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The microcanonical temperature of an isolated molecule is derived in terms of Boltzmann and Gibbs volume entropies 

within the quantum harmonic vibrational and equivalent degenerated model approximations. The effects of the entropy 

functional choice and various approximations are examined. The difference between Boltzmann and Gibbs volume 

temperatures is negligible for molecules bigger than ten atoms. However, it is significant for smaller systems, opening a 

way to probe them experimentally. A simple, analytical expression of the temperature as a function of the vibrational 

energy is provided, allowing predictions with a 3% margin of error compared to the exact harmonic estimate. The 

microcanonical temperature is discussed and exemplified with polycyclic aromatic hydrocarbon molecules and other 

molecules of astrophysical interest.  

 

I. INTRODUCTION 

Any excess of vibrational energy in a molecule above its 

zero-point level may induce physical-chemical reactions 

such as isomerization, dissociation, or rearrangement. The 

role of such vibrational energy excess is particularly 

relevant when a light-excited molecule transfers the 

photon energy to the ground state without emitting 

radiation. The classic example is the vision mechanism, 

where a complex sequence of events is triggered in the 

rhodopsin protein after the retinal chromophore converts 

the photon energy into vibrational energy.1 

We often say that a molecule with large vibrational 

energy is hot. However, if we ask what the molecule’s 

temperature is, the question sounds odd. The fundamental 

thermochemistry of a canonical harmonic system tells that 

the environmental temperature determines the vibrational 

excess through  

( )
/

,
1k B e

k

e ZP h k T
k

h
E T E

e



= +

−
     (1) 

where EZP is the vibrational zero-point energy, Te is the 

environmental temperature, kB is the Boltzmann constant, 

h is the Planck constant, and the sum runs over the 

vibrational degrees k with harmonic frequency k. 

Nevertheless, an isolated molecule cannot count on the 

environment to thermalize. The vibrational energy excess 

will be trapped there until it is irradiated or induces a 

chemical reaction. 

A hot, isolated molecule is a microcanonical system with 

constant total energy, and, different from the canonical 

problem, we want to determine ( )mT E , the 

microcanonical temperature as a function of the energy. 

Defining the temperature of such an isolated molecule 

could be worth doing,2 especially if we aim at describing 

large systems. Indeed, the temperature of isolated 

molecules and small finite systems has been under scrutiny 

for decades in diverse fields. It is needed for computing 

unimolecular reaction rates,2-4 sampling initial conditions 

for dynamics,5 studying fragmentation and radiative 

cooling of electrostatically trapped ions,6-8 determining 

thermionic electron emission of clusters beams,9 

characterizing phase transitions in clusters,10 or assigning 

molecular species in the interstellar medium.11-13 Defining 

such a temperature may be helpful even for understanding 

the photophysics of chromophores in vacuum-like 

hydrophobic cavities of proteins.14 

The microcanonical temperature can be used similarly to 

the canonical temperature to predict the vibrational 

population distribution when the molecule has an energy 

excess above its zero-point level. We will naturally use the 

microcanonical temperature for isolated molecules in a 

vacuum. We may also use it for assessing situations where 

the reaction time (for luminescence, isomerization, 

dissociation, ionization) is much shorter than the 

collisional time but longer than the vibrational 

equilibration time. For example, a photoexcited molecule 

equilibrates vibrationally in the first excited state within a 

few picoseconds. If it is in a vacuum or within a 

collisionless regime, its vibrational states are populated 

according to the microcanonical temperature 

corresponding to the energy excess. Thus, if we want to 
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know whether the molecule will fluoresce before it does 

an intersystem crossing, we should consider that these 

processes’ rates are functions of the microcanonical 

temperature (as opposed to rates computed at 0 K or at the 

canonical temperature). 

The temperature of isolated systems has been addressed 

pragmatically using phenomenological approaches for 

applied purposes. Berry and Smirnov,10 for instance, 

started from a reasonable estimate for the heat capacity of 

isolated clusters to derive their temperature. Another 

common approach has been to derive the canonical 

temperature for a canonical ensemble with kinetic 

averages equivalent to those of the microcanonical 

system.3 Andersen et al.15 followed this way to propose a 

high-energy approximation for the molecular temperature. 

D’Hendecourt et al.11 estimated the properties of 

molecules in the interstellar medium from the observed 

temperature, also using an equivalent-canonical approach. 

To the best of my knowledge, none of these 

phenomenological-based works rest on a solid statistical 

basis and are valid over a broad energy domain. 

On the other hand, more statistical-mechanics-oriented 

works have provided much knowledge on small, isolated 

systems. We know, for instance, that the microcanonical 

temperature can be defined independently of the probe,16 

the type of fluctuation we may expect, including the 

dependence on different entropy definitions,17-20 and how 

to count microstates of finite coupled systems.21-25 

Nevertheless, these works usually do not allow for an 

everyday estimate of the temperature in applied cases of 

interest. 

This paper aims to bridge this gap between theory and 

applications by deriving a microcanonical temperature for 

an isolated molecule that can be routinely used in diverse 

applied fields, has an extended validity domain, and is 

based on solid statistical mechanics grounds.   

