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Abstract: In this work, we present a new numerical method for solving the scalar transmis-
sion problem with sign-changing coefficients. In electromagnetism, such a transmission problem
can occur if the domain of interest is made of a classical dielectric material and a metal or a
metamaterial, with for instance an electric permittivity that is strictly negative in the metal
or metamaterial. The method is based on an optimal control reformulation of the problem.
Contrary to other existing approaches, the convergence of this method is proved without any re-
strictive condition. In particular, no condition is imposed on the a priori regularity of the solution
to the problem, and no condition is imposed on the meshes, other than that they fit with the
interface between the two media. Our results are illustrated by some (2D) numerical experiments.

Key words: transmission problem, sign-changing coefficients, fictitious domain methods, opti-
mal control.

1 Introduction
In the present paper, we study the numerical approximation of the scalar transmission problem
with sign-changing coefficients in Rd, for d ∈ {2, 3}. To fix ideas, let Ω be an open, bounded,
connected subset of Rd with a Lipschitz boundary, in other words a domain of Rd. Further,
consider that Ω is equal to the union of two disjoint (sub)domains Ω1, Ω2. We denote the interface
by Σ = ∂Ω1 ∩ ∂Ω2 (see Figure 1 for an example), and we assume that meas∂Ω(∂Ω2 \ Σ) > 0.

Ω2

Ω1

Σ

~n

Figure 1: Example of geometry.

We also introduce a coefficient ε ∈ L∞(Ω) such that ε1 = ε|Ω1 ≥ ε+ > 0 a.e. in Ω1 and
ε2 = ε|Ω2 ≤ ε− < 0 in a.e. in Ω2. Here ε+ and ε− are two real constants. It will be useful to
introduce the contrasts κ1

ε := ε−1 /ε
+
2 and κ2

ε := ε−2 /ε
+
1 where ε±1 and ε±2 are defined as follows:

ε+
1 := sup

Ω1

ε1, ε−1 := inf
Ω1
ε1, ε+

2 := sup
Ω2

|ε2| and ε−2 := inf
Ω2
|ε2|.
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Note that in the particular case where ε is piecewise constant, we have κ1
ε = 1/κ2

ε.

Remark 1.1. In principle, ε could be a symmetric tensor-valued coefficient, ie. ε = (εij)1≤i,j≤d
with εij ∈ L∞(Ω) for all 1 ≤ i, j ≤ d, and such that

∃ε+ > 0, ∀z ∈ Rd, ε+|z|2 ≤ εz · z a.e. in Ω1 ;
∃ε− > 0, ∀z ∈ Rd, ε−|z|2 ≤ −εz · z a.e. in Ω2.

However, for the sake of conciseness, we consider a scalar-valued coefficient.

For a given source term f ∈ L2(Ω), we consider the problem

Find u ∈ H1
0(Ω) such that − div(ε∇u) = f ∈ L2(Ω). (1)

The equivalent variational formulation to (1) writes

Find u ∈ H1
0(Ω) such that

ˆ
Ω
ε∇u · ∇v dx =

ˆ
Ω
fv dx, ∀v ∈ H1

0(Ω). (2)

Because of the change of sign of ε, the well-posedness of this problem does not fit into the classical
theory of elliptic PDEs and it can be ill-posed. On the other hand, one can show that when κ1

ε

or κ2
ε is large enough, Problem 2 is T-coercive (for instance see [6]), i.e. there exists an operator

T : H1
0(Ω) → H1

0(Ω) such that (u, v) 7→
´

Ω ε∇u · ∇(T(v)) is coercive, and then it is well-posed.
For the case of polygonal interfaces, the construction of such operator T is based on the use of
local isometric geometrical transformations (such as reflections, rotations, ...) near the interface,
see [3].
The implementation of a general conforming finite element method to discretize (2) leads us to
consider the problem

Find uh ∈ Vh(Ω) such that
ˆ

Ω
ε∇uh · ∇vh dx =

ˆ
Ω
fvh dx, ∀vh ∈ Vh(Ω), (3)

where Vh(Ω) is a well-chosen subspace H1
0(Ω), and the parameter h > 0 is the so-called meshsize.

Even in the case where (2) is T-coercive, one can not guaranty that Problem (3) is also T-coercive.
Indeed, it may happen that for some vh ∈ Vh(Ω), there holds T(vh) /∈ Vh(Ω). To overcome this
difficulty, an interesting idea is to try to construct meshes such that the approximation spaces
Vh(Ω) are stable by operators T for which Problem (2) is T-coercive. This type of meshes are
called T-conform meshes. Such an approach has been investigated in [26, 12, 10]. It works quite
well but presents two main drawbacks:

• The construction of well-suited meshes for curved interfaces, interfaces with corners or 3D
interfaces is not an easy task [10, 3].

• Sometimes the operator T for which the problem is T-coercive is constructed by abstract
tools and therefore is not explicit. In these situations, one cannot find adapted meshes.

On general meshes, three alternatives have already been proposed. The first one, was introduced
in [6] and was based on the use of quasi-uniform meshes. In addition to this strong condition
on the mesh, one of the limitation of this approach is that, for interfaces with general shapes,
the convergence can not be assured in all the configurations in which Problem (2) is well-posed
(because it is based on a particular (non-optimal) T-coercivity operator). The second one, pre-
sented in [14], consists in adding some dissipation to the problem (considering ε+ iδ instead of ε
in (2) where δ depends on the meshsize). Unfortunately, this methods has a sub-optimal order
of convergence even in the case where the solution and the interface is regular (see [14]). The
third one is developed in [23] and is based on the use of mesh refinement techniques. Its essential
limitation also lies the fact that, for interfaces with general shapes, the convergence can not be
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assured for all configurations in which Problem (2) is well-posed.

After that, in 2017, a new technique relying on the use of an optimal control reformulation has
been introduced by Abdulle et al in [1]. Introducing

PH1+s(Ω) := {u ∈ H1(Ω) |u|Ω1 ∈ H1+s(Ω1) and u|Ω2 ∈ H1+s(Ω2)} for s > 0,

their method is proved to be convergent for general meshes (that respect the interface) as soon
as the exact solution to (1) belongs to the space PH1+s(Ω) for some s > 1/2. Unfortunately, this
regularity condition is not always satisfied, especially when Σ has corners in 2D or conical points
in 3D. See the numerical illustration in Section 6.3 below.

In this work, we present a new strategy which relies on the use of a different optimal control
reformulation and which converges without any restriction on the mesh (except the fact of being
conforming to the interface), and without any restriction on the regularity of the exact solution.
This method is inspired by the smooth extension method that was used (without proof of con-
vergence) in [19] to approximate the solution to some classical scalar transmission problems.

The article is organized as follows. In Section 2, we start by giving a detailed description of the
problem. Then, in Section 3, we explain how to derive an equivalent optimal control reformulation.
Section 4 is dedicated to the study of some basic properties of the optimization problem and its
regularization. The proposed numerical method and the proof of its convergence are given in
Section 5. Our results are then illustrated by some numerical experiments in Section 6. Finally
we give concluding remarks, including some possible extensions.

2 Main assumption on ε and reformulation of the problem

Introduce the bounded operator Aε : H1
0(Ω)→ (H1

0(Ω))∗ such that

〈Aεu, v〉 =
ˆ

Ω
ε∇u · ∇v dx, ∀u, v ∈ H1

0(Ω).

Obviously Aε is an isomorphism if, and only if, Problem (1) is well-posed in the Hadamard sense.
In this article, we shall work under the following

Assumption 1. Assume that the coefficient ε is such that Aε is an isomorphism.

If ε is piecewise constant by subdomain, the previous assumption is satisfied when the contrast
κε := ε2/ε1 does not belong to the so-called critical interval. The expression of this interval
is in general not known analytically, except for particular geometries like symmetric domains,
simple 2D interface with corners, simple 3D interfaces with circular conical tips (see [24, Chapter
2]). Under assumption 1, one is able to prove the accompanying shift theorem. We refer to
[18, 7, 13, 12, 5].

