’u)HHs,k < Cs,thHHs-H,k'

Altogether, we find that for any h,,Co > 0 and M, My > 0 there exists Cj j,(h., M, My, Cp) such that for
any (h,u) € H*H*(Q)1 satistying ||(h, w)|| ;.0 < CoMo and inf(g 5 cq(h(0) + h(z, 0)) > h./Co.
we have

(£ (R w), F1(hyw), fo(hw) || o < Cuklho M, Mo, Co) (1 + 5) || (h, )| s
By similar considerations, we find that for any A, Co > 0and M, M, > 0 there exists Cs i, (hy, M, My, Cp)
such that for any (h1, w1, ho, us) € Hs+l’k(Q)2(1+d) satisfying the bound H(hiv Uu;) < CoMy as well
as inf(myg)eg(ﬁ(g) + hi(x,0)) > hy/Co (with i € {1,2}), one has
| (f (ha,w2) = f(h1,w1), fi(ho, u2) — fi(hy,ur), fa(he, uz) — fo(hi,u1))]| yen
< Copllas M, Mo, Co)(1+ ) ([[(h2 = sz = wn) | s

e

+ H(hlah27u17u2)HHs+1,kH(h2 - h17u2 - ul)HHs,k)'

From the above estimates, we easily infer that for 7' > 0 sufficiently small (uniquely depending on
S, k) MO’Ma h*a V, R, CO),

T (h) H( ey fy et F(h(r. ) u(r, ) dr )
\u l/tAmuo_‘_f (fl +f2)( (7-’ '),U(T,')) dr
is a contraction mapping on

X = {(h,u) e CO([0, T]; H*(Q)) N L2(0, T; H*H4(Q)) : (2.2) holds} .

The Banach fixed point theorem provides the existence and uniqueness of a fixed point (and hence solution
to (2.1)) in X, and uniqueness in C°([0, T']; H>*(Q)) is easily checked (for instance by the energy method).
O
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REMARK 2.2. It should be emphasized that the time of existence provided by Proposition 2.1 is not
uniform with respect to the parameters «, v > 0. More precisely, the proof provides a lower bound as

Tz min({l,x,v}), e T'S14+wr'4v7!

2.2. Quasilinearization. In the result below, we apply spatial derivatives to system (2.1) and rewrite
it in such a way that the linearized equations satisfied by the highest-order terms exhibit a skew-symmetric

structure, which will allow us to obtain improved energy estimates in the subsequent section.

LEMMA 2.3. Let s,k € N such that s > 2 + g and2 < k < s,and M, M,h, > 0. Then there exists
C = C(s,k, M, M,h,) > 0 such that for any k € [0,1], v > 0, for any (h,u) € W*>((po, p1)) such that

/
oo —loo < )
‘@’Wg’“ +u }WZ,‘ oo < M
and any (h,u) € C°([0, T); H**(Q)) solution to (2.1) with some T > 0 and satisfying

1Pl grors -l e+ et e + (1]

(where n(t, x, o) : fpl (t,z,0')do) and

inf h(o) + h(t,x,0) > hy,
(t,z,g)leréo,T)xQ*(Q) (t.2.0)

the following hold. Denote, for any multi-index o € N¢, n(@) = asn, ul® = §ou.
e Forany o € N% with 0 < |a| < s, we have that

p1
o' + (utu)- Van'® + / (u' + O,u) - Van'® do
o

P1
+/ (h+h)Vyg - u'® do = ,%Awn(a) + Ra.0,
0

dyul® + (u+u— ”th) Vw)u(a)

ro (@)
+ 0 an ‘g=po

1 o
+ = / Ve do' = vAzul® + Ry,
€ Jpo

where for every t € [0,T], (Rao(t, ), Rao(t,-)) € C[po, p1]; L*(R%)) x L2(Q)? and

1Raoll 20 + [1Raoll 20y + | Baol < OM (14 &[|Vah| o).

QZPO‘L%
e Foranyj €N, 1< j<kandany a € N% 0 < la] < s —j, it holds
3050 + (u+u) - Vodin'® = kAz3I0 ) + Rq
&gﬁgu(a) + ((u+u— KZjﬁh) Vm)(%u(a) = VAmagu(a) + R, j,
where for every t € [0,T), (Ra;(t,), Raj(t,)) € L*(Q) x L*(Q)? and
HRW’HB(Q) + HRMHH(Q) <CM (1 + ’QHVfChHH’C)
e Forany j € N, 0 < j < k and any multi-index o € N, 0 < |a| < s — 7, it holds
090 + (u +u) - Vool = kA0 + 1o + Vg - Ta j,
where for every t € [0,T], (1a,;(t,"),Ta,j(t,-)) € L2(Q)1*4 and
K2,

JHL‘Z(Q) + HTO‘JHH(Q) s CM.

‘H; + KI/QHhHHs,k <M fortel0,T],

(2.3a)

(2.3b)

(2.4a)

(2.4b)

(2.5a)

(2.5b)
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PROOF. In this proof, we denote sg = s — 2 > %.
Estimate of R, . First we notice the identity by integration by parts in o,

P1 P1
(w+u) - Ven'® + / (u + d,u) - V'@ do’ = / (u+u) - Vgh( dg'.
0 0

Hence, recalling the notation [P; u, v] = P(uv) — u(Pv) — v(Pu) and integrating by parts in o, we get
p1
Rag = —/ 02 u] - Voh + [02, 1]V - dof
0

p1

= —/ (02w, Veh] +u'® - Vah + [0%:h, Vg - u] + A (Vg - u) dof
0

= —[0g;u, Vo] = Vs - u

p1
- / 0% Oy, V)] + 6™ - Vph + [02;h, Ve - u] + 70V - 9,u do'.
4

By the standard Sobolev embedding H*° (R?) c L>°(R?) and Lemma A.1, one gets

1V -l oy < 10 oIV 2l oy S Il [[0l] e

and

|(n Vs - u)]

ul|

g=po’L% N M’Q=PO H; Ho0FT3:1

By Lemma A.7(3), and Lemma A.1, we have
“[8§?uvvm’7]HL2(Q) S HuHLgoH;*IvanHLgH;O“ + H’“‘Lgon;)“HV9077HL3H§;1

S ]

-t 11 oo + [l et 1l s

Hag;u‘wpo’vwn‘g:po]‘% S ‘u}9=po|Hi*1‘V‘Cmeo‘HiOH T |u|g=po‘H§°+1‘v‘”n}9=po|H?1
S [[ul

HS—%J ‘n‘g:po‘H;O+2 + H’U;‘ H~90+%’1‘n|9:p0’H;’

and using additionally the Cauchy-Schwarz inequality,

}|[ag;agu, Vm”]HLg,L; S HaguuLgH;*lvanHLgH;O“ + |’8@uHL3H§30+1va”HLng;l

S el geallnll ooz + latll gz Il oo

HWg? h; Ve - u]HLéL?E S HhHLgngfl Ve - “HLgHi.O“ + HhHLgH;‘)“vac : "LHLng;l

S NAllgesollull oo 20 + 17

Hso+1,0HuHHs,07

and
[ Vahl e S [l ool Bl g0
17V 000 g1 S [l 0] v

Altogether, using the continuous embedding L>°((po, p1)) C L*((po, p1)) € L*((po, p1)), the Minkowski
and triangle inequalities and s > sg + 2, we get

[ R0l oo 13+ 1Baoll 20y S (Il oo + 1Bl sror0 + 11l gy | ) 12t e (2:6)
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Estimate of R, j for 1 < j < k. We have
R, i= —[aaaﬂ*lvm-, u+ulh — 0509 ' Vy - (h(u + u))
=— Z 0505,00 71 ugh — (097 u] - 05Vgh — 8971 (hOGVpu),

where u; is the i component of w. By Lemma A.8 and since (|| +1) +(j — 1) < sandj — 1 < k — 1,
and s > so—i-%,weﬁndforQ <k-1<s

H[aga%ag_l’ui]hum(ﬂ) < |7l

Hs—1,k—-1 Hu| Hs:k*

There remains to consider 1 < j < k < 2. If j = 1 we have by Lemma A.7(2) and since || < s — 1 and
s> sg+ %
11020z, wilh|| 2y S W10l oo rzo 1l g + 1Bl g |l oo rzos S 1Pl s 2] s
If j =k =2,and since || < s—2and s > so—i-%,
H[aga%ag_l’ui]huﬂ(ﬂ) = H[@g@zi,ui]athLQ(Q) + Hagam(hagui)uﬂ(m
S 19l sz Nsll oo g+ 10Pl] g g2 [los]| e przo

+ HhHLgoH;O 9

QUHLZH;_l + HhHLgH;—l Haé’uHLgon.O

S Al sl o

Finally, we have immediately
H[ag hul - 03 Ve hHL?(Q) ‘u‘wﬂ 200 ||| o121
1057 (105 Ve - u HL?(Q) ~ ‘mwg‘l"x’H | o
Altogether, we find that forany 1 < j < k

Bl ey S lynoe + s [l i) (o [l geri). @)
Estimate of T, j and r ; for 0 < j < k. We have (2.5a) with

P = — (03, woSh — 020)(hu) — (95Du)h,

Taj = —[8aﬁng~; u, h] + (agag;u) - Vgh.

We have immediately (since || + j < s, j < k, and using Lemma A.1)
H 05, aahHB N ‘Q,|W§‘1’°°HhHHS*Lk*1’
[0201010) 1) < g
(0505w Wp@ﬁwﬂmﬂwuwa-
By Lemma A9 andsince || +j+1<s+1,j<k<s,s+1> so+g,weﬁndf0r2 <k<s
H[aaaévzc';uvhmp(g) Sl g el o

and we have by Lemma A.1

R A e [ W 1 e

Altogether, we find that forany 0 < j < k
Irasll oy S (el + (2| yporee + 10l o) (el s + ol aris)s 28
Iracill 2y S leall el 7o 29
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Estimate of R, o. The precise expression of the second remainder in (2.3a) is the following:
R,p:= —([8g,u] -V ) k[0, h+h](V h-Vaz)u+ h+h([8§,v h] -V ) u.
By Lemma A.7(2) and Lemma A.1 we have

1195, ) - Va)ul| gy S lull poo gt el 2y S Ml e g 2l -

Next, appealing again to A.7(2), we have

w02, g5l (Veh - Va)u|| 2 @) ~ /ivahihHLgoH;O (vah'Vﬂﬂ)“HLgH;:1
+"£HV$QT1hHL§H§;1H(vwh'v$)uHLg°H;O'

Now, by Lemma A.2(2) and Lemma A.4, one has for any t > 0 that

Wmmh‘m = |5 (hih)? ‘Ht | h‘Ht +| - (h+h Y tht
S (b 2|V h‘Ht + |h2 o h+h |H O‘th’H; <‘i2 - W‘H}JVCBMH;O >t>80
< C(hy, |h o th\H;, (2.10)

where in the last step we used that, by Lemma A.4,
S C(h*a

|52 = @l h| gyz0)
and, provided that t > sg,
<\ — @ luze + [Vemrmela

< h;Q‘VmML%. Then, by Lemma A.2(2) and

52 — e lae

_ | N=zh

and a finite induction on ¢, until ‘Vmﬁ ‘ 2 = | nn ’ 12
) P = x

Lemma A.1, we have

H(th ' Vﬂc)uHLEH;*1 S HthHLgH;*HUHLSOHQOJ” + vachHLgoH;OHuHLgH;

S Bl oolleel g + 117

eo+3.1 ]| oo
and

[l

so+3.1 Hso+3.1e

H(vwh'vw)uHLgoH;O S vahHLgoH;‘)”uHLgoH;O“ S HhH
Finally, we have by Lemma A.7(2) and Lemma A.1
(03, Vah] - vm)“HIﬁ(Q) S HthHLgoH;'O“vauHLgH;—l + vahHLgH;va“HLgoH‘go

S [Veh| lll 0 + (172

H50+%,1 Hs,0 uHHSO“'%»l'

Collecting the estimates above and using that s > sg + %, we obtain

| Raoll 2y < el eollenllgron + 5N o) Wl ge + [0l o) el g 21D

Estimate of R, j for 1 < j < k. The explicit expression of the second remainder in (2.4a) is the following

R, ;= —([020),u+u] Vg)u+ k[050" [((Vah - Vg)u) +Ejh([aga;,v h]-Vg)u

eery 200, tn
i po [™ / /
+ 0705 </ Vzh do +/ Vﬂ]dg).
2 Jpo 2 Jpo

By Lemma A.8 we have for s > sg + % and since 0 < |a| < s — jand j < k with k > 2, that
(10205 ul - Va)ul| 20y < [|wl] o] [ Va2l

Hs:k Hs—1k"
Then,

(0205wl - Vo) ul 12(q) = [[195:2) - Vodgul| ) S [2yyy-roe ] oo
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Next, using Lemma A.3,
1094 3192 (V- V)| 20y S OOl 1 [V - T
S COBIW ]y 11

Hs—1.5-1

[l

Hs:i Hsi>

and by Lemma A.8, since s > sg + % and 2 < j < s, |a|+j < s, Lemma A.6 and Lemma A.3,

110505, i — &l (Veh - Va)u) || 2y S 557 = 2l ies [ (Val - Va)u|| s mincinio
S O | [y [l gD e e g
By Lemma A.8 we have for s > s + 3 and since [a| + j < sand2 < j < s
[1059%, Tkl Vol [l ]
We have immediately since |a| < s —j < s—1,
loom (% [ Vet ad) sy 5 02Vl iz S il
and since (Ja| + 1) + (j — 1) < s,
/1 [e -t
104 [ en0 ) oy S N0y S il
Collecting the estimates above we obtain for 1 < j < k
1Rl S Il b+ s+ (R gnm + )l
1 [y s [ ) (s + b [l @12
We infer the bound (2.3b) from (2.6) and (2.11), the bound (2.4b) from (2.7) and (2.12), and the
bound (2.5b) from (2.8) and (2.9), and the proof is complete. O

2.3. A priori energy estimates. In this section we provide a priori energy estimates associated with
the equations featured in Lemma 2.3. We start with the transport-diffusion equations in (2.4a) and (2.5a),
which we rewrite as

8th+u-th:/£Amh+r+Vm -r. (2.13)
LEMMA 2.4. There exists a universal constant Co > 0 such that for any k > 0 and T > 0, for any
u € L0, T; L>(Q)) with Vg - u € LY(0,T; L%(Q)), for any (r,7) € L?(0,T;L*(Q)) and for any
h € C°([0,T); L*(Q)) with Vh € L*(0,T; L*(Q)), such that (2.13) holds in L*(0,T; H°(Q)), we have
. 19 .
HhHLOO(O,T;LQ(Q)) +r!/ vahHLQ(O,T;L2(Q))
i —-1/2
< Co([|Mizoll 2y + 7l 21 0.2y + / 171l 20,2 22(2))

T
X exp (00/0 va-u(t,-)HLoo(Q)dt>. (2.14)

PROOF. Testing the equation against h and integrating by parts (with respect to the variable x) yields

1 , , ,
thHhHLQ + k|| Ve h||L2 2//Q(Vm-u)thwdQ—i—//thdxdg—//Qr-thdacdg.

