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Abstract

Some complex models are frequently employed to describe physical and mechan-

ical phenomena. In this setting we have an input X in a general space, and an

output Y = f(X) where f is a very complicated function, whose computational

cost for every new input is very high. We are given two sets of observations of

X, S1 and S2 of different sizes such that only f(S1) is available. We tackle the

problem of selecting a subsample S3 ∈ S2 of smaller size on which to run the

complex model f , and such that distribution of f(S3) is close to that of f(S1).

We suggest three algorithms to solve this problem and show their efficiency

using simulated datasets and the Airfoil self-noise data set.
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1. Introduction

Numerical models are often used to model physical or mechanical phenom-

ena [1] [2]. Such models are used to generate some scenarios using the solution

of partial derivative equations (PDEs). Their input is often composed of bor-

der and initial conditions denoted by X, and their output f(X) may be the5

values of some variables which may be multidimensional and depend on space

and time. The use of such models consists in solving complicated PDEs, and

each generated scenario corresponds, in the machine learning paradigm, to an

inference for a new input X, thus the computation of f(X). In practice, this

computation can take several hours and even days depending on the complexity10

of the model f and on the granularity of time and space chosen to compute the

solution. In this context, machine learning and deep learning algorithms may

be used to replace such complicated models by learning an approximation of f ,

often based on small samples. In what follows we consider the subsampling [3]

problem in this framework.15

Suppose we have an iid sample S1 = {X1, . . . , Xn1
}, with the same distribu-

tion as X, of data defined on a space, that we will assume to be just a complete

separable metric space (E , ρ). We apply to each of these observations a very

complicated, expensive and deterministic smooth function f : E → R, which we

will consider as black box. The pair (S1, f(S1)) may also be seen as the result20

of a large establishment survey.

Next, another large iid sample S2 of size n2 is provided with the same dis-

tribution as the first one, but for which the values f(S2) are not provided.

The main problem we address is how to provide a subsample S3 ⊂ S2 of

size n3 smaller than n2 and such that the distribution of f(S3) will be close to25

that of f(S1). The idea is that in the future the values of f(X) will be only

computed for S3.

This problem appears quite often in practice, in particular in some industrial

applications, semi-supervised learning, neuroscience, big data regression and

clustering, among many other problems. At first glance this problem is that of30
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a classical subsampling. It can be approached by sampling techniques used in

surveys, or more recent techniques adapted to unsupervised ([4]) or supervised

([5], [6],[7]) situations. These approaches are tailored to sample from within a

population (a large sample, accessible or not). They may be used partially to

solve our problem which is semi supervised.35

Other approaches consider also the sampling problem with different type of

constraints and under uncertainties ([8]). In Design of experiments ([9]) the

same problem is faced with other specifications; the sample S1 is in general of

very small size (∼ 15) and the target sample S3 is built sequentially, observations

are sampled one by one. Moreover, the set S3 is multidimensional space, and40

not a fixed sample. In our context, we need to sample from S2 with constraints

related to S1.

This manuscript is organized as follows. In Section 2 we fix some notation

that will be used throughout the manuscript and we specify the framework of the

problem to be solved. In Section 3 we introduce three different algorithms with45

different alternative procedures to solve the problem. In Section 4 we provide

sharp bounds for the probability of being far from the target distribution, which

motivates the last algorithm, which is based on these results. Section 5 is

devoted to illustrate, with some simulated experiments, the behaviour of the

proposed algorithms. Lastly, in Section 6 some concluding remarks are provided.50

2. The problem setting

Let S1 = {X1, . . . , Xn1
} be a set of n1 iid random elements in a complete

separable metric space (E , ρ), with the same common distribution µ as X, and

S2 = {X ′
1, . . . , X

′
n2
} a second iid sample of size n2 with the same distribution

µ. Let f : E → R, a deterministic function which is very complicated and

hard to compute (which we may think as a regular black box). The unknown

distribution of f(X) will be denoted by F . We have a sample

Y1 =: {Yi = f(Xi) for i = 1, . . . n1}

of the images of the first sample S1. Images for S2 are not available.
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With this information on hand, we want to find a subsample S3 ⊂ S2, with

size n3 << n2, such that the empirical distribution of f(S3) := {f(Xj) : Xj ∈

S3} will be close to the distribution of f(X1).55

We will consider several different approaches to this problem throughout the

manuscript, with different complexities. Some of them do not make use of the

sample Y1, while others do.

Let µ1 be the empirical distribution of S1, and given a subset S3 ⊂ S2, write

µ3 for its empirical distribution. If f is regular, we can look for a subset S3 for

which

d(µ1, µ3), (1)

is minimum among all possible subsets of size n3, and d is a distance that

metrizes weak convergence, like the Prokhorov distance. However, this trans-60

lates the problem into another one which is computationally hard.

In what follows, the corresponding empirical probability measures on the

space (E , ρ) are denoted by µni, i = 1, . . . , 3 while the ones corresponding to

f(X) ∈ R are denoted by Fni i = 1, . . . , 3.