Theorem 2.1. Assume that Σ is smooth (of class C 2), polygonal (in 2D) or polyhedral (in 3D)
and that Problem (1) is well-posed in the Hadamard sense. Then, there exists σD(ε) ∈ (0, 1] such
that

∀f ∈ L2(Ω), the solution u to Problem (1) is such that
u ∈ ∪s∈[0,σD(ε))PH

1+s(Ω) if σD(ε) < 1

u ∈ PH2(Ω) if σD(ε) = 1
,

with continuous dependence.
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The number σD(ε) in the shift theorem is called the (limit) regularity exponent. For instance,
when the interface is smooth and when it does not intersect with the boundary, then σD(ε) = 1
(cf. [18]).

Remark 2.1. In Problem (1), we consider homogeneous Dirichlet boundary conditions. Let us
mention that the results below extend quite straightforwardly to other situations, for example with
Neumann or Robin-Fourier boundary conditions which can be homogeneous or not, as long as the
associated operator is an isomorphism.

To introduce the method, we start by writing an equivalent version of (1) in which the unknown
u ∈ H1

0(Ω) is split into two unknowns defined in Ω1 and Ω2 : (u1, u2) := (u|Ω1 , u|Ω2). To do so,
we observe that since f ∈ L2(Ω), the solution u to (1) is such that the vector field ε∇u belongs
to the space H(div,Ω) = {u ∈ (L2(Ω))d such that div(u) ∈ L2(Ω)}. Consequently, the pair of
functions (u1, u2) satisfies the problem

Find (u1, u2) ∈ V1(Ω1)×V2(Ω2) such that
−div(ε1∇u1) = f1 =: f|Ω1

−div(ε2∇u2) = f2 =: f|Ω2

ε1∂nu1 = ε2∂nu2 and u1 = u2 on Σ
(4)

in which n stands for the unit normal vector to Σ oriented to the exterior of Ω2 (see Figure 1)
and

V1(Ω1) := {u ∈ H1(Ω1), u = 0 on ∂Ω1\Σ}, V2(Ω2) := {u ∈ H1(Ω2), u = 0 on ∂Ω2\Σ}.

Since meas∂Ω(∂Ω2 \ Σ) > 0, all elements of V2(Ω2) fulfill a homogeneous boundary condition on
a part of the boundary ∂Ω2. On the other hand, one can check that if (u1, u2) is a solution to
(4), then the function u defined by u|Ωj

= ui for j = 1, 2 solves (1). The equations satisfied by u1
and u2 are elliptic but they are coupled by the transmission conditions on Σ. As a consequence,
we cannot solve them independently. The purpose of the next paragraph is to explain how to
proceed to write an alternative formulation (an optimization-based one), which can be solved via
an iterative procedure such that at each step one has to solve a set of elliptic problems.

3 The smooth extension method and optimal control reformula-
tion of the problem

The smooth extension method was proposed in [21] and can be considered as a special case of the
fictitious domain methods (see [2]). It has been adapted to study the classical scalar transmission
problem, i.e. with constant sign coefficients, in [19]. In this section, we explain how to apply it
to our problem.

3.1 Presentation of the smooth extension method

The idea behind the smooth extension method is the following: instead of looking for (u1, u2) ∈
V1(Ω)× V2(Ω2) solution to (4), we search for a pair of functions (ũ, u2) ∈ H1

0(Ω)× V2(Ω2) such
that (ũ|Ω1 , u2) is a solution to (4).1 The function ũ is then a particular continuous extension of u1
to the whole domain Ω. The difficulty is to find a "good" way to define the function ũ so that it
can be approximated by the classical FEM. The function u2 can then be approximated by solving
the elliptic problem satisfied by u2 in Ω2 completed by ũ|Σ (resp. ε1∂nũ|Σ) as a Dirichlet (resp.
Neumann) boundary condition on Σ. Note that at first sight the construction of such ũ is not
straightforward. This will be achieved thanks to an optimal control reformulation of (4). This is
the main goal of the next paragraph in which we also reformulate the idea presented above in a
more rigorous way.

1In the text below, we choose an extension from Ω1 to Ω? = Ω2. Obviously, one could choose an extension from
Ω2 to Ω? = Ω1 so that (u1, ũ|Ω2 ) is a solution to (4). In this case, the condition meas∂Ω(∂Ω1 \ Σ) > 0 must hold.
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3.2 An optimal control reformulation of the problem

Before getting into details, let us first introduce ε̃1 ∈ L∞(Ω) such that ε̃1 ≥ ε̃+ > 0 a. e. in Ω and
ε̃1 = ε1 in Ω1. Then, let E : V1(Ω1) → H1

0(Ω) be an arbitrary continuous extension operator.
By making use of (4), one can show easily that
ˆ

Ω
ε̃1∇E(u1) · ∇v dx =

ˆ
Ω1

f1v dx +
ˆ

Ω2

ε̃1∇E(u1) · ∇v dx− 〈ε1∂nu1, v〉Σ ∀v ∈ H1
0(Ω),

ˆ
Ω2

ε2∇u2 · ∇v2 dx =
ˆ

Ω2

f2 v2 dx + 〈ε1∂nu1, v2〉Σ ∀v2 ∈ V2(Ω2).

Now, given that the linear form v2 7→
ˆ

Ω2

ε̃1∇E(u1) · ∇v2 dx − 〈ε1∂nu1, v2〉Σ is continuous on

V2(Ω2) one can define, thanks to the Riesz representation theorem, for each E(u1) a unique
wE(u1) ∈ V2(Ω2) such that

ˆ
Ω2

ε̃1∇E(u1) · ∇v2 dx− 〈ε1∂nu1, v2〉Σ =
ˆ

Ω2

ε̃1∇wE(u1) · ∇v2 dx ∀v2 ∈ V2(Ω2). (5)

Above we have used the fact that (u, v) 7→ (ε̃1∇u,∇v)L2(Ω)d is an inner product on V2(Ω2). As
a consequence, we have

ˆ
Ω
ε̃1∇E(u1) · ∇v dx =

ˆ
Ω1

f1v dx +
ˆ

Ω2

ε̃1∇wE(u1) · ∇v dx ∀v ∈ H1
0(Ω),

ˆ
Ω2

ε2∇u2 · ∇v2 dx =
ˆ

Ω2

f2 v2 dx +
ˆ

Ω2

ε̃1∇(E(u1)− wE(u1)) · ∇v2 dx ∀v2 ∈ V2(Ω2).

Since the coefficients ε̃1 and ε2 have fixed signs, the forms

(u, v) 7→
ˆ

Ω
ε̃1∇u · ∇v dx and (u2, v2) 7→ −

ˆ
Ω2

ε2∇u2 · ∇v2 dx,

are coercive, respectively on H1
0(Ω) and on V2(Ω2). With this in mind, we define for all w ∈

V2(Ω2), the couple of functions (uw, uw2 ) ∈ H1
0(Ω) × V2(Ω2) that are solution to the well-posed

system of equations:
ˆ

Ω
ε̃1∇uw · ∇v dx =

ˆ
Ω1

f1v dx +
ˆ

Ω2

ε̃1∇w · ∇v dx ∀v ∈ H1
0(Ω),

ˆ
Ω2

ε2∇uw2 · ∇v2 dx =
ˆ

Ω2

f2 v2 dx +
ˆ

Ω2

ε̃1∇(uw − w) · ∇v2 dx ∀v2 ∈ V2(Ω2).
(6)

Well-posedness is achieved by solving the elliptic problem in uw first, and then the elliptic problem
in uw2 .

Remark 3.1. Let w ∈ V2(Ω) be constructed by means of a particular continuous extension via
(5) of u1, the first part of the solution to (4): that is, with w = wE(u1). Then it follows that
(uw |Ω1 , u

w
2 ) is the solution to (4). Indeed, one finds first that uw = E(u1), and then that uw2 = u2.