The estimate follows from the Cauchy-Schwarz inequality and Gronwall’s Lemma. U



16 R. BIANCHINI AND V. DUCHENE

Next, we consider system (2.3a), which we rewrite as

P1 P1
on+ (u+u)- VmﬁJr/ (u' + O,u) - wa]dgl-i-/ (h+h)Vg -udo = kg0 + R,
o o

(2.15)
0
0 (atu N (A vx)u) + poVai| . + / Vaidd = ovAgi+ R.
PO
For the sake of readability, we introduce the following notations
X9:=C%po, p]; LARY)) x LAY X1 :=C%[po, p1]; HH(RY)) x HYO(Q)4. (2.16)

LEMMA 2.5. Let hy,h*, M > 0 be fixed. There exists C'(hy, h*, M) > 0 such that for any K > 0
and v € [0,1), for any (h,u) € WH*((pg, p1)), for any T > 0 and (h,u) € L>(0,T; W(Q)) with
Agh € LY(0,T; L>(Q)) satisfying (2.1) and, for almost any t € [0, T, the upper bound

1A oy + IV g2 + V2 V2hlE ] o )+ Vi - 0 ) o ) < M

and the lower and upper bounds
V(z,0) €Q,  he <h(o)+h(t,z,0) <h*

and for any (n,w) € C°([0,T); X%) N L2(0,T; X*1), with X°, X1 in (2.16), and (R, R) € L?(0,T; X°)
satisfying system (2.15) in L*(0,T; X 1Y, the following estimate holds:

EGi(t, ), (t )Y + 52 Vail g gz + 572 Vol gy 20z + VIV o 12y

’ (5(7'7(0,-),&(0,-))1/2+C/Otg(R(T")’R(T’ .))1/2d7'>

t
X exp (C’/O (14 kM| + dpu(r HLng)dr),

where we denote

n Po
/ /n+gh+h\u\ dzdo + n\
PO 2

N =

Em,u) =

QﬂO

€ R?} against

PROOF. We test the first equation against 1) € L?(0,T; H'0(£2)), its trace on {(x, po),
9(€2)). This yields,

pon| ,—,, € L?(0,T; H'(R?)), and the second equation against (h+h)@ € L?(0,T; H"
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after integration by parts

d... . . . d .
dtg(nvu) + KJvanHiQ(Q) + pO”J‘va‘Q:po‘i?E + V; /Q o(h + h)|8xzu]2 dxdp

p1
) L2(Q)
P . /. . .o
([T addin) (R (i)
) L2(Q)
— (o(w+u) - Vau, (b + h)i) 2 gy + £ (2(Vah - Ve, @) 2 q) (iii)
)
(pOan‘ ,(h+ h)t )L2(Q) - ( ; Ve szla (ﬁ + h)u) L2(Q) (iv)
0
( (Vgh - V), u)LQ(Q) + (QR, (h+ h)u)L2(Q) (v)
p1
_po( u+u)- )\g:po,n}g po) - po </ (u’+8QU)-Vmﬁdg’,ﬁ|Q:po> (vi)
PO Li
pl . .o
—Po (/po (h+h)Ve -add, 77‘9 po)L2 +ro (R‘Q:PO’T]‘Q=P0>L§3 (vii)
+ 3(0(8ih), @) 12 (viii)

We consider first the second terms in (i) and (vi). We have by an immediate application of Cauchy-
Schwarz inequality and the continuous embedding L>°((po, p1)) € L*((po, p1))

P1 P1
‘(/ (u' + Jpu) - Vaip dg’ﬂ?) </ (U + 9pu) - Vaip dg’,ﬁ]g:po)
4 L2() po L2

x

< o'+ Ol e IVl oy (1l gy + 1] 2)- @.17)

+ po

Notice that the right-hand side (2.17) cannot be bounded by the energy functional £(1), @), and this is exactly
the point where we use the assumption x > 0. Let us now estimate all other terms.
Using integration by parts in the variable x, we estimate the first addend of (i) and (vi) as follows:

<((H+ w) - Vaii) ‘@:po’ 77‘9 po)

S vaﬂ : uHLOO(Q)HﬁHLQ(Q) +|Va - “‘g:po‘LgoWg:poﬁg'

((w+u) - Ve, 77)1}(9)‘ + po

The contributions in (iii) and (viii) compensate after integration by parts in x, using the first equation in (2.1).
Now consider the first addend of (ii) together with the second addend of (iv). By application of Fubini’s
theorem we have

/Rd/,,?(mv‘”" )dQ>(h+h)() ()dgdm—/Rd/p:l (/jl(mm() ()dg)V i(d') do da
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and hence, integrating by parts in &, we infer

/Rd / | / (h+1)(¢) Ve - u(e) dd' (o) do d

[ ([ v ) -t noco ag s

/]Rd /pl " (th)(gl) : 11(9/)7.7(0) dQ, dQ dax

Concerning first addend of (iv) and the first addend of (vii), we have after integrating by parts with respect
to the & variable and using Cauchy-Schwarz inequality

S Vehll g a1l 2y 1l 20

po

p1
([ wat-adeiil,,,) |=
PO L2

p1
‘ (povmn\ (Bt h)a )LQ(Q)—po(/ (h+h)Vm-udg,ﬁ\ng>L2

= Po

SIVahll e a1l 12y [l =y 22

Concerning the first addend of (v), we have for an arbitrarily large constant K > 0,

2
V’(Q(th-V)u,u VHVUHB @ T 21VHthHioo(Q)HuHiZ(Q)

L2<Q>‘ 2K

The last contributions, namely

)

‘ (R, TI)LQ(Q) =+ (R, Q(h + h)u) L2(Q) + po (R‘Q:m?ﬁ’g:po)Li
are easily controlled by means of Cauchy-Schwarz inequality. Collecting all of the above, and using that
. 112 112 . 2
E(,u) ~ HnHL2(Q) + HUHL2(Q) + ‘n‘g:po}Li

and
d
”Z/ﬂ o+ 1)|0z,4f* dz do 2 v|| Ve ]|} g
=1

since pohy < o(h + h) < p1h*, we obtain (choosing K sufficiently large)

*8(777 "‘RHV:CUHLQ +P0/€‘V:c77‘g pO‘LZ
<CE@,u +CH“ +0 uHLOOL2 (0,2 1 2Hv$77HL2
+Cam)WaRRW2

with C' = C'(hy, h*, M). We deduce (augmenting C' if necessary)

d
—E(n, ) HanHLz )+ o | Vai|

dt o=rm| 23

<O (1+rYu + aguuig%z)g( @) + CEM, )2 E(R, R)Y/?,

and the desired estimate follows by Gronwall’s inequality. U
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2.4. Large-time existence; proof of Theorem 1.1. We prove the large-time existence and energy esti-
mates on solutions to the regularized system (2.1) in the following result. Compared with Proposition 2.1,
we provide an existence time which is uniformly bounded (from below) with respect to the artificial regula-
rization parameter > 0, and specify the dependency with respect to the diffusivity parameter , in relation
with the size of the data. It is in this sense that the existence of strong solutions to the hydrostatic system
holds for large times. We then complete the proof of Theorem 1.1 at the end of this section.

PROPOSITION 2.6. Let s,k € N be such that s > 2 + %, 2<k<s and M,M* h,,h* > 0. Then,
there exists C > 0 such that, forany 0 < v < k < 1, and
e forany (h,u) € W*k((po, p1)) such that

‘MW}“’ + |EI‘W§_1’°° < M;

e for any initial data (ho, wy) = (ho(x, 0), ug(x, 0)) € H>*(Q) with

+ k2| ho|| e < M,

Mo = ||no| grox + [[wo]| o + 0] 70

0=po0 ‘Hi
and
V(x,0) € €, he < h(o) + ho(x, 0) < b,
the following holds. Denoting
T 0 (14 (w4 M)
there exists a unique strong solution (h,u) € C([0, T]; H**(Q)'*9) to the Cauchy problem associated with

(2.1) and initial data (h, u)|t:0 = (ho,ug). Moreover, h € L*(0,T; H**1*(Q)) and one has, for any
t € [0, T, the lower and the upper bounds

V(z,0)€Q,  h/2<h(o)+h(t,z,0) <207,

and the estimate

]:(t) = Hn(ta ')HHs,k + Hu(t> )HHsk + ‘U}Q:po(ta )‘H; + K1/2Hh(ta ')HHs,k
+ ’K&l/QHvanL?((Lt;HSvk) + “1/2ch”|gzp0 {LQ(O,t;H;) + RHthHLQ(OJ;HSvk) < CMo.

PROOF. Let us denote by T* € (0, +-oco] the maximal time of existence of (h, u) € C°([0, T*); H**(12))
as provided by Proposition 2.1, and

T, = sup {0 <T<Tr:Vte(0,T), he/2 < h(o)+h(t,xz,0) <2h* and F(t) < COMO},

where Cp > 1 will be determined later on. By the continuity in time of the solution, and using that the
linear operator h — 1 := [ ; Yh(-, o) do (resp. h — n‘g:po) is well-defined and bounded from H**((2)
to itself (resp. H3(R?Y)) we have T, > 0. Using Lemma 2.3, 2.4 and 2.5 and, therein, the inequalities
1] o161 = 10| o161 < [[11]] oor and (since v < k) Vl/QHthHLoo(Q) = “UQHhHHs,k’ we find
that there exists ¢y > 1 depending only on pgh., p1h*; and C > 0 depending on M, h,, h*, Cy My such that
forany 0 < t < T,

It M g0+ 11wt M0+ [0y (8 Mg+ 52NVl Lo piprnoy + 572 V] |20 g

< o (Il o + 1ol 0+ 1]yl + € Coo (6 V)

t
xexp(C'/O (1+/€_1Hgl+8guHi;OLg)dT>; (2.18)
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and (using a slightly adapted version of Lemma 2.5 which does not involve the trace of A b7 at the surface)
forany 1 < j <k
1/2
1950t | =0 + 521V 2050l 26,4570,

< (118300, )]| s + C CoMo (¢ + V) )
X exp C/ va“u(T,-)HLOO(Q)dT), (2.19)
0
and

Hagu(ta ) HHs—j,o + v/ }|VwaguHL2(07t;Hs_'7’o)

< (Hagu(o,~ || 5.0 + C CoMy (t+\/))
X exp / |Va - _Kh+h) ,-)HLOO(Q) dT>; (2.20)
and finally forany 0 < j < k
w200 ) gm0 + Bl V2R L2 o gr-s0)
< ( Y2030, )| 20 + € CoMo (t+\/))

X exp C/ HV;Z,'U(T, -)HLOO(Q) dT). (2.21)
0

By the continuous embeddings H sot3l ¢ L H®* C L>(1) for any so > d/2 (see Lemma A.1) and since
k>1ands > %+%,wehave

Ve - tl| g + ([ Ve - (v = 5320 || ooy < Ch) ([l
We deduce that

o ||+ ]|Vt

Hs,k)‘

F() < o Mo+ C CoMy (t+ Vi) ) xexp (C(t+ Vi r! /OtHu’ + 0pu(r, )1 1 A7) ),

where we recall that ¢y > 1 depends only on h, and h*; and C' > 0 depends on M, Cy My, hy, h*. Hence
choosing Cy = 2c¢q and using that (by Lemma A.1 and since £ > 2 and s > § + 4)

[w +0 uHLOOL2 <|lu'+0 UHLQLOO S | ‘LQ + H“HH e < o ‘LQ (CoMo)?,
we find that there exists Cy > 1 depending only on M, M*, h,, h* such that
_ 2 _ 3

t(l+k 1(@’]% +MY))<Cyt = Ft)< 7 CoMo.
Now we remark that since

Oh+u-Vyh=rAzh+g with ¢g=—-Vg-(hu+ hu)
and by the positivity of the heat kernel we have

igf ht,-) > igf ho — HQHLl(O,t;LOO(Q))’ Sop hit,-) < Sip ho + HgHLl(O,t;LOO(Q))'

Now, by the continuous embedding H*~11(Q) C L>(Q) (since s > 3 + ), we have that

91l ey S 1elwpoelleell o + Il o el o < CQLYA + 577 15).
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Hence augmenting Cj if necessary we find that

2
ML+ a7 MG <Gt = Y(@,0) €Q, Sha < ho) +h(tw,0) < gh*'

-1
By a continuity argument we infer 7, > (C (1 + k1 (‘ u’ ’iz + MOQ))) , and the proof is complete. [
4

In order to complete the proof of Theorem 1.1, there remains to consider vanishing viscosity limit,
v\, 0, in Proposition 2.6. Let us briefly sketch the standard argument. By Proposition 2.6, we construct
a family (h,,w,) € C°([0, T]; H**(Q)) of solutions to (2.1) with (h,,, ul’)‘t:O = (hg, up) indexed by the
parameter ¥ > (. Notice that the time of existence and associated bounds provided by Proposition 2.6
are uniform with respect to the parameter v > 0. Hence by the Banach-Alaoglu theorem there exists a
subsequence which converges weakly towards (h,u) € L>(0,T; H**(Q)'*%), satisfying the estimates of
Proposition 2.6. Using the equations, we find that (9;(,, d;u, ) are uniformly bounded in L>°(0, T'; H*~2F).
The Aubin-Lions lemma (see [30]) implies that, up to extracting a subsequence, the convergence holds
strongly in (h,u) € CO([0,T]; H*"*(B)'*%) for any 0 < s’ < s for any bounded B C R% x (pg, p1).
Choosing s’ > 3/2 + d/2 and using Lemma A.l and Sobolev embedding, we can pass to the limit in the
nonlinear terms of the equation and infer that that (h, ) is a strong solution to (2.1) with v = 0. Moreover,
since (h,u) € CO([0,T); H*~2F(Q)'+%), we have (h,u) € CO([0, T]; H**#(€2)'*9) forany 0 < §' < s.

Uniqueness of the solution (h,u) € L>(0,T; H**(Q)'*) follows by using Lemma 2.5 on the differ-
ence between two solutions, and Gronwall’s Lemma.

REMARK 2.7. By the standard result of Strauss [31], we have that (h,u) € C2.([0, T; H**(Q)'*?) the
subspace of L°°(0, T; H>*(2)1+4) of functions which are continuous from [0, 7] in H** (€)', equipped
with the weak topology. In order to guarantee the stronger results (h, w) € C°([0, T]; H**(£2)*) (and sub-
sequently the well-posedness in the sense of Hadamard), one typically uses the Bona—-Smith technique [2],
relying on the propagation of regularity and “tame” estimates which we have decided to omit for the sake of
conciseness.