Remark 1. We will use in some of the algorithms that follow the notions of65

distinct and extended nearest neighbours. More precisely, for each data point

in S1 we will look for the nearest point in S2 to it. It may happen that the set

of the nearest neighbours of observations in S1 from S2 (having respectively n1

and n2 observations) may contain duplicates from S2. If we simply remove these

duplicates, the remaining set of neighbours will be of size less than n1. We call70

this set the distinct nearest neighbours. The extended nearest neighbours of S1

from S2 refers to the set obtained by adding to the distinct nearest neighbours,

further neighbours from S2 (neighbours which are further away), i.e. in that

case we look for the second nearest neighbour, and so on.

3. Some Algorithms75

We first propose a simple solution which does not make use of Y1. Then we

will introduce two algorithms that make use of the output sample Y1 in different
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ways. The idea is to get a subsample Y3 from Y1 whose distribution is close

to that of Y1, consider its inverse image f−1(Y3), which is a subsample of S1,

and look for its neighbours in S2. The selection of the optimal subsample Y3 is80

based on the results given in Section 4.

3.1. A simple extended nearest neighbours approach

Consider S1 = {X1, ...Xn1
} and S2 = {X ′

1, ...X
′
n2
} with n2 > n1. Compute

the nearest neighbours of S1 in S2, let d1, ..., dn1
be their ordered distances and

j(1), ...j(n1) their indices.85

If two observations from S1, Xi and Xj , have the same nearest neighbour, say

X ′
l , at distances di and dj , such that di < dj , thanX ′

l will be kept as a neighbour

of Xi and for Xj we take its second nearest neighbour from S2. If more than two

observations have the same nearest neighbour, we will need to explore further

away neighbours.90

We end with the set S3 = {X ′

1, . . . , X
′

n1
} and its Prokhorov distance to µ1 will

be smaller than d(n1) which will be small if n2 is large and n2 >> n1. Indeed,

d(n1) will converge to 0 over any compact set K ⊂ E .

Algorithm 1: Extended nearest neighbours.

S1 = [X1, ....., Xn1
];

S2 = [X ′
1, ....., X

′
n2
];

S3 = Extended nearest neighbours of S1 in S2 ;

This simple approach is based on the idea that observations from S2 close to95

S1, should have images through f close to the images of S1.

3.2. A histogram based approach

In the previous section we did not make use of Y1 = f(S1). Suppose now that

we are interested in P(f(X) ∈ I), where I ∈ R is an interval, or a finite union

of disjoint intervals in R, say I1, . . . , Ik. We look for a subsample S3 ⊂ S2, with100

size n3 << n2, such that we can approach P(f(X) ∈ I). We start by considering

the set
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An1
(I) := {Xj ∈ S1 : f(Xj) ∈ I}.

Next, given ϵ > 0, define

Bn1
(I) := B(An1

(I), ϵ) :=
⋃

Xj∈An1 (I)

B(Xj , ϵ),

and

S3(ϵ) = {Xi ∈ S2 : Xi ∈ B(An1(I), ϵ)}.

The heuristic idea in this case is to look for a subsample S3 such that the

histogram of f(S3) is close to the one built up with the intervals I of the distri-105

bution of f(X), assuming that the function f is smooth.

In this case, the size of S3(ϵ) is random and depends on ϵ. From an asymp-

totic point of view, we will need that ϵ → 0 slowly enough, since we can think

of the problem as estimating the distribution of X1|f(X1) ∈ I. Some theory

can be derived along this line. An alternative is to fix n3 and choose ϵ in order110

to have a subsample of size approximately n3. A special case of this approach

is implemented in Algorithm 2 and consists in using bins obtained by adjusting

a histogram to f(S1).

Algorithm 2: Histogram based algorithm.

S1 = [X1, ....., Xn1 ];

S2 = [X ′
1, ....., X

′
n2
];

S3 = {∅} ;

Build a histogram for f(S1) using J bins Ij and consider the sets

Aj = {X ∈ S1 : f(X) ∈ Ij};

for j in 1..J do

Z = distinct neighbours of Aj in S2 ;

Append Z to S3;

end
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4. Bounds for the probability of being far from a target distribution115

In what follows we provide sharp bounds for the probability of being far

from a target distribution, when we make use of the sample Y1 as in Algorithm

2. These results will motivate our proposal of Algorithm 3 given in subsection

4.3 below.

Given a large sample of iid random variables Y1 := {Y1, . . . , Yn} with distri-120

bution F , we look for a subsample of Y1, of much smaller size, and which is as

close as possible in distribution to the original one.

Suppose we fix the size m of the desired subsample. Searching within the

class C of all possible subsamples of size m taken from Y1 is in general unfeasible

in practice from a computational point of view. Thus, we will consider a smaller

class defined as follows. We start by considering a partition Cn of the subset

⊂ {1, . . . , n} into L disjoint subsets Ck ⊂ {1, . . . , n}, k = 1, . . . , L each of

size m. We denote by Fn the empirical distribution of Y1, Fk the empirical

distribution of the set {Yj : j ∈ Ck}, and Fn−k the empirical distribution of the

set {Yj : j ∈ {1, . . . , n} \ Ck}.

Next, define

Wn,k = minCk∈Cn∥Fk − Fn−k∥ (2)

and

Ĉk = argminCk∈Cn
∥Fk − Fn−k∥, (3)

where ∥F − G∥ = supt |F (t) − G(t)| denotes the usual supremum distance.