On the other hand, we have the following result

Proposition 3.1. For all w ∈ V2(Ω2), the functions uw1 := uw |Ω1 and uw2 are such that

−div(ε1∇uw1 ) = f1 in Ω1,

−div(ε2∇uw2 ) = f2 in Ω2

ε1∂nu
w
1 = ε2 ∂nu

w
2 on Σ.
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Proof. Take ϕ1 ∈ C∞0 (Ω1) and extend it by 0 to the whole Ω to obtain the function ϕ ∈ C∞0 (Ω).
Take v = ϕ in the problem satisfied by uw. One finds that −div(ε1∇uw1 ) = f1 in Ω1. Next, take
some ϕ2 ∈ C∞0 (Ω2), extend it by 0 in Ω1 and denote by ϕ the new function. By taking v = ϕ in
the problem satisfied by uw and v2 = ϕ2 in the problem satisfied by uw2 one finds that

ˆ
Ω2

ε̃1∇uw · ∇ϕ2 dx =
ˆ

Ω2

ε̃1∇w · ∇ϕ2 dx,
ˆ

Ω2

ε2∇uw2 · ∇ϕ2 dx =
ˆ

Ω2

f2ϕ2 dx +
ˆ

Ω2

ε̃1∇(uw − w) · ∇ϕ2 dx.

By considering the sum of the two formulations, we conclude that −div(ε2∇uw2 ) = f2 in Ω2. To
end the proof, it remains to show that ε1∂nu

w = ε2∂nu
w
2 . For this, let v ∈ H1

0(Ω) and define
v2 = v|Ω2 ∈ V2(Ω2). By taking v and v2 as test functions in (6), considering the sum of the two
equations, integrating by parts in both formulations and then, using the equations satisfied by
uw1 and uw2 , we infer that

−〈ε1∂nu
w
1 , v〉 = −〈ε2∂nu

w
2 , v〉, v ∈ H1

0(Ω).

According to the surjectivity of the trace mapping on Σ, this gives ε1∂nu
w
1 = ε2∂nu

w
2 on Σ and

ends the proof.

Thus the introduction of an auxiliary "control" function w ∈ V2(Ω2) allows us to construct pseudo-
solutions to the equation (4) for which the condition on the normal derivatives is automatically
satisfied. However we do not have in general continuity across interface. Taking this into account,
we get the

Lemma 3.1. If there exists w∗ ∈ V2(Ω2) such that the solution to (6) satisfies uw∗ = uw
∗

2 on Σ,
then (uw∗ |Ω1 , u

w∗
2 ) solves (4).

Thanks to what we have explained in Remark 3.1, we know that to every continuous extension
of u1 to Ω, one can define w∗ ∈ V2(Ω2) for which uw∗ = uw

∗
2 on Σ. This leads us to the following

result.

Lemma 3.2. Let u1 be the first part of the solution to (4). Then, the set of w∗ ∈ V2(Ω2) such
that the solution to (6) satisfies uw∗ = uw

∗
2 on Σ is isomorphic to the set of all possible continuous

extensions of u1 to Ω. Furthermore, w∗ and uw∗ are linked by relation
ˆ

Ω2

ε̃1∇uw
∗ · ∇v2 dx− 〈ε1∂nu1, v2〉Σ =

ˆ
Ω2

ε̃1∇w∗ · ∇v2 dx ∀v2 ∈ V2(Ω2). (7)

Now, we have all the tools to introduce the optimal control reformulation of the problem (4). As
a matter of fact, in order to find a function w∗ ∈ V2(Ω2) for which uw∗ = uw

∗
2 on Σ, it is enough

to solve the following optimal control problem:

Find w∗ = argmin
w∈V2(Ω2)

J(w) with J(w) = 1
2

ˆ
Σ
|uw − uw2 |2 dσ, (8)

where (uw, uw2 ) ∈ H1
0(Ω)×V2(Ω2) is the solution to (6). Note that in (8), the functional J plays

the role of the cost functional, while (6) plays the role of the state equation. Obviously, thanks
to Lemma 3.2, the problem (8) has an infinite number of solutions. As a result, one may need to
use a regularization technique in order to be able to construct a convergent discretization of the
problem: this will be the subject of §4.3 where we will study the classical Tikhonov regularization
method applied to Problem (8).
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4 Basic properties of the optimization problem and its regular-
ization

In this section, we present in §4.1 some useful properties of the cost functional J and of the set of
its minimizers in §4.2 . After that in §4.3, we study the Tikhonov regularization of the problem.
Furthermore, we explain, in §4.4, how to use the the adjoint approach in order to find an explicit
expression of the gradient of J .

4.1 Properties of the cost functional

Since we have used the L2(Σ) norm instead of the H1/2(Σ) norm in the definition of J , one has
the following results.

Proposition 4.1. The cost functional J satisfies the following properties:

1. Let (wn)n be a sequence of elements of V2(Ω2) that converges weakly to w0 ∈ V2(Ω2). Then,
(J(wn))n converges to J(w0).

2. The functional J is continuous and convex on V2(Ω2).

Proof. 1. For all n ∈ N, denote by (un, un2 ) ∈ H1
0(Ω) × V2(Ω) the solution to (6) with w = wn.

From the ellipticity of the problems involved in (6), it follows that (un)n (resp. (un2 )n) converges
weakly in H1

0(Ω) (resp. V2(Ω2)) to some u ∈ H1(Ω) (resp. u2 ∈ V2(Ω2)) such that (u, u2) is
the solution to (6) with w = w0. The continuity of the trace operator from H1(Ω) to H1/2(Σ)
ensures that (un|Σ − u

n
2 |Σ)n converges weakly to u|Σ − u2|Σ in H1/2(Σ). Given that the embedding

of H1/2(Σ) into L2(Σ) is compact, it actually converges strongly to u|Σ − u2|Σ in L2(Σ). Thus
(J(wn)) converges to J(w0). The result is proved.
2. While the continuity is a direct consequence of the first item, the convexity follows from the
fact that J : V2(Ω2) → R is the composition of the affine map j1 : V2(Ω2) → L2(Σ) and of the
convex map j2 : L2(Σ)→ R such that for all w ∈ V2(Ω2), g ∈ L2(Σ) we have

j1(w) = (uw − uw2 )|Σ where (uw, uw2 ) ∈ H1
0(Ω)×V2(Ω2) is the solution to (6),

j2(g) = 1
2

ˆ
Σ
|g|2 dσ.

(9)

4.2 The set of minimizers of the functional J

Thanks to Lemma 3.2, we know that J has an infinite number of minimizers. This (non-empty)
set will be denoted by MJ . Without any difficulty, one can see that MJ coincides with the set of
zeros of the functional J. As a result, since J is continuous, convex and positive, the set MJ is
closed and convex in V2(Ω2). This allows us to say that the following minimization problem:

min
w∈MJ

ˆ
Ω2

ε̃1|∇w|2 dx

has a unique solution, as a consequence of the strict convexity of v2 7→
ˆ

Ω2

ε̃1|∇v2|2 dx in V2(Ω2),

and of the fact that MJ is a closed, convex subset of V2(Ω2). In the following, we shall denote
by w∗J the smallest minimizer of the functional J :

w∗J = argmin
w∈MJ

ˆ
Ω2

ε̃1|∇w|2 dx. (10)
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The goal of the rest of this paragraph is to find a characterization of Ew∗J (u1), the continuous
extension of u1 that is associated with w∗J . Note that the link between Ew∗J (u1) and w∗J is given
by the following (see relation (7)):

ˆ
Ω2

ε̃1∇Ew∗J (u1) · ∇v2 dx− 〈ε1∂nu1, v2〉Σ =
ˆ

Ω2

ε̃1∇w∗J · ∇v2 dx ∀v2 ∈ V2(Ω2). (11)

To proceed, we define EH(u1) ∈ H1
0(Ω) the continuous extension of u1 that satisfies

div(ε̃1∇EH(u1)) = 0 in Ω2. (12)

In particular, we have
ˆ

Ω2

ε̃1∇EH(u1) · ∇v2 dx = 0 ∀v2 ∈ H1
0(Ω2).

Denote by wH ∈MJ the minimizer associated with EH(u1). Thanks to (7), we know that
ˆ

Ω2

ε̃1∇EH(u1) · ∇v2 dx− 〈ε1∂nu1, v2〉Σ =
ˆ

Ω2

ε̃1∇wH · ∇v2 dx ∀v2 ∈ V2(Ω2). (13)

We infer that ˆ
Ω2

ε̃1∇wH · ∇v2 dx = 0 ∀v2 ∈ H1
0(Ω2). (14)

By taking the difference between (11) and (13), taking v2 = wH , using the fact that EH(u1) −
Ew∗J (u1) ∈ H1

0(Ω2) and owing to (14), we infer that
ˆ

Ω2

ε̃1∇(wH − w∗J) · ∇wH dx = 0,

so ˆ
Ω2

ε̃1|∇w∗J |2 dx =
ˆ

Ω2

ε̃1|∇w∗J −∇wH |2 dx +
ˆ

Ω2

ε̃1|∇wH |2 dx ≥
ˆ

Ω2

ε̃1|∇wH |2 dx.

