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Scales

Mathieu Helfter *
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Abstract

We introduce the notion of scale to generalize some aspects of dimension theory. Several versions
of scales exist such as Hausdorff, packing, box, local and quantization. We prove general theorems com-
paring them. They are applied to describe the largeness of ergodic decompositions, Wiener measure
and functional spaces. The first application solves a problem set by Berger on the notions of emergence
(2020); the second lies in the study of small ball estimates of the Wiener measure and extends an esti-
mation of Dereich-Lifshits (2005); the last refines the Kolmogorov-Tikhomirov theorems (1958) on the
e-capacity of functional spaces.
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1 Introduction and results

Dimension theory was popularized by Mandelbrot in the article How long is the coast of Britain ? [ ]
and shed light on the general problem of measuring how large a natural object is. The category of objects
considered are metric spaces possibly endowed with a measure.

Dimension theory encompasses not only smooth spaces such as manifolds, but also wild spaces such as
fractals, so that the dimension may be any non-negative real number. There are several notions of dimen-
sion: for instance HausdorfT [ ], packing [ ] or box dimensions; also when the space is endowed
with a measure, there are moreover the local and the quantization dimensions. These different versions of
dimension are bi-Lipschitz invariants. They are in general not equal, so that they reveal different aspects
of the underlying space. The seminal works of Hausdorff, Frostman, Tricot, Fan, Tamashiro, Pétzelberger,
Graf-Luschgy and Dereich-Lifshits described the relationship between these notions and gave conditions
under which they coincide.

Obviously these invariants do not give much information on infinite dimensional spaces. However
such spaces are subject to many studies. Kolmogorov-Tikhomirov in [ ] gave asymptotics of the
covering numbers of functional spaces. Dereich-Lifshits gave asymptotics of the mass of the small balls
for the Wiener measure and exhibited their relationship with the quantization problem, see [ ,

, , R R ]. Also Berger and Bochi [ ] gave estimates on the covering number

and quantization number of the ergodic decomposition of some smooth dynamical systems. See also

[BR92, ; 1

We will introduce the notion of scale to unify both the different kinds of dimensions and the latter
infinite dimensional studies. Scales are families of invariants of different kinds (box, Hausdorff, packing,
quantization, local) and different growths (dim, ord ...). Scales generalize all the previous kinds of di-
mensions and allow to describe some aspects of the above examples of infinite dimensional spaces and
measures. The different growths of scales are given by scalings (see Definition 1.2).

We will generalize the well known comparison theorems between the different kind of dimensions to
all the different growths of scales in Theorem A, Theorem B and Theorem C. See Section 1.2. The main
difficulty will be to prove Theorem C which enables to compare the quantization scales with both the local

and the box scales.

An application of Theorem A, together with new estimates, is to show the coincidence of the box,
Hausdorff and packing orders for finitely regular functional spaces; refining [ , Thm XV]. Theorem C
together with [ ] immediately implies the coincidence of local, Hausdorff, packing, quantization and
box orders of the Wiener measure for the LP-norm, for any p € [1,00]. Moreover, a consequence of
Theorem C is that the local order of the ergodic decomposition is at most its quantization order; which

solves a problem set by Berger in [ ]. See Section 1.3.3.
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1.1 From dimension to scale

The Hausdorf, packing and box dimensions of a totally bounded metric space (X, d) are defined by look-
ing at families of subsets of X. For the box dimensions, we consider the set Cg(¢) of finite coverings of X
by balls with radius e > 0. For the Hausdorff dimension, we consider the set Cys (€) of countable coverings
(E;)i>1 of X by sets with diameter at most € > 0. For a > 0, consider the following quantities. For the
box dimensions, denote:

BY(X):= inf dius (B)* =¢*- inf CardC .
(X)) CEIgB(E)l;:Cra ius (B) € Cel(rle(e) ar

The quantity N, = . iélf( : Card C is called the e-covering number of (X, d). For the Hausdor{f dimension,
€Cp(e

denote:

“X):= inf di EY* .
HE(X) = ind (%; iam(E)

