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Abstract

We are interested in this paper in studying how to schedule tasks
in an extreme edge setting, where some sensors produce data and
subsequent tasks are executed locally. They are interacting with some
external tasks submitted by a superior authority in the cloud. We
first model such a system as a problem of scheduling two sets of tasks,
each associated with its own objective. The tasks of the first set are
released on-line, they can be preempted and the target objective is
the minimization of the mean flow-time. The tasks of the second set
are known beforehand and cannot be preempted. The objective is to
execute them before a common deadline.

Due to strong lower bounds on the competitive ratio of this prob-
lem, we use the technique of resource augmentation to cope with these
limitations. Specifically, our analysis is based on both speed augmen-
tation and rejection. First, we give a general lower bound for the
problem, even in the case of speed augmentation and rejection. Then,
we propose a competitive algorithm and analyze its performance using
dual fitting.
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Figure 1: Schematic view of a smart building with multiple sensors (fire
detector, motion sensor, video surveillance, sound analysis, etc.) and a link
to the Internet (Cloud services, weather forecast data, information collected
around in the smart city, etc.). The tasks associated to the sensors are
collected in a local queue and the external tasks are put in a global queue.
Both are managed by the computing units of the smart building.

1 Introduction

Today, the computing systems are evolving in a continuum of cloud/fog/edge.
These systems are always more complex, since they are composed of various
types of computing devices. The diversity of the digital components that
compose such systems creates new problems in the perspective of managing
efficiently the execution of tasks. Most data produced by sensors at the ex-
treme edge should be processed immediately and the analysis of data should
be done locally, close to the sensors [21]. Most of these data only have an
interest in the local environment where they are produced, and their lifespan
is short. Thus, they should be analyzed immediately. When no analysis is
performed, the available computing units can be utilized for external or off-
loaded computing, such as volunteer computing [5].
In this work, we target a computing system composed of multiple computing
units connected to some sensors. For instance, think of a smart building with
a centralized control and processing units like the one described in Figure 1.
A classical edge infrastructure is composed of several of such computing sys-
tems, but we will restrict our focus on a single one. Informally, there are two
types of tasks to execute in this example, and each type is associated to a
distinct objective as it will be described in more details in the next section.
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1.1 Problem Description

The characteristics of the two types of tasks, each type associated with an
agent, are the following:

• The first agent manages the tasks that are generated locally by the
sensors. We call these tasks local or dynamic as they arrive on-line,
and we should process them as soon as possible. The release time
of a local task is not known in advance, but its processing time is
known at the time it is released. The target objective of the first
agent is to minimize the total flow-time of these tasks. Due to locality
and their usually small processing time and memory consumption, the
preemption (without migration) of these tasks is allowed.

• The second type of tasks corresponds to the external tasks submitted
per batch. We call them global or static as they are submitted off-line.
The processing of such tasks is known, and the objective is to complete
this set of tasks in a reasonable amount of time, typically before a
common deadline that is fixed, regarding the total computational load
during the batch. From their nature and possibly large memory con-
sumption compared to local tasks, a global task cannot be preempted.
However, we allow the rejection of a global task during its execution,
if this is needed to keep a good overall performance of the system. In-
tuitively, a rejected global task will be re-submitted in a subsequent
batch in the same or in another targeted computing system.

The tasks of both agents are sequential. The overall problem is thus to
interleave both sets of tasks on the set of computing machines in the best
possible way with respect to the target objectives. To summarize, the inputs
of the corresponding scheduling problem are as follows:

• m identical machines,

• nL local tasks and nG global tasks,

• pj the processing time of task j.

The objective is to minimize the sum flow-time of the local tasks, i.e.,
the total time that a local task remains in the system, such that a global
deadline is respected for the global tasks.
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1.2 Contributions and Organization

In the single agent case, the on-line flow-time minimization problem can be
solved to optimality on a single machine if preemptions are allowed, but it
is hard to approximate with m ≥ 2 machines [14], or in the off-line setting
if preemptions are not allowed [13, 7]. These inapproximability results led
to analyze the problem in the context of resource augmentation, where more
power is given to the algorithm, as for instance allowing the algorithm to
use more processors or higher speed than the optimal. In the case of speed
augmentation, we assume the algorithm is using machines with a speed of
1 + ε, while the optimal solution is based on a machine speed of 1, where
ε ≥ 0 is a constant. Using these resource augmentation models, we can
achieve performance guarantees that depend on the value of ε [22, 12, 9].