Hence, from the definition of w∗J , we then obtain the following

Proposition 4.2. The functions wH and w∗J coincide.

Remark 4.1. It is worth noting that, thanks to (13) and using the definition of EH(u1), the
function wH satisfies the problem:

div(ε̃∇wH) = 0 in Ω2 and ε̃1∂nwH |Σ = ε̃1∂nEH(u1)|Σ − ε1∂nu1|Σ. (15)

Recall that n is the unit normal vector to Σ oriented to the exterior of Ω2.

4.3 Tikhonov regularization of the problem

Tikhonov regularization, which was originally introduced in [25], is a classical method to regularize
a convex optimization problem. Classically, this method is used in the context of regularization
of ill-posed inverse problems (see [20] and the references therein). In this paragraph, we study
the convergence of such regularization when it is applied to our problem. For δ > 0, we introduce
the functional Jδ : V2(Ω2)→ R defined by

Jδ(w) = J(w) + δ

ˆ
Ω2

ε̃1|∇w|2 dx ∀w ∈ V2(Ω2).
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To simplify notation, we will denote by ‖ · ‖ε̃1 : V2(Ω2)→ R+ the norm that is defined as follows:

‖w‖ε̃1 :=
(ˆ

Ω2

ε̃1|∇w|2 dx

)1/2

, ∀w ∈ V2(Ω2).

Endowed with the associated scalar product (·, ·)ε̃1 , the space V2(Ω2) is a Hilbert space. Since J
is convex and δ > 0, the functional Jδ is strictly convex and coercive. Therefore the minimization
problem

min
w∈V2(Ω2)

Jδ(w)

has a unique solution that we denote by w∗δ . Our goal is to study the behaviour of w∗δ as δ tends
to zero. One expects (w∗δ )δ to converge to one of the solutions (8). If this is the case and because
the problem (8) has an infinite number of solutions, it will be interesting to characterize the
particular solution towards which (w∗δ )δ converges. Our findings are summarized in the following

Proposition 4.3. When δ → 0, the sequence (w∗δ )δ converges towards w∗J , the smallest minimizer
of J .

The proof of the previous result is quite classical. However, for the convenience of the reader, we
will detail it in Appendix A.
In conclusion, we can say that the Tikhonov regularization allows us to obtain a stabilized version
of the optimization problem (8). This will be used in order to introduce a stabilization of the
discretization of the problem (8), but in that case the stabilization parameter δ will be chosen as
a function of the discretization parameter. This will be detailed in §5.3. Note that the same idea
was employed in [1].

4.4 Gradient of the functional J

As indicated in the introduction, the main objective of this work is to propose a new numerical
method for approximating the solution to (1). This method will be based on the numerical
approximation of the solution to the optimization problem (8). In this section, we will explain
how to obtain an explicit expression of J ′(w) the gradient of J at some w ∈ V2(Ω). We recall
that the functional J is differentiable, because it can be written as a composition of the two
differentiable maps j1 and j2, cf. (9). And, since the functional J is scalar valued, its differential
at w ∈ V2(Ω2) can be represented by its gradient J ′(w) ∈ V2(Ω2):

For all h ∈ V2(Ω2),
ˆ

Ω2

ε̃1∇J ′(w) · ∇h dx = lim
t→0

J(w + th)− J(w)
t

.

To find an explicit expression of J ′(w), we use the adjoint approach [11]. Details about the
application of this approach to our problem are given in Appendix B (see also [19]). Here, we
present final result. To do so, we start by introducing the so-called adjoint equations. For
all w ∈ V2(Ω2), recalling that (uw, uw2 ) ∈ H1

0(Ω) × V2(Ω2) is the solution to (6), we introduce
(gw, gw2 ) ∈ H1

0(Ω)×V2(Ω2) such that
ˆ

Ω
ε̃1∇gw · ∇v dx =

ˆ
Ω2

ε̃1∇gw2 · ∇v dx−
ˆ

Σ
(uw − uw2 )v dσ ∀v ∈ H1

0(Ω)
ˆ

Ω2

ε2∇gw2 · ∇v2 dx =
ˆ

Σ
(uw − uw2 )v2 dσ ∀v2 ∈ V2(Ω2).

(16)

As observed before, the functions gw, gw2 are well-defined. One can prove the

Lemma 4.1. For all w ∈ V2(Ω2), there holds J ′(w) = gw2 − gw |Ω2, where (gw, gw2 ) solve (16).

We have the following optimality result

9



Corollary 4.1. We have the equivalence

[w∗ ∈ V2(Ω2) is such that J ′(w∗) = 0
]
⇐⇒ w∗ ∈MJ .

Proof. Let us start with the proof of the direct implication. Suppose that there exists some
w∗ ∈ V2(Ω2) such that gw∗ |Ω2 = gw

∗
2 . By taking the sum of the variational formulations of (16),

we deduce that ˆ
Ω
ε∇gw∗ · ∇v dx = 0 ∀v ∈ H1

0(Ω).

This means Aε(gw
∗) = 0 and then, thanks to Assumption 1, gw∗ = 0. This implies that gw∗2 = 0

and then by using the second equation of (16), that uw∗ = uw
∗

2 on Σ. This shows that w∗ is a
minimizer of J. The reverse implication is a consequence of the fact that if w∗ ∈ MJ we have
J(w∗) = 0 and then uw∗ = uw

∗
2 on Σ. This implies that gw∗2 = 0 and that gw∗ = 0.

We end this paragraph with the following result that can be useful to prove the convergence of
the classical gradient descent algorithm.

Corollary 4.2. The functional J ′ : V2(Ω2)→ V2(Ω2) is Lipschitz continuous.

Proof. Starting from (6), we deduce that w 7→ uw, w 7→ uw2 are Lipschitz continuous. Inserting
this into (16), we obtain the result.

5 Numerical discretization of the problem

In this part, we are concerned with the numerical approximation of (8) by means of the Finite
Element Method. To do so, we start by presenting some details and notations about the family
of meshes that will be used. To simplify the presentation, the domain Ω and the subdomains
(Ωi)i=1,2 are supposed to have polygonal (when d = 2) or polyhedral (resp. d = 3) boundaries.

5.1 Meshes and discrete spaces

Let (Th)h be a regular family of meshes of Ω (see [15]), composed of (closed) simplices. The
subscript h stands for the meshsize.

Assumption 2. We suppose that for all h, every simplex of Th belongs either to Ω1 or to Ω2.

According to Assumption 2, for i = 1, 2, one can consider the family of meshes (Tih)h made of
those simplices that belong to Ωi.
For all k ∈ N∗, we set

Vk
h(Ω) := {vh ∈ H1

0(Ω) | vh|T ∈ Pk(T ), ∀T ∈ Th}.

Here Pk(T ) stands for the space of polynomials (of d variables) defined on T of degree at most
equal to k. In the same way, we define for i = 1, 2,

Vk
h(Ωi) := {vi,h ∈ H1(Ωi) | vi,h|T ∈ Pk(T ),∀T ∈ Tih and vi,h = 0 on ∂Ωi\Σ}.

Remark 5.1. Note that under Assumption 2 for all h > 0, for i = 1, 2 the space Vk
h(Ωi) coincides

with {u|Ωi
|u ∈ Vk

h(Ω)}.

Finally, we recall the basic approximability properties

∀v ∈ H1
0(Ω), lim

h→0

(
inf

vh∈Vk
h

(Ω)
‖v − vh‖H1

0(Ω)

)
= 0,

∀v2 ∈ V2(Ω2), lim
h→0

(
inf

v2,h∈Vk
h

(Ω2)
‖v2 − v2,h‖ε̃1

)
= 0.