Then we define the lower and upper box dimensions as:
dimp X = sup{a >0:BXX) — +oo} and dimpX :mf{a >0:B&X) - O} .
Similarly, we define Hausdorff dimension by:
dimg X = sup {a >0 HYX) — +oo} — inf {a >0 HY(X) — o} .
e—0

e—0

It always holds dimyg X < dimpX < dimpX, in general, none of these inequalities is an equality. For
instance the set (0, 1) N Q has null Hausdorff dimension and both box dimensions equal to 1. Moreover,
there are non-homogeneous Cantor sets such that dimp X < dimpX. See e.g. [ ]. Hausdorff and
box dimensions enjoy different properties, while Hausdorff dimension is countable stable (the dimension
of a countable union is the supremum of the dimensions), the box dimensions are stable by closure. One
way to define packing dimension is to modify upper box dimension to make it countable stable:
dimpX = infsupdimpE,, ,
n>1

where the infimum is taken over countable coverings (E,,),>1 of X. These four versions of dimension
are bi-Lipschitz invariants; they quantify different aspects of the geometry of the studied metric space.
In the next section we will recall how these invariants are related. The idea is to replace the family
(da)a>0 = (€ € (0,1) — €¥)n>0 by families of functions, called scalings, defining comparable versions

of scales, which encompasses the following examples of growth:
Example 1.1. 1. The familydim = (e € (0,1) — €%)a>0 which is used in the definitions of dimensions,

2. the family ord = (e € (0,1) — exp(—€~%))a>0 Which fits with the growth of the covering number
of spaces of finitely regular functions studied by Kolmogorov-Tikhomirov [ ], see Theorem 1.10, or
with the one of the space of ergodic measures spaces of chaotic dynamics by Berger-Bochi [ ], see

Proposition 1.15,



3. the family (e € (0,1) — exp(—(log 6_1)“))a>0 which fits with the growth of the covering number

of holomorphic functions estimated by Kolmogorov-Tikhomirov [ ], see Theorem 2.5.

Yet to keep a comparison between the generalization of box, Hausdorff and packing dimensions, the

family (¢q )a>0 must satisfies some mild assumptions, which leads to the notion of scaling:

Definition 1.2 (Scaling). A familyscl = (scly)a>0 of positive non-decreasing functions on (0, 1) is a scaling
when for any o > 8 > 0 and any X > 1 close enough to 1, it holds:

(*) sclo(€) = o (sclg(€")) and scla(e) = o (sclg(€)) whene — 0.

Remark 1.3. The left hand side condition is used in all the proof of our theorems represented on Fig. 1.
The right hand side condition is only used to prove the equalities between packing and upper local scales in
Theorem B and to compare upper local scales with upper box and upper quantization scales in Theorem C

inequalities (¢)&(g) . It moreover allows to characterize packing scale with packing measure.

Remark 1.4. There are scalings that are smaller than dimension, e.g. (e € (0,1) — log(e™1)™%),~0 that
is adapted to study the set {2_"ﬁ :n > 1} where 8 is a positive real number.

We will show in Proposition 2.4 that 1 — 2 — 3 in Example 1.1 are scalings. Scalings allow to define
scales which generalize packing dimension, Hausdorff dimension, box dimensions, quantization dimen-
sions and local dimensions that are local counterparts for measures. For each scaling, the different kind
of scales do not a priori coincide on a generic space. Nevertheless in Section 1.3, as a direct application of
our comparison theorems, we bring examples of metric spaces and measures where all those definitions
coincide. This equality between the different scales gives us hints of the regularity of such spaces and
measures.

Now for a metric space (X, d), replacing the specific family dim in the definition of box dimensions

by any scaling scl = (scly)a>0 gives the following:

Definition 1.5 (Box scales). Lower and upper box scales of a metric space (X, d) are defined by:

sclp X = sup{a > 0: N(X) - scly(e) — +oo} and sclpX = inf{a > 0: N(X) - scly(e) — O} .

e—0 e—0

Moreover we will generalize the notion Hausdorff and packing dimensions to the Hausdorff scale de-
noted scly X (see Definition 2.13) and packing scale denoted sclp X (see Definition 2.14).