In other words, this amounts to using the classical Kolmogorov–Smirnov (KS)125

([10]) statistic to assess the distance between two empirical distributions or,

when F is known, the distance between the empirical distribution and the the-

oretical underlying distribution F .

Given m, L and t > 0, we want to lower bound the following probability

P( min
Ck∈Cn

∥Fk − Fn−k∥ ≤ t), (4)
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and to provide an algorithm to find Ĉk, for a given family Cn.

Alternatively, we will also consider another version, denoted by Vn,k. It is

obtained by replacing the KS statistic in (2) and (3) with the Cramer–von

Mises discrepancy,

M(H1, H2) =

∫
R
(H1(t)−H2(t))

2dH2(t).

That is, we will use the statistic

Vn,k = minCk∈Cn

∫
R
(Fk(t)− Fn−k(t))

2dFn−k(t) = minCk∈Cn
M(Fk, Fn−k). (5)

Remark 2. The relation between m (the size of the subsample of each Ck)

and L, the size of Cn where we will perform the search, must take into account130

two different problems. A larger m will make the approximation better, but our

purpose is to look for small values of m relative to n2. On the other hand, this

will increase L and therefore the computation time.

We start by considering the unrealistic situation where the distribution F

is known. In the case where it is unknown it will be replaced by Fn−k. Note135

that when F is continuous (which we will assume throughout the paper), the

statistic
√
mWn,k has a continuous distribution not depending on F , due to the

distribution-free property of the Kolmogorov–Smirnov statistic. This is also the

case for mVn,k.

4.1. The case where F is known140

In order to lower bound the probability given in (4) we first recall the well

known Dvoretzky–Kiefer–Wolfowitz (DKW)[11] inequality.

P(∥Fk − F∥ ≤ t) ≥ 1− 2e−2mt2 . (6)

Since the subsets in Cn are disjoint, we have independence, and therefore

P( min
Ck∈Cn

∥Fk − F∥ ≤ t) = 1− P(∥Fk − F∥ > t)L ≥ 1−
(
2e−2mt2

)L

, (7)
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which will be small if e−2mt2 < 0.5 (that is, mt2 > ln(2)
2 ) for L large. For

instance, if L = 10000, m = 890 and t = 0.02 the bound is 1.

The corresponding result for the Cramer–von Mises discrepancy follows di-

rectly from the fact that

{mM(Fk, F ) ≥ t} ⊂ {
√
m∥Fk − F∥ ≥

√
t}.

4.2. The case where F is unknown

In the above development, we assumed that the distribution F was known.145

The whole approach can be adapted to the case where F is continuous but

unknown, relying on the distribution-free properties of the statistics we use.

We assume throughout the continuity of F .

Observe that ∥Fk−Fn−k∥ is nothing but the two-sample KS-statistic which

is distribution free (whenever F is continuous).150

P( min
Ck∈Cn

∥Fk − Fn−k∥ ≤ t)

= 1− P( min
Ck∈Cn

∥Fk − Fn−k∥ > t)

≥ 1− P( min
Ck∈Cn

(∥Fk − F∥+ ∥F − Fn−k∥) > t)

= 1−
(
P(∥Fk − F∥ > t/2)L + P(∥Fn−k − F∥ > t/2)L

)
≥ 1−

(
2e−mt2L/2 + 2e−(n−m)t2L/2

)
. (8)

Figure 1 shows the behaviour of the obtained lower bounds for simulated

Gaussian datasets using m = 1000 and L = 1000, which shows the good accu-

racy of inequalities (7 - left) and (8 - right).

4.3. A partition based algorithm155

From the previous result we obtain k << n1 for which the distribution of

Fk is close to the distribution of Fn−k. Assuming that the function f is smooth

enough we propose an algorithm with the following steps:
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Figure 1: Bound from Equations 7(left) and 8 (right) for m = 1000 and L = 1000.

� Let Ĉk = {Yi1, . . . , Yik} be the minimizer obtained in the one dimensional

space.160

� Consider a C̃k = {Xi1, . . . Xik} ⊂ S1 fulfilling f(C̃k) = Ĉk.

� For each Xij ∈ C̃k, find its nearest neighbour in the set S2. If there are

ties, we put the data multiple times.

A detailed description of the algorithm is given below.

Algorithm 3: Partition based algorithm.

S1 = [X1, ....., Xn1 ];

S2 = [X ′
1, ....., X

′
n2
];

S3 = {∅} ;

Yi = f(Xi), with empirical distribution F ;

Partition the set Y1, .., Yn1 into L clusters of size m s.t. n = mL;

Denote the clusters by Ck, and their complements by Cn−k = S1 \ Ck;

Find the partition Ĉk which minimizes ∥Fk − Fn−k∥;

Find the subset C̃k = {Xi1, . . . Xik} ⊂ S1 fulfilling f(C̃k) = Ĉk ;

for i in C̃k do

Z = nearest neighbour of i in S2 ;

Append Z to S3;

end

165
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The partitions in this algorithm may be obtained at random or using a ran-

domized clustering algorithm like k-means. Note that the size of the obtained

subsamples in this case are fixed and equal to m.