(17)
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5.2 Discretization strategy

For h > 0 and w ∈ V2(Ω), define the functions uwh ∈ Vk
h(Ω) and uw2,h ∈ Vk

h(Ω2) as the solutions
to the following well-posed discrete problems:
ˆ

Ω
ε̃1∇uwh · ∇vh dx =

ˆ
Ω1

fvh dx +
ˆ

Ω2

ε̃1∇w · ∇vh dx , ∀vh ∈ Vk
h(Ω)

ˆ
Ω2

ε2∇uw2,h · ∇v2,h dx =
ˆ

Ω2

f2v2,h dx +
ˆ

Ω2

ε̃1∇(uwh − w) · ∇v2,h dx, ∀v2,h ∈ Vk
h(Ω2).

(18)

Then introduce the projection operator πkh : V2(Ω2)→ Vk
h(Ω2) such that for all w ∈ V2(Ω2), πkhw

is defined as the unique element of Vk
h(Ω2) that satisfies the problem

ˆ
Ω2

ε̃1∇(πkhw) · ∇v2,h dx =
ˆ

Ω2

ε̃1∇w · ∇v2,h dx ∀v2,h ∈ Vk
h(Ω2).

Obviously, one has the estimate
‖πkhw‖ε̃1 ≤ ‖w‖ε̃1 . (19)

From the definition of πkhw, one can easily see that for all w ∈ V2(Ω2) we have the identities

u
πk

hw

h = uwh and u
πk

hw

2,h = uw2,h. (20)

Now, let us turn our attention to the discretization of the optimization problem (8). The natural
way to do that is to replace it by the problem

inf
wh∈Vk

h
(Ω2)

J0,h(wh) := 1
2

ˆ
Σ
|uwh
h − u

wh
2,h|

2 dσ. (21)

One can proceed as in the proof of proposition 4.1 to show that the cost functional J0,h : Vk
h → R

(defined in (21)) is convex and continuous. Unfortunately this result is not sufficient to justify that
the problem (21) is well-posed. The difficulty comes from the fact that, even under Assumption
1, one can not guarantee that the problem

Find uh ∈ Vk
h(Ω) such that

ˆ
Ω
ε∇uh · ∇vh dx =

ˆ
Ω
fvh dx ∀vh ∈ Vk

h(Ω)

is well-posed even for h small enough. To cope with this difficulty, an idea is to use again the
Tikhonov regularization (see §4.3), with a regularization parameter that depends now on h. This
idea was originally proposed in [22] for the case of elliptic equations and then, was used by Assyr
Abdulle et al. in [1] for the case of problems with sign-changing coefficients. Here, we explain
how to adapt it to our approach. The idea is to replace the cost functional J0,h in (21) by the
functional Jh : Vk

h(Ω2)→ R+ such that for all wh ∈ Vk
h(Ω2), we have

Jh(wh) := 1
2

ˆ
Σ
|uwh
h − u

wh
2,h|

2 dσ + λh‖wh‖2ε̃1 ,

where λh > 0 tends to zero as h goes to 0. Since λh > 0 for all h > 0, the functional Jh is strictly
convex and coercive. This guarantees that the optimization problem

min
wh∈Vk

h
(Ω2)

Jh(wh) (22)

has a unique solution that we denote by w∗k,h. All the difficulty now is to choose the parameter
λh in order to be able to ensure the convergence of (w∗k,h)h towards a solution to (8) as h tends
to zero. This is the main goal of the next paragraph.
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5.3 Convergence of the method

The starting point of our discussion is the following

Lemma 5.1. We have the estimate

Jh(w∗k,h) ≤ 1
2

ˆ
Σ
|uw

∗
J

h − u
w∗J
2,h|

2 dσ + λh‖w∗J‖2ε̃1 (23)

where w∗J is defined by (10).

Proof. Starting from the fact that πkhw∗J ∈ Vk
h(Ω2) and using that w∗k,h is the unique solution to

the optimization problem (22), we conclude that Jh(w∗k,h) ≤ Jh(πkhw∗J). On the other hand, the
identity (20) allows us to write

Jh(πkhw∗J) = 1
2

ˆ
Σ
|uw

∗
J

h − u
w∗J
2,h|

2 dσ + λh‖πkhw∗J‖2ε̃1 .

The Lemma is then proved by recalling the estimate (19).

In order to simplify notations, for h > 0 and w ∈ V2(Ω2), we denote by Ah(w) the real number

Ah(w) = 1
2

ˆ
Σ
|uwh − uw2,h|2 dσ.

From (20), we know that for all w ∈ V2(Ω2), we have Ah(w) = Jh0 (πkhw). The main result of this
paragraph is the following theorem.

Theorem 5.1. Assume that the parameter λh can be chosen such that the sequences (λh)h and
(Ah(w∗J)/λh)h tend to zero as h tends to zero. Then, as h goes to 0:

• the sequence (w∗k,h)h converges to w∗J in V2(Ω2) ;

• the sequence (u
w∗k,h

h )h converges to EH(u1) in H1
0(Ω), resp. the sequence (u

w∗k,h

2,h )h converges
to u2 in V2(Ω2), where (u1, u2) is the solution to (4) and EH(u1) is the extension of u1
defined in (12).

Proof. The strategy of proof is similar to the one of proposition 4.3. To simplify notations, we
denote by uk,h ∈ Vk

h(Ω) and uk,h2 ∈ Vk
h(Ω2) the functions

uk,h = u
w∗k,h

h and uk,h2 = u
w∗k,h

2,h .

In order to make the proof as clear as possible, we divide it into four steps.
Step 1: weak convergence of (w∗k,h)h, (uk,h)h and (uk,h2 )h. Starting from the estimate

‖w∗k,h‖2ε̃1 ≤ Jh(w∗k,h)/λh ≤ Ah(w∗J)/λh + ‖w∗J‖2ε̃1 (24)

and using the fact that (Ah(w∗J)/λh)h tends to 0 as h goes to 0, we infer that (w∗k,h)h is bounded
in V2(Ω2). This implies that, up to a sub-sequence, (w∗k,h)h converges weakly to some w0 ∈ V2(Ω).
For the reader’s convenience, this sub-sequence is still denoted by (w∗k,h)h.
Since the problems in (18) are uniformly elliptic with respect to h, we know that the sequence
(uk,h)h (resp. (uk,h2 )h) converges weakly in H1

0(Ω) (resp. in V2(Ω2)) to some u ∈ H1
0(Ω) (resp.

u2 ∈ V2(Ω2)). Using the basic approximability property (17), we infer that u = uw0 and u2 = uw0
2 .

Step 2: w0 is a minimizer of J . The continuity of trace operator and the compactness of the
embedding H1/2(Σ) ⊂ L2(Σ) ensure that

uk,h|Σ − u
k,h
2 |Σ → uw0

|Σ − uw0
2 |Σ
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in L2(Σ) as h→ 0. By noticing that

1
2

ˆ
Σ
|uk,h − uk,h2 |

2 dσ = Jh0 (w∗k,h) ≤ Jh(w∗k,h) ≤ λh(Ah(w∗J)/λh + ‖w∗J‖2ε̃1)

and using that λh,Ah(w∗J)/λh → 0 as h goes to zero, we deduce that uw0
|Σ − uw0

2 |Σ = 0. This
shows that w0 is a minimizer of J.
Step 3: strong convergence of (w∗k,h)h to w∗J . Thanks to the fact that Ah(w∗J)/λh → 0 as
h→ 0 and by means of the estimate (24), we can write

lim sup
h→0

‖w∗k,h‖ε̃1 ≤ ‖w∗J‖ε̃1 .

On the other hand, since (w∗k,h)h converges weakly to w0 as h→ 0, we infer that

‖w0‖ε̃1 ≤ lim inf
h→0

‖w∗k,h‖ε̃1 .

This implies that ‖w0‖ε̃1 ≤ ‖w∗J‖ε̃1 . Since w0 is a minimizer of J, we conclude that w0 = w∗J .
Furthermore, we also deduce that

lim
h→0
‖w∗k,h‖ε̃1 = ‖w0‖ε̃1 .

As a result, by applying [9, Proposition III.32], we infer that (w∗k,h)h converges, strongly, in
V2(Ω2) to w0 = w∗J .

Step 4: strong convergence of (uk,h)h and (uk,h2 )h. The ellipticity of the problems in (6),
combined with the strong convergence of (w∗k,h)h to w∗J , imply the convergence of (uk,h)h in H1

0(Ω)
to uw∗J and of (uk,h2 )h in V2(Ω2) to uw

∗
J

2 .
The Lemma is then proved by using that uw∗J = EH(u1) and by observing that these limits are
independent of the chosen sub-sequences.