II. THEORETICAL MODEL 

To define the microcanonical temperature of an isolated 

molecule, we must go back to the principles of statistical 

thermodynamics. For a system with total energy E, the 

temperature is defined as  

 

1

,
S

T
E

−
 

=  
 

    (2) 

where ( )S E  is the entropy, which is a function of the 

number of microstates at energy E. Later, we will discuss 

what functional of E is the most adequate when dealing 

with a small system far from the thermodynamical 

equilibrium.   

If we approximate our isolated molecule by an ensemble 

of N quantum harmonic oscillators, the total molecular 

energy is 

,ZP k k

k

E E n h = +     (3) 

where nk is the number of quanta deposited in vibrational 

mode k, and  denotes a particular ensemble  kn . Thus, 

to know the number of microstates, we must determine the 

number of solutions of Eq. (3). This means the number of 

ways we can distribute different values of nk among the 

vibrational modes, keeping E constant. Despite the 

simplicity of this formulation, it is a formidably tricky 

problem to solve analytically.  

Fortunately, as I will also show later (Section II.E.3), we 

can get an approximated solution for the number of 

microstates by supposing the ensemble of vibrational 

frequencies  k  can be replaced by a single average 

frequency  . The degenerated problem, which simplifies 

to 

,
2

M

N
E M hv

 
= + 
 

    (4) 

where kk
M n= , is a very well-known statistical-

mechanics textbook example.26, 27 

A. Modeling an isolated molecule 

For modeling the molecule, we assume (1) that it is rigid 

enough, so its vibrational modes are harmonic; (2) there 

are no external fields; and (3) it populates only a single 

electronic state.  

The first assumption implies that we will not describe 

anharmonic modes, like intramolecular hydrogen bonds or 

internal rotations (like those methyl groups are prone to). 

We can consider an isolated molecule as an ensemble of 

weakly coupled quantum harmonic oscillators. By 

“weakly coupled,” I mean that energy can flow between 

vibrational modes, but the vibrational energy is still 

approximately given by Eq. (3). This energy flow is crucial 

for the molecule to ensure that all microstates sharing the 

same energy are equally probable. For instance, suppose 

the molecule has 1 = 300 cm−1 and 2 = 600 cm−1. A 
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microstate with n1 = 2 and n2 = 0 should be as likely to 

occur as another one with n1 = 0 and n2 = 1 (assuming that 

nk for k > 2 is the same in both microstates). Although a 

weak coupling is assumed, it is never explicitly considered 

here.  

The second assumption implies that we will also not 

discuss the temperature associated with the energy 

allocated in the translational and rotational modes. Note, 

however, that these components are relevant when probing 

the isolated molecule.28 The third assumption means that 

we will not deal with the sudden vibrational energy change 

observed during internal conversion. 

B. Reviewing the statistical mechanics’ concepts 

Before proceeding with the discussion, it is worth 

revisiting some fundamental concepts from statistical 

mechanics.18 The basic quantities we need are the density 

of states 

( ) ( )Tr ,E E H = −       (5) 

and the integrated density of states 

( ) ( )Tr .E E H =  −       (6) 

In these equations, E is the energy of a system with a 

Hamiltonian H . In Eq. (5),  is the Dirac function and, in 

Eq. (6),  is the unit-step function. The trace Tr denotes 

the integral over the Hilbert space. 

The entropy can be defined in different ways. For regular 

systems in the thermodynamic limit ( )N → , they all 

tend to converge to the same result. Nevertheless, when 

dealing with an isolated molecule, the number N of degrees 

of freedom is small, and we cannot assume such 

equivalence. Among several possibilities, we will discuss 

two entropy formulations, the Boltzmann entropy29 

( ) ( )ln ,B BS E k E =        (7) 

and the Gibbs volume entropy18, 29, 30 

( ) ( )ln .G BS E k E=        (8) 

In Eq. (7),  is a small energy constant.  

With either entropy formulation, the microcanonical 

temperature can be calculated with Eq. (2) and the heat 

capacity with 

 

1

.
T

C
E

−
 

=  
 

    (9) 

C. Counting microstates 

We can directly count the microstates contributing to 

either ( )E  or ( )E , compute the entropy, and 

evaluate the derivative in Eq. (2) numerically to get the 

Boltzmann ( )( )n

BT  and the Gibbs volume ( )( )n

GT  

temperatures. The superscript (n) denotes the numerical 

approach to distinguish from other strategies discussed 

below. To apply the numerical procedure, we note that the 

molecular energy given by Eq. (3) changes by no less than 

the energy of the slowest normal mode 
1 . Thus, the 

number of microstates with energy between 

1k ZPE E kh= +  and 
1kE h+  ( )0,1,2k =  is 

( ) ( )
1

1

1 ,
N

N

k n n k

n n

h E E E  =   (10) 

where  

( ) 1 11 if ,

0 otherwise.