3. The non-hydrostatic system

In this section we study the local well-posedness theory for the non-hydrostatic system in isopycnal
coordinates. We set (without loss of generality, see footnote 2) pg = 1 in (1.7), so that the system reads

Oh+ Vg (h+h)(u+u)) =kAgh,

\Y%
g(@tu + ((u+u— K,ZIZ) : Vm)u) + VP + %(GQP +0h) =0,

0,P oh
Vah 4 _
Md@w+@+ufnﬁﬁ-vﬂ0—E+h+51ﬁ_& 3.1)
—(h+h)Vg-u—Ven- (v + Jdyu) +dpw =0, (div.-free cond.)
p1
n(-,0) = /@ h(-,0")dd, P’Q=po =0, w‘gzpl = 0. (bound. cond.)

3.1. The pressure reconstruction. The first step of our analysis consists in showing how the pressure
variable, P, can be uniquely reconstructed (thanks to the “divergence-free” incompressibility constraint)
from prognostic variables w, w and h (or, equivalently, 1), through an elliptic boundary-value problem.
Differentiating the “divergence-free” incompressibility constraint in (3.1) with respect to time yields

—(h+ h)Vg - O — (Van) - (0,00w) + 0,000 = (9h) (Ve - w) + (Vadyn) - (0 + 9yu).
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We plug the expressions for 0,u, 0yw, O;h, Oyn provided by (3.1) inside the above identity. Reorganizing
terms, this yields the following

2N (00 h 2n(0, 0 h
(h+ h)Va - (%va + YenlBel toh) jgg’”) + (Va) - (a@ (%vmp + YerlBel toh) Qh))) 4, (H;@ﬁ’;)

—(h+h)Vy - (((g+u—n§j ) - Vm)u> —(Van) - (09 (((g+u—m§jh) Vm)’U,))
+0, ((u+u—reh) Vow) + (kAph = Vo ((h+ h)(w+u)) ) (Ve )

(W Agn — Vg fp1 (h—i—h)(u—i—u))dg/) (u + d,u).
Using that 9,V 1 = —Vh we can rewrite the left-hand side in a compact formulation as
h+h VEVen
_ 1 (ViVe I W AV/TA
(LHS) = m ( 9, ) : ( (ﬁVIn 11| Vo] 9, (P+Pe) |
0 o(h+h)
with P, f ¢ 0'h(¢’) do. As for the right-hand side, we denote
Vzh
x 1= — , 32
u Sk (3.2

and we infer
(RHS) = —(h+ h)Va - (((w+u+uy) - Va)u) — (Van) - (0, ((u+u +uy) - Vau))
+ 0, ((w+u+u) Vew) = Vg - (h+h)(u+u+u,)) (Vg - u)
— (Ve J7 Vo (R )+ u+ ) do') - (@ + D).

Notice the identity (reminiscent of (1.6))
p1

Vo (+h)(u+u+u,))do = (u+u+u) Van —w —w,, (3.3)
0
where
Veh -V

Wy = KAZN — szhwn, (3.4)

which is obtained by integrating with respect to o the divergence-free identities

—(h+ h)Vg-u— (Vgn) - (1 + dyu) + d,w = 0,

—(h+h)Vg - u, — (Vgn) - (Opuy) + 0wy = 0,
integrating by parts with respect to , using the boundary condition w|,—,, = 0 = wy|y=p, and h = —J,1.

Hence the above can be equivalently written as

(RHS) = —(h+ h)Vy - ((g+ u —|—u*) -Vmu) — (Vgn) - (89 ((g—i—u —|—u*) Vmu))
— (Ve (utu+uy) Ven—w—wy)) - (0 + ,u). (3.5)

Taking into account the boundary conditions in (3.1), we find that the pressure satisfies the following prob-
lem (recalling P, : fg dh(d) do):

h+h fan
1 \//7Vw> , (\fv )
bl . P+ P, = (RHS),
" ( Do <<\/ﬁjl" H‘(ﬁ“ﬁ?‘ 0, )! J (3.6)
‘@:po =0, (%P)‘g:m P1 ‘9 p1’
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This boundary value problem corresponds to [7, (7)] written in isopycnal coordinates, adapting the
boundary conditions to the free-surface framework, and taking into account the effective transport velocities
from eddy correlation. Following [7], we shall infer the existence and uniqueness as well as estimates on
the pressure P from the elliptic theory applied to the above boundary value problem, as stated below.

LEMMA 3.1. Let sg > d/2, s,k € N such that s > sy + % and1 < k < s. Let M, hy > 0. There exists
C > 0 such that for any p € (0, 1], and for any h, h,n satisfying the following bound

LA max(1,k—1),00 + s—1,max(1,k—1) + IU/ (1377 s—1,max(1l,k—1) —= )
Ay [ pra— VElVaill e masa i < M
and the stable stratification assumption

inf h +h T, Zh*S
(w“g)egf(@) (x,0)

and for any (Qo, Q1, R) € H**=1(Q)% x HS¥(Q)4H1, there exists a unique P € H*TVF+1(Q) solution to

{ Vi (4"VaoP) = Qo+ VEAQL + Vi, R .
P’Q:po :O, ed+1.(Avg’QP)|Q:p1 :ed"'l'R}Q:pl .
where we denote A := (Id —Agz)'/?,
hth VAV
o () e (e ).
0 o(h+h)

and one has, denoting H(Qo, Ql,R)Hw. = HQOHHT«J—I + HQlun—l + HRHHW and a vV b = max(a, b)

1Pl + 1960 P e < © ([l (@0. QBRI

(1] gy + Vi Tl o) (@0 @1 RN,y 1) BB)
and, when k > 2,
1Pl 2y + 1V5 0P gremsims < €10 @1 R,y (3.9)

PROOF. Testing (3.7) with P, using integration by parts and the boundary conditions, we find
P1 P1 ~
—/ / AbyE Py Pdgdm:/ QoP + Q1(\/jiAP) — R- V" P do da.
For (Qo,Q1, R) € L?(Q)?t9F1, the existence and uniqueness of a (variational) solution to (3.7) in the
functional space
Hy(Q) = {P € L*(Q) : Va,P € L*(Q), P|,_ =0}

classically follows from the Lax-Milgram Lemma thanks to the boundedness and the coercivity of the matrix
A (recall that h + h > hy > 0 and the embedding of Lemma A.1), and the Poincaré inequality

1 2 "
VP € Ho(Q)’ HPHLZ(Q) - /Rd/p
0

and we have

2
doda < (p1 = p0)?[|0,P |12y (3.10)

0
Oy Pd¢
po

HVg,gPHp(Q) S HQOHL2(Q) + HQ1HL2(Q) + HRHL2(Q)' G.1D

The desired regularity for (Qq, Q1, R) € H**~1(Q)2 x H**(Q)4*! is then deduced following the standard
approach for elliptic equations (notice the domain is flat) from the estimates which we obtain below. For
more details, we refer for instance to [21, Chapter 2] where a very similar elliptic problem is thoroughly
studied. We now focus on the estimates, assuming a priori the needed regularity to justify the following
computations.

First, we provide an estimate for HV%QPH HrO(Q) for 1 < r < s. One readily checks that P, := A"P

with A” := (Id —A,)"/? satisfies (3.7) with Qg + A"Qqp, Q1 < A"Q; and R < A"R — [A", AMV g o P.
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We focus now on the contribution of P, := [A", A“]VZ,QP. By continuous embedding (Lemma A.1) and

commutator estimates (Lemma A.7), we have

1P| 20y S VoA (] 3.0 [ V0P

HS0T 3

T TR 00
Hence, using product (Lemma A.2,A.3) and composition (Lemma A.4,A.6) estimates, we deduce
1P| 2y < € (V5. 0Pllgemso + (1Bl oo + VEIVonl] o) |75 0P H50+%,l>r>80“ ) 612

with €' = C(hy, |hf g0 || (B /EV2N) || ags 2.0
Plugging (3.12) in (3.11) and using continuous embedding (Lemma A.1) and so + % < s —1yields

r>so+1 '

10)

1V oPll o S Q0] o + (1@l o + ([ R rio + 195 0Pl 10
+ C (|2l gro + [ Vanl] o) <HV¢,QPHHSO+%,1>T>SOH, (3.13)
where we denote, here and thereafter, a < b for a < Cb with
C = Clhw, |l ypoe: 1] gocsis VR Vil gosa) = O, M)

Next we provide an estimate for HVG? QP‘ @) appearing in the above right-hand side. This term

H" 1
involves 82P which we control by rewriting (3.7) as

14+u|Ve 14| Ven|? B
VL 2P — 0, (HHN=IE (9,P) — Vi, - ABVE P+ Qo+ VEAQL + VE - R=R (3.14)

where we denote

hihqy AV
Vie AGVh P =V, ((J%Vln S ) v%QP)
0

— gvm (V2P + (Van)(9,P)) + %(%(vmn) (VaP)).

When estimating the above, we use product estimates (Lemma A.2) and then continuous embedding (Lemma A.1),
treating differently terms involving Az P or V0, P: for instance

1A B8 P oy S 1l oo allBaP oo+ KRN o A2 Pll 000121503
and terms involving only VP or 9, P: for instance
I (Bem) @ PD () S 1Bl 4.1 100P 1110 + A2l s |00 ey 01150

We infer, using Lemma A.1, u € (0,1] and sg + % <s—1,thatforany 1 <r <s,

192 Pl 1.0 5 [| Qo

gr-10 T HQlHvaO + HRHHM + HVg,QP‘ Hr0

+ ([0l g + VAl Van | o) (Vo0 o0 ) s gyin - B-15)
By combining (3.13) and (3.15) we obtain
[VaoPllgra S HQomoHIQl\mﬁHR\ a1V oPll oo
C (||| g1t Vil Van] ) vayL)PHHSO“'L1>T>SO+1
which, after finite induction on 1 < r < s and using (3.11) for the initialization, yields
Ve 0Pl g1 S [|Qoll o + @1l o + (| R| v
+ (12l g + VAVl ) > Q0| grr-v0 + (| Q1 ppr-so + 1B prr-si )y gy - B116)

This, together with (3.10), proves (3.8) when k = 1.
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We now proceed to estimate higher o-derivatives. In what follows, we denote
€ = Cla ]y s [ s VBV v) = Ol ML),
Let 2 < j < k. By definition, and using 1z € (0, 1], we have
IVe.oPllres < Ve Pl ess + 100V Pll o151 S [V Plleses + 102 P || ramsia

We shall also use, when j < k — 1, the corresponding estimate
V5o P | gro-15 S V0Pl o1 + 105P | o2

o(h+h)
1+I»L‘V:u"7‘2

By using (3.14) (according to which 8§P = R), and since 1 < 7 —1<s—1,using Lemma A.3

and Lemma A.5 yields

1022l 1101 S | e [ Bl g son < Cl Rl

If moreover j < k —1 < s —1, then

1022l 1201 S | ez [ Bl graensos < Ol Rl

Applying Lemma A.3 and Lemma A.5 to R defined in (3.14), we obtain

IR o151 < Q0 e ss + 1@l o s + 1R e
+ O VE Pl o5+ C X ([l gros + VENVanl o) IVE 0Pl o151
and, if moreover j < k —1<s—1,
IR 17o251 < [1Q0l ozsos + Q1] garsos + [ R o + ClVE Pl s
From the second set of inequalities, (3.16) with r = s — 1 and finite induction on 2 < j < k — 1 we infer
V5P|l o156 < C (| Qoll gro-1.5-1 + [|@1]

Then, from the first set of inequalities, (3.16) with r = s and the previous result, we infer by finite induction
on2<j53<k

V5o Pll 172 < € (1Q0| o= + (| @1 gros + [ R )
+ O ([l oy + VI Vanllges) (1Qollgrorsz + Qe oo + 1R gro-rs-)-
The result is proved. U

o IR

Hsfl,j)‘

We now apply Lemma 3.1 to obtain several estimates on the solution to (3.5)-(3.6).

COROLLARY 3.2. Let so > d/2, s,k € N such that s > sy + % and 2 < k < s. Let hy, M > 0.
There exists C > 0 such that for any i € (0,1] and k € R, for any (h,w) € W*>((po, p1))?, and for any
(h,w,w) € H¥F2F(Q) x H*(Q)4 x H>*=1(Q) satisfying

o the following bound
‘MWQ’“‘X’ + |EI‘W§_1’°° |2l romriems + VA Vanl] oo + [l o + VE[w] o < M
o the stable stratification assumption

inf h(0) + h(w, 0) = hy;
(x,0)€Q

e the incompressibility condition

—(h+h)Vg-u— (Vgn) - (4 + 0,u) + dw =0,
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there exists a unique solution P € H*TF+1(Q) to (3.5)-(3.6) and one has

1P| 20y + IVEoPl o < C A+ o + V][ Van]] o)
< (|2l ok + VEINVan| o + | w) || o + VAl (w,w00) || o) 317

. . Vah Vah-Van
where we recall the notations u, := K5 h h

and wy 1= KAgzn — K
Moreover, decomposing

0
P:Ph+Pnh7 Ph ::/ th('vgl) dQl,
0
and assuming (in addition to the above) that

IV anll prosir + [0y |y < M

we have
[Pan | 2y + [V o Pt [l o < C (U [[2f] o + VA V] o)

o (VA o+ VIV e+ V] g i 1020 sV 00 e )+ B18)

and

HPHhHLQ(Q) + va,QPHhHHs—l,k—l < C\/ﬁ

X (HVCCUHHS—I,k—l + ‘77‘
and, setting A* =1+ /| D],

sl 1) s V@) i) G19)

195 0Pl o1 < o (1) 7 bl gy + 1A Vil o+ 1A 7] g

(oo + ol ) ()| + w0 ) + s o] o)+ 3200

PROOF. In view of Lemma 3.1, we shall first estimate (RHS), defined in (3.5). We decompose
(RHS) = Ri+ Ry

where R is constituted by terms involving maximum one derivative on h, 1, u, U, w, Wy, while

Ry:=—(h+h)((u+u+u,): Va(Va-u) = (Van) - ((w+u+u,) - Vadou)
+ (w+u+u) Vadow — (u+ u+ uy) - Vo (Van)) - (u' + 9,u).
Appealing to the incompressibility condition
—(h+h)Vg-u— (Vgn) - (v + dyu) + d,w = 0,

we have simply

Ro=((u+u+uy) - (Vgh)) (Vg - u).
As a matter of fact, this term compensates with the second addend of R, so that contributions from h are not
differentiated. By inspecting the remaining terms and using Lemma A.3, we infer that for any r > sg+1/2
and1 <j<r<s—1,

|(RHS)|

Hri S+ \ﬁ(wgm + Hh| gra T vacn‘ Hw)