With the introduction of tasks from the global agent, we show in this pa-
per that it is hard to approximate the flow-time objective for the local tasks,
even though their preemption is allowed and resource augmentation is used.
Specifically, any on-line algorithm which uses (1 + εs)-speed machines should
reject at most k global tasks to achieve a competitive ratio in O

(
(1− 2k

nG
)W
)
,

whereW is the ratio between the total work load of the global tasks and the
total work load of the local tasks.

On the positive side, we propose an algorithm to solve the addressed two-
agent scheduling problem under the resource augmentation model, with both
rejection and speed augmentation. Then, we analyze the competitive ratio
of the algorithm using the dual fitting approach [4]. In particular we prove

that our algorithm is (1 + εs)-speed and max
{
W
εsεr

+ 1+εs
2εs

, 1+εs
εs

}
-competitive

by rejecting a fraction of global tasks depending on a parameter εr, where
εs > 0 and 0 < εr < 1.

The organization of the paper is as follows: We start by presenting a brief
state of the art about the two-agent scheduling problem, the flow-time mini-
mization problem and resource augmentation models in Section 2. Section 3
gives a formal definition of the problem and the notations used throughout
the paper, and Section 4 presents our lower bound. In Section 5, we intro-
duce the competitive algorithm for solving the two-agent scheduling problem
and analyze its competitive ratio with the dual fitting approach in Section 6.
Section 7 ends the paper, with concluding remarks and discussions.
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2 Related Work

The work presented in this paper can be seen as an extension of the two-
agent scheduling problem by considering that the tasks of one agent arrive
on-line.

The problem of two-agent scheduling has been introduced by Agnetis
et al. [2]. Their seminal paper was dedicated to scheduling two sets of non-
preemptive tasks competing to execute on a single machine, where each agent
aims at minimizing its own objective function based on the completion time
of its tasks (maximum, sum, due dates, etc.). The authors considered two
ways for solving the problem: First, by minimizing an objective function
while keeping the second objective under a threshold and, second, by finding
the set of non-dominated pairs of objective values on the Pareto front. Later,
Agnetis et al. [1] extended this work to other multi-agent scheduling problems
including the execution on parallel machines.

One can find in the literature many variants of the two-agent scheduling
problem, for example considering a chain of tasks for each agent [3], tasks
with due dates [8, 24], or with an additional setup time when a task of one
agent is processed directly after a task of the second agent [15].

In a similar setting, Baker and Smith [6] studied the problem of two or
three agents on a single machine, where each agent has its own objective func-
tion to minimize. However, they considered the single objective approach by
minimizing a linear combination of the objective of each agent. Liu et al. [16]
also considered the problem with tasks arriving off-line with release times,
with the objective of minimizing a linear combination of the maximum com-
pletion times (makespan) of both agents. Saule and Trystram [23] focused
on the problem of an arbitrary number of agents scheduling jobs on parallel
machines, where the objective of an agent is either the minimization of the
makespan or the sum of completion time of its tasks. They proposed inap-
proximability bounds and approximation algorithms with performance ratios
depending on the number of agents.

Our problem may also be considered as an extension of the problem of
total flow-time minimization of on-line tasks on parallel machines, under the
additional constraint of the off-line scheduling of tasks from a second agent.

For the flow-time minimization problem, it is well known that the Shortest
Remaining Processing Time (SRPT) policy gives an optimal schedule for on-
line tasks on a single machine. Unfortunately, the optimality of SRPT does
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not hold in our context with a second agent, as will be shown in Section 4.
When m ≥ 2 machines are considered, the problem becomes NP-hard [10],
and Leonardi and Raz [14] showed that SRPT is O(min{log(P ), log n

m
})-

competitive, where P is the ratio between the maximum and minimum pro-
cessing time of the tasks, and n the number of tasks. They also showed that
no on-line algorithm could achieve a better competitive ratio.

Such strong results on the inapproximability of scheduling problems moti-
vated the introduction of the resource augmentation model, where an on-line
algorithm is given more power when comparing to the optimal. Such models
can be considered with speed augmentation [12], machine augmentation [22]
or rejection [9].