Nk n n k

k

E E E h
E




  +
= 


 (11) 

The integrated density of states is 

( ) ( )1

0

.
k

k j

j

E h E 
=

 =    (12) 

For more advanced strategies to count microstates 

considering coupled anharmonic modes, see Refs.21, 23 and 

references therein. 

D. Solving the degenerated problem 

As mentioned, the degenerated problem is used below 

(Section II.E) as an approximation for the molecular 

problem. Besides that, it is also helpful to check some 

basic hypotheses and approximations underlying the 

temperature definition, namely, 

• the equivalence between Gibbs volume and 

Boltzmann entropy, 

• the extension of discrete into continuous variable 

needed to compute derivatives, 

• the effect of Stirling’s approximation, which is 

commonly used to simplify the results of the 

microstates’ counting, and 

• the impact of the 2N  approximation, also 

commonly applied to simplify the results.  

In Subsections II.D.1 and II.D.2, we will discuss the 

solution of the degenerated problem in the Boltzmann and 

Gibbs volume formulations. Although the solution in the 

Boltzmann formulation is well known,26, 27 I am not aware 

of any demonstration using the Gibbs volume formulation 
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so far. Subsection II.D.3 compares both results and shows 

how the Boltzmann temperature tends to Gibbs volume 

temperature for large N. 

1. The Boltzmann formulation 

The number of microstates satisfying Eq. (4) is the number 

of ways of allocating / / 2MM E h N= −  quanta in N 

vibrational modes. Thus, the number of microstates 

between E  and E h+  is the number of multisets of 

length M on N elements, 

( )
( )

( )

1 !1
,

1 ! !
M

M NN M N
E

M M N M


+ −  + −   
= = =    

−    
 

 (13) 

where ( )( )m

n
 and ( )m

n
 denote the number of multisets and 

the binomial coefficient, respectively. The dependence on 

EM is implicit in M. Taking h =  in Eq. (7) allows 

directly computing the Boltzmann entropy as  

( )
( )

( )

1 !
ln .

1 ! !
B M B

M N
S E k

N M

 + −
=  

−  
   (14) 

The extension of this equation from a discrete to a 

continuous variable (
ME E→ ) allows using Eq. (2) to get 

( )

1

1 ,
2 2

e

B

B

E N E N h
T

h h k



 

−

    
=  + − − +    

    

 (15) 

where  is the digamma function defined as 

( ) ( )ln
d

x x
dx

 =        (16) 

and  is the gamma function. The superscript (e) indicates 

this is an extended-to-continuous approximation.  

Alternatively, we can employ Stirling’s approximation 

( ) ( )ln ! lnn n n n −  in Eq. (14). Then, with Eq. (2), we get  

( ) ( )( )
( )

1

2 2
ln ,

2

s

B

B

E N h h
T

E Nh k

 



−

  + −
 =  
 −   

  (17) 

where the superscript (s) indicates Stirling’s 

approximation. Finally, for large systems, we have 

2N  , and we get  

( )

1

2
ln .

2

l

B

B

E Nh h
T

E Nh k

 



−

 +  
=   −  

    (18) 

Schwabl31 offers an alternative approach to computing 

BT . Instead of using combinatorial to estimate ( )E , he 

rewrites this quantity in terms of the Fourier transform of 

the Dirac function in Eq. (5). The resulting integral is 

evaluated via the Laplace method, which requires N → . 

This approximation once more yields ( )l
BT . 

The heat capacity is obtained by replacing 
BT  into Eq. 

(9). With ( )s

BT , we have  

( )

( )
( )

( )

2

2

2 2
2

4 1

2 2
ln ,

2

s B

B

k E E
C N N

N hv hv

E N hv

E Nhv

  
= − − −   −   

+ − 
  

− 

  (19) 

while ( )l
BT  gives 

( )
2 2

2 2
1 ln .

4 2

l B

B

Nk E E Nhv
C

Nhv E Nhv

  +   
= −      −    

  (20) 

2. The Gibbs volume formulation 

To solve the degenerated problem in the Gibbs volume 

formulation, we proceed along the same lines as in Section 

II.D.1 but employing the integrated density of states in Eq. 

(6). For the quantum harmonic oscillator, this quantity is 

the number of microstates with energy between 0 and E,  

( )

( )

0 0

1

!
,

! !

M M

M

K K

N K N
E

K K

M NM N

M N M

= =

  + −   
 = =    

    

++ 
= = 
 

 
  (21) 

where the sum runs over the density of states defined in 

Eq. (13) and is evaluated using the hockey-stick identity.32 

Thus, the Gibbs volume entropy is 

( )
( )!

ln .
! !