(e

) (10830 s 10000 ) + 0 s ) -

(3.21)
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Owing to the fact that contributions from (h, n, w, w*) to (RHS) are affine, and p € (0, 1], we have for
anyr > sop+3/2and2<j<r<s

VA RHS) || 10 S (1 [l v + V][]

o (oo o] ) (10t 2 s + /] (020

Hr—14—1 + \/EHV:B'O‘ Hr—l,j—l)
pira-1) + VAl

Hri—1 HU*HH73> :
(3.22)

For the first estimate, we write (3.6) as (3.7) with Qo = 0, Q1 = \/ﬁA*1 (RHS) and

R = L _\/ﬁﬁvmn
m(l + pVan|?) = p|Van|?
where we used the identities

1+ p|Van/? h(1 + p|Van]?) 2 h 2
— 20 9,P,, = =1 - — (1 .
Q(ﬁ'f' h) aQ—eq E‘f‘ h —+ M’V:Bn’ h_i_ h( + M’me )

Product (Lemma A.3) and composition (Lemma A.6) estimates yield if r > sp+1/2and 1 < j <r <s—1
1B s < C s Bl yygoo D] s VAVl ) X (Nl s + VA V] ) (3.23)

and, if r > sp + 3/2 and 2 < j < r < s, using the tame estimates, we obtain
1R s < Chs, \ﬁ|wng’ M| i1 VBVl erg1) X (|R]] s + /5] [Var]

Plugging in (3.8) the estimates (3.22) and (3.24) with (7, j) = (s, k), and (3.23) with (r,j) = (s— 1,k —1),
yields (3.17).
For the next set of estimates, we notice that, by (3.6), P — B, satisfies (3.7) with eg 1 - R’g=p1 = 0 and

Qo + /pAQ1 + Vho  R=uRHS)+ Vi, - R where

(o (h+ h)Vgip LI
R=- (Mg—l(vwn) : (sz/))> SRS /po n(,0")de’ + pon| _, -

Indeed, we have immediately e - ﬁ]g:pl =0=0, (P — P) }g=p1 and we infer

(3.24)

i)

Vo B=Vi,- (AMVZ,Q(Beq + Ph))
from (integrating by parts as in (1.8b))

e ©
B :_/ oh(-,0) dg’——9n+/ n(- ¢') de’ + pon| (3.25)
po o

o=po’
Using that by product estimates (Lemma A.3), we infer immediately for any r > sg+1/2and 1 < j <r

o5 S (g + 18 s+ Vi@t 1) (VEIV 1 s + VR i) 3260

and using tame product estimates if » > sop +3/2and 2 < j < r;

|B|

IR

i S (‘ﬁlwg*‘” T Hh}

gr-ti-1 7t van’ gr-14-1 T ’77‘9=P0‘H£)

X (\/ﬁHh\ i VI Vaen|| g +\/ﬁ}n\g:pO\H;+1>. (3.27)
Moreover, using again the tame estimates, we have for any » > so + 1/2and 1 < j <,
195 o Bl e S 0 (1thuygoe + 2ll s + 1500 s + 10z
X (Hh} Hr+1,4 + van‘ Hr+l,5+1 + }n‘g:po‘H;+2>' (3.28)
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Finally, recalling A* = 1 + /| D| and introduce

R - Ve Hh+ (M) (M) 71V a1))
fo = < H(ar)” 1Vw?7)'((A“)‘1Vm¢)>

and obtain, as for (3.26) and (3.28) and using that Id —(A*)~! = /u|D|(A*)~" and ||(A*)
that for any r > s9 + 1/2and 1 < j < r, one has

1HL§—>L% =1,

| = Rol o + V5, Rol

P (L L P 2 P Ul ey

X (H(Au)—thHTH,j + (A T | s + \(Au)—ln‘gzpo\%ﬁ). (3.29)

We obtain (3.18) by setting Qp = 0, Q1 = \/,EA_l(RHS) and R = R, and plugging in (3.8) the
estimates (3.22) and (3.27) with (r, j) = (s, k), and (3.26) with (r,j) = (s — 1,k — 1). For (3.19), we set
instead Q9 = u(RHS) and @Q; = 0, and plug in (3.9) the estimates (3.22) with (r, j) = (s, k), and (3.26)
with (r,j) = (s—1, k—1). Finally, for (3.20), we set Qo = u(RHS)+V%4 ,-Rpand Q1 = 0, R = R— Ry,
and plug in (3.9) the estimates (3.21) with (r, j) = (s, k), and (3.29) with (r,j) = (s — 1,k — 1). O

3.2. Small-time well-posedness. We infer small-time existence and uniqueness of regular solutions to
the Cauchy problem associated with the non-hydrostatic problem, (3.1), proceeding as for the hydrostatic
system in Section 2, that is considering the system as the combination of a transport-diffusion equation
and transport equations, coupled through order-zero source terms (by the first estimate in Corollary 3.2).
Specifically, we rewrite (3.1) as

Oh+ Vg ((h+h)(u+u)) = kAgh,

d,P — oh
Ou+ ((w+u—rh) - Va)u+ va+ (1+9(h7]§))vwn:0, (3:30)
1 0,P — oh
Veh
Ot (b w =) Vo = oy
where 7(- f - o) do’ and P is defined by Corollary 3.2. Systems (3.1) and (3.30) are equivalent

(for sufﬁ01ently regular data) by the computations of Section 3.1, and in particular regular solutions to (3.30)
satisfy the boundary condition w}gzpl = 0 and the incompressibility constraint

(h+h)Vg 1w+ Ven - (0 + dpu) — d,w =0 (3.31)
provided these identities hold initially.

PROPOSITION 3.3. Let sg > d/2, s,k € N such that s > s + % and 2 < k <s. Let hy, M, u, k > 0
and Cy > 1. There exists T > 0 such that for any (h,u) € W*5>((pg, p1))% and for any initial data
(ho, uo, wo) € H¥THH(Q) x H¥F(Q)? x Hs’k( ) satisfying

e the following bounds (where n(- f "L ho (-, 0') do')
[Blyroe + |wlypre < M, Moi= HhoHHs,k + Vel e + l[woll o + llwoll e < M,
e the stable stratification assumption

f h h > h,,
(wgl)eg h(o) + ho(x, 0) >

e the boundary condition wy|,—,, = 0 and the incompressibility condition

_(ﬁ + ho)vw c Uy — (vw770) : (H, + aQUO) + agwo =0,
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there exists a unique (h,u,w) € L®(0,T; H¥F(Q)2T4) N cO([0, T]; H¥*(Q)2t) (for any 0 < s’ < s)
and P € L?(0,T; H**Y*1(Q)) solution to (3.30) and (h,w,w) ‘t o = (ho,uo, wo). Moreover, one has
n € L=(0,T; HY1*(Q)) and (h, Ven) € L?(0,T; H*+1*(Q)) and

Fs kT 1= HhHLOO(O,T;HSvk) + vanHLw(o,T rsky T HUHLOO o,r;Hsk) T HwHLOO 0,T;Hsk)
+ con’ HhHLQ(OTHb xy T+ 00“1/2Hv 77HL2(0THS k) S CoMo
with ¢y a universal constant.

PROOF. Since a very similar proof has been detailed in the hydrostatic framework in Section 2, we will
only briefly sketch the main arguments. As aforementioned, thanks to Corollary 3.2, we may consider the
contributions of the pressure as zero-order source terms in the energy space displayed in the statement, and
(3.30) is then interpreted as a standard set of evolution equations. We now explain how to infer the necessary
bounds on all contributions to F ;. 7, assuming enough regularity.

: 1/2

The desired control of HhHL‘X’(O,T;H‘S’k) + corl/ vahHLQ(O’T;Hs,k)
equation of (3.30), and the regularization properties of the heat semigroup already summoned in Proposi-
tion 2.1. The corresponding control of HVIUHLOO(O,T;HSJ“) + conl/QHVinHLQ demands an addi-

is a direct consequence of the first

(07T;Hs,k)
tional structure. We recall (see (1.6) or (3.3)) that by the identity (3.31) and integrating the first equation of
(3.30), one has

O+ (w+u) - Vgn —w = 6Ag17. (3.32)

By the regularization properties of the heat semigroup, we infer (with ¢y a universal constant)

12|

HVWHLOOOTHM)+00“ W 77HL2 (0,T;Hs:k) = HVﬂWOHHSk+ 1/2H u+tu) an_wHLQ(O,T;HSv’“)’

and the right-hand side is estimated by product estimates (Lemma A.3). Finally, the desired a priori es-
timates on HuH Loo (0T H k) and HwH Lo (0T H k) for sufficiently regular solutions follow by the energy
method (that is integrating by parts in the variable ) on the second and third equations of (3.30), which can
be seen as transport equations with source terms. More precisely, by Corollary 3.2, we have the existence

and uniqueness of P € L2(0,T; H*+1*+1(Q)), satisfying the bound
HPHL2(O,T;H5+1*7€+1) < C(h‘*7 M, K, M7 fs,k,T)fs,k,T-

Moreover, the advection velocity is controlled (using Lemma A.1, s — 2 > sg + %, k> 1)by

IV (et u— ’”"h+h)HLoo(0TLoo(Q)) < Clhas ks Fopr),s

and using commutator (Lemma A.8) and composition (Lemma A.6) estimates, one has for any f € H**(0),
andany o € N, j e Nwith0 < j < kand |a| +j < s,

H 8;‘82,u+u — “Zﬁh acfHL2 (0,T;L2(Q)) = < Clhy, ki, M, Fy 1) HfHHsk

It follows
el g+ N0l e < (]l g + o]l o + CVT) exp(CVT),

with C' = C(hy, p, k, M, Fs k. 7).

Altogether, and using standard continuity arguments, we find that for any Cy > 1 we can restrict the
time T = T'(hy, p, k, M,Cp) > 0 so that all sufficiently regular solutions to (3.30) satisfy the bound
Fsrr < CoMy. We may infer the existence of solutions using for instance the parabolic regularization
approach (see the closing paragraph of Section 2), and uniqueness is straightforward. This concludes the
proof. g

REMARK 3.4. Proposition 3.3 does not provide any lower bound on the time of existence (and control)
of solutions with respect to either i < 1 or kK < 1, hence the “small-time” terminology.
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3.3. Quasi-linearization of the non-hydrostatic system. In this section we extract the leading-order
terms of the equations satisfied by spatial derivatives of solutions to the system (3.30). This will allow us
to obtain improved energy estimates in the subsequent section. Notice that starting from here, our study is
restricted to the situation k = s.

LEMMA 3.5. Let s,k € Nsuch thatk = s > % + % and M, M, h, > 0. Then there exists C' > 0 such
that for any 1, k € (0, 1), and for any (h,u) € W*>((pg, p1)) x WHFL((po, p1)) satisfying

g +[2]ygse < M

and any (h,w,w) € L>®(0,T; H5*(Q)42) solution to (3.30) (with P defined by Corollary 3.2) with any
T > 0 and satisfying for almost any t € [0, T,

IACE M sl s () g 10C ppseBlEs)grans ZACE  ge < M

©=po0

(where n(t, x, o) : fpl (t,z, o) do) and

inf h(o) + h(t,x, 0) > h,
(t%g)ler%O,T)XQ*(g) ( T Q)

the following results hold. '
Denote, for any multi-index o € N and any j € N such that || + j < s, h{®7) = DO, p(®d) =
9505, wl@d) — 9 0%u, w(®d) = 0%w, and Péﬁ“) = 0304 Py, with

0
Py =P - B, B = / Jh(-,0) do.
£0

We have

0@ 1 (w + u) - Van@) — w@d) = kALy©@D 1+ R, .,

: p1 )
@D + (u+u) - V™) + </ w4 d,u) - V'@ dgf
[

pP1

Ve wDag) = By - R,
) + (w+u — ry2l)  Vg)ul®d) + <p0 Van® )\g:po ng(o"j) dQl> ‘
B 0 PO J=0
1 () Van (j) _ pnh
- mP »J _vel P 5] n
FVetm T Gy e = o
,j « 1 9 Prgflé,j) nh
\/ﬁ(atm Dt (ut u— kY2l Vaul m) T s = R,
_agw(a) + (h+ h)Vg - ul®) 4 (Van) - (8, ul®9))

+(Va - w)hl®D) + (4 + d,u) - Vi@ = BRIV

a,j?
(3.33a)
where for every t € [0,T], one has (Rq ;(t, -),Rg}’lj(t, ‘),Rgflj(t, ‘),Rgi";(t, ) € L2(Q)™3, additionally
Rao(t,-) € C((po, pr); L*(RY)) and
1Bl 20y + [Raolo=pol 3 + [Fasl 2y + 1RGS2y < €M
1R 2@y + 1 Ba% 2y < €M (1+ HHthHHs,k)

FC (1l o + V[ Vatll o) M + [letall o + VBl w0l [groir)
(3.33b)

),
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and
8th(a7j) +(utu)- vfch(ad) = kAg hled) + 70+ Va - Taj, (3.34a)
where for every t € [0, T, one has (ro,(t,-),Ta,j(t,")) € LQ(Q)l—i—d and
K2 rall 2y + IPaill 2y < C M. (3.34b)

PROOF. Let us first point out that the estimates for ‘Ra,O’g:po ‘LQ o || Baj HLQ(Q), j HLQ(Q) and Hra,j HLQ(Q)
have been stated and proved in Lemma 2.3. Thus we only need to focus on the other terms. In the following,
we denote sg = s — % > %l.