The rest of this paragraph is devoted to explain why it is possible to choose the parameter λh in
such a way that (λh)h and (Ah(w∗J)/λh)h both converge to 0 as h tends to 0. To do so, one needs
to study the behaviour of Ah(w∗J) as h tends to 0. Let us start with the following

Proposition 5.1. Suppose that the coefficients ε̃1 and ε2 are smooth, or piecewise smooth. As-
sume that the solution u to (1) belongs to PH1+s(Ω) for some s > 0. Then there exists s′ ∈ (0, s]
that depends only on the geometry of Ω2 and on the coefficient ε2, and there exists σ ∈ (0, 1] that
depends only on the geometry of Ω and of Ω2 such that

‖uw∗J − uw
∗
J

h ‖H1
0(Ω) ≤ Chp

′‖u‖PH1+p′ (Ω) and ‖uw
∗
J

2 − u
w∗J
2,h‖ε̃1 ≤ Ch

p′‖u2‖H1+p′ (Ω2),

‖uw∗J − uw
∗
J

h ‖L2(Ω) ≤ Chp
′+σ‖u‖H1+p′ (Ω) and ‖uw

∗
J

2 − u
w∗J
2,h‖L2(Ω2) ≤ Chp

′+σ‖u2‖H1+p′ (Ω2)

with C independent of h and p′ = min(s′, k).

Proof. Along this proof, C denotes a positive constant whose value can change from one line to
the next but does not depend on h.
Given that uw∗J = EH(u1) solves (12), and since u1 ∈ H1+s(Ω1), it follows that EH(u1)|Ω2 exhibits
some extra-regularity because ε2 is (piecewise) smooth (via an ad hoc shift theorem). In other
words, there exists s′ ∈ (0, s] such that uw∗J ∈ PH1+s′(Ω).
Given that uw

∗
J

2 = u2 ∈ PH1+s(Ω2) ⊂ PH1+s′(Ω2) and since the problems in (6) are elliptic with
(piecewise) smooth coefficients ε̃1 and ε2, we obtain the estimates (see [15])

‖uw∗J − uw
∗
J

h ‖H1
0(Ω) ≤ Chp

′‖u‖PH1+p′ (Ω) and ‖uw
∗
J

2 − u
w∗J
2,h‖ε̃1 ≤ Ch

p′‖u2‖H1+p′ (Ω2),
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where p′ = min(s′, k). By applying the classical Aubin-Nitsche’s lemma (see [15, Theorem 3.2.4]),
we infer that there exists σ ∈ (0, 1] such that

‖uw∗J − uw
∗
J

h ‖L2(Ω) ≤ Chp
′+σ‖u‖H1+p′ (Ω) and ‖uw

∗
J

2 − u
w∗J
2,h‖L2(Ω2) ≤ Chp

′+σ‖u2‖H1+p′ (Ω2).

Now we have all the tools to study the behavior Ah(w∗J) as h goes to 0.
Corollary 5.1. Under the same assumptions as in proposition 5.1, one has

Ah(w∗J) ≤ Ch2p′+σ

with C independent of h and p′ = min(s′, k).
Proof. Applying the multiplicative trace inequality (recalled in proposition A.1) and using the
estimates of proposition 5.1 yield the estimates

‖uw∗J − uw
∗
J

h ‖
2
L2(Σ) ≤ Ch

2p′+σ‖u‖PH1+p′ (Ω) and ‖uw
∗
J

2 − u
w∗J
2,h‖

2
L2(Σ) ≤ Ch

2p′+σ‖u2‖H1+p′ (Ω2).

By design, one has uw∗J |Σ = u
w∗J
2 |Σ. So, observing that

‖uw
∗
J

h − u
w∗J
2,h‖

2
L2(Σ) ≤ 2(‖uw∗J − uw

∗
J

h ‖
2
L2(Σ) + ‖uw

∗
J

2 − u
w∗J
2,h‖

2
L2(Σ)),

we conclude that Ah(w∗J) ≤ Ch2p′+σ.

The previous result gives us a simple way to choose the parameter λh in order to ensure that
both (λh)h and (Ah(w∗J)/λh)h tend to 0 as h tends to 0.
Corollary 5.2. Under the same assumptions as in proposition 5.1, any parameter λh of the form
λh = Chq with C > 0 independent of h and q ∈ (0, 2p′ + σ) satisfies the conditions of theorem
5.1.
Remark 5.2. It is worth to note that the value of s′ is prescribed only by the regularity of EH(u1),
the harmonic-like extension u1 that satisfies (12). Assume for instance that Ω and Ω2 are convex
domains, and that the coefficients ε1 and ε2 are constant. In this case, one can choose ε̃1 to be
constant over Ω. Let us consider the case where the solution u to (1) belongs to PH1+s(Ω) for any
s ∈ (0, σD(ε)). Then, because EH(u1)|Ω2 ∈ H1(Ω2) is governed by (cf. (12)): −∆(EH(u1)) = 0
in the convex domain Ω2 with Dirichlet data in H1/2+s(∂Ω2), one has EH(u1)|Ω2 ∈ H1+s(Ω2). In
other words, s′ = s, and p′ = min(s′, k) = s′ = s. Also, because Ω and Ω2 are convex, one finds
that σ = 1. Hence, in the statement of corollary 5.2, one may choose any q ∈ (0, 2σD(ε) + 1).
Thanks to theorem 5.1, using the conditions of corollary 5.2, one obtains the convergence of the
discrete solutions to the exact solution.
On the one hand, convergence is guaranteed even on meshes that are not T-conforming. And,
compared to [1], convergence holds in very general situations, namely as soon as there is a shift
theorem for problem (1), cf. theorem 2.1, even with a regularity exponent σD(ε) < 1/2.
On the other hand, there is no associated convergence rate. Assuming a Céa lemma-like result,
and using the same notations as above, the expected convergence rate is hp′ in H1

0-norm, and
hp
′+σ in L2-norm. Whereas, classically, the optimal convergence rate is hk in H1

0-norm, and hk+1

in L2-norm.

6 Numerical experiments
In this section we turn our attention to the validation of the numerical method that we have
proposed. We limit ourselves to the case of 2D domains and use P 1 Lagrange finite elements.
The numerical results that we present below have been obtained with the help of the library
FreeFem++2. In particular, to solve the optimization problem (22), we used the BFGS function. In

2See https://freefem.org/.
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all the numerical experiments presented below, we have used the BFGS function with the following
parameters: eps = 10−6, nbiter = 10, nbiterline = 1 (see the FreeFem++ documentation for more
details).
Since the well-posedness of (1) depends on the shape of the interface Σ, we test the performance
of our method in three different configurations. In the first one, Σ is flat, in the second one,
Σ is circular interface and in the last one, Σ has a "corner", in the sense that the angle at the
intersection with the boundary is not a right angle. In all these experiments, we suppose that
the coefficients ε1 and ε2 are constant with ε1 = 1. We denote by κε the contrast κε = ε2/ε1.
The shape, smoothness and (respective) volumes of Ω1 and Ω2 are taken into account to choose
the domain Ω? ∈ {Ω1,Ω2} to which the extension is performed (we recall that one must have
meas∂Ω(∂Ω? \ Σ) > 0, see footnote1 on page 4). Indeed, to have a better convergence rate, one
should choose Ω? convex, or with as smooth a boundary as possible. Also, in order to speed up
the convergence of the BFGS function, we must choose Ω? as small as possible. Once Ω? is fixed,
one has to extend the function ε1 or ε2 to all the domain Ω. Because the coefficients are constant,
we extend ε1 (resp. ε2) by ε1 in Ω2 (resp. in Ω1). In the case where Σ is flat or circular, we take
Ω? = Ω2. In the third configuration, we take Ω? = Ω1.