G M B

M N
S E k

N M

+ 
=  

 
    (22) 

Replacing it in Eq. (2) gives the extended-to-continuous 

( )ME E→  approximation for the microcanonical 

temperature 

( )

1

1 1 .
2 2

e

G

B

E N E N h
T

h h k



 

−

    
=  + + − − +    

    

 (23) 

Alternatively, with Stirling’s approximation in Eq. (22), 

we have 

( )

1

2
ln ,

2

s

G

B

E Nh h
T

E Nh k

 



−

 +  
=   −  

    (24) 

which is identical to 
( )l

BT  in Eq. (18) (we will explore this 

fact in Section II.D.3). Because of this equality, the heat 

capacity 
( )s

GC  is also given by Eq. (20). 
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3. Comparing Boltzmann and Gibbs volume 
formulations 

Let us now compare the previous results for the 

degenerated problem for a particular example of a system 

composed of six quantum harmonic oscillators, all with 

frequency 1015 cm−1. Its number of states ( )E  and the 

integrated density of states ( )E  are plotted in Figure 1-

top. Both ( )E  and ( )E  grow monotonically. The 

energy resolution is determined by , which is h  for the 

degenerated problem. We may expect vibrational energy 

excess of about 2−4 eV for typical photoexcited systems. 

These values are much bigger than the vibrational 

frequency (0.13 eV in our example). Thus, we can 

compute the temperature by numerical differentiation of 

the entropy [Eq. (2)], using either ( )E  to get 
( )n

BT  or 

( )E  to get 
( )n

GT . 

 

Figure 1. ( )ETop: Number of states  and the integrated 

( )Edensity of states  as a function of energy E for a system 

composed of N = 6 degenerated quantum harmonic oscillators of 

1015 =frequency cm−1. Bottom: Temperature for the same 

degenerated system computed with different models.  

The diverse temperature models are illustrated in the 

bottom panel of Figure 1. The difference between the 

temperatures computed with the Boltzmann and Gibbs 

volume formulations is striking. Although they are similar 

at low energies, Boltzmann temperature grows much 

faster, and the difference between the two formulations at 

4 eV amounts to about 1400 K. This divergence between 

Boltzmann and Gibbs volume temperatures is caused by 

the small size of our model, N = 6, corresponding to a four-

atoms molecule. The difference reduces quickly for bigger 

systems. For a molecule with 15 atoms (N = 39), the 

temperature difference at 4 eV is only 15 K. Indeed, in the 

thermodynamic limit ( )N → , Boltzmann and Gibbs 

volume temperatures tend to the same values,17 as we can 

see comparing Eqs. (18) and (24).  

We also can see in Figure 1-bottom that the extended-to-

continuous approximations ( )e

BT  and ( )e

GT  using the gamma 

function are spot-on. Stirling’s approximation in ( )s

BT  and 
( )s

GT   slightly degrades the result, but its main problem is 

at the very low energies near the zero-point level. As long 

we are not dealing with this region, we may favor 

Stirling’s approximation given the algebraic simplicity of 
( )s

BT  and ( )s

GT .  

In the Boltzmann formulation, it is usual to assume that 

2N , yielding ( )l
BT  in Eq. (18). Although this 

approximation is fully justified for large systems, it has a 

major conceptual implication: it shifts the system from a 

Boltzmann to a Gibbs volume description, as made evident 

by Eqs. (18) and (24), where we can see that 
( ) ( )l s

B GT T= . 

Several authors,26, 33, 34 starting from the Boltzmann 

formulation, already apply the large N approximation at 

the level of the number of microstates [Eq. (13)]. Because 

this approximation reduces Eq. (13) to Eq. (21), they 

inadvertently work in the Gibbs volume formulation.  

E. The temperature of an isolated molecule 

1. Defining the average frequency 

My hypothesis to compute the temperature of an isolated 

molecule is that there is an average frequency   for the 

N-degenerated problem that is a good approximation for 

the isolated molecule, composed of N different 

frequencies. I tested two possibilities for the equivalent 

degenerated model (EDM),   given as the arithmetic 

mean  

21
,ZP

A k

k

E
v

N N
 = =     (25) 

and the harmonic mean 

1

1 1
.H

k kN




−

 
=  
 
     (26) 
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The rationale for adopting 
A  is the direct analogy to the 

solution of the degenerated problem. Note, for instance, 

that Eq. (24) can be rewritten as 

( )

1

2
ln .

s ZP ZP

G

ZP B

E E E
T

E E Nk

−

  +
=    −  

    (27) 

Thus, it is natural to search for an approximated solution 

to the non-degenerated problem with the same functional 

form. On the other hand, for a given E, there are many 

more microstates involving changes in the number of 

quanta in the low-frequency than in the high-frequency 

modes. Thus, it may be helpful to weigh the average 

frequency toward the low-frequency modes. If we take as 

weight the maximum number of quanta we can add to a 

specific vibrational mode, max /k kn E h=  corresponding to 

the microstate ( )max0, , , ,0kn , we get 

max

max
,

k k

k

H

k

k

n

n



=



    (28) 

providing a rationale for adopting the harmonic mean of 

the frequencies. 

On comparing these two possibilities, we will see in 

Sections II.E.2 and II.E.3 that the arithmetic mean does 

better than the harmonic mean. 