5. Some experiments

In this section we provide the results of some simulations for the three algo-170

rithms proposed; extended nearest neighbours (algorithm 1), histogram based

(algorithm 2), and partition based (algorithm 3). As mentioned above, our ob-

jective is to find a subsample S3 ⊂ S2 for which the distribution of the set f(S3)

will be close to that of f(S1), without using the values of f(S2).

To do this, we will apply each algorithm to data generated from various dis-175

tributions, varying sample sizes (n1 and n2) as well as the dimension d of the

inputs. The values of these parameters are fixed as follows: n1 = 100, ex-

cept for Algorithm 3 where we also experimented with the values n1 = 400,

n2 ∈ {200, 1000, 5000}, d ∈ {1, 2, 50} except for graphs where d = 5 is used

instead of d = 1.180

We use the following distributions; the coordinates are independent for d > 1:

� beta distribution B(0.5, 0.5).

� Gaussian distribution, N (0, 1).

� uniform distribution, U [−1, 1].

� truncated Gaussian distribution, where the intervals of truncation are185

[−1, 1] and [−2, 2] . We denote it by T N (1) and T N (2).

� uniform distribution over graphs, where d in the number of nodes in the

graph, and probability for each edge is 0.5.

Note that the graphs we generate are neither oriented nor acyclic. They are

represented in our runs by their adjacency matrix reshaped into a d2 length190

vector. For the function f : E → R we used f(x) = ||x2||+ <a.x>
d where a is the
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fixed real sequence ranging from −0.5 to 0.5 with step 1
d .

Once we get the output subset S3 from any algorithm we use the Kolmogorov–

Smirnov test to compare the observed empirical distributions of f(S1), with that195

of f(S3) which is not available in general. We report the values of the test statis-

tic as well as the corresponding p-values, averaged over K = 100 runs for each

configuration.

Tables 1 and 2 give the results for Algorithm 1, Tables 3 and 4 for Algorithm200

2, and Tables 5 and 6 for Algorithm 3.

The three algorithms obtain a subset S3 for which the distribution of f(S3) is

very close to that of f(S1) according to the Kolmogorov test (with a significance

value of 0.01), for all the values of n2, except for the case of the Gaussian distri-

bution in dimension 20. In all cases, the p-values decrease with the dimension,205

as expected. The values of the test statistic are often lower with Algorithm 1;

this is due to the fact that Algorithm 1 outputs systematically a subsample S3

of exactly the same size as that of S1, whereas the two other algorithms give

smaller subsamples.

210

The only case where the obtained subsamples are not satisfactory was for

the Gaussian distribution in dimension 20. Using the truncated Gaussian distri-

butions (over [−1, 1] and [−2, 2]) improved the results. We think that the actual

version of our algorithms might fail for tailed distributions in high dimensions.

215
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Distribution n2

Dimension 1 Dimension 2 Dimension 20

n3 Stat Pvalue n3 Stat Pvalue n3 Stat Pvalue

B(0.5, 0.5)

200 100 0.04 0.99 100 0.06 0.97 100 0.12 0.53

1000 100 0.02 1 100 0.04 1 100 0.13 0.44

5000 100 0.01 1 100 0.03 1 100 0.13 0.41

N (0, 1)

200 100 0.05 0.99 100 0.08 0.88 100 0.22 0.07

1000 100 0.02 1 100 0.05 1 100 0.30 0.01

5000 100 0.02 1 100 0.04 1 100 0.31 0.01

U [−1, 1]

200 100 0.04 1 100 0.06 0.98 100 0.11 0.57

1000 100 0.02 1 100 0.04 1 100 0.13 0.45

5000 100 0.01 1 100 0.03 1 100 0.12 0.48

Table 1: Average size of n3, Kolmogorov-Smirnov test between S1 and S3 for

beta, Gaussian and uniform distribution (Algorithm 1).

Distribution n2

d = 1 d = 2 d = 20

n3 Stat Pvalue n3 Stat Pvalue n3 Stat Pvalue

T N (1)

200 100 0.05 1 100 0.07 0.94 100 0.20 0.14

1000 100 0.02 1 100 0.05 1 100 0.27 0.02

5000 100 0.02 1 100 0.05 1 100 0.26 0.02

T N (2)

200 100 0.04 1 100 0.07 0.93 100 0.22 0.08

1000 100 0.02 1 100 0.05 1 100 0.29 0.01

5000 100 0.02 1 100 0.04 1 100 0.30 0.00

d = 5 d = 10 d = 20

Graphs

200 94 0.05 1 100 0.08 0.91 100 0.14 0.28

1000 98 0.05 1 100 0.09 0.82 100 0.11 0.58

5000 92 0.03 1 100 0.10 0.70 100 0.10 0.70

Table 2: Average size of n3, Kolmogorov-Smirnov test between S1 and S3 for

truncated Gaussian distribution and for graphs (Algorithm 1).
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Distribution n2

d = 1 d = 2 d = 20

n3 Stat Pvalue n3 Stat Pvalue n3 Stat Pvalue

B(0.5, 0.5)

200 48 0.06 0.99 48 0.08 0.96 47 0.16 0.43

1000 47 0.06 0.99 47 0.06 0.99 47 0.16 0.42

5000 47 0.06 0.99 48 0.06 0.99 47 0.16 0.43

N (0, 1)

200 48 0.08 0.92 48 0.11 0.80 47 0.30 0.03

1000 48 0.08 0.93 47 0.09 0.93 48 0.32 0.01

5000 48 0.08 0.92 47 0.08 0.96 47 0.33 0.01

U [−1, 1]

200 48 0.06 0.99 48 0.07 0.97 48 0.14 0.53

1000 47 0.06 0.99 48 0.06 0.99 47 0.15 0.47

5000 47 0.06 0.99 48 0.06 0.99 47 0.15 0.45

Table 3: Average size of n3, Kolmogorov-Smirnov test between S1 and S3 for

beta, Gaussian and uniform distribution (Algorithm 2).