6.1 Flat interface

In this paragraph, we take

Ω1 = {(x, y) ∈ (0; 1/2)× (0; 1)} and Ω2 = {(x, y) ∈ (1/2; 1)× (0; 1)}

(a flat interface and a domain which is symmetric with respect to Σ). We consider a family of
meshes of Ω satisfying Assumption 2 (see Figure 2). In the rest of this paragraph we suppose that
κε 6= −1. To test the performance of our method, we work with the same example considered in
[1, 14]. Define the function uκε such that

uκε(x, y) =
{

(x2 + bx) sin(πy) if x < 1/2
a(x− 1) sin(πy) if 1/2 < x

, where a = 1
2(κε + 1) and b = − κε + 2

2(κε + 1) .

and consider it as an exact solution to (1). This is possible because div(ε∇uκε) ∈ L2(Ω). The
source term f is computed accordingly. As observed in remark 5.2, by choosing λh = Chq with
q ∈ (0, 3), the method is convergent. In our experiment, we take λh = 0.002h2. We work with
κε = −1.001. The behaviors of the relative L2-norm error (‖erh‖0) and the relative H1

0-norm error
(‖erh‖1) between the exact solution and the numerical one are reported in Figure 2. We observe
that both rates of convergence are equal to 2.

Remark 6.1. The constant C in λh = Chq must be adjusted by the user according to the contrast
κε in order to obtain a fast convergence of the method. Clearly this depends on ‖w∗J‖ε̃1. Using
the fact that w∗J = wH and owing to (15) we see that this depends on the jump of the normal
derivative (across Σ) between u1 and its harmonic extension. It is also important to note that,
once q is fixed and when h is small enough, the choice of C does not affect the convergence of the
method.

6.2 The case of a circular interface

In this paragraph, we consider the case where the domains Ω1 and Ω2 are such that Ω1 = {x ∈
R2 | |x| < 1} and Ω2 = {x ∈ R2 | 1 < |x| < 2}. In proposition A.2, we prove that Aε is an
isomorphism κε /∈ {−1}∪S with S := {−(1− (1/2)2n)/(1 + (1/2)2n) | n ∈ N∗}. For this reason,
we consider the case where κε = −2 /∈ S . Given that both Ω2 and Ω have smooth boundaries,
we infer that σ = 1 and s′ = s. By taking f as the source term associated to the function

uκε(x, y) =
{
r2 + b if r < 1
a(r − 2)2 if 1 < r < 2.

, with r =
√
x2 + y2, a = −1/κε and b = a− 1
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Figure 2: A given mesh (left). Behavior of the relative L2 and H1
0 errors with respect to the

meshsize h ∼
√
N , where N is the total number of nodes of the mesh (right).

and by taking λh = 0.002h2, we obtain the results displayed in Figure 3. We observe that the
method converges with optimal rate (ie. the relative L2-norm error (‖erh‖0) is of order 2, while
the relative H1

0-norm error is of order 1), even though the exterior boundary and the interface are
curved.
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Figure 3: A given mesh (left). Behavior of the relative L2 and H1
0 errors with respect to the

meshsize h ∼
√
N , where N is the total number of nodes of the mesh (right)

6.3 The case of an interface with corner

Now, we consider the configuration where the interface Σ has a corner. More precisely, we assume
that Ω := {x ∈ R2 | |x| < 1 and arg(x) ∈ (0;π/2)} and Ω1 := {x ∈ Ω | arg(x) ∈ (0;π/4)} (see
Figure 4). In such configuration, it can be proved (see [4]) that Aε is an isomorphism if and only
if κε ∈ R∗−\[−3,−1]. Furthermore, contrarily to the two previous cases, in this configuration the
solution to (1) can be very singular near the origin. Indeed, it was proved in [12, Chapter 2] that
the regularity of the solution to (1) depends in κε and can be very low as κε approaches [−3,−1]:
more precisely,

lim
κε→−3−

σD(ε) = lim
κε→−1+

σD(ε) = 0.

As a matter of fact, the value of the regularity exponent σD(ε) is <e(λ0), where λ0 is the solution
to

κε = − tan(3λπ/4)/ tan(λπ/4) (25)
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that has the smallest positive real part. Note that one can show (see [12, Chapter 3]) that all the
solutions to (25) are real-valued. In the particular cases where κε = −5 and κε = −3.1, one finds,
respectively that λ0 ≈ 0.458 and λ0 ≈ 0.139. As mentioned previously this regularity result is
optimal. Indeed, one can check that the function

uλ0(r, θ) := (1− r)rλ0

{
sin(λ0θ)/ sin(λ0π/4) θ ∈ (0;π/4),
sin(λ0(π − θ))/ sin(3λ0π/4) θ ∈ (π/4;π)

satisfies div(ε∇uλ0) ∈ L2(Ω). Observe that uλ0 /∈ PHλ0(Ω). This means that uλ0 /∈ PH3/2(Ω).
Now, given that Ω and Ω2 are both convex, owing to proposition 5.1, we can say that by choosing
λh = Chq with q ∈ (0, 3λ0), the convergence of the method can be guaranteed. In the case
κε = −5 (resp. κε = −3.1), we work with λh = h1.3 (resp. λh = h0.4).
The behaviors of the relative L2-norm error and the relative H1

0-norm error (for the cases κε = −5
and κε = −3.1) are given in Figure 4. In either case, the expected rate of convergence is equal to
λ0 (≈ 0.458 when κε = −5 and ≈ 0.139 when κε = −3.1) for the case of the H1

0-norm error, while
it is equal to 2λ0 for the case of the L2-norm error. We observe that, in both cases, the method
converges with optimal rate of convergence.
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Figure 4: A given mesh (left). Behavior of the relative L2 and H1
0 errors with respect to the mesh-

size h ∼
√
N , where N is the total number of nodes of the mesh, with the observed convergence

rates in the caption, when κε = −5 (center) and κε = −3.1 (right).

7 Concluding remarks
In this work, we have presented a new numerical method to approximate the solution to the scalar
transmission problem with sign-changing coefficients. We proved that the method converges
without any restriction on the mesh sequence, nor on the regularity of the solution. This result
has been illustrated by several 2D numerical experiments. The convergence rate of our method
seems to be optimal. In order to improve the performance of the method, several questions can
be studied:

1. Choose the parameter λh in order to accelerate convergence. An interesting idea would be
to find an adaptive approach to fit its value. Also, one could use adaptive mesh refinement,
together with a posteriori estimates. We refer to [17] for estimators that deliver guaranteed
error bounds, and that are robust with respect to the sign-changing coefficient ε.

2. Work with other regularization approaches, ie. other choices for the coefficient ε̃1, and/or
an alternative to the Tikhonov regularization method.

3. In the case where the interface is not regular, it would be interesting to combine our approach
with other existing methods for solving PDE with singular solution such as the Singular
Complement Method [16].
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Besides that, it will be also interesting to extend this approach to other models involving sign-
changing coefficients.
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A Missing results

Proof of Proposition 4.3 . From the definition of w∗δ , we can write that

δ‖w∗δ‖2ε̃1 ≤ J
δ(w∗δ ) ≤ Jδ(w∗J) = J(w∗J) + δ‖w∗J‖2ε̃1 = δ‖w∗J‖2ε̃1 .

This means that for all 0 < δ, there holds ‖w∗δ‖ε̃1 ≤ ‖w∗J‖ε̃1 . As a result (w∗δ ) is bounded in V2(Ω2).
This implies that, up to a sub-sequence, (w∗δ )δ converges, as δ tends to 0, weakly in V2(Ω2) to
some w0 ∈ V2(Ω2). For the reader’s convenience, this sequence is also denoted by (w∗δ )δ. Now,
let us prove that w0 is a minimizer of J. To do that, we start by observing that for all δ > 0, we
have

0 ≤ J(w∗δ ) ≤ Jδ(w∗δ ) ≤ Jδ(w∗J) = δ‖w∗J‖2ε̃1 .

This shows that (J(w∗δ ))δ converges to zero as δ tends to zero. On the other hand, by using the
result of proposition 4.1, we know that (J(w∗δ ))δ converges to J(w0). Consequently, J(w0) = 0
and then w0 is a minimizer of J .
The next step is to show that the convergence of (w∗δ )δ to w0 occurs in the strong sense and that
w0 = w∗J . To do so, we observe that

‖w∗δ‖ε̃1 ≤ ‖w∗J‖ε̃1 ∀δ =⇒ lim sup
δ→0

‖w∗δ‖ε̃1 ≤ ‖w∗J‖ε̃1

w∗δ ⇀ w0 in V2(Ω2) =⇒ ‖w0‖ε̃1 ≤ lim inf
δ→0

‖w∗δ‖ε̃13.