1.2 Results on comparisons of scales

In this section, we introduce other kind of scales and Theorems A, B and C which state the inequalities

between them as illustrated in Fig. 1. First, we bring the following generalization of inequalities comparing

dimensions of metric spaces to the frame of scales:

Theorem A. Let (X, d) be a metric space and scl a scaling, the following inequalities hold:

sclpX <sclpX <sclpX and sclgX <sclzpX <sclpX .
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=

Figure 1: Diagram presenting results of Theorems A, B and C. Each arrow is an inequality, the scale at

[ sclgp = inf ess scly.

the starting point of the arrow is at least the one at its ending point: 7 — 7 = ” > ”. None of them
is an equality in the general case. If there is no path between two scales scl; and scly then there exist
examples of spaces endowed with a measure such that both scl; > scly and scl; < scly can happen. See
Example 4.6.

In the specific case of dimension these inequalities are well known and redacted for instance by Tricot
[Tri82] or Falconer [FF97, Fal04]. The proof of this theorem will be done in Section 2.5.

When the metric space (X, d) is endowed with a measure p, Frostman first studied the relationship
between the Hausdorff dimension and the growth of the mass of the small balls. This has been intensively
studied by Fan [FLR02, Fan94], Pétzelberger [P6t99], Tamashiro [Tam95] as local dimension. Similarly we

introduce local scales that extend the notion of local dimensions of a measure:

Definition 1.6 (Local scales). Let ji be Borel measure on a metric space (X, d) and scl a scaling. The lower
and upper scales of 1 are the functions that map a point x € X to:

sclipo () = sup {a >0: u(sflfjf’s)e)) - 0} and  sclipep(x) = inf {a >0: uicBlix(,e)E)) — +oo} .

As in dimension theory, we should not compare the local scales with the scales of X but to the ones

of its subsets with positive mass. This observation leads to consider the following:



Definition 1.7 (Hausdorff, packing and box scales of a measure). Let scl be a scaling and j1 a non-null
Borel measure on a metric space (X, d). For anyscly € {SCIH7 sclp, LdB,aB} we define lower and upper

scales of the measure |1 by:
o/t = inf oLl =1 oLV = )
sclept jnf, {scleE : n(E) >0} and sclyu EHéfB {scle £ : u(X\E) = 0}

where B is the set of Borel subsets of X .

In the case of dimension, Frostman [ ], Tricot [ ], Fan [ , ] and Tamashiro [ ]
exhibited the relationship between the Hausdorff and packing dimensions of measures and their local

dimensions. The following theorem is a straightforward generalization of their results:

Theorem B. Let i be a Borel measure on a metric space (X, d), then for any scaling scl, Hausdorff and

packing scales of p are characterized by:
sclgp = essinfscly  pu, scliu = esssupscl,.p, sclpp = ess inf scligeft, sclpp = ess sup sclipeft

where ess sup and ess inf denote the essential suprema and infima of a function.

The proof of the latter theorem is done in Section 3.1.
Let us introduce a last kind of scale, the quantization scale. It generalizes the quantization dimension

which dragged much research interest [ , , , , , , ].

Definition 1.8 (Quantization scales). Let (X, d) be a metric space and 11 a Borel measure on X. The quan-
tization number Q,, of u is the function that maps ¢ > 0 to the minimal cardinality of a set of points that is

on average e-close to any point in X :

Q,(€) = inf {N >0:3{ei}iy v C X, /X A, {6}y <o )i(z) < e} .
Then lower and upper quantization scales of  for a given scaling scl are defined by:
sclgu = sup {a >0:Q,(e) - scla(e) — —1—00} and sclop = inf {a >0:Q,(e) - scla(e) - 0} .
The following gives relationships between the remaining kind of introduced scales of measures:

Theorem C (Main). Let (X, d) be a metric space. Let {1 be a Borel measure on X. For any scaling scl, the
following inequalities on the scales of 11 hold:

essinfscl . < sclpu < SL'Q,U ; essinfscligept < sclpu < sclop
(a) (b) (c) (d)
and
ess sup scl < scl < scl} : esssupscl < sl < sd,
PSCligc - > 7Q,u‘ >~ SCipl p oc > QM = BHM