Distrbution n2

d = 1 d = 2 d = 20

n3 Stat Pvalue n3 Stat Pvalue n3 Stat Pvalue

T N (1])

200 47 0.07 0.99 47 0.09 0.89 48 0.26 0.11

1000 48 0.06 0.99 47 0.07 0.97 48 0.30 0.03

5000 48 0.07 0.98 48 0.07 0.99 47 0.29 0.04

T N (2)

200 47 0.07 0.98 48 0.09 0.89 47 0.28 0.04

1000 48 0.06 0.98 48 0.08 0.97 48 0.32 0.03

5000 47 0.06 0.99 48 0.07 0.98 47 0.32 0.01

d = 5 d = 10 d = 20

Graphs

200 46 0.13 0.63 48 0.10 0.84 46 0.16 0.37

1000 45 0.08 0.97 47 0.08 0.97 48 0.11 0.81

5000 45 0.04 1 46 0.13 0.58 48 0.09 0.93

Table 4: Average size of n3, Kolmogorov-Smirnov test between S1 and S3 for

truncated Gaussian distribution and for graphs (Algorithm 2).
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Distribution n1 n2

d = 1 d = 2 d = 20

n3 Stat Pvalue n3 Stat Pvalue n3 Stat Pvalue

B(0.5, 0.5)

100

200 50 0.10 0.86 50 0.11 0.82 50 0.17 0.43

1000 50 0.09 0.85 50 0.10 0.83 50 0.17 0.38

5000 50 0.08 0.92 50 0.09 0.88 50 0.16 0.43

400

200 50 0.08 0.91 50 0.09 0.85 50 0.15 0.39

1000 50 0.08 0.92 50 0.07 0.93 50 0.14 0.40

5000 50 0.07 0.93 50 0.08 0.93 50 0.14 0.41

N (0, 1)

100

200 50 0.09 0.90 50 0.11 0.76 50 0.30 0.04

1000 50 0.09 0.88 50 0.10 0.84 50 0.32 0.01

5000 50 0.09 0.91 50 0.10 0.85 50 0.32 0.01

400

200 50 0.08 0.91 50 0.09 0.83 50 0.29 0.02

1000 50 0.08 0.93 50 0.08 0.88 50 0.32 0.00

5000 50 0.08 0.93 50 0.08 0.92 50 0.30 0.00

U [−1, 1]

100

200 50 0.10 0.84 50 0.10 0.83 50 0.15 0.51

1000 50 0.09 0.88 50 0.10 0.81 50 0.16 0.46

5000 50 0.09 0.90 50 0.09 0.91 50 0.15 0.46

400

200 50 0.08 0.91 50 0.09 0.86 50 0.15 0.43

1000 50 0.08 0.93 50 0.08 0.89 50 0.14 0.39

5000 50 0.07 0.95 50 0.07 0.94 50 0.14 0.44

Table 5: Average size of n3, Kolmogorov-Smirnov test between S1 and S3 for

beta, Gaussian and uniform distribution (Algorithm 3).
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Distrbution n1 n2

d = 1 d = 2 d = 20

n3 Stat Pvalue n3 Stat Pvalue n3 Stat Pvalue

T N (1)

100

200 50 0.10 0.87 50 0.11 0.78 50 0.27 0.08

1000 50 0.09 0.88 50 0.10 0.80 50 0.29 0.03

5000 50 0.09 0.88 50 0.09 0.88 50 0.28 0.05

400

200 50 0.08 0.91 50 0.09 0.82 50 0.27 0.05

1000 50 0.08 0.94 50 0.08 0.89 50 0.27 0.03

5000 50 0.07 0.94 50 0.08 0.92 50 0.27 0.02

T N (2)

100

200 50 0.10 0.85 50 0.11 0.77 50 0.31 0.04

1000 50 0.09 0.86 50 0.10 0.82 50 0.33 0.02

5000 50 0.09 0.91 50 0.09 0.87 50 0.31 0.02

400

200 50 0.08 0.90 50 0.09 0.83 50 0.29 0.03

1000 50 0.08 0.93 50 0.08 0.87 50 0.30 0.01

5000 50 0.07 0.94 50 0.08 0.91 50 0.30 0.01

d = 5 d = 10 d = 20

Graphs

100

200 50 0.11 0.85 50 0.13 0.67 50 0.14 0.51

1000 50 0.10 0.83 50 0.10 0.90 50 0.13 0.56

5000 50 0.13 0.61 50 0.17 0.28 50 0.11 0.80

400

200 50 0.10 0.79 50 0.09 0.85 50 0.21 0.06

1000 50 0.12 0.59 50 0.08 0.91 50 0.10 0.75

5000 50 0.09 0.88 50 0.15 0.23 50 0.10 0.74

Table 6: Average size of n3, Kolmogorov-Smirnov test between S1 and S3 for

truncated Gaussian distribution and for graphs (Algorithm 3).