2. Test case: The temperature of H2O2 

Let us now work out a specific example of a small, isolated 

molecule, H2O2, for which we can count the microstates 

and compute the temperature numerically. H2O2 has four 

atoms and N = 6 vibrational modes with harmonic 

frequencies 346, 956, 1330, 1469, 3704, and 3709 cm−1 

(computed with the geometry, frequency, noncovalent, 

extended tight-binding (GFN1-xTB) method35). The 

arithmetic mean frequency is 
A =  1919 cm−1, and its 

harmonic mean frequency is 
H = 1015 cm−1. Up to 4 eV, 

it has 169,501 microstates, distributed as a function of E as 

shown in Figure 2-top. The number of states ( )E  is 

computed with an energy resolution of 
1h =  (346 cm−1).  

The Boltzmann and Gibbs volume temperatures of the 

isolated H2O2 computed by numerical differentiation of 

the entropy [Eq. (2)] are shown as dots in Figure 2, middle 

and bottom. The approximated results using the arithmetic 

mean frequency in the six-degenerated problem are shown 

in the middle and the harmonic mean in the bottom figure. 

For a vibrational energy excess of 3.9 eV, the Boltzmann 

temperature reaches about 9013 K and the Gibbs volume, 

7482 K. (Remember, these temperatures do not consider 

the anharmonicities of H2O2.) 

 

Figure 2. ( )ETop: Number of states  and the integrated 

( )Edensity of states  as a function of energy E for H2O2. 

Middle: Temperature of the isolated H2O2 (dots). The lines are 

the temperatures for the N = 6 equivalent degenerated model 

1919 =(EDM) with the arithmetic mean frequency of H2O2, 

cm−1. Bottom: Temperature of the isolated H2O2 (dots). The lines 

are the temperatures for the N = 6 EDM with the harmonic mean 

1015 =frequency of H2O2, cm−1. 

The growth of the number of states ( )E  with E, 

although monotonic, shows significant fluctuations, 

especially in the low-energy region. Consequently, the 

numerically-computed Boltzmann temperature (
( )n

BT  in 

Figure 2) also fluctuates around the six-degenerated mean 

value. The integrated density of states ( )E washes out 

most of these fluctuations and yields a much smoother 

Gibbs volume temperature function (
( )n

GT ). 

All approximated results are excellent in the region 

above 1 eV. The agreement deteriorates in the low-energy 

region near the zero-point energy. The exception is 

Stirling’s approximation with arithmetic mean frequency, 

which also describes the low energy well. The extended-

to-continuous approximation does not hold the correct 
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behavior at low energies, delivering too high-temperature 

predictions. 

3. Model validation 

The equivalent degenerated model with arithmetic mean 

frequency gave an excellent approximation for the 

temperature of the isolated H2O2. Nevertheless, is this a 

general result or just a coincidence? To check this point, I 

have computed the Gibbs volume temperature for 30 

arbitrary systems (10 with N = 6, 10 with N = 7, and 10 

with N = 8) with frequencies randomly distributed between 

300 and 3000 cm−1. The systems with N equal 7 and 8 do 

not correspond to molecules because N must be 3 6atN − . 

Nevertheless, they are useful to assess the errors. The 

systems with N = 8 have about 109 microstates up to 4 eV 

[see Eq. (21)]. For each energy value, the relative error 

( ) ( ) ( )
( )

/ / /

/

n s

B G B G H A

n

B G

T T
T

T




−
=     (29) 

between the numerical 
( )n

BT  and 
( )n

GT  temperatures and the 

temperatures of the equivalent degenerated model using 

Stirling’s approximation was evaluated. These errors are 

shown in Figure 3 for temperatures computed with 

arithmetic mean frequencies.  

  

Figure 3. TRelative error  between the numerical temperature 

and Stirling’s approximated temperature of the equivalent 

degenerated model with arithmetic mean frequencies computed 

for 30 random systems with N = 6, 7, and 8. Top: Boltzmann; 

bottom: Gibbs volume.  

Most of the error is in the low-energy region, and they 

are independent of the system size. The mean relative 

errors in Table 1 confirm this picture. 
( )s

GT  with arithmetic 

mean frequency has a mean relative error of 3% no matter 

N. The mean relative error of 
( )s

BT also with arithmetic 

mean frequency is a bit bigger, 8%. The mean relative 

errors with harmonic means are always larger than those 

with arithmetic mean. They are also dependent on the 

system size, reducing for bigger N. It is not shown in the 

table, but most of the error when using the harmonic mean 

frequency is in the low-energy region. Given the better 

performance of 
A  over 

H , only the former will be used 

in Section III. 

The better performance of the arithmetic over the 

harmonic mean is fortunate. It implies that low 

frequencies, commonly associated with anharmonic 

modes, are not more relevant than high frequencies in 

temperature determination.  

Table 1. Mean relative error T  between numerical and 

EDM approximated temperatures for Gibbs volume (G) and 

Boltzmann (B) formulations with harmonic (H) and arithmetic 

(A) mean frequencies. 