In the context of scheduling on a single machine, Feng et al. [11] studied
the common two-agent problem of Agnetis et al. with the additional fea-
ture that jobs can be rejected with a given penalty to the objective value of
the corresponding agent. In the on-line setting, Lucarelli et al. also intro-
duced the speed augmentation and rejection models to the total (weighted)
flow-time minimization problem on unrelated [20, 17, 18] and related ma-
chines [19]. The authors proposed several algorithms whose competitiveness
was proved using the dual fitting technique. We will use the same approach
in the analysis of our algorithm in Section 5.

3 Problem Formulation and Notations

We consider a setM of m identical machines on which to execute two sets of
sequential tasks having different settings. The first set L is composed of nL

local tasks that are submitted on-line, while the second set is composed of nG

global tasks that are submitted off-line. Only local tasks can be preempted,
but migration between machines is not allowed. For a given task j, we denote
by rj its release time and by pj its processing time on a machine, only known
at the time the task is being released. Note that the release time is 0 for all
global tasks, since they are off-line.

Given a schedule, we denote by Fj the flow-time of a local task j, defined
as the difference between its completion time and its release time. The objec-
tive is to minimize the sum flow-time of all local tasks, under the constraint
that all global tasks have completed before a common deadline dG. We also
consider that the release time of any local task is bounded above by dG. This
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deadline, defined as

dG =
1

m
·

(∑
j∈G

pj −max
j∈G
{pj}

)
+ max

j∈G
{pj}+

∑
j∈L

pj,

guarantees that a schedule interleaving local and global tasks is always fea-
sible. Notice however that, since local tasks are released over time, the value
of dG is not known beforehand by the algorithm.

Under the resource augmentation model, we introduce the coefficients
of speed augmentation εs > 0 and rejection 0 < εr < 1. An algorithm to
solve the addressed problem can use machines with speed 1 + εs times faster
than that of an optimal adversary, and can reject a number of global tasks
bounded by an εr-fraction of the number of local tasks.

We define below some additional notations used in the next sections. In
a partial schedule, QLi (t) denotes the set of local tasks assigned to machine
i, but not completed at time t. This set includes all the local tasks waiting
to be executed on machine i, as well as the task currently being executed
at time t, if it is local. Note that, upon arrival of task j at time rj and
assigned to machine i, we assume that it is immediately added to QLi (rj).
Since preemption of local tasks is allowed, premj (t) denotes the remaining
processing time of task j at time t. Finally, for a given instance of the
problem, we denote by W =

∑
j∈G pj/

∑
j∈L pj the ratio between the total

workload of the global tasks and the total workload of the local tasks.

4 A Lower Bound

Theorem 1. Let εs ≤ 1
3
· W−3

3W+3
and k ∈ {1, 2, . . . , nG

2
}, where nG is the

number of global tasks. Any online algorithm which uses (1 + εs)-speed ma-
chines should reject at least k global tasks to have a competitive ratio in
O
(
(1− 2k

nG
)W
)
.

Proof. We consider an instance with a single machine, consisting of 2Z global
tasks that are split evenly into two sets of tasks of respective processing times
X/3 and 2X/3. We partition the time into Z phases, each one of length X+1:
the phase ` corresponds to the time interval [(` − 1)(X + 1), `(X + 1)), for
each ` = 1, 2, . . . , Z. Let b` = (`−1)(X+1), 1 ≤ ` ≤ Z, denote the beginning
of phase `. In order to well distinguish the phases, a burst of Y local tasks
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of processing time 0 is released online at every time `(X + 1), 1 ≤ ` ≤ Z.
Moreover, in each phase there is an arrival of a single local task of process-
ing time 1, whose release time will be defined later. We have two cases to
consider:

Case 1: If the online algorithm decides to execute one global task of pro-
cessing time X/3 (say G1) and one global task of processing time 2X/3 (say
G2) in each phase `, 1 ≤ ` ≤ Z.

If the algorithm decides to execute G1 before G2, then the earliest time at
which the execution of G1 can finish in the algorithm’s schedule is b`+

X
3(1+εs)

,
since the algorithm has access to a machine which executes the tasks at speed
1 + εs. After the completion of G1, the algorithm will start G2 at some time
t ≥ b` + X

3(1+εs)
. Then, the adversary decides to release the local task L at

time b` + 2X
3

and the flow time of L will be at least X−2Xεs+3
3(1+εs)

, if G2 is not

rejected; otherwise the flow time of L will be 1
1+εs

. The optimal solution
executes the tasks in the order G2, L and G1, resulting in a flow-time of 1.