Using the identity (already pointed out in (3.32))

O+ (w+u) - Vgn —w = kAgn,

and the commutator estimate in Lemma A.8, we find immediately
oy = 0005wt ul- Van,  |[Rall 2y S (1o + lJll o) 7] e
Using the identity (3.25) (stemming from integrating by parts) we have

o o
VP :z/ 0'Vah(-,0') dd = _van+p0vmn|gp0+/ Van(-, o) de,
[40] PO

and hence the evolution equation for u reads

]_ o
Oru + ((w+w — myEp) - Vo) u + %Ovmnbzpo + Q/ Vaen (-, o) do’
PO

1 Van
+ =VaPup + —210,Pu, = 0.
o T T oh+ Ry e

Differentiating o times with respect to @ and j times with respect to g yields the corresponding equations in
(3.33a), with remainder terms

R = Raj — [0305, 355245100 Pan,
using the notation R, ; for the hydrostatic contributions introduced in Lemma 2.3. The first addends have
been estimated in Lemma 2.3, (2.3b) (when 7 = 0) and (2.4b) (when j > 1). We now estimate the second
addend as follows. By the commutator estimate in Lemma A.8 with k = s > s¢ + 3/2, we have

112508 55255100 Panll oy = 12 g 1O Pl s s
Then by tame product estimate Lemma A.3 and compos1t10n estimates in Lemma A.6, we have

gzt e < Clhs 1ol 1l recrsc Ul o 1V e ss + [Vl o)

and there remains to use estimate (3.19) in Corollary 3.2 to infer

HRnh

QJHL?(Q) < C(h*va M) M (1 + ’ivahHHs,k)

= O M, M) VR[] o + [Vl o) (M (ot o+ Vl 0] o)

Now consider
R = — Jal030%, w+ u] - Vow + k/ji | 0308, ek | - Vow + L[0005, s5km]0,P.
We have, by Lemma A.8 with k = s > sg + 3/2,
Vi35, w4 ul - Vawl| o) S VA [yp-roe + [l o) Va0l o
and similarly, using tame product estimate Lemma A.3 and composition estimates in Lemma A.6 as above,

wv/ill (0505 k] - Vol 2y < 5y C (e MM + [V o) 0] gesr
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and
ﬁH ler (‘)ﬁ, g(h+h) 19 PnhHL? = ﬁC’(h*,M, M)HhHHs,kHaQPHhHHs—l,k—l‘
Collecting the above and using estimate (3. 19) in Corollary 3.2 yields
< C(hy, M, M) M (1 + || Vah|| yox)
+ C e, M M) (B[ ese (M || o + Vil wi| ros)-
Finally, we consider the remainder (stemming from differentiating the incompressibility condition (3.31))
RIY = (070%(hVg - u) — (W*))Vg - u — AV, - ul®))
+ (9305((9u) - (Van)) — (0w D) - (Van) — (94u) - (Van'*7))
+(0]09(hVg - u) — hV - ul®?)) + (905 (0 - Van) — ' - V().

1B&5 2

Using Lemma A.9 for the first two terms and direct estimates for the last to terms, and k = s > s¢ + 5/2,

[ | S 23 PPN [ P PR o 12773 Y | | s
(|l syee [V - | o s + ([ [ Vel ors
< (M + M)M.
Identity (3.34a) with the estimate (3.34b) have been already obtained in the proof of Lemma 2.3. This

concludes the proof. (|

3.4. A priori energy estimates. In this section we provide a priori energy estimates associated with
the equations featured in Lemma 3.5. Recalling the notation 7 = 7{®J) h = h(@d) g4 = w(®d) @ =
w@d) Py = Prf}? g ), we point out that such estimates concerning R(e3) solving the transport-diffusion
equation (2.13) have been provided in Lemma 2.4. Now, we consider the following linearized system:

P1
o+ (w+u) - Vi + / (v + 0pu) - Vaii + (h+ h)Vg - 4) do' — KAz = R,
o

4 . V
0(0i+ ((w+u — wy2) - Vi) @) + poVaiilg=py + / Vaidd + Vo Py + ~-0,Pap = R™,

PO h+h
) ) 10 Pnh N
\/ﬁg(atw+u(g+u—fiz$2) - Vath) — fh+h = R
0t + (R4 W)V -t + Vi - ,4—(0,7) Vi - u + Var) - (v + dpu) = R,
(3.35)
where we denote as always 7)(- f PLp
We shall use the following deﬁmtlons of the spaces Y and Y'!
= C%([po, i) L (BY) x () x L2(Q) x (), and
(3.36)
1._ L1/0)d+3 . 1(pd _ _
vhi= {(nu,w, Py e HMQTE | e H'RY, w],_ =0, P[,_, =0}

LEMMA 3.6. Let M, hy, h* > 0 be fixed. There exists C(hy, M,h*) > 0 such that for any k > 0 and
w > 0, and for any (h,u) € WH*((pg, p1)) and any T > 0 and (h,u,w) € L>®(0,T; W1>(Q)) with
Agh € LY(0,T; L>(Q)) satisfying (3.30) and, for almost any t € [0, T), the estimate

12, ) Loy + V2Bl 3 Ve ult )] o) < M

M irgrs
and the upper and lower bounds

V(z,0) €Q,  hi < h(o) +h(t,x,0) < b
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and for any (1,4, w, Py) € CO([0,T];Y?) N L2(0, T; YY) and (R, R*, R*", RWY) e L2(0,T; V") satis-
fying system (3.35) in L?(0,T; Y'Y, the following inequality holds:

da,. . .0k . .
Eé‘(n’u’ U}) + §vanHiQ(Q) + pol{'}vwn‘g:po‘[/%

<O+ w7+ Opul| )€, 5, 1)
+ (M + '+ O] e o) | Panl| 2y (1907 2y + [Vl 20

+ HPnhHL2(Q)HRdWHL2 +C &), w>1/25(R R, R™)V2,
where we denote

. P . . . 1 )
E(n,w, ) = / /Rd 0 + o(h + h)|u|* + po(h + h)w* dz do + 2/Rd 0[o=po d.  (3.37)

PO

| =

PROOF. We test the first equation against 7 € L2(0,T; H%'(Q)) and its trace on {(z, pg), * € R}
against po7)|g=p, € L?(0,T; HL(R?)), the second equation against (h + h)4 € L2(0,T; H1(2)?) and the
third equation against \/zz(h + h)w € L*(0,T; H"(Q2)). This yields:

do,. . . . :
3£ 0t ) + “HVQJUWL?(Q) T “‘me@:m‘ii

p1
= _((ﬂ + U) : vm777 n)L2(Q) - (/ (H/ + 6QU) ’ vwn dQI7 77) (1)
0 L2(Q)
< (DT @A) b (R g (i)
L2(2)
— (o(u w, (h+h)w) o)+ E(e(Vah - V)i, it) 1o o (iii)
o
— (0l (04 108) oy — ([ g 00 (iv)
po L2(Q)
- (vanha (ﬁ + h)u) L2(Q) ((a.QPnh) Vwﬁ, u’) L2(Q) + (Rnh’ (ﬁ + h)u) L2(Q) (V)
— p(o(u+u) - Vau, (b + h)w)LQ(Q) + pur(0o(Vgh - V), u’;)LQ(Q) (vi)
+ (0o Pans ) 10y + VE(B™, (B +h)i) 15 ) (vii)
p1
= (e W) Tl = o0 ([0 00 Vi il ) (i)
PO L2
P . /. . .
— Po </ (h+h) (Vg -4)de 777|gﬂo> + (R|Q:pm 77|Q:PO)L% (ix)
PO L2

1 .

5( (8th) )LZ(Q) +5 ( (8th) )L?(Q)' (X)

Some terms have already been treated in the course of the proof of Lemma 2.5: the second term in (i) and
the second term in (viii) require x > 0; the first terms in (i), (viii) are advection terms; the first addend of
(ii) together with the second term in (iv) after integration by parts; the first addend of (iv) with the first term
in (ix).The contributions in (iii) compensate with the first addend of (x), using the first equation of (3.30)
and, in the same way, the contributions in (vi) compensate with the second addend of (x). It remains only to
deal with the contribution frm the non-hydrostatic pressure terms in (v) and (vii), and remainder terms.
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Consider the sum of the first two terms in (v) and the first term in (vii). We integrate by parts in x the
first term and in o in the last two terms. Thus we have

- (vanha (h + h)u) LZ(Q) - ((agpnh)vmna U’) LZ(Q) + (agp;lh7 w) LQ(Q)
= (Pan, (B +h)Va @) o) + (PanVan, 0p) 1 ) — (Pany 0th) 2y

where we used the identity h = —3,7 and the boundary conditions Pyp|,—py = 7lp=p; = @|p=p, = 0 When
integrating by parts with respect to ¢. Using the last equation in (3.35) (stemming from the incompressibility
condition), the above term reads

(Pans (Ve - w)(@11) — (W + Dgu) - Vaip + R™) 1,
These terms, alike remainder terms
|(R,1) 2oy + | (Ble=pos lo=po) 12| + [(R™, (B + h)) 2 | + VA|(R™, (B + h)) a0y

are bounded by Cauchy-Schwartz inequality and using poh, < o(h + h) < p1h*.
Altogether, we obtain the differential inequality

)

d. . . .
&) + ]| Va2 + pos|Van] _, [

dt
< CE,w,0) + Cllu’ + dgul| 5 0,1, 0)2 || V| 12

+ (M A+ |+ aQuHLgOLgO)HP;IhHL%Q)(HGQ??HLQ(Q) + vaﬁup(m)
([ Pat | 2 |1 B[] 2y + CE G, ) /2 (R, R, R/

with C' = C'(hy, h*, M), and the desired estimate follows straightforwardly. O

REMARK 3.7. Lemma 3.6 will be applied to the system (3.33a)-(3.33b) appearing in Lemma 3.5, when
J = 0. A similar result holds for the simplified system when j # 0. The main difference is that the result

does not require nor provide the control of the trace 9 77‘ .
¢Mlo=po

3.5. Large-time well-posedness. We prove the large-time existence of strong solutions to system (3.1).
As for the hydrostatic system, large time underlines the fact that the existence time that is provided by the
following result is uniformly bounded (from below) with respect to the vanishing parameter p € (0, 1].
Besides, the result below keeps track of the dependency of this large time-scale on the diffusivity parameter
k€ [u, 1].

PROPOSITION 3.8. Let s,k € N be such that k = s > 24— % and M, M*, hy, h* > 0. Then, there exists
C > 0 such that, for any 0 < u < k < 1, and any (h,uw) € W*((po, p1)) x WF+12°((pg, p1)) such that

/ .
for any initial data (ho, ug, wo) € H** ()42 with

Mo = ol + g+ 0+ 0] + 52l + Pl D%

0=po

and satisfying the boundary condition wo|,—,, = 0 and the incompressibility condition
~(h+ho)Va - ug — (Vano) - (u' + dyuo) + dpwo = 0,

the lower and upper bounds

V(x,0) € Q, h, < h(o) + ho(x,0) < h*,
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and the smallness assumption
(g + Mo <1
o
the following holds. Denoting by
_ _ 2
T'=C(1+k 1(@/&g + M§)),

there exists a unique (h,u,w) € L°°(O T; H* ()2t and P € L*(0,T; Ht*+1(Q)) strong solution
to (3.30) with initial data (h,u,w ‘t 0 (ho,uo,wo) Moreover, one has n € L>(0,T; H*1%(Q)) and
(h,Van) € L?(0,T; H**1*(Q)) and , for any t € [0, T), the lower and the upper bounds hold

Y(x,o0) € Q, hy/2 < h(o) + h(t,x, 0) < 2h*,

and the estimate below holds true
F(t) = 0t W ggen + et M e + 12 [0t ) e + [
SRRt s+ 2 Tt

0=po (t°) ‘Hé
s | g

+ “1/2“V$”|‘L2(0,t;Hs xy T+ "UQWOB”}QWO |L2 (0,t;H3)

+ "‘vahum(o,t;H&k) + NI/QKHV ’7HL2 03 Hs k) = ¢ Mo. (3.38)
PROOF. As for the large-time existence for the hydrostatic system (see Proposition 2.6), the proof is

based on a bootstrap argument on the functional F. Recalling that the (short-time) existence and uniqueness
of the solution has been provided in Proposition 3.3, we denote by 7™ the maximal existence time, and set

T, =sup{0<T <T* : YVt € (0,T), hi/2 < h(o) + h(t,z,0) <2h* and F(t) < CoMy}, (3.39)
with Cp = C(hy, h*, M, M) sufficiently large (to be determined). Henceforth, we restrain to 0 < 7' < T,
and and denote by C' any positive constant depending uniquely on M, hy, h*, Co My and s, k.

By means of (3.34a)-(3.34b) in Lemma 3.5 and Lemma 2.4, we infer as in the proof of Proposition 2.6
the control

”1/2HhHLoo(o,T;Hs«k) + HvahHLQ(O,T;HS’k) < (CoMO +C CoMy (T + ﬁ)) X €xp (CCOMO T)‘
(3.40)
with the same notations as above and cg a universal constant. In the non-hydrostatic situation, additional
controls can be inferred on 7. Indeed, from the first equation in in Lemma 3.5, (3.33a)-(3.33b), we find that
8t77(a,j) + (H + u) . vwn(mj) — KA:EU(Q) + éa,j + w(a,j)
with
\FHR ]—i-’LU HL2 < CCyMy.

Differentiating once with respect to the space variables and proceeding as in Lemma 2.4, we infer

pt/? 1/2va77HLoo (0,T;Hs¥) +/~‘1/2“HV 77HL2 (0,T;Hk)

< (coMy + CCoMy(T + V'T)) x exp (C’COMOT>. (3.41)

Next we use again Lemma 3.5, (3.332a)-(3.33b), together with Lemma 3.6 (see also Remark 3.7) to obtain
that the functional

s—j
ZZ// &05m)*+o(h+h)| 0% u*+po(h+h)(0]05w)? da do+— Z/ 20| g=po ) dez,

J=0 |a|=0 ||0

satisfies the differential inequality

d
— gk + %vanuifsk + P0/<5|vm77‘

pn < C (R + Ry + R3); (3.42)

2
2=p0 ‘H;‘Z -
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with
Ry = (1+xu' + @m“iiom)ﬁs’k,
Ry := (CoMo + [|w’ + g oo poo ) 1Bt | s (1Bl o + [Vl )
By += [|Pan gl | RSN 2y + (€% R 2
and
||jo’\€/“L2(Q) < € CoMp, (3.43)

1Rskll 20y < € CoMo (1 + k|| Vahl| o)

+ C (11l e+ 82Vl o) (CoMo + [l e + 2wl o) - (B44)
By (3.39), we have obviously for any 0 < ¢t < T,

1

S 2 S
o0 < It s+ e ) g sl Mg+ 1l 1)y < 5

Moreover, we have the following control on w, := —ﬁZjZ and wy := kKAgzn — /ivzhﬁzz” stemming from
(tame) product and composition estimates (Lemma A.3 and A.6), and using that < k < 1:

el oo ogzeiy + M1/2||w*HL2(o,T;Hs,k) < CCoMo(1+VT). (3.45)
Finally, using estimate (3.19) in Corollary 3.2 yields
[Panll o < Pl 2+ [ Vao Pon | gpovis < [ Ponll o+ 172195 o P o s

1/2
S C (HvanHs—l,k—l + ’U‘g:po ‘H;; + H(ua u*)HHs,k + H / H(wa w*)HHs,k—l) )
from which we infer, using the controls (3.39) and (3.45), that
[Pan || L2010y < € CoMo(1 + VT). (3.46)
From (3.39) and (3.43)-(3.44)-(3.45)-(3.46) we infer

T
/ Ry (t)dt < C (CoMp)*(1 + ffl\g’\; + kN (CoM)*) T,
0 o
T
/ Ro(t)dt < C k™2 (CoMy + || .. ) (CoMo)?(1 + VT)?,
0 e

/T Rs(t)dt < C (CoMo)*(T + VT) + C(CoMy)* (T + CoMoVT + k7*(CoMo)(T + VT)).
0

Hence there exists C' > 0, depending on M, hy, h*, Cy, My (and s, k), such that if
CT (14 rY u"ig + M) <1,

and imposing additionally that

Cr 2 (CoMo + |w'] ) < f5poha (3.47)
we have, when integrating the differential inequality (3.42) and combine with (3.40) and (3.41),

EM(t) < E97(0) + §(pohs) (CoMy)? .