 N = 6 N = 7 N = 8 

GHT  0.24 0.14 0.16 

GAT  0.03 0.03 0.03 

BHT  0.29 0.16 0.11 

BAT  0.08 0.08 0.08 

 

The microcanonical temperature is not an injective 

function of the energy.18 This means we may have the 

same temperature for different energies. Therefore, for an 

energy E, the comparison between a temperature based on 

a continuous energy variable and that based on a discrete 

energy variable should be made considering the local mean 

value of the latter around E. Using the mean relative error 

as the margin of error is an effective way of considering 

the mean value of the discrete function. 

III. DISCUSSION 

F. Leading terms in the molecular temperature 

The asymptotic expansion of 
( )s

GT  [Eq. (24)] at E →  

gives 

( )
2 2

3

1
.

12

a

G

B B

E Nh
T O

Nk k E E

  
= − +  

 
   (30) 

The leading term is linear in E and does not depend on the 

particularities of the molecule, only on its size through N. 

In cluster studies, it is common to estimate the 

microcanonical temperature using the phenomenological 

formula10, 36 

2
,

kin

cluster

B

E
T

Nk
     (31) 
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where 
kinE  is the mean kinetic energy of the cluster. For 

a harmonic system, 2 kinE E=  and, therefore, Eq. (31) 

corresponds to the leading term in the Gibbs volume 

temperature expansion, Eq. (30). 

If, instead of the Gibbs volume, we start from the 

Boltzmann temperature ( )s

BT  (Eq. (17)), the asymptotic 

expansion at E →  gives 

( )

( )

( ) 2 21
2

2

1 1
.

1 12

a

B

B B

N hE hv
T O

N k k E E

−−  
= − +  

−  
  (32) 

As expected, ( ) ( )a a

B GT T→  when N → . However, for 

small systems, the leading term depends on the molecular 

properties through  . Moreover, the ( )1N − term in the 

denominator causes 
( )a

BT  grows faster than 
( )a

GT  with the 

energy.  

Andersen et al.15 derived the microcanonical 

temperature of a small isolated system starting from the 

Boltzmann entropy and searching for the average energy 

of a canonical system equilibrated at the microcanonical 

temperature. Their result for an ensemble of N (non-

degenerated) quantum harmonic oscillators in the high-

temperature limit is 

( )
.

1
ABH

B

E
T

N k
=

−
    (33) 

Considering that in this limit E hv , their formula 

matches the leading order of the 
( )s

BT  expansion in Eq. 

(32) . 

A common assumption in phenomenological models is 

that the heat capacity (Eq. (9)) of the isolated molecule 

does not depend on the temperature, so a simple linear 

relation 
0E CT E= +  holds between energy and 

temperature.2, 8 According to Eq. (30), such a hypothesis is 

satisfied for a molecule with N vibrational degrees if 

.
2 3 3

ZPENh
E


=     (34) 

Note that the radiative cooling should bring the molecule 

to the nonlinear region even if this relation is initially 

satisfied.   

G. Effect of the harmonic approximation 

The isolated molecule model developed here is purely 

based on a harmonic approximation. Because the density 

of microstates as a function of the energy of a fully coupled 

anharmonic system grows faster than that of a harmonic 

system,23 the harmonic microcanonical temperature should 

be an upper limit for the exact temperature. (Remember, 

the temperature is the inverse of the derivative of the 

density of states.) However, how far off the harmonic 

temperature is? I will not fully address this question here, 

but I will show two examples to provide insights into the 

errors we may expect when using the models derived in 

this paper. 

Aieta et al. reported in Ref.21 the integrated density of 

microstates ( )E  at energy E for fully coupled 

anharmonic systems, computed with the Wang–Landau 

Monte Carlo method using the Paradensum algorithm.25 

Among the systems they tested, hydrocarboxyl radical 

(HOCO) and anthracene are particularly interesting 

because they correspond to two molecular limits: the first 

is small and flexible, while the second is large and rigid. 

The anharmonic temperature of these two molecules,  

computed by numerical differentiation of ( )E  [see Eqs. 

(2) and (8)], is shown in Figure 4. These temperatures can 

be directly compared to the Gibbs volume harmonic 

temperatures ( )s

GT , which are also shown in the figure. 

They were computed with the same harmonic frequencies 

used in Ref.21. 

 

Figure 4. Microcanonical temperature of HOCO (blue) and 

anthracene (red) computed with the harmonic model using Eq. 
( )s

GT(24) ( , solid line) and with a fully coupled anharmonic model 

(dots). The fully coupled anharmonic model is calculated by 

numerical differentiation of the integrated density of states 

reported in Ref. 21 (see text). 

As expected, the harmonic temperatures are higher than 

the anharmonic ones. Both approximations agree 

qualitatively, but the numerical differences are not 

negligible. For anthracene, the anharmonic temperature is 

about 150 K smaller than the harmonic one over the entire 
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domain. For HOCO, the anharmonic temperature is about 

300 K lower than the harmonic one for intermediary 

excitation energies between 0.05 and 0.1 au (1.36 – 2.72 

eV). For lower energies, the comparison is unclear due to 

the strong oscillations in the anharmonic result. The 

anharmonic temperature is much smaller than the 

harmonic one at higher energies. The relative error reaches 

20% at 0.2 au. This deviation may indicate the limitations 

of the harmonic approximation for small, flexible systems.   