5.1. Comparing to other sampling approaches

Our algorithms aim to construct a subsample S3 from S2 using information

or constraints related to S1. Existing subsampling approaches cannot achieve

this task but may be used as an alternative to some steps in our algorithms.

We will use such approaches to obtain a subsample S3 directly form S2 without220

considering neither S1 or Y1 in algorithm 1, and as an alternative in algorithms

2 and 3 to select a subsample from S1. To do that, we consider two recent unsu-
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pervised approaches; the ”support points” [4] and the ”D-optimality” sampling

[5].

5.1.1. Support points225

In the Support points algorithm, we have a fixed distribution F and we look

for a set of observations the best representing F . Those points are obtained by

minimizing an energy distance (Székely and Rizzo 2004)

E(F, Fn) =
2

n

n∑
i=1

E||xi − Y || − 1

n2

n∑
i=1

n∑
j=1

E||xi − xj ||,

where Y ∼ F . The minimization of the energy distance can be formulated

as a difference-of-convex program. For real valued random variables, energy

distance is nothing but twice Cramer-von Mises discrepancy. For our setting

the empirical version of E is optimized

Ê({xi}, {ym}) =
2

nN

n∑
i=1

N∑
m=1

||ym − xi||2 −
1

n2

n∑
i=1

n∑
j=1

E||xi − xj ||2,

where {ym} is a sample from F . The algorithm for the support points using

one sample batch is defined as follows [4]

� Sample D(0) = {x(0)
i }ni=1 i.i.d. from {ym}Nm=1

� Set l = 0, and repeat until convergence of D(l) :

– For i = 1, .., n do parallel:230

Set x
(l+1)
i ←Mi

(
D(l); {ym}Nm=1

)
,.

– Update D(l+1) ← {x(l+1)
i }ni=1, and set l← l + 1.

� Return the converged point set D(∞)

where

Mi

(
{x′

j}nj=1; {ym}Nm=1

)
= q−1

(
x′
i; {ym}Nm=1

)N

n

n∑
j=1;j ̸=i

x′
i − x′

j

||x′
i − x′

j ||2
+

N∑
m=1

ym
||x′

i − ym||2

 ,

and

q
(
xi; {ym}Nm=1

)
=

N∑
m=1

||xi − ym||−1
2 .
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Let wi
m = ||xi − ym||−1

2 and βi
j = ||x′

i − x′
j ||

−1
2 . M may be written

Mi

(
{x′

j}nj=1; {ym}Nm=1

)
=

N

n
∑N

m=1 w
i
m

n∑
j=1;j ̸=i

βi
j(x

′
i − x′

j) +

∑N
m=1 w

i
mym∑N

m=1 w
i
m

It can be remarked that Mi is composed of two terms; the second term is a235

weighted average of the ym sample with weights inversely proportional to the

distance of ym to x′
i;

Support points may be applied in our problem either to the input sample

(S1 or S2) or to the output Y1. The obtained sample from support points is

composed of arbitrary observations which are not part of the original sample.240

So when applying this approach we take as a final sample, the nearest neighbors

of the obtained support points.

5.1.2. D-optimality

In [5] the authors suggest a procedure for subsampling for linear regression;245

however, the selection procedure is unsupervised and based on D-optimality.

If x = {x1, x2, ..., xN} is the data set at hand, such that xi ∈ Rp, and n is

the size of the desired subsample, let r = n/2p, and x•,j = {xij , i = 1..N}

the observations of the jth coordinate λ of X. The process of sampling is the

following:250

� Let Sn = ∅

� For j = 1.., p

– Let Xj the set observations from X having the r largest values and

the r smallest values within x•,j

– Let Sn = Sn ∪Xj , and X = X \Xj .255

� The disared subsample is Sn
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Distribution Selection n2

d = 1 d = 2 d = 20
n3 Stat Pvalue n3 Stat Pvalue n3 Stat Pvalue

B(0.5, 0.5)
SP

200 50 0.04 1 50 0.06 0.99 50 0.13 0.61
1000 50 0.03 1 50 0.05 1 50 0.13 0.64
5000 50 0.02 1 50 0.04 1 50 0.13 0.63

D-opt
200 50 0.26 0.02 48 0.13 0.63 40 0.14 0.58
1000 50 0.26 0.02 48 0.12 0.65 40 0.15 0.57
5000 50 0.26 0.02 48 0.13 0.63 40 0.14 0.59

N (0, 1)
SP

200 50 0.05 1 50 0.08 0.95 50 0.32 0.02
1000 50 0.03 1 50 0.06 0.99 50 0.36 0.01
5000 50 0.03 1 50 0.06 1 50 0.37 0

D-opt
200 50 0.31 0.01 48 0.29 0.01 40 0.29 0.06
1000 50 0.32 0 48 0.31 0.01 40 0.30 0.04
5000 50 0.31 0 48 0.32 0.01 40 0.29 0.06

U [−1, 1]
SP

200 50 0.04 1 50 0.07 0.99 50 0.13 0.61
1000 50 0.03 1 50 0.05 1 50 0.13 0.60
5000 50 0.02 1 50 0.05 1 50 0.13 0.59

D-opt
200 50 0.26 0.02 48 0.15 0.46 40 0.15 0.53
1000 50 0.26 0.02 48 0.15 0.44 40 0.14 0.59
5000 50 0.26 0.02 48 0.15 0.44 40 0.14 0.59

Table 7: Average size of n3, Kolmogorov-Smirnov test between S1 and S3 for

beta, Gaussian and uniform distribution (Algorithm 2 on X).