If the algorithm decides to execute G2 before G1, then let t ≥ b` be the
starting time of G2. Then, the adversary decides to release the local task
L at time X

3
and the flow time of L will be at least X−Xεs+3

3(1+εs)
, if G2 is not

rejected; otherwise the flow time of L will be 1
1+εs

. The optimal solution
executes the tasks in the order G1, L and G2, resulting in a flow-time of 1.

Assuming that the algorithm decides to reject the corresponding task G2

in exactly k phases, then its total flow time is at least k
1+εs

+(Z−k)X−2Xεs+3
3(1+εs)

=

(Z−k)W(1−2εs)
3(1+εs)

+ Z
1+εs

, sinceW = X. On the other hand, the total flow time
of the optimal schedule is Z. Then, by rejecting k global tasks, the compet-
itive ratio will be at least Z−k

Z
W(1−2εs)
3(1+εs)

+ 1
1+εs

= Ω
(
Z−k
Z
W
)
.

Case 2: Otherwise, there is a phase during which two global tasks of pro-
cessing time 2X/3 are partially executed. Hence, there exists a phase `, at
the beginning of which a global task started in the previous phase `− 1 will
be executed for at least q = 1

1+εs
4X
3
− (X + 1) time. Then, the burst of local

tasks arrived at time (`− 1)(X + 1) will have a total flow-time at least qY .
Note that in this case the arrival of local tasks of processing time 1 is not
important and we can assume w.l.o.g. that the algorithm will execute all
of them just upon their arrival, getting a total flow-time for them equal to
Z. On the other hand, the optimal solution will be as in the previous case
having a total flow time equal to Z. Therefore, the competitive ratio in this
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case will be Ω(Y ), which can be chosen large enough such that the first case
dominates.

5 An Algorithm for the Two-Agent Problem

The algorithm is denoted by A and described as follows.
Initialization: At start, we consider a queue of global tasks QG initial-

ized with all the global tasks sorted in an arbitrary order. For each machine
i ∈M, we initialize an empty queue of local tasks QLi .

Local task allocation: Upon submission of a local task j, we allocate
it to the machine i that minimizes

λij =
∑

l∈QLi (rj):
preml (rj)≤pj

preml (rj) +
∑

l∈QLi (rj):
preml (rj)>pj

pj (1)

and denote by λj this quantity. Intuitively, we put the task j on the machine
minimizing the increase in the total flow-time induced only by the tasks in
QLi .

Task execution: For each machine i, the tasks in QLi are executed in
the Shortest Remaining Processing Time order. Note that if a newly arrived
task is shorter than the local task currently being executed, then preemption
occurs and the remaining part of the current task is put back in QLi .

If QLi becomes empty, then we remove a task from QG and execute it on
i, until no more global tasks are left. By not introducing idle times in the
schedule before all global tasks are processed, we ensure that the last global
task will complete before the common deadline dG. Note that global tasks
are removed from the queue in an arbitrary order.

Rejection policy for global tasks: If at any time there are more than
1
εr

local tasks in the local queue of a machine currently executing a global
task, we decide to reject that task. Note that such a rejection can only
happen when a local task is released. This way, we ensure that no more than
εr · nL global tasks are rejected in total.

6 Analysis by Dual Fitting

We analyze our algorithm by dual fitting [4]. We first provide an expression
of the total flow-time achieved by the algorithm in Section 6.1 and give a
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linear programming formulation of our problem in Section 6.2, as well as
the corresponding relaxed dual program. Then, in Section 6.3 we propose an
assignment of the dual variables based on the choices made by our algorithm.
In Section 6.4, we prove that this assignment satisfies the dual constraints
and we give the competitive ratio of our algorithm.