Assuming that the harmonic microcanonical 

temperature is an upper bound for the exact 

microcanonical temperature is reasonable for molecules, 

where the anharmonic modes fully couple. This 

hypothesis, however, may fail in systems with internal 

rotations and decoupled modes. For instance, Belega et 

al.36 proposed that the microcanonical temperature of 

molecular clusters could be estimated by replacing N in 

Eq. (31) with an effective Neff factor computed from the 

reduced averaged kinetic energy in each mode. Their 

approach applied to the water pentamer yielded a 

temperature increase of up to 100 K compared to the 

harmonic approximation.  

H. Experimental comparison between Boltzmann 
and Gibbs volume 

Currently, there is an ongoing debate on which function is 

the correct way of computing the entropy for an isolated 

system. While Hilbert, Hänggi, and Dunkel18, 29 claimed 

that, among several entropy models, only Gibbs volume 

fulfills all three laws of thermodynamics simultaneously, 

Swendsen and Wang19 argued that Gibbs volume fails to 

satisfy the postulates of thermodynamics and make 

incorrect predictions for systems with nonmonotonic 

energy densities. (See Ref.37 for an account of this debate.) 

Although this discussion goes beyond the scope of this 

paper, the present results create a way for experimentally 

testing which entropy, Boltzmann or Gibbs volume, 

delivers the best theoretical prediction. We could think of 

a setup where a small, isolated molecular ion is 

photoexcited in an electrostatic ion trap.4, 6, 38 The laser 

pulse duration should be such as it allows thermal 

equilibration before radiative decay starts but without 

losing too much energy resolution. Then, monitoring its 

radiative cooling would inform on its peak temperature 

(before any cooling). As discussed in Section II.E.2, for a 

four-atom molecule with a few eV of energy excess, the 

difference between Boltzmann and Gibbs volume 

temperatures should be significant enough to cause 

different color emissions. 

Alternative experimental setups to test both entropy 

formulations have also been proposed by Ferrari,17 in 

terms of either a non-interacting gas with a two-level 

internal spectrum or an Ising model of interacting spins. 

I. Temperature of isolated molecules of applied 
interest 

The temperatures ( )s

BT  and ( )s

GT  as a function of the 

excitation energy 
ZPE E E = −  are shown in Figure 5-top 

for a few molecules. All harmonic frequencies were 

computed at the GFN1-xTB level.35 These molecules are 

all systems of astrochemical interest. The difference 

between Boltzmann and Gibbs volume temperatures is 

negligible for any system above 24 vibrational degrees (10 

atoms). For isolated C60 at 808 K, Deng and Echt39 

measured its heat capacity as 12.6  1.4 meV/K. 

According to Eq. (20) and using  = 922 cm−1, this 

temperature corresponds to E = 14.7 eV, yielding a 

theoretical estimate of 
( )s

GC =  12.0 meV/K [Eq. (20)], in 

excellent agreement with the experiment. Note that this 

result is smaller than the high-energy limit, 
BNk =  15.0 

meV/K (N = 174), due to the nonlinear dependence of the 

temperature on the energy.  

If no chemical process occurs, the hot, isolated molecule 

is expected to cool down due to blackbody radiation.6-8 

Since the seminal papers by Sellgren40 and Leger and 

Puget,12 some specific near-infrared (IR) spectral features 

of interstellar dust have been assigned to polycyclic 

aromatic hydrocarbons (PAHs).41 These earlier works 

raised the hypothesis that those IR features arise from 

small, 5−10 Å molecules instantaneously heated to about 

1000 K by UV radiation. Working on observational data, 

Leger et al.11, 12 estimated a color temperature of 600 K, 

corresponding to a peak temperature of 950  150 K. Then, 

using the Einstein heat capacity model and assuming 6-eV 

photoexcitation, they predicted that the IR features should 

be due to carbon species with about 60 atoms.  

We can revisit this assignment by using the 

microcanonical temperature derived here. Let us assume a 

peak temperature of T = 950  150 K and that the 

arithmetic mean frequency is  =  1100  100 cm−1. Let us 

also allow a broader variation in the UV excitation, EUV 

= 5  1 eV. Using Eq. (24), the number of atoms is  
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exp 1 2.
3

UV

at

B

E h
N

h k T





  
= − +   

  

    (35) 

 

Figure 5. ( )s

GTTop: Gibbs volume  (solid lines) and Boltzmann 
( )s

BT  (dashed lines) temperatures for a few molecules (arithmetic 

mean frequency). N is the number of vibrational modes. Bottom: 