The proof of inequalities (b) and (d) is done at Theorem 3.10 and relies mainly on the use of Borel-
Cantelli lemma. Even in the specific case of dimension, these inequalities were not shown yet, as far as

we know. The proof of inequalities (f) and (h) is straightforward, see Lemma 3.8. Inequalities (e) and



(g9) were shown by Pétzelberger in [ ] for dimension and in [0, 1]%. A new approach for the general
case of scales of inequalities (e) and (g) is brought in Theorem 3.11. We deduce the inequality (a) from

(e) and (f) and inequality (c¢) from (g) and (h). As a direct application, inequality (e) allows to answer to

a problem set by Berger in [ ] (see Section 1.3.3). We will give in Section 4.1 examples of topological
compact groups different versions of orders do not coincide. Moreover in that same section we show that
for a metric group where the law is Lipschitz, the Hausdorff scale coincides with the lower box scale and

the packing scale coincides with the upper box scale.

1.3 Applications

Let us see how our main theorems imply easily the coincidence of the scales of some natural infinite

dimensional spaces.

1.3.1 Wiener measure

First example is the calculus of the orders of the Wiener measure W that describes uni-dimensional stan-
dard Brownian motion on [0, 1]. Recall that W is the law of a continuous process (B;);c[o,1] With inde-
pendent increments. It is such that for any ¢ > s the law of the random variable B; — By is N'(0,¢ — s).
Computation of the local scales of the Wiener measure relies on small ball estimates which received much
interest [ , , , ]. These results gave asymptotics on the measure of small balls cen-
tered at O for LP norms and Holder norms. Moreover for a random ball the Dereich-Lifshits made the

following estimation for LP-norms:

Theorem 1.9 (Dereich-Lifshits [ 1[Results 3.2, 5.1, 6.1, 6.3]). For the Wiener measure on C°([0, 1], R)
endowed with the LP-norm, for p € [1,00], there exists ' a constant k > 0 such that for W -almost any
w € C°([0,1],R):

—€e2 - log W (B(w,€)) — K, whene — 0

and moreover the quantization number of W verifies:

€% - log Qu (€) — K, whene — 0 .

As a direct consequence of Theorem B and Theorem C we get that the new invariants we introduced

for a measure with growth given by ord all coincide:

Theorem D (Orders of the Wiener measure). For the Wiener measure on C°([0, 1], R) endowed with the
LP-norm, forp € [1, 00|, verifies for W -almost every w € C°([0,1]) :

ord, W (w) = ordg W = ord; W = ordioc W (w) = ordpW = ordpW = ordgW = ord, W = ordgW = ordqW = 2.
Proof. By Theorem 1.9, for W-almost w and for any p € [1, oo], in the LP-norm it holds:

ordyo W (w) = ordipe W (w) = 2 = ordo, W = ordq W .

INote that for p < oo, the constant x does not depend on the value of p.



Now by Theorem B since local orders of the Wiener measure are almost constant everywhere, it holds:
ordgW = ord,, . W (w) = ordj;W and ordpW = ordiocW (w) = ordpW .

Finally since by Theorem C, it holds:

ess inf ord; W < ordgW < ordgW < mQW ,

the sought result comes by combining the three above lines of equalities and inequalities. O

1.3.2 Functional spaces endowed with the C’-norm
Let d be a positive integer. For any integer k¥ > 0 and for any « € [0, 1] denote:
Fhhe={fe c*([0,1]%[-1,1]) : | fllor <1, and if @ > 0, the map D" f is a-Holder with constant 1 } .