We point out that the only term requiring the above smallness condition (3.47) on the initial data is (the time
integral of) Ro, and more precisely the product || Pon|| gk ||V 27]| g5k, Where both terms are controlled in
LZ (but not in L).

Now, setting Cy = max({4(%—zz)1/2,8co}, and C accordingly, one has F(t) < CyMy/2 for all
0 <t < T. We obtain as in the proof of Proposition 2.6 the lower and upper bounds 2h,/3 < h(o) +
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h(t,x, 0) < 3h*/2, augmenting C' if necessary, and the standard continuity argument allows to conclude
the proof.

Let us acknowledge however that the continuity of the functional F(¢) is not provided by Proposi-
tion 3.3. In order to deal with this issue, we can, as detailed in Section 2, consider a parabolic regularization
method. ([l

4. Convergence

This section is devoted to the proof of the convergence of regular solutions to the (non-hydrostatic)
equations (1.7) towards the corresponding solutions to the limit (hydrostatic) equations (1.8), namely Theo-
rem 1.2. The convergence result provided here holds in the strong sense and “with loss of derivatives”: we
prove that the solutions to the approximating (non-hydrostatic) system converge towards the solutions to the
hydrostatic equations in a suitable strong topology that is strictly weaker than the one measuring the size of
the initial data.

For a given set of initial data, we use the apex h to refer to the solution to the hydrostatic equations
(provided by the analysis of Section 2 culminating with Theorem 1.1), and the apex nh for the corresponding
solution to the non-hydrostatic equations (provided by the analysis of Section 3, specifically Proposition 3.3).
The apex d denotes the difference between the non-hydrostatic solution and the hydrostatic one, whose size
will be controlled in the limit g\ 0.

While we can appeal to Theorem 1.1 to obtain the existence, uniqueness and control of solutions to
the hydrostatic equations over a large time interval, Proposition 3.3 provides only a time interval which a
priori vanishes as 1\, 0, and Proposition 3.8 only applies to sufficiently small initial data. The (standard)
strategy (used for instance in [19] in the context of weakly compressible flows) that we apply here relies on a
bootstrap argument to control the difference between the non-hydrostatic solution and the hydrostatic one in
the time-interval established by the hydrostatic solution, within which the existence and control of the non-
hydrostatic solution (again, with loss of derivatives) can be inferred. We perform this analysis in Sections
4.1 to 4.3, where we first provide a consistency result (Lemma 4.1), then exhibit the (non-hydrostatic)
quasilinear structure of the equations satisfied by the difference (Lemma 4.2), and finally infer the uniform
control of the non-hydrostatic solution and the strong convergence towards the corresponding hydrostatic
solution (Proposition 4.3). In a last step, in Section 4.4, we use this uniform control to offer an improved
convergence rate based on the structure of the hydrostatic equations (Proposition 4.4). Propositions 4.3 and
4.4 immediately yield Theorem 1.2.

4.1. Consistency. In the following result we prove that solutions to the hydrostatic equations (1.8)
emerging from smooth initial data satisfy (suitably defining the horizontal velocity and pressure variables)
the non-hydrostatic equations (1.7), up to small remainder terms.

LEMMA 4.1. There exists p € N such that for any s > 0 and 0 < k < s, the following holds.
Let M, M, hy,h* > 0 be fixed. Then there exists Cy,C1 > 0 such that for any k € (0,1], any h,u €

WP ((py, p1)) satisfying
‘E|W:+p,oo + ‘M’}W5+p—1,oo <M
and any initial data (ho,wo) € HSTPF+P(Q) satisfying the following estimate

My = HUOHHS+PJ<+P + HUOHHSH%HP + o ‘H;“’ T 'il/QHhOHHSJr%HP =M

0=po
(where we denote (-, 0) :== |, Qp Y ho(-, o) do’) and the stable stratification assumption

inf hy < h(o) + ho(x, 0) < h",
(x,0)EQ

there exists a unique (h",u?) € L*(0,T; HP*+P(Q)149) strong solution to (1.8) with initial data
(hh,uh)|t:0 = (ho,ug), where

T = Co (14w (2 + 143))
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Moreover, one has for all t € [0,T],
V(z,0) €Q,  h/2<h(o)+h"(t,x,0) < 2%,

and, denoting n"(-, o) := f:l hh(-, o) do’ and

w(-,0) == — /pl (h(2) + A" (-, @)V - u + Van" (-, 0) - (/' (o)) + 9pu" (-, 0)) do, 4.1)

)
Ph('7 0) = / Q'hh(-, 0)do, 4.2)
£0
one has for any t € [0, T),
H (hh(tv ')7 nh(tv ')7 uh(t7 ')7 wh(ty ')a Ph(ta )) ||Hs+l,k+1 < Cl MO' (43)
and

O™ + Vo - (b + B")(u + uh)) = kAGA",

\v4 h
o0 + ((wul = wTHR) - Va)u) + VP + L 0,P" ) =0

hetht h + hb
BT (4.42)
h h Vght h o _ h
,ug(@tw + (g—ku _Hﬁ+hh) -Vgpw ) _ﬁ—l—hh +ﬁ—|—hh =uR",
—(h+ hh)Vz cu = V- (u' + 8Quh) + 8Qwh =0,
with RM(t,-) € CO([0,T7; H**(Q)) and satisfying
vte [0,T], [|[R"(t )| yor < C1 Mo. (4.4b)

PROOF. From Theorem 1.1 we infer immediately (for p > 2 + d/2) the existence, uniqueness and
control of the hydrostatic solution (h®,u") € L°°(0, T'; H*+tP*k+P(Q)1+4) and Cy > 0. From the formula
(4.1), (4.2), product (Lemma A.3) and commutator Lemma A.8) estimates in the space H s+’ k+p! (Q) (for
1 < p’ < psufficiently large) we infer the estimate (4.3).

We obtain similarly the desired consistency estimate, (4.4a)-(4.4b), using the identity (recall (3.25))

o
P+ ot = / ' d) dd + pon*| ., -
PO

and denoting

RM .= Q(@twh + (g +ul — /{ij;ﬁ:) . wah),

differentiating with respect to time the identity (4.1), and using (1.8) to infer the control of dyul and O,w".
O

As a corollary to the above, we can write the equations satisfied by the difference between (h", u, w"),
i.e. the maximal solution to the hydrostatic equations emerging from given regular, well-prepared initial
data, and (h™?, u™?, "), i.e. the maximal solution to the non-hydrostatic with the same data (see Proposi-
tion 3.3). Specifically, under the assumptions and using the notations of Lemma 4.1, we have that

pd i pob by gl gy b d b b
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satisfies (7%, ud, wd) = (0,0,0) and

Ne—o
Ohh + Vg - (w+u™)h + (b + B ud) = kAghY,

P1 P1
om? + (uw+u™) - Vend + / (u 4 9,u™) - Vand do' + / (h+ h"™)V - ud dof
4 o

p1
—I-/ ud - Vb + 0V, - ul do’ = kALY,
0

nh pO ]. e
dud + ((g +u — ijﬁZnh) . Vm)ud + zvmnd]Q:po + Q/ Vand do’
B p

0

d vmhnh Vzhh h V;Z;Pnh V nh
—|—((u o H(ﬁ—l-h"h o b—&-hh)) ' Vw)u + 0 + o(h + hnh)a oPon = 0,
nh h 8 Pnh
(8tw + (u + u ijhnh) v w ) + /‘L((u - K/(ij}};nh - ij]}ih )) : viliwh) - m = _lu’ Rh7
—(h+ h"™) Vg - ud — (h+ hY) Vg - u = Vnd - (w0 + 9pu™) — V™ - (9,u?) + dpw? = 0,
4.5)

where we denote as usual 7%(-,0) = [ Qp YhP(-, o) do' (and analogously n"", n9), and define the non-
hydrostatic pressure Py (-, 0) := P™ (-, 0) — pi o' (-, o') do’ where P™ is defined by Corollary 3.2.

4.2. Quasi-linearization. In this section we extract the leading order terms of the system (4.5), in the
spirit of Lemma 3.5.

LEMMA 4.2. There exists p € N such that for any s, k € N such thatk = s > %—i—% and M, M, h, > 0,
there exists C = C(s,k, M, M, hy) > 0 such that the following holds. For any 0 < u < k < 1, and for any

(h,u) € Wk+P22((pg, p1))? satisfying
‘E}W§+p,oo + |QI}WZ)€+F71,OO < M;

and any (h™,u™ w™) € L>(0, T H5*(Q)%*2) and P ¢ L?(0,T™"; H5+LA1(Q)) solution to
(3.30) with some T™ > 0 and satisfying for almost any t € [0, T™]

A" | g () [ s )+ [0™ D [ g (8 20" 8

0= PO‘HS
+"31/2thhHHsk )+,u1/2 1/2HV nnhHHsk )< M

(where " (t, x, o) : fplhnhtw,g)dg)

Mo = [ gl vmon 1™ ol + 10 o ol + 5720 gl < A

Q=P0) ‘t=0
and the stable stratification assumption

inf h(o) + h™h taw,0) > hy,
(t7w’9)1€I20,T)XQ*(Q) ( T Q) = Tlx

we have the following.
Denote (b1, u™ wh) € C1([0, T"]; H5+1F+1(Q)2+4) the corresponding strong solution to the hydro-
static equations (2.1) (see Lemma 4.1) satisfying

h h h h
Hh (t7 ’)HH3+1,1€+1 + Hu (t7 ')HHS-&-I,IH—I + H77 (t, ')HH5+1,k+1 + Hw (t> ’)HHS-;-l,JH-l < CMO
and, for any multi-index o € N% and j € N such that 0 < |a| 4+ j < s,
n(a,j) — 6gajnnh o aga]nh’ u(Ohj) = agaéunh - 3g8§uh, w(avj) = agaéwnh o aga;wh,

and Prggvj)( ) 8a8] (Pnh f@ 0 hnh /) d.Q,).
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Then restricting to t € [0, min(T", T"")] and such that

Fode = [ gromvies 110 g+ 10y L + 1o + 12 0] s
+’f1/2thHHs,k +M1/2/€1/2va7ldHHs,k < 1200
we have

3 @) 4 (w + u™) - V@) 4 0@ = kA0 + R, ;

. . P1 .
8t7f’(a7]) + (H + unh> . vwn(aﬂ) + < / (gl + 8Qunh) . vxn(aﬂ) dQl
0
p1 ) )
+/ (ﬁ + hnh)vm : U(ad) dQ/> = “Amn(a’]) + Rona
0 J=0
a,] n nh «,j 4 «,] 1 ¢ a,]
O + ((u + u™ — Rl Va)ul®?) 4 <van( ’”\Q:po +E A V(@) dQ/>j:O
1o o), Var™ () _ ppub
_ P »J e P 2] — nh
+va w T hnh)ag " = R,
(@)
1/2 o,j nh Vg hh a,j 1 aQPnh _ pnh
w (8””( D (u o+ u = k) - V! J)> 2 o(h+ Ry Favgs

_8Qw(a,j) + (h_i_ hnh)vw . u(a,j) + (Q/ + 8gunh) . vmn(a’j)
—|-(Vm . unh)h(a,j) + (vwnnh) . (agu(a,j)) _ Rdiv

a?j’

(4.6a)
where (Ra,j(tv ')7 Rg],ﬂj(tv ')’ Rg},lj(tv ')’ Rgl,‘]f) € Lz(Q)d+3r Ra,O(ta ) € C((p07 pl); Lz(Rd)) and
Rl + 1Rl iz + 1By + 1S oy < © B
1R 2y + RS | L2y < € (Fos + Ma|Vah| s + M 2al| Aan|| ) + C 2 M,
(4.6b)
and
Ohl®D) + (u+u™) - Vah @) = kAR 4 1rg j + Vo - 1o j, (4.72)
where (14.(t, "), 70 j(t,-)) € L2(Q)'4 and
“1/2“%1'HL2(Q) + H’“a,me(Q) < CFsp- (4.7b)

PROOF. Explicit expressions for the remainder terms follow from (4.5). Specifically, the following
equation is obtained by combining the second and last equation (recall (3.32)) combining the second and
last equation (recall (3.32))

ot + (u+u™) - Vend + ud - Vont — wd = kAgn?
and hence
Ea,j = _[858272 + unh] : Vm??d - 6%827('“'(1 : vmnh)y

and the estimate (4.6b) for HEQJ H £2(9) follows from product (Lemma A.3) and commutator (Lemma A.8)

estimates.
Then, from the second equation we have

Rej:=RY + R

g ,j
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with R == (9203, u + u™] - Vo and
RO ._ ) f:l (02, 0pu™] - Ven® 4+ [0%, A" Vg - ud + 82 (ud - Voh" + hiV, -uh) do' if j =0,
@I 9502 (W + Dpum™) - Vnd + (h+ BV - ud 4+ ud - Vb + bV, - ub if j > 1.

Using Lemma A.3, Lemma A.8 and the continuous embedding L™ ((po, p1)) € L*((po, p1)) € L*((po, p1))
we find

v [

P

Hsfl,kfl—i_HT]nh‘ Hs+1,k71+H’u’h‘ Hs+1,k71)

d d
% ([|n"] gesm + [[A]
where for j = 0 we used the identities (and Lemma A.1 and Lemma A.7,(2) and (3))

1Rasll oy S (18 g #{lu™|

Hs:k—1 + Hud‘ Hsfl,kfl)

pP1 P1
/ 102, 0,u™] - Vor dg' + [0, RV, - ud = / 102 0u™, Vo] + (02 1™, Vg - ] dgf
o o

p1
+ / U™ - Vphd 4+ (997™) (Vg - 0pu’) do’ + 0%u™ - Vun® 4 (957™) (Vg - ud)
0
and

P1 P1
/ 02 (V- ub) g’ = / 02, V- a1 + (021%) (Vo - 0u) dgf + (0299) (Vi - ul).
o 1%

The corresponding estimate for ‘Ra,o ‘ o=p0 ‘ 12 is obtained in the same way.
- @x
Now, we have

R = (0509, W]V - u + [050], 4] - V!

o) — xr o)==

+ (0509, h™ Vg - ut + (0509, Vg - uP|hd + Vg - (u — w™)05 0701

x~ o’ x ™0
+ (0509, 0,u™] - Vand + (0509, Van"] - Ou + Vo (" — n™) - 95090,u

Then, writing peh = ph 4 pd, 8Qunh = 8Quh + 8Qud, some manipulations of the terms and the use of
Lemma A.8 and A.9 lead to

125 vy 5 (hgm 1 + s + 0]

1P e+ [Vn™ e+ [|a”]

which provides the desired estimate.