Density map of possible molecular systems with temperature 950 

 150 K, UV excitation 5  1 eV, and arithmetic mean frequency 

1100  100 cm−1. The density grows from yellow to blue. The 

dots illustrate the absorption peak of a few PAH molecules with 

excitation energies taken from the literature: anthracene,42 

naphthalene (neutral and cation), phenanthrene, pyrene (neutral 

and cation),43 coronene, dicoronylene, ovalene,44 and fullerene.45  

Letting all three parameters vary according to a random 

normal distribution with standard deviation given by the 

error bars, we arrive at Nat = 61  38 for 106 random 

systems. This mean number of atoms agrees with the 

previous calculations. Nevertheless, as we can see in the 

density plot at the bottom of Figure 5, it also indicates that 

a large variety of possible molecular systems falls within 

the parameter constraints. The figure also shows a few 

PAH molecules ranging from small to large sizes. Except 

for naphthalene neutral and cation, they all fall in the high-

density region, as we would expect from PAH mixtures 

that should occur in the interstellar media.44, 46 This 

analysis considers only molecules returning ground state 

via radiationless pathways. If they fluoresce, the peak 

temperature after re-equilibration in the ground state 

should correspond to a vibrational excess discounting the 

energy of the emitted photon. 

IV. CONCLUSIONS 

This paper explores the microcanonical temperature of an 

isolated molecule. The molecule is treated as an ensemble 

of quantum harmonic oscillators, and the temperature is 

derived in the frame of Boltzmann and Gibbs volume 

entropies. Although the direct solution to the problem 

seems not to be accessible analytically, we discuss how 

approximations based on an equivalent degenerated model 

using average frequencies can adequately describe the 

molecular temperature. The discussion tracks the effect of 

several hypotheses and approximations on the results, 

including the entropy functional, the type of average 

frequency, the extension of discrete into continuous 

variables, the use of Stirling’s approximation, the 

assumption of a large number of degrees of freedom N, and 

the expansion in the leading orders. Table 2 summarizes 

the several expressions discussed in the text.  

The comparison between Boltzmann and Gibbs volume 

approaches shows that the temperatures converge to the 

same values for large N. The difference is already 

negligible for a ten-atom molecule. However, for smaller 

molecules, the difference is significant, and it should be 

possible to probe it experimentally. In particular, we 

discuss how a common numerical approximation 

corresponds, in fact, to a shift from the Boltzmann into the 

Gibbs volume formulation. 

We also see how the microcanonical temperature relates 

to previous phenomenological approaches. For a large 

vibrational energy excess, the common assumption of a 

linear relationship between temperature and energy 

(constant heat capacity) is valid. Nevertheless, dissociative 

and radiative cooling should bring the system to nonlinear 

regions.  

For practical purposes, for a molecule with more than 

ten atoms, I recommend using 
( )s

GT  (the Gibbs volume 

temperature with Stirling’s approximation) or equivalently 
( )l

BT  (the Boltzmann temperature for large N) and 

arithmetic mean of frequencies. For smaller molecules, the 

temperature can be computed with either 
( )s

GT  or 
( )s

BT . At 

this point, it is unclear which one delivers the correct 

answer.  
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Table 2. Summary of the microcanonical temperatures derived under different approximations from Boltzmann and Gibbs volume 

entropies for a degenerated set of N quantum harmonic oscillators with frequency  . For the non-degenerated problem,   is the 

arithmetic mean frequency of the spectrum.  is the digamma function. For an isolated molecule well-represented by harmonic 

vibrational modes, 
( )s

GT  delivers a good approximation for the microcanonical temperature within an error of 3% compared to the exact 

harmonic estimate. 

 Boltzmann Gibbs volume 

Numerical counting 
( )

1

n B
B

S
T

E

−
 

=  
 

 
( )

1

n G
G

S
T

E

−
 

=  
 

 

Extension of EM to 

continuous E 
( )

1

1
2 2

e

B

B

E N E N h
T

h h k



 

−

    
=  + − − +    

    
 ( )

1

1 1
2 2

e

G
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E N E N h
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h h k



 

−

    
=  + + − − +    

    
 

Stirling’s 
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1
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B

E N h h
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E Nh k

 



−

  + −
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( )

1

2
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E Nh h
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−

 +  
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Large N 

approximation  
( )

1

2
ln

2

l

B

B

E Nh h
T

E Nh k

 



−

 +  
=   −  

 
 

Asymptotic 
expansion at  

E →  

( )

( )
( ) 2 21

2

2

1 1

1 12

a

B

B B

N hE hv
T O

N k k E E

−−  
= − +  

−  
 

( )
2 2

3

1

12

a

G

B B

E Nh
T O

Nk k E E

  
= − +  

 
 

Constant heat 

capacity 
( )

( )

1
2

1

c

B

B

E hv
T

N k

−
=

−
 ( )c

G

B

E
T

Nk
=  

 

We should also bear in mind that the microcanonical 

temperature models discussed here are strictly valid for 

molecules that are not subjected to external fields, 

populate a single electronic state, and whose vibrational 

modes can be well-represented by a harmonic 

approximation. There are two advantages of working 

within these boundaries. First, they provide simple 

analytical expressions that allow a straightforward 

temperature estimation beyond the classical regime. 

Second, they enable the development of a conceptual 

understanding that is sometimes hidden when applying 

advanced numerical approaches. Nonetheless, the present 

modeling should be extended beyond these 

approximations in the future. The primary goal should be 

to tackle anharmonic effects to increase the prediction 

accuracy. 
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