We endow this space with the C° norm. See Section 4.2 for the definition of the C'*-norms.Kolmogorov-

Tikhomirov gave the following asymptotics:

Theorem 1.10 (Kolmogorov-Tikhomirov, [ 1[Thm XV]). Let d be a positive integer. For any integer k
and for any o € [0, 1], there exist two constants Cy > Cy > 0 such that the covering number N.(F4%@) of
the space (F&E:2 || - || o) verifies:

Cy - ¢ e > log Ne(FR) > Cy - e e

In Section 4.2 by embedding a group whose Hausdorff order is bounded from below into F*%% (see

Section 4.2), via an expanding map, we will prove:

Lemma 1.11. Let d be a positive integer. For any integer k and for any a € [0, 1], it holds:

d
d Fhke > .
or H]: “kta

The above lemma together with Theorem A gives the following extension of Kolmogorov-Tikhomirov’s

Theorem:

Theorem E. Let d be a positive integer. For any integer k and for any o € [0, 1], it holds:

d

ordy F** = ord p F¥M = ord g F4F* = ord g F7 = o
(67

Proof of Theorem E. First, by Theorem A, it holds:
ord g Fke < MB}"d’k"" <ordgFP% and ordgFM* < ordp FERM < ord g FER |

From there by Theorem 1.10 and Lemma 1.11, it holds:

d [} , 0 A a d
7ea S ordg F4M* < ord g F@M < ordp F4F = Tra
and
4 o FRe < ordp PR < ordpFhhe = 4
k+oa - - k+ o
From there, all of the above inequalities are indeed equalities, which gives the sought result. O



1.3.3 Local and global emergence

The framework of scales moreover allow to answer to a problem set by Berger in [ ] on wild dynamical
systems. We now consider a compact metric space (X, d) and a measurable map f : X — X. We denote
M the set of probability Borel measures on X and M the subset of M of f-invariant measures. The
space M is endowed with the Wasserstein distance W; defined by:

Wi(vi,v2) = sup /¢d(V1 —13),
¢€Lipt(X)

inducing the weak *- topology for which M is compact. A way to measure the wildness of a dynamical
system is to measure how far from being ergodic an invariant measure y is. Then by Birkhoff’s theorem

given a measure ;1 € M ¢, for p-almost every z € X the following measure is well defined:
n—1

e(z) = lim — I;J Ofk() »

and moreover the limit measure is ergodic. The definition of emergence, introduced by Berger, describes
the size of the set of ergodic measures reachable by limits of empirical measures given an f-invariant

probability measure on X.

Definition 1.12 (Emergence, [ , ]). The emergence of a measure ;1 € My ate > 0 is defined by:
Eu(e) =min{N e N : Jvy,...,vxy € My, / Wilef(x), {viti<i<n)dp(z) < e} .
b's

The case of high emergence corresponds to dynamics where the considered measure is not ergodic
at all. The following result shows us that the order is an adapted scaling in the study of the ergodic

decomposition.

Theorem 1.13 ( [ , , 1). Let (X, d) be a metric compact space of finite then:
dimpX < ordg(M) < ordg(M) < dimpX .
For a given measure u € M we define its emergence order by:

— log 1
ord€,, := limsup M

nst oz c = inf {a >0:E&,(€) -exp(—e ¥) — O} .

e—0
We denote pi., := ey x u the ergodic decomposition of yu; it is the probability measure on M equal to
the push forward by e of . A local analogous local quantity to the emergence order is the local order of

the ergodic decomposition of p, for v € My it is defined by:

— log —1 e (B(v,
ordELOC(Z/) := lim sup og — log(yte, (B(v:€)) .
e—0 —loge
Berger asked if the the following comparison between asymptotic behaviour of the mass of the balls of

the ergodic decomposition of 1 and the asymptotic behaviour of its quantization holds.



Problem 1.14 (Berger, [ ,Pbm 4.22] ). Let (X, d) be a compact metric space, f : X — X a measurable

map and . a Borel f-invariant measure on X. Does the following holds ?
— -
/ ordgﬂocduef <ordé, .
My

We propose here a stronger result that answer to latter problem as a direct application of Theorem C:

Proposition 1.15. Let (X, d) be a compact metric space, f : X — X a measurable map and . a Borel

f-invariant measure on X. For ey -almost every v € M, it holds:
ord&,>*(v) < ord€,, .