We focus now on HRghj HL2(Q)

following, we shall use repeatedly that th ‘
inequality,

Hs—1,k—1

o+ 1]

s+ 1]

o) X ([|uf] frethen)-

and HRnh Let us estimate some relevant contributions. In the

o,j HL2 Q)
< M and hence, for instance, by Lemma A.6 and triangular

Hs:k

hnh

H h-+hnh

< Ol By 17

Hs—1,k—-1 ) thh‘

e By Lemma A.9, Lemma A.3 and Lemma A.6

Hs)k Hs:k S C(h‘*7 M’ M)M

H[agag, Z_T_Z::] : vmud”Lz(Q) S ‘ Zjﬁ:ﬁ Hs.k ‘Vzud‘ Hs—1k
S vaThnh Hs:k (1 + H@fﬁ%‘ HS”C)‘FSJC
S C(h*7M7 M) (M + vahd‘ Hs,k)fs,k‘
e By Lemma A.5 (or rather its proof)
Haiaé(@iﬁ:? - Zf;}ﬁ;) Va)u") 120y S HZIZ: ™ @fffxi”@?hm o | Vata | e

< C(hy, M, M)M(||V5h|

ok + M||n¢

Hs,k)'
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e By direct inspection, and since |a| +j —1 < s—1,
H[agag,, I]V B hHL?(Q) N HVmPHhHHSfl»kfl'
e By Lemma A.8 and since s = k > 3 + %l using the above and Lemma A.1
110503, Gzettmy 0 Panll 2 ey < H%HWHa@PnhHHs—l,k—l
< C(huy M, M) (M + [V o) |00 Pon || grer i)
o Similarly,

[CRop——

?lﬁ]agpnh”LZ(Q) S H#l};ﬂh)HHsvkHaQPnhHHS*UV*l

< C(he, M, M) M |0, Py |

Hs—1,k—1"
Altogether, and using F j, < ml/QM, we find

IR 20y + R 2 () < Co (Fap(X+ ][ Vah|| yon) + Ma|[Vah|| o)
+ Cy M_l/QMH(?anhHHkLkA (4.8)

with Cy = C'(hy, M, ). Now, recalling that A = 1+\/ﬁ\D|, we use Corollary 3.2, specifically
(3.20):
HVg,anhHHstkﬂ <Cou <H<Au)_1hnhHHs,k71 + H(AM)_lvmnnhHHs,k + ‘(AM)_lnnh‘Q:po Hit!

HJ (™, ul®)|

Hs:k + H(’LU )wilh)’

nh‘

Hs,k—l) .

Hs:k—1 + Huilh‘ Hs:k ‘w

Then we use that
AR s < s+ P s S 0402 R,
and, similarly,

(AR T ™| o + [ (AF) " 1gn| <M+ p V2F,.

9=,00‘Hi+1 ~
Now,
™ L ggesms < e pasms + | ses S M+ ™ 2P
where, for the first contribution, we applied the product estimates to the expression in (4.1). Then, we have
e < w5l e < Com(IVah™ g+ 97 )
< CoM + Cok||Vah?|| o

[z rens < £l An™ (| g + Coml|[Vah™ || s [ Var™ [ o

< Co(M + ’{HAwndHHs,kq + “1/2MHthdHHs,k71)-

e

Altogether, this yields
02| o Pan|gecsis < Co (1M Fop 122 Vb o+ 10725 A .

(M4 8[| Vah? ) (12M + Fo) ).

Plugging this estimate in (4.8), using F j, < xY2M and 1 < k, and combining them with the consis-
tency estimate of Lemma 4.1, we obtain (4.6b).

Now, we set

Ta,j = —[020), w+u™h? — 9200 (b + KMut), 7o = —(020IhY) V4 - u™.

xzVor 2
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By Lemma A.3 and Lemma A.8 and since s > sg + % and 2 < k = s, we have

Iracill 2y S (Bl + 10| 1] o+ (1 fypimsoo + 1™ i) 12| i
and (by Lemma A.1)
Irasll oy S 1A s ™ | e
This yields immediately (4.7b). The proof is complete. U
4.3. Strong convergence. In this section, we prove that for x4 sufficiently small and starting from regu-
lar and well-prepared initial data, the solution to the non-hydrostatic equations exists at least within the

existence time of the solution to the hydrostatic equation. We also prove the strong convergence of the
non-hydrostatic system to the hydrostatic one as p ™\, 0.

PROPOSITION 4.3. There exists p € N such that for any s,k € N such that k = s > % + % and any
M, M, hy,h* > 0, there exists C = C(s,k, M, M, hy,h*) > 0 such that the following holds. For any
0< My<M,0<k<1,and p > 0 such that

< K/ (CM7),
for any (h,w) € WHP((po, p1))? satisfying
‘E}W§+p,oo + |E}W§+p—1,oo <M;
for any initial data (ho,uo,wo) € H>F(Q)** satisfying the boundary condition wo|,—p, = 0 and the
incompressibility condition
—(h+ ho)Va -ug — (Vo) - (' + d,up) + dpwo = 0,
(denoting no(-, 0) = fgpl ho(+, ') d¢o’), the bounds

HnOHHHP’HP + HuOHHHP’Hp + ‘HO}Q:p0|H2+p + Hl/ZHhOHHHMH’ =My <M

and the stable stratification assumption

inf h, < h() + ho(x, 0) < A%,
(x,0)€Q

the following holds. Denoting
(T = C" (1 r (|| + M),

as in Lemma 4.1 there exists a unique strong solution (h™®, u™® w™) € L°°(0,T" H**(Q)'*) 1o the
non-hydrostatic equations (3.30) with initial data (h™®, u™, w™?) ‘ —o = (ho, wo, wo). Moreover, one has
hh e L2(0,Th; HsH1F(Q)), nt € L2(0, T H5t2%(Q)) and, for any t € [0,T"), the lower and the
upper bounds hold

inf h(g) + h"™™(t,x,0) > h./3,  sup h(g) + h"(t, @, 0) < 3h*,
(x,0)€Q (z,0)€Q

and the estimate below holds true
s M e 12 g a2 ™ ) g+ [ (8 g
R | g+ 2R Vo™ () g
+ 51/2HvﬂcnnhHLQ(o,t;Hsvk) +r!? chnnh’g:po ‘L2(07t;H§)
+ KHthnhHLQ(O,t;HSvk) + “UzHHVSJ’?nhHL2(o,t;Hs»k) < C My, (4.9)

and (h™®, u™) converges strongly in L (0, T; H**(Q)'+?) towards (h*,u®) the corresponding solution
to the hydrostatic equations (2.1), as p ™\, 0.
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PROOF. We closely follow the proof of Proposition 3.8 and exhibit a bootstrap argument on the func-
tional

F(t) = [n e+ ) e+ 120 ) e + [0 e () g
+ &2 | e+ 1262 Van (8[| e
+ ’fl/QHVWdHB(o,t;Hsvk) + K'l/z‘vwnd}g:pg |L2(o,t;H;)
+ K;HvﬂchdHL?(O,t;Hs’k) + M1/2’€HvindHLQ(O,t;HS’k)

where we denote
R = pob _ phy pd.—gmh phe g gmh b pd b b
= ; = ; = ; =
with the usual notation for ™, n", and w" is defined by (4.1). Denoting by T* the maximal existence time
of the non-hydrostatic solution provided by Proposition 3.3, we set

T =sup {0 < T < min(T*, T%) : ¥t € (0,T), he/3 < hlo) + h™(t, @, 0) < 3"
and  F(t) < u/2Myexp(Cot), F(t) < /11/2M0}, (4.10)

with Cj sufficiently large (to be determined later on). We will show by the standard continuity argument that
T, = min(T™, Th), which in turns yields 7% > T" and shows the result. Indeed, the converse inequality
T, = T* < T" yields a contradiction by Proposition 3.3 and the desired estimates immediately follow from
the control of F, the bound

Hhh(ta ')HHerl,kJrl + Huh(ta ')HHerl,kJrl + th(ta ')HH5+1,I¢+1 + Hwh(ta ')HHerl,kJrl < ChMO (411)

provided by Lemma 4.1, and triangular inequality (when C' is chosen sufficiently large).

Let us now derive from Lemma 4.2 the necessary estimates for the bootstrap argument. In the following
we repeatedly use the triangular inequality to infer from (4.10) and (4.11) the corresponding control (4.9)
with C depending only C", T" (and x < 1). We shall denote by C' a constant depending uniquely on
s, k,M,M,h,, h* and C*, T", but not on Cp, and which may change from line to line.

By means of (4.7a)-(4.7b) and Lemma 2.4, we infer from (4.10)-(4.11)

A2 o 0 ey + 5Vl oo ey < C ([ Flpy + 1 12)-

Next, by differentiating with respect to space the first equation of (4.6a) using (4.6b) and Lemma 2.4, we
infer

Ml/Q’fl/zvandHLw(o,T;HSvk) + HHVindHH(OvT;HS"“) s¢ (|}—‘L1T * ‘]:‘LQT)'

Now, we use (4.6a)-(4.6b) and proceeding as in the proof of Proposition 3.8 (together with the above esti-
mates) we infer that for any t € (0,7,

F(t) < Cl‘]:‘L% +02|]:‘Lf +03M1/2M0t

with C; (i € {1,2,3}) depending uniquely on s, k, M, M, h,, h* and C®, T". By using the inequality
F(t) < pl/? My exp(Cot) from (4.10) and the inequality 7 < exp(7) (7 > 0), we deduce

F(t) < Crut?MoCy Y exp(Cot) + Cop/2 My(2Co) ™2 exp(Cot) + Cau'/?MoCyt exp(Cot).

There remains to choose Cy sufficiently large so that C;Cy 14 02(200)*1/ 2 +C3Cy 1" < 1, and the constant
C sufficiently large (whence p sufficiently small) so that p'/2 Mg exp(CoT™) < p!/2MyCY? < k1/2)2.
The upper and lower bounds for i + h™® follow immediately from the corresponding ones for h + A
provided by Lemma 4.1 and triangular inequality, augmenting C' if necessary. Then the usual continuity
argument yields, as desired, 7} = min(7*,T").
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Let us acknowledge that the necessary continuity of the functional F () is not provided by Proposi-
tion 3.3. In order to deal with this issue, we can, as detailed in Section 2, consider a parabolic regularization
method. ]

4.4. Improved convergence rate. Proposition 4.3 established the strong convergence for regular well-
prepared initial data of the solution to the non-hydrostatic equations towards the corresponding solution to
the hydrostatic equations as ¢ \, 0. The convergence rate given by the proof is O(ul/ 2). The aim of
this section is to provide an improved and optimal convergence rate O(u). The strategy is based on the
interpretation of the non-hydrostatic solution as an approximate solution to the hydrostatic equations (in the
sense of consistency) and the use of the uniform control obtained in Proposition 4.3.

PROPOSITION 4.4. There exists p € N such that for any s,k € Nwith k = s > % + % and
M, M, hy,h* > 0, there exists C = C(s,k, M, M, hy,h*) > 0 such that under the assumptions of Propo-

sition 4.3 and using the notations therein,
nh h nh h nh h
[P — HLoo(o,Th;Hsflykfl) + ™ = HLoo(o,Th;Hs»k) +[Ju™ — HLOO(O,T“;HSvk) <Cp
. _ 3 d
COROLLARY 4.5. Incrementing p € N, we find that for any s,k € N such that k = s > 5 + §,

[ hhHLOO(O,Th;HSvk) + ™ - nhHLOO(O,Th;HS+17k+1) + [l — uhHLOO(O,Th;HS+1vk+1) <Cu
withC =C(s+ 1,k+1,M, M, h,,h*) > 0.

PROOF. Since all arguments of the proof have been already used in slightly different context, we only
quickly sketch the argument.

For any p’ € N, we may use Proposition 4.3 with indices s + p’ and k + p’ to infer the existence of the
non-hydrostatic solution (h™", u™" w™) e C([0, T?]; H5T7" %+’ (Q)1+4) and the control

tes[(l){gh] (Hﬁnh(t, ')HHs+p’,k+p’ + Hunh(t’ ) HHS-H?/JC-H?/ + |nnh‘9=ﬂo (t’ ) ’H;"'p/) < C Mo.
By using h = —0,7 and the divergence-free condition

w=(u+u) Ven— [ Var((h+h)(+u)dd

we obtain (augmenting C' if necessary)

sSup (thh(t’ ’)HHs+p’—1,k+p/_1 + Hwnh(t’ ‘)HHs+p’—1,k+p’_1> < CMO
te[0,T1]

and hence, by Corollary 3.2 (specifically (3.20)), Poincaré inequality (3.10) and choosing p’ sufficiently
large, that P,y (-, 0) := P"(-, o) — pQO o'h (-, o)) do satisfies

sup HPnh(t’ ')HHS-H,k-»-l < CpMy.
te[0,7h)

From this estimate we infer (by Lemma 4.1) that b9 := h™*—hP and u? := w™"—u" satisfies (n¢, u?)| —0 =
(0,0) and

p1 p1
at,r}d + (g_i_ unh) . vwnd +/ (gl + a@unh) . and dQ, _|_/ (h"‘ hnh)vw . ud dQl
4 o

p1
—|—/ ud - Vb + hiV, - ul do’ = kALn?,
0

nh 0 1 e
B PO

nh h
(= n(ERm — 53w) - Va)u® = R,
4.12)
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with R™? :— — sznh _ g(zﬁ;hh) 0o Pyn satisfying (by Lemma A.3 and Lemma A.6)

sup HRnh(t, )HHsk < C u M.
te[0,T1]

From this, inspecting the proof of Proposition 4.2, we infer that as long as

P = [0 s+ 10 g s+ 572 e < 17205

0=p0 ‘Hé

one has for any o € N? and j € N such that || + j < s that n{®7) .= 8;‘(% 4, gled) = agagud and
h(®9) .= 929)hd satisfy

, , p1 :
(@) 4 (u + u™) - Vun @D 4 </ (u + 9,u™) - Vun(@d) dg!
o

pP1 X .
+ / (h+ h"™) Vg - (@D dg'> = kA1) + Ry j,
0 J=

. . . . 1 [e )
o) + ((u+um — kY2l 7, )@ 4 <%0vwn<w)\ s V(@) dg,> =R

h+hnh 9=po 00 J=
and
Bh'®) 4 (w4 u) - Vgh(®) = kAP R 41y i + Vg - 1ra
with
1 Baill ey + IS a oy < O (Fa+ Mo V) + O e My
and

1/2
k! [raill 2y Tl 2y < € Fon-
We may then proceed as in the proof of Proposition 2.6, and bootstrap the control

]:<t) = fs,k(t)‘i‘/il/zuvmn +Hl/2}vmnd‘ )+ff‘}vmhd|‘L2(07t;Hs,k) < C u My,

dHL2(0,t;HSak) 0=po ‘[/2(0,15;13’59c

on the time interval [0, T"]. This concludes the proof. O

Appendix A. Product, composition and commutator estimates

In this section we collect useful estimates in the spaces H** () introduced in (1.10). Our results
will follow from standard estimates in Sobolev spaces H*(R?) (see e.g. [21, Appendix B] and references
therein), and the following continuous embedding. Henceforth we denote = R? x (pg, p1).