Distrbution Selection n2

d = 1 d = 2 d = 20
n3 Stat Pvalue n3 Stat Pvalue n3 Stat Pvalue

T N (1)
SP

200 50 0.04 1 50 0.07 0.98 50 0.18 0.34
1000 50 0.03 1 50 0.06 1 50 0.20 0.23
5000 50 0.03 1 50 0.05 1 50 0.20 0.23

D-opt
200 50 0.25 0.03 48 0.22 0.11 40 0.19 0.33
1000 50 0.25 0.02 48 0.23 0.07 40 0.20 0.29
5000 50 0.25 0.02 48 0.23 0.07 40 0.20 0.32

T N (2)
SP

200 50 0.04 1 50 0.08 0.97 50 0.26 0.07
1000 50 0.03 1 50 0.06 0.99 50 0.31 0.01
5000 50 0.03 1 50 0.05 1 50 0.31 0.02

D-opt
200 50 0.28 0.01 48 0.28 0.02 40 0.26 0.10
1000 50 0.29 0.01 48 0.28 0.02 40 0.27 0.09
5000 50 0.29 0.01 48 0.29 0.02 40 0.25 0.12

d = 5 d = 10 d = 20

Graphs
SP

200 50 0.07 0.95 50 0.12 0.69 50 0.12 0.70
1000 50 0.06 0.98 50 0.11 0.73 50 0.13 0.65
5000 50 0.04 0.99 50 0.10 0.81 50 0.13 0.64

D-opt
200 47.23 0.09 0.86 40 0.13 0.72 40 0.14 0.65
1000 46.24 0.08 0.93 40 0.12 0.74 40 0.14 0.62
5000 45.61 0.08 0.92 40 0.12 0.75 40 0.15 0.60

Table 8: Average size of n3, Kolmogorov-Smirnov test between S1 and S3 for

truncated Gaussian distribution and for graphs(Algorithm 2 on X).
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Distribution Selection n2

d = 1 d = 2 d = 20
n3 Stat Pvalue n3 Stat Pvalue n3 Stat Pvalue

B(0.5, 0.5)
SP

200 50 0.04 1 50 0.06 0.99 50 0.14 0.58
1000 50 0.03 1 50 0.05 1 50 0.13 0.66
5000 50 0.02 1 50 0.04 1 50 0.12 0.68

D-opt
200 50 0.26 0.02 50 0.25 0.03 50 0.13 0.61
1000 50 0.26 0.02 50 0.26 0.02 50 0.13 0.61
5000 50 0.26 0.02 50 0.26 0.02 50 0.15 0.50

N (0, 1)
SP

200 50 0.04 1 50 0.08 0.95 50 0.30 0.03
1000 49.98 0.03 1 50 0.06 0.99 50 0.35 0
5000 50 0.02 1 50 0.04 1 50 0.35 0.01

D-opt
200 50 0.26 0.02 50 0.23 0.06 50 0.30 0.03
1000 50 0.26 0.02 50 0.25 0.03 50 0.34 0.01
5000 50 0.26 0.02 50 0.26 0.02 50 0.35 0.01

U [−1, 1]
SP

200 50 0.04 1 50 0.07 0.99 50 0.14 0.57
1000 50 0.03 1 50 0.05 1 50 0.13 0.61
5000 50 0.02 1 50 0.04 1 50 0.13 0.63

D-opt
200 50 0.26 0.02 50 0.24 0.04 50 0.14 0.55
1000 50 0.26 0.02 50 0.26 0.02 50 0.14 0.58
5000 50 0.26 0.02 50 0.26 0.02 50 0.14 0.51

Table 9: Average size of n3, Kolmogorov-Smirnov test between S1 and S3 for

beta, Gaussian and uniform distribution (Algorithm 2 on Y).