6.1 Algorithm’s Flow-Time

First, let ∆j be the increase in the total flow-time of the current solution of
our algorithm incurred by the dispatch of a local task j on machine i. This
value corresponds to the flow-time of the task j, plus the increase in flow-
time of all tasks being delayed by the arrival of j. Following our scheduling
and rejection policies, and assuming the task k was being executed at time
rj, the detailed definition of ∆j is expressed as follows:

∆j =



If k(∈ G) is rejected:

− premk (rj)

1 + εs
· |QLi (rj)− 1| +

∑
l∈QLi (rj):
preml (rj)≤pj

preml (rj)

1 + εs
+
∑

l∈QLi (rj):
preml (rj)>pj

pj
1 + εs

If k(∈ G) is not rejected:

premk (rj)

1 + εs
+

∑
l∈QLi (rj):
preml (rj)≤pj

preml (rj)

1 + εs
+
∑

l∈QLi (rj):
preml (rj)>pj

pj
1 + εs

If k(∈ L) is preempted:
pj

1 + εs
+

∑
l∈QL(rj):
preml (rj)>pj

pj
1 + εs

If k(∈ L) is not preempted: ∑
l∈QLi (rj):
preml (rj)≤pj

preml (rj)

1 + εs
+
∑

l∈QL(rj):
preml (rj)>pj

pj
1 + εs

Note that, due to speed augmentation, any value of processing time for
our algorithm is divided by (1 + εs).
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By definition, the total flow-time of local tasks achieved by the algorithm
is equal to the sum of ∆j for all local tasks. Due to the rejection policy, the
impact of global tasks on the total flow-time of local tasks is limited. There
cannot be more than 1

εr
local tasks in the queue during the execution of a

global task, so a global task j will contribute at maximum to
pj

εr(1+εs)
on the

total flow-time of the algorithm. Therefore, we have the following:

∑
j∈L

Fj =
∑
j∈L

∆j ≤
∑
j∈L

 ∑
l∈QLi (rj):
preml (rj)≤pj

preml (rj)

1 + εs
+

∑
l∈QLi (rj):
preml (rj)>pj

pj
1 + εs

+
∑
j∈G

pj
εr(1 + εs)

(2)

6.2 Linear Programming Formulation

We define a decision variable xij(t) which is equal to 1 if the task j ∈ L ∪ G
is running on machine i ∈M at time t ≥ 0, and 0 otherwise. By convention,
we assume that xij(t) = 0 for local tasks when t < rj.

Consider this linear programming formulation, with the constant Γ ≥ 1
2
:

min.
∑
i∈M

∑
j∈L

∫ ∞
rj

(
(t− rj)
pj

+ Γ

)
xij(t)dt

s.t.
∑
i∈M

∫ ∞
rj

xij(t)dt ≥ pj ∀j ∈ (L ∪ G) (3a)∑
j∈(L∪G)

xij(t) ≤ 1 ∀i ∈M, ∀t ≥ 0 (3b)

∑
i∈M

∫ ∞
0

(
t

pj
+

1

2

)
xij(t)dt ≤ dG ∀j ∈ G (3c)

xij(t) ∈ {0; 1} ∀i ∈M, ∀j ∈ (L ∪ G), ∀t ≥ 0

Constraint (3a) verifies that each task j ∈ L∪G is executed for at least pj
units of time, Constraint (3b) indicates that a machine can execute at most
one task at any moment t ≥ 0, and the left-hand side of Constraint (3c)
computes the completion time of a global task j.

Note that the quantity
∫∞
rj

(t−rj)
pj

xij(t)dt in the objective function corre-

sponds to the well-known fractional flow-time of the job j [4]. This is a lower
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bound to the flow-time of j. Moreover, with Γ = 1
2
, the objective value of an

optimal solution for the linear program is at most the flow-time of an optimal
schedule for our problem [4]. During our analysis, we will use a larger value
of Γ and the objective value of the program will be at most (Γ + 1

2
) that of

the optimal value of the problem.
Note also that the above formulation does not exactly model the ad-

dressed problem, as it does not forbid preemption of global task or their
migration between machines. Instead, the formulation is a relaxation, but it
is sufficient to analyse our algorithm and prove its approximation ratio via
dual fitting and resource augmentation.

After relaxing the integrality constraint on the variables xij(t) in the
primal program, its dual program can be expressed as follows.

max.
∑
j∈L∪G

αjpj −
∑
i∈M

∫ ∞
0

βi(t)dt−
∑
j∈G

dGγj

s.t. αj − βi(t)−
(
t− rj
pj

+ Γ

)
≤ 0 ∀i ∈M, ∀j ∈ L, ∀t ≥ rj (4a)

αj − βi(t)−
(
t

pj
+

1

2

)
γj ≤ 0 ∀i ∈M, ∀j ∈ G, ∀t ≥ 0 (4b)

αj ≥ 0 ∀j ∈ (L ∪ G)

βi(t) ≥ 0 ∀t ≥ 0, ∀i ∈M
γj ≥ 0 ∀j ∈ G

6.3 Dual Variables

For the purpose of the analysis via dual fitting, we define the variables of the
dual program according to the decisions taken by the algorithm.