LEMMA A.1. Forany s € Rand py < p1, H*T/21(Q) € CO([po, p1]; H*(R?)) and there exists C' > 0
such that for any F € H5t1/%1(Q),

gen[[;lﬁ,};ﬂlF("Q)‘H% < C||F|[ grossea-

More generally, for any k > 1, Ht1/21(Q) C ﬂ?;& C’([po, p1]; H*=1(RY)), and in particular, for any
so > d/2and j € N, HItt29t1(Q) € (C1(Q) n W>(Q)).

PROOF. By a density argument, we only need to prove the inequality for smooth functions F'. Set
¢ [po, p1] — R* a smooth function such that ¢(pg) = 0 and ¢(o) = 1 if o > L2221 and deduce that for
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any ¢ > 2071 recalling the notation A® := (Id —A 2)*2,

/Rd(As dw—/ /po VA (2, ) do da

< 2‘¢‘Lgo/p |AS ‘HI/Q‘A 8 F ’H 1/2do

16 [ NGOl A 02
0

’S HFHZS'H/Q,O + HaQFHi]s—l/Q,O

Using symmetrical considerations when o < szl, we prove the claimed inequality, which yields the first
continuous embedding. Higher-order embeddings follow immediately. U

Recall the notation
Ag if s < s,

A+ (B =
s < s>s>s* {AS+BS otherwise.

Product estimates. Recall the standard product estimates in Sobolev spaces H*(R%).

LEMMA A.2. Letd € N*, s > d/2.

(1) Forany s, s1,s2 € Rsuch that s1 > s, sg > sand s1 + sg > s + S, there exists C' > 0 such that
forany f € H*'(R%) and g € H*2(R%), fg € H*(R?) and

|fg‘Hs = C’f‘Hﬁ 9‘1{52-

(2) For any s > —sq, there exists C' > 0 such that for any f € H*(R?) and g € H*(R?) N H* (RY),
fg € H*(RY) and

‘fg‘HS < C’f‘HSO g‘HS +C<‘f‘HS g‘Hé‘0>5>50'

(3) Forany si,...,s, € Rsuchthat s; > 0and s1 + -+ + s, > (n — 1)so, there exists C' > 0 such
that for any (f1,..., fn) € HS*(R?) x --- x H*(RY), T[], fi € L*(R?) and

}Hfi|L2 = CHU"H
i=1 i=1

Let us turn to product estimates in H**(Q) spaces.

LEMMA A.3. Letd € N*, sg > d/2. Let s,k € N such that s > sy + % and1 < k < s. Then HSk(Q)
is a Banach algebra and there exists C' > 0 such that for any F,G € H*>*(Q),

1FG| e < ClF| o |Gl e
Moreover, if s > sg + % and 2 < k < s, then there exists C' > 0 such that for any F,G € HSk(Q)
[FG] o < CNF o |Gl gromrnms + CF | promsms |G e
and if s > so + 3 and k = 1, then there exists C" > 0 such that for any F, G € H*k(Q),
1FG] o < C[F || groa |G| groman + C P e [|G e

PROOF. We set two multi-indices 8 = (Bz,8,) € N¢*!tand v = (Va,7,) € N?*! being such that
IB] + 7| < sand B, + v, < k. Let us first assume furthermore that 7, < k — 1 and |y| < s — 1. Then

(@ ~
S 107 F 107Gl < 1 (e

@ F)(06C)| 2y < / ()2 |G )y do
PO z

/e
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where we used Lemma A.2(1) with (s, s1,s2) = (0,s — [8],s — |y| — ), and Lemma A.1. If 7, = k or
|7] = s, and since 1 < k < s, we have Bo < k—1and |B] < s — 1 and we may make use of the symmetric
estimate. Hence the proof of the first statement follows from Leibniz rule.

For the second statement, we assume first that max({/3,,7,}) < k — 1 and max({|5], |v7|}) < s — 1.
Then, using Lemma A.2 with (s, s1, s2) = (0,5 — 8] — 3, s — |y| — 1) (recall s > s9+ 3), and Lemma A.1,

1@ YO )| oy S 1O7FCs 0] oy 3 107G 0 yrmria 1

S HFHHs,ﬂwHGHHs—w < HFHHs,k \GHHs—l,k—u
Then if 5, = k or |3| = s, we have (since s > k > 2) 7, < k —2and |y| < s — 2, and we infer
1@ F) @) o0y S [107FC, -1 |07G (5 0)] .

}H M**‘LQ
@x

5 HFHH&%HGHHS—LW@H < HFHHek ‘GHHS—I,IC—I'

Of course we have the symmetrical result when v, = & or |y| = s, which complete the proof.
Finally, for the last statement, we consider first the case 8, = 0 and max({|5|,|y|}) < s — 1, and infer
as above

1@ YO C)| oy S 1O7F (s 0] myin-3 107G

Gl o1

The case 3, = 1 (and hence v, = 0) and max({|ﬁ|, |v|}) < s — 1is treated symmetrically. Then if |3| = s
we have v, = |y| = 0, and we infer

[(°F)(OG)|| 12y S [|O°FC, o)l g \B\IWG(',Q)}H;—M—%’% S| s

O il S e

(<P

The case |y| = s is treated symmetrically, and the proof is complete. g
Composition estimates. Let us recall the standard composition estimate in Sobolev spaces H*(R).

LEMMA A4. Let d € N*, 5o > d/2. For any ¢ € C®(R;R) such that ¢(0) = 0, and any M > 0,
there exists C > 0 such that for any f € H* (R?) N H*(RY) with ‘f‘HSO < M, one has o(f) € H*(R?)
and

l0(f)] s < C|f] 4e-

We now consider composition estimates in H**((2).

LEMMA A.5. Letd € N*, 9 > d/2. Let s,k € Nwiths > so+ % and1 < k < s, and M > 0. There
exists C' > 0 such that for any ¢ € W (R; Wk ((pg, p1))) with ©(0;-) = 0, and any F € H>*(Q)
such that HFHHSk < M, thenpo F: (x,0) — ¢(F(x,0); 0) € H*(Q) and

[0 F| o < C}(‘O‘stoo(]R;Wkaoo((po,pl)))HFHHSJC'
If moreover s > sg + % and 2 < k < s, then there exists C' > 0 such that for any F € H>*(Q) such that
1 e < M,
!
oo Fll gros < C'lelwoe @ os oo | llaze

PROOF. Leta = (g, ar,) € N1\ {0} with 0 < |a| < sand 0 < a, < k. We have by Faa di Bruno’s
formula

o i,j i,7
10%(0 0 F)|| oy S DN ((01059) © F) (9% F) - (9% F)| 2

whgre i,j € Nwith i +j < |0zl < s, and the multi-indices oy = (azjm,aé”g) € NA+1\ {0} satisfy

S g =agandj+ > aé’ﬂg = a,. If i = 0 then we have from the mean value theorem that for any

0<j<k
1(23¢) OFHL2(Q) = [[(@30) o F — (95¢) OOHL2(Q) S }818%SO‘L°°(]R><(pO,p1))HFHLQ(Q)
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The case i = 11is stralghtforward and we now focus on the case ¢ > 2. We assume without loss of generality
that al’jg > as ’] > >y b , and remark that for £ # 1, aé’] < k—1 (otherwise o’ +a€ =2k>k>a,)

and|a’j| <s—lay?| < 5—1 Hence we have
It 0" F)| oy S 1107 F| o (Mool 0 F| sz

S gy (TEcallF ) < e

m

where we used Lemma A.2(3) and (i — 1)(s — §) > (i — 1)30 and Lemma A.1. The first claim follows.
Now we assume additionally that & > 2 and s > s¢ + 2 5. The cases 1 € {0 1} can be treated exactly as
above and we deal only with the case 7 > 2, ordering al’] > a2’] >...>a ’Z) as above. Assume first that

1’739 =k > 2. Then for all £ # 1, O[éi) = 0 and ’%’j

< s — 2, and we conclude as before with
T2 0% Pl ey 106 Pt (Toeal Pl )y S N g Pl

0 \ai’j\ < s — 1 and notice that for ¢ > 3,
J < k — 2 (since otherwise we have the contradiction ozl’J + ag —|— fa% ’j >3k—1)>k+1>a,+1)

Otherwise we have aQJ < al’] < k —1 and ]ai’j

and lab?| < s —|a}?| — |ag?| < s — 2. Hence
anzl(aaz’jF)HL?(Q) A<J Haai’jF}HHai’ﬂf%‘80‘9]‘1?‘ 57|ai*j\71(Hé=3‘aa ‘ \a”\ﬁ)‘ﬂ
SN o IFI sy (Teall Pl osags ) S HFHHMHFHHS ko
This concludes the proof. ]

We shall apply the above to estimate quantities such as (but not restricted to)

h(z, 0)
h(o) + h(x,0)’

with b € W*((po, p1)) and h € H**(R?) satisfying the condition inf , 5 cq h(0) + h(, 0) > hi > 0.
Let us detail the result and its proof for this specific example.

O (x,0) €

LEMMA A.6. Letd € N*, sg > d/2. Let s,k € Nwiths > so+ 3 and 1 < k < s, and M, M, h, > 0.
There exists C' > 0 such that for any h € W5 ((pg, p1)) with |h’Wk,oo < M and any h € H**(Q) with
o

HhHHsﬂk < M and satisfying the condition inf 4 ycq h(0) + h(x, 0) > h, then

h(z, o)

D (x,0) — ho) + h(z.0) e HF(Q),

and
19 ek < Cll| geos-

If moreover s > % + % and 2 < k < s, then the above holds for any h € H*F(Q) with HhHHS,L,C,1 < M.

PROOF. We can write ® = ¢ o h with o(-,0) = f(-,h(0)) where f € C*(R?) is set such that
fly, 2) = yﬁ onw:={(y,2) : |yl < HhHLw(Q), 2| < L‘Lw((pwl)), y + 2 > hy}. We can construct
f as above such that the control of ‘@‘WS’M(R,W,Q,OO (po.p1))) depends only on HhH Lo () (which is bounded
appealing to Lemma A.1, if h € H** with s > % + % ) and h, > 0. The result
is now a direct application of Lemma A.5. U
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Commutator estimates. We now recall standard commutator estimates in F°(R%).

LEMMA A.7. Letd € N*, 59 > d/2 and s > 0.

(1) For any s1, 82 € R such that s1 > s, s5 > s — 1 and s1 + sy > s + g, there exists C > 0 such
that for any f € H**(R?) and g € H*2(R%), [A®, f]g := A*(fg) — fA®g € L2(R?) and

‘[As,f]g‘m = C‘f}fm 9|H52'

(2) There exists C > 0 such that for any f € L>°(R?) such that V f € H*~1(R%) N H*(RY) and for
any g € H*"1(R?), one has [A\*, f]g € L*(R?) and

}[As’f]g}fﬂ = C‘Vleso g‘HS*l + C<|Vf‘H5*1}g‘HSO >s>30+1'

(3) There exists C > 0 such that for any f,g € H*(R?) N H*°Y(R?), the symmetric commutator
[A% f,9) == A*(fg) — fA®g — gA°f € L*(RY) and
(A% 9] 12 < C|f| goos119] s + CLF | gro-9] oo

The validity of the above estimates persist when replacing the operator A® with the operator 0 with o. € N¢
a multi-index such that |a| < s.

We conclude with commutator estimates in the spaces H** ().

LEMMA A.8. Letd € N*, 59 > d/2. Let s > sp + % and k € N such that 2 < k < s. Then there exists
C > 0 such that for any o = (g, ap) € N with |a| < s and o, < k, one has

116%, FIG|| 120y < ClIF |0

|GHHsfl,min({k,sfl}) .

PROOF. We set two multi-indices 3 = (Bz, 3,) € N and v = (72, 7,) € N with B+~ = a, and
|y| < s — 1. Assume first that 8, < k — 1 and |3] < s — 1. Then

1@ YO C)| oy S 1O7FCs 0] myon-3 107G 0] i 1

S HFHHWHHGHHS—W < |l ee

where we used Lemma A.2(1) with (s, s1, s2) = (0,5 — |3 — 3,5 — |y| — 1), and Lemma A.1. Otherwise
Yo =0and |y| < s— || < s — 2, and we have

[0 YT oy  [07F

‘GHHsfl,min({k,sfl}) )

‘H 18] ‘@WG(-, 'Q)}H;—I“/I—% ‘Lg

SIF oo |Gl s < IF e

The claim follows from decomposing [0%, F'|G as a sum of products as above. U

‘GHHSA,min({k,sfl})'

LEMMA A9. Letd € N*, 59 > d/2. Let s > sp + % and k € N such that 2 < k < s. Then there exists
C > 0 such that for any o = (g, op) € N with |a| < s and o, < k, one has

H [aa7 F7 G] HL?(Q) S CHFHHsfl,min({k',sfl}) HGHHsfl,min({k,sfl}) .
PROOF. We can decompose
0% F.Gl= ) (°F)G)
B+y=a

with multi-indices 8 = (Bz, 3,) € Nl and v = (72, 7,) € N¥*1 such that |8 + || < sand B, +7, < k,
and 1 <|5],|y| < s — 1. Assume furthermore that 3, < k — 1 and |3| < s — 2. Then
1@ F)@ G| oy S1IOTFCo 0] i3 [07 G 0] -t 1

SIF HHS—W}IGHHS—W S amsimincsamin [Gll grams ey
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where we used Lemma A.2(1) with (s, s1, 52) = (0,s—|3|—3,s—|y|—1), and Lemma A.1. By symmetry,
the result holds if 7, < k — 1 and |y| < s — 2. Hence there remains to consider the situation where (5, = k
or || = s—1)and (y, = kor|y| = s—1). Since s > 2 and || +]v| < s, we cannot have |3| = |y| = s—1.
In the same way, we cannot have 5, = 7, = k since k > 0. Furthermore , we cannot have 3, = k and
|v| = s — 1, since the former implies |3| > 3, = k > 2 and the latter implies |3| < 1. Symmetrically, we
cannot have v, = k and |3| = s — 1. This concludes the proof. O
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