Proof. Note that Rg}fc = ﬁlocue‘f and ﬁgu = %Qﬂe ;- Now by Theorem C, it holds fi ,-almost
surely that ordjocte ; < RQ pe, which is the sought result. O

2 Metric scales

2.1 Scalings

We first recall that a scaling is a family scl = (scl, )o>0 of positive non-decreasing functions on (0, 1) is

a scaling when for any o > 8 > 0 and any A > 1 close enough to 1, it holds:
(%) scla(€) = o (sclg(€")) and scly(e) = o (sclg(e)*) whene— 0.
An immediate consequence of the latter definition is the following:

Fact 2.1. Let scl be a scaling then for any o > 3 > 0 and for any constant C > 0 it holds for e > 0 small
enough:
scly(e) < sclg(C -¢) .

A consequence of the latter fact is the following which compares scales of metric spaces and measures:

Lemma 2.2. Let f,g : R} — R’ be two functions defined such that f < g near 0, thus for any constant
C > 0:
inf {a >0: f(C-e)-scly(e) — O} < inf {a >0:g(e) - scly(€) — 0}

e—0 e—0
and
sup {a >0: f(C-¢€)-scly(e) —O> —|—oo} < sup {a >0 g(e) - scly(€) _0> —|—oo} )
€— €—

Proof. 1t suffices to observe that, by Fact 2.1, for any o > 3 > 0, and € > 0 small, it holds:
f(e) -scly(e) < gle) -sclg(C™ - €) = g(C - &) - sclg(€) ,
withe=C -e O

Lemma 2.3 gives a sequential characterization of scales.

10



Lemma 2.3 (Sequential characterization of scales). Letscl be a scaling and f : R, — R a non increasing
function. Let (r,,)n>1 be a positive sequence decreasing to 0 such that log r,4+1 ~ logr, whenn — 400,
then it holds:

inf {a > 0: f(e) - scly(€) — O} = inf {a >0: f(ry) - scla(rn) ——— 0}

n—-+oo

and
sup {a >0: f(e) - scly(e) — —l—oo} = sup {oz >0: f(ry) - scla(ry) —— +oo} .

Proof. Consider « > 0 and € > 0. If € is small enough, there exists an integer n > 0 that verifies

rnt1 < € < rp, thus, since f is not increasing and scl, is increasing, it holds:

f(rn) -scla(rni1) < f(e) -scla(e) < f(rny1) - scla(rn) -

Consider now 3,~ such that 0 < 8 < « < 7, thus for A close to 1 and ¢ is small enough, one has by
Definition 1.2 of scaling that:

scly (1) < scly(rh) and  scly(r,) < sclg(r)) .

log mp 41
Observe now that r, 41 = r,'**™

, and since log 7,11 ~ log ry,. For n great enough, it holds then:
7’7); < Tn+t -
Since the functions of the scaling are increasing, it follows:
scly(rn) < scla(rnt1) and  scla(rn) <sclg(rpg) -
We can now deduce from the latter and the first line of inequalities that:
F(ra) -6l () < £(€) - scla(e) and  f(€) -scla(€) < F(rns1) - sel(rasa)
Since 7y and (3 can be chosen arbitrarily close to «, we deduce the sought result. O

The following Proposition 2.4 provides many scalings and shows in particular that the families brought
in Example 1.1 are indeed scalings.
Proposition 2.4. For any integers p,q > 1, the family sc/”? = (scl2:?) .~ defined for any o > 0 by:

1
exp°P (o - log? (e~ 1))

scll? e € (0,1) —

is a scaling; wherelog :t € R+ log(t) - 1l;~ is the positive part of the logarithm.

We prove this proposition below. Now note in particular that scl""' = dim = (¢ € (0,1) = €*)a>0

and scI*! = ord = (e € (0,1) — exp(—e *))as0 are both scalings. Let us give an example of space

11



which have finite box scales for the scaling scl*? as defined in Proposition 2.4. Consider the space A of
holomorphic functions on the disk D(R) C C of radius R > 1 which are uniformly bounded by 1:

A=<= Zanz” € C*(D(R),C) : sup |¢| <1 p endowed with the norm||¢||o := sup |P(2)] .
n>0 D(R) z€D(1)

The following implies:
scl¥?A =5y A=2.