We define the first dual variable for local tasks as αj =
λj

(1+εs)pj
+ Γ. Note

that the value of αj is only set at the arrival of j, and it does not change
afterward. For the other variables, we define αj = 0 and γj = 0 for any

global task j; and βi(t) =
|QLi (t)|
1+εs

, ∀t ≥ 0.

6.4 Competitive Analysis

With the two following lemmas, we show that our definition of the dual
variables leads to a feasible solution of the dual program.
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Lemma 1. For every every machine i ∈M, every local task j ∈ L and every
time t ≥ rj, the dual constraint (4a) is satisfied, that is:

αj − βi(t)−
(
t− rj
pj

+ Γ

)
≤ 0

Proof. First of all, the constant term Γ in the αj is compensated with the Γ
of the constraint. By multiplying all remaining terms by (1 + εs)pj, we have
to prove:

λj − |QLi (t)| · pj − (1 + εs)(t− rj) ≤ 0

If more local tasks arrive after j, the quantity |QLi (t)| will increase and
the constraint will be easier to satisfy. For this reason, we assume that there
is no other task arrival after j. Thus |QLi (t)| can only decrease over time,
when a task finishes its execution. Moreover, due to the dispatching policy
of local tasks we have λj ≤ λij.

Assume that a task k is currently being executed at time rj and finishes

at time t′ = rj+
premk (rj)

1+εs
. For any time t ∈ [rj, t

′), |QLi (t)| will remain constant
and it is sufficient to prove the constraint at the beginning of the interval,
when t = rj. We have

λij ≤
∑

l∈QLi (rj):
preml (rj)≤pj

pj +
∑

l∈QLi (rj):
preml (rj)>pj

pj = |QLi (rj)| · pj

and thus the constraint is satisfied for any time t in this interval.
Let now k′ be the first task in QLi (rj) after k, such that when k fin-

ishes its execution at time t′ then k′ starts executing during the interval[
t′, t′ +

prem
k′ (rj)

1+εs

)
. Again, it is sufficient to verify the constraint at the begin-

ning of the interval, at time t′ = rj +
premk (rj)

1+εs
. We have

λij ≤ premk (rj) +
∑

l∈QLi (rj)\{k}:
preml (rj)≤pj

pj +
∑

l∈QLi (rj):
preml (rj)>pj

pj

= premk (rj) + |QLi (t′)| · pj

and

premk (rj)− (1 + εs)(rj +
premk (rj)

1 + εs
− rj) ≤ 0.
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Thus, the constraint is satisfied for any t in the interval.
A similar reasoning for every time interval during the execution of any

local task in QLi (rj) can be made. Note that, if a global task was rejected
on the arrival of the local task j, it would not change the above reasoning.
Hence, the dual constraint (4a) is satisfied for any time t ≥ 0.

Lemma 2. For every machine i ∈ M, every global task j and every time
t ≥ 0, the dual constraint (4b) is satisfied, that is:

αj − βi(t)− (
t

pj
+

1

2
)γj ≤ 0

Proof. The smallest possible value of βi(t) is when the queue of local tasks is
empty. Thus, for any t we have βi(t) ≥ 0. Provided that αj = 0 and γj = 0
the dual constraint (4b) is satisfied.

Recall that Fj denotes the flow-time of task j in the schedule produced by
algorithm. Then, the following lemma shows the relation between the total
flow-time of local tasks achieved by the algorithm and the objective value of
the dual program.