This implies that ‖w0‖ε̃1 ≤ ‖w∗J‖ε̃1 . Thanks to the definition of w∗J , we deduce that w0 = w∗J .
With this in mind and with the help of the previous inequality, we conclude that

lim
δ→0
‖w∗δ‖ε̃1 = ‖w∗J‖ε̃1 .

Since V2(Ω2) is a Hilbert space, it follows (see [9, Proposition III.32]) that wδ → w∗J in V2(Ω2).
By noticing that w∗J is independent of the considered sub-sequence, the result is then proved.

Proposition A.1. [8, Theorem 1.6.6] Let Ω be an open, bounded, connected subset of Rd (d =
2, 3) with a Lipschitz boundary. Then the estimate

‖u‖L2(∂Ω) ≤ C‖u‖
1/2
L2(Ω)‖u‖

1/2
H1(Ω) ∀u ∈ H1(Ω)

holds with 0 < C independent of u.

Proposition A.2. Let Ω1 = {x ∈ R2 | |x| < 1} and Ω2 = {x ∈ R2 | 1 < |x| < 2}. Assume that
κε := ε2/ε1 /∈ {−1} ∪S with

S :=
{
−

1− (1/2)2n

1 + (1/2)2n | n ∈ N∗
}
.

Then the operator Aε : H1
0(Ω)→ H1

0(Ω) is an isomorphism.
3This is a consequence of the fact that the norm of a Banach space is weakly lower semicontinuous, see [9,

Proposition III.5 (iii)].

18



Remark A.1. Note that in accordance with the results concerning the Neumann-Poincaré oper-
ator [24, Chapter 1], we observe that −1 is an accumulation point of S .

Proof. [12, Theorem 1.3.3] guarantees that Aε is Fredholm of index 0 when κε 6= −1. Therefore it
suffices to study its kernel. Let u ∈ H1

0(Ω) be such that Aεu = 0. Then u1 := u|Ω1 and u2 = u|Ω2
satisfy 

∆u1 = 0 in Ω1

∆u2 = 0 in Ω2

u1(1, θ) = u2(1, θ) and ∂ru1(1, θ) = κε∂u2(1, θ) ∀θ ∈ [0; 2π].

Since the problem is invariant with respect to θ, by Fourier decomposition for u1, u2 we have the
representations:

u1(r, θ) =
∑
n∈N

anr
neinθ and u2(r, θ) = b0 ln(r/2) +

∑
n∈Z∗

bn((r/2)n − (r/2)−n) einθ,

where an, bn ∈ C. Using the transmission conditions, we get

a0 = b0 ln(1/2), 0 = b0κε

an = bn((1/2)n − (1/2)−n), an = bn((1/2)n + (1/2)−n)κε, n ∈ N∗

0 = bn((1/2)n − (1/2)−n), 0 = bn((1/2)n + (1/2)−n)κε, −n ∈ N∗.

Therefore we deduce that Aε is injective when κε /∈ S .

B On the use of the adjoint approach to compute the gradient
of the cost functional J

The adjoint approach was introduced in [11] as a method for computing the gradient of cost
functions that depend in non-explicit way of the main variable of the problem, namely via the
solution of PDEs (the state equations) in which the main variable plays the role of a parameter.
Here, we are going to explain how to apply this method to our case. The idea is to introduce a
Lagrangian functional L : V2(Ω2)×H1

0(Ω)×V2(Ω2)×H1
0(Ω)×V2(Ω2)→ R such that

L (w, u, u2, g, g2) = 1
2

ˆ
Σ
|u− u2|2 dσ + a1(w, u, g) + a2(w, u, u2, g2)

in which a1(w, u1, g) and a2(w, u2, g2) are respectively given by

a1(w, u, g) =
ˆ

Ω
ε̃1∇u · ∇g dx−

ˆ
Ω1

fg dx−
ˆ

Ω2

ε̃1∇w · ∇g dx

a2(w, u, u2, g2) =
ˆ

Ω2

ε2∇u2 · ∇g2 dx−
ˆ

Ω2

f2g2 dx +
ˆ

Ω2

ε̃1∇(w − u) · ∇g2 dx.

The functions g ∈ H1
0(Ω), g2 ∈ V2(Ω2) are the adjoint variables associated to u, u2 respec-

tively. Let (uw, uw2 ) be the solution to (6). By design, a1(w, uw, g) = 0 for all g ∈ H1
0(Ω),

and a2(w, uw, uw2 , g2) = 0 for all g2 ∈ V2(Ω2), so one has

L (w, uw, uw2 , g, g2) = J(w) ∀g ∈ H1
0(Ω), ∀g2 ∈ V2(Ω2). (26)

Clearly, the functional L is differentiable with respect to all its variables. For all v = (w, u, u2, g, g2) ∈
V2(Ω2)×H1

0(Ω)×V2(Ω2)×H1
0(Ω)×V2(Ω2), the partial derivatives of L at v belong respectively to

∂wL (v) ∈ (V2(Ω2))∗, ∂uL (v) ∈ (H1
0(Ω))∗, ∂u2L (v) ∈ (V2(Ω2))∗, ∂gL (v) ∈ (H1

0(Ω))∗, ∂g2L (v) ∈
(V2(Ω2))∗.
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Let g ∈ H1
0(Ω) and g2 ∈ V2(Ω2) be given, and vw = (w, uw, uw2 , g, g2). By taking the derivative of

the relation (26) with respect to w, we find that, by applying the chain rule formula,

(J ′(w), h)ε̃1 = 〈∂wL (vw), h〉+ 〈∂uL (vw), du
w

dw
(h)〉+ 〈∂u2L (vw), du

w
2

dw
(h)〉, ∀h ∈ V2(Ω2).

Now, if there exists (gw, gw2 ) ∈ H1
0(Ω)×V2(Ω2) for which the equations

∂uL (w, uw, uw2 , gw, gw2 ) = 0 and ∂u2L (w, uw, uw2 , gw, gw2 ) = 0

are satisfied for all w ∈ V2(Ω2), this yields

(J ′(w), h)ε̃1 = 〈∂wL (w, uw, uw2 , gw1 , gw2 ), h〉 ∀w ∈ V2(Ω2), ∀h ∈ V2(Ω2).

To investigate the existence of (gw, gw2 ), we need to write down the expression of ∂uL (vw) and
∂u2L (vw): By a direct calculus, one checks that

〈∂uL (vw), v〉 =
ˆ

Ω
ε̃1∇g · ∇v dx−

ˆ
Ω2

ε̃1∇g2 · ∇v dx +
ˆ

Σ
(uw − uw2 )v dσ, ∀v ∈ H1

0(Ω)

〈∂u2L (vw), v2〉 =
ˆ

Ω2

ε2∇g2 · ∇v2 dx−
ˆ

Σ
(uw − uw2 )v2 dσ ∀v2 ∈ V2(Ω2).

Hence, the functions (gw, gw2 ) ∈ H1
0(Ω)×V2(Ω2) are governed by the following system of equations:

ˆ
Ω
ε̃1∇gw · ∇v dx =

ˆ
Ω2

ε̃1∇gw2 · ∇v dx−
ˆ

Σ
(uw − uw2 )v dσ ∀v ∈ H1

0(Ω)
ˆ

Ω2

ε2∇gw2 · ∇v2 dx =
ˆ

Σ
(uw − uw2 )v2 dσ ∀v2 ∈ V2(Ω2).

(27)

Clearly the previous system of equations is well-posed. Therefore the functions gw, gw2 are well-
defined. We then have all the tools to prove the result stated in Lemma 4.1.

Proof of Lemma 4.1 . Take w ∈ V2(Ω2). From the characterization (27) of gw and gw2 , we deduce
that for all h ∈ V2(Ω2), we have

(J ′(w), h)ε̃1 = 〈∂wL (w, uw, uw2 , gw1 , gw2 ), h〉.

On the other hand, one can compute explicitly the value of 〈∂wL (w, u, u2, g, g2), h〉:

〈∂wL (w, u, u2, g, g2), h〉 =
ˆ

Ω2

ε̃1∇h · ∇(g2 − g|Ω2) dx.

This shows that J ′(w) = gw |Ω2 − g
w
2 and then the result is proved.
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