Distribution Selection n2

d = 1 d = 2 d = 20
n3 Stat Pvalue n3 Stat Pvalue n3 Stat Pvalue

T N (1)
SP

200 50 0.04 1 50 0.07 0.98 50 0.18 0.34
1000 50 0.03 1 50 0.05 1 50 0.21 0.18
5000 49.98 0.02 1 50 0.04 1 50 0.21 0.21

D-opt
200 50 0.26 0.02 50 0.24 0.04 50 0.18 0.35
1000 50 0.26 0.02 50 0.26 0.02 50 0.20 0.21
5000 50 0.26 0.02 50 0.26 0.02 50 0.21 0.19

T N (2)
SP

200 50 0.04 1 50 0.08 0.94 50 0.26 0.07
1000 50 0.03 1 50 0.06 1 50 0.30 0.03
5000 50 0.02 1 50 0.05 1 50 0.30 0.02

D-opt
200 50 0.26 0.03 50 0.23 0.06 50 0.27 0.07
1000 50 0.26 0.02 50 0.25 0.03 50 0.29 0.03
5000 50 0.26 0.02 50 0.26 0.02 50 0.30 0.02

d = 5 d = 10 d = 20

Graphs
SP

200 11 0.22 0.72 24 0.15 0.75 39 0.14 0.66
1000 12 0.25 0.67 22 0.16 0.76 39 0.13 0.70
5000 9 0.29 0.58 21 0.17 0.69 38 0.14 0.65

D-opt
200 47 0.10 0.82 50 0.11 0.72 50 0.13 0.65
1000 47 0.16 0.43 50 0.10 0.79 50 0.12 0.67
5000 47 0.20 0.19 50 0.11 0.73 50 0.13 0.65

Table 10: Average size of n3, Kolmogorov-Smirnov test between S1 and S3 for

truncated Gaussian distribution and for graphs(Algorithm 2 on Y).
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We will use Support Points (SP) and D-optimality as alternatives in the

histogram based approach (algorithm 2). Recall that in algorithm 2 we use

a histogram to partition Y1, and sample 50% of the observations within each

bin; we consider then their inverse image by f which is a subsample from S1.260

We replace this process by either sampling from Y1 using support points and

D-optimality, either sampling directly from S1.

Tables 7 and 8 give the results obtained when using SP over X in on his-

togram based algorithm tables 9 and 10 give the results when apply SP and265

D-optimality over Y.

Using SP gives better results when compared to the other approaches for all

the simulations models mainly in dimension lower than 5. D-optimality is less

efficient except for large dimensions (20) where its performance is close to that

of SP. These observations are correct whether the selection is done over X or270

Y.

Moreover, the SP and the D-optimality behave like the other algorithms with

the normal distribution, i.e. they are less good on the normal distribution than

on the truncated normal distributions.

For the uniform distribution, SP gives very good results, while the D-optimality275

is poor except for dimension 20 where both give the same results.

For graphs, SP works less well than for the other distributions in small

dimensions (< 20). On the contrary the D-optimality works well even in small

dimension.
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5.2. Airfoil self-noise data set280

The airfoil self-noise dataset [12] comes from NASA. It was obtained from

a series of aerodynamic and acoustic tests of two- and three-dimensional airfoil

blade sections conducted in an anechoic wind tunnel. The data set comprises

NASA 0012 airfoils of different sizes at various wind tunnel speeds and angles

of attack. It has 1503 observations and 6 real attributes, and comes with a285

regression problem. The input variables are Frequency (in Hertz), Angle of

attack (in degrees), Chord length (in meters), Free-stream velocity (in meters

per second) and Suction side displacement thickness (in meters). The only

output variable is the Scaled sound pressure level (in decibels). There are no

missing values.290

In order to test our algorithms with this dataset we split it randomly into two

disjoint parts S1 of size n1 and S2 of size n2. We tried two values for n1: 100

and 400. The output values for S2 are used only to assess the performance of

our algorithms. The process was repeated K = 100 times and the results are

reported in Table 11.295

Note that compared to the simulations, the function f is unknown but the values

of the output variable are considered as the observation of f(X).

The results are satisfactory on most of the algorithms, accept the D-optimality.

Moreover we notice that for Support Points the fact of sampling over Xor Y give

similar results. Finally, we can see that Support Points on Y and Histogram300

based algorithm give the same results as Extended nearest neighbours but with

twice less elements in S3.
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Algorithm n1 n2 n3 Stat Pvalue

Extended nearest neighbours
100 1403 100 0.11 0.58

400 1103 314 0.04 0.89

Histogram based algorithm
100 1403 50 0.13 0.61

400 1103 198 0.07 0.61

Partition based algorithm
100 1403 50 0.13 0.62

400 1103 50 0.11 0.62

Support Point

Over X
100 1403 50 0.13 0.63

400 1103 50 0.11 0.62

Over Y
100 1403 50 0.12 0.70

400 1103 50 0.10 0.71

D-optimality

Over X
100 1403 50 0.12 0.71

400 1103 200 0.07 0.49

Over Y
100 1403 50 0.10 0.88

400 1103 200 0.12 0.13

Table 11: Average results for airfoil data over K = 100 runs, varying values of

n1 and n2.

6. Conclusion

We have considered the problem of selecting a new subsample S3 to use for

inference with a model f whose output is available only for a small subsample305

S1. The subsample should be small, and the distribution of f(S3) should be

close to that of f(S1). Three algorithms were considered. The first one, an

extended nearest neighbours approach, makes no use of the sample f(S1), while

the other two (histogram based and partition based approaches) make use of it

in different ways. For the last one a mathematical consistency result was given.310

All the algorithms showed a good behaviour when analysed through simulation

using different distributions and different dimensions for the input, except for

the Gaussian case in high dimensions. The results obtained on a real dataset

showed that all the algorithms behave as expected.
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Our algorithms are currently extended to the case where the input data are time315

series and the output is multidimensional.
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