Lemma 3. Given our definitions of αj, βi(t) and γj, the dual objective value
verifies: ∑

j∈L∪G

αjpj −
∑
i∈M

∫ ∞
0

βi(t)dt−
∑
j∈G

dGγj ≥
εs

1 + εs

∑
j∈L

Fj

Proof. With our definition of αj (recall αj = 0, ∀j ∈ G) we have

∑
j∈L∪G

αjpj =
∑
j∈L

 ∑
l∈QL

i∗ (rj):
preml (rj)≤pj

preml (rj)

1 + εs
+
∑

l∈QL
i∗ (rj):

preml (rj)>pj

pj
1 + εs

+ Γ · pj


+

1

1 + εs

(∑
j∈G

pj
εr
−
∑
j∈G

pj
εr

)
≥
∑
j∈L

Fj + Γ ·
∑
j∈L

pj −
∑
j∈G

pj
εr(1 + εs)

,

where the inequality holds due to Equation (2).
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With the definition of βi(t), we have:∑
i∈M

∫ ∞
0

βi(t)dt =
∑
i∈M

∫ ∞
0

|QLi (t)|
1 + εs

dt =
1

1 + εs

∑
j∈L

Fj

Recall the notation W =
∑

j∈G pj∑
j∈L pj

, which is the ratio between the total

work load of the global tasks and the total work load of the local tasks. By
choosing

Γ = max

{
W

εr(1 + εs)
,
1

2

}
,

and knowing that γj = 0, ∀j ∈ G, the objective value of the dual program
can be expressed as follows:∑

j∈L∪G

αjpj −
∑
i∈M

∫ ∞
0

βi(t)dt−
∑
j∈G

dGγj

≥
∑
j∈L

Fj + Γ ·
∑
j∈L

pj −
∑
j∈G

pj
εr(1 + εs)

− 1

1 + εs

∑
j∈L

Fj

=
εs

1 + εs

∑
j∈L

Fj + Γ ·
∑
j∈L

pj −
∑
j∈G

pj
εr(1 + εs)

≥ εs
1 + εs

∑
j∈L

Fj

We now have enough to conclude on the competitive ratio of our algo-
rithm.

Theorem 2. For any 0 < εr < 1 and εs > 0, the algorithm A is (1 + εs)-

speed, max
{
W
εsεr

+ 1+εs
2εs

, 1+εs
εs

}
-competitive and rejects at most (εr · nL) global

tasks.

Proof. From the three previous lemmas we know that the dual variables as
we defined them form a feasible solution of the dual program, and that the
objective value of the dual program is an upper bound of the total flow-time
achieved by the algorithm multiplied by a constant factor. From the rejection
policy, a global task is rejected the first time when there are more than 1

εr

local tasks waiting in the queue. Thus, no more than εr · nL global tasks
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are rejected. By definition, the algorithm uses a machine with speed (1 + εs)
times the machine speed of an optimal solution.

It remains to express the relation between the total flow-time of our al-
gorithm with that of an optimal solution. As Γ ≥ 1

2
, the objective value

of the primal program is at most Γ + 1
2

times the flow-time of an optimal
solution, denoted by OPT . Finally, using the duality theorem, we can write
the relation:

εs
1 + εs

·
∑
j∈L

Fj ≤ (Γ +
1

2
) ·OPT∑

j∈L Fj

OPT
≤ max

{
W
εsεr

+
1 + εs

2εs
,
1 + εs
εs

}
and the theorem follows.

7 Concluding Remarks

We introduced in this paper a new scheduling problem with two agents tar-
geting each a different objective. As far as we know, it is the first time a
mixed off-line/on-line setting was studied for this problem. We provided a
lower bound on the competitive ratio of any algorithm for solving the prob-
lem, and proposed an algorithm with a proof of its competitive ratio via dual
fitting under a resource augmentation framework (speed and rejection).

The objective of the global tasks is taken as a constraint, while its value
is specified by the scheduling policy of global tasks. Using List Scheduling in
our case, the common deadline was taken as the classical Graham’s bound
plus the total work load of the local tasks. It is possible to refine the value of
the deadline in accordance with a change in the scheduling policy of global
tasks in the algorithm A: Using any algorithm X for P ||Cmax with known
approximation ratio ρ to construct a fixed allocation of global tasks to the
machines prior to the submission of any local task, it is guaranteed that a
value of the deadline dG = CXmax +

∑
j∈L pj will be respected. Doing so, the

dynamic allocation of global tasks is lost, but it gives a “bi-objective” vision
to the problem: the minimization of both the total flow-time of local tasks
and the global deadline.

Going further with the model, we believe it is possible to remove the
speed augmentation, which is only used in the algorithm’s analysis, as it was

16



successfully done in another work on a single agent problem with on-line
tasks [17]. Another interesting perspective is to extend the model to the
weighted case, or with related/unrelated machines.
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