Theorem 2.5 (Kolmogorov, Tikhomirov [ ][Equality 129] ). The following estimation on the covering
number of (A, || - ||so) holds:

log N.(A) = (log R)™" - |loge|* + O(loge™! -logloge™!), when e tends to 0. .
Let us now prove Proposition 2.4:

Proof of Proposition 2.4. First it is clear that scl”? is a family of non-decreasing functions. Moreover the

family is non-increasing. We prove the following below:

Lemma 2.6. Forany~y > 0 andv > 1 close to 1, it holds for e > 0 small:
sclpd (€) < sclb9(e”) and scl)d(e) <sclh?(e)”,
when € — 0.

Let us show how this lemma implies condition () in Definition 1.2 of scaling and thus the result of
the proposition. For a > 3 > 0, consider A > 1 such that o > A\? - 3, since the family is non-increasing,
it holds:

P < o ]Pod
scl; Sbclvﬂ.

Now by the above lemma, it holds for € > 0 small:
A
scl’/{’fﬁ(e) < scll)’\’_%(ex) < (sclg’q(ek)) and scli’fﬁ(e) < (sclg’q(e))
Thus it comes:

sclg?(e) A1 scl2(e) A(A—
Pa \Y) P A ) scly”(€) ( P ) )
sclg’q(e’\) - (Sdﬂ (?) e—0 0 and sclg’q(e)A < (sels™(e) el

which allows to conclude the proof of the proposition. It remains to show the above lemma. The following

can be proved recursively on d > 1:

Fact 2.7. Foranyv > 1, foranyd > 1 and fory > 0 great enough, it holds:

log®(y”) < v -log®(y) .
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Using Fact 2.7 with d = g and y = ¢! for € > 0 small gives:
7 log®¥ (™) < Ay -log®i(e™!) .
Since t +—+ exp®P(t)~! is decreasing, it comes:
scl)? (e) < scl2(e”)

which gives the first inequality in the lemma.
Moreover by Fact 2.7 with d = p and y great enough, it holds:

log®™ (y") < v-1log™(y) .
Applying exp°P to both sides gives:
Yy < exp®(v-log™(y)) -

1

Now with y~' = scl, (), we have:

exp?(v -log’" (y)) = (scl,,.v(e))f1 .

From there we obtain:
scly.(e) < scly(e)”,

which is the remaining inequality in the lemma. O

2.2 Box scales

As we introduced in Definition 1.5, lower and upper box scales of a metric space (X, d) are defined by:

sclp X = sup{a > 0: N(X) - scly(€) — —l—oo} and sclpX = inf{a > 0: N (X) - sclp(e) — O} )
€E—>

e—0

where the covering number N, (X) is the minimal cardinality of a covering of X by balls with radius
e>0.

In general, the upper and lower box scales must not coincide, we give new examples for order in
Example 4.6. Now we give a few properties of box scales that are well known in the specific case of

dimension.
Fact 2.8. Let (X, d) be a metric space. The following properties hold true:
1 ifsclg(X) < 400, then (X, d) is totally bounded,
2. forany subset E C X it holdssclgE <sclp X andsclgE < sclpX,
3. for any subset E of X it holds sclzy E = sclzcl(E) and sclgE = sclgcl(E).

1. and 2. are straightforward. To see 3. it is enough to observe that N (E) < N (cl(E)) < N, /2(E)
for any € > 0.
Box scales are sometimes easier to compare with other scales using packing number:

13



Definition 2.9 (Packing number). Fore > 0 let N.(X) be the packing number of the metric space (X, d).

It is the maximum cardinality of an e-separated set of points in X for the distance d:
./\76(X) =sup{N >0:3z1,...2y € X,d(z;,2;) > eforanyl <i<j< N }.
A well know comparison between packing and covering number is the following:

Lemma 2.10. Let (X, d) be a metric space. For any ¢ > 0, it holds:

A direct application of this lemma is that we can replace the covering number by the packing number

in the definitions of box scales without changing their values:

Lemma 2.11. Let (X, d) be a metric space and scl a scaling, then box scales of X can be written as:
LdBX:sup{a>0:N6(X).scla(e) —0>—|—oo} and QBX:inf{a>0:j\~/'€(X).scla(e)—0>0} .
€e—> €e—

Proof. Since for any € > 0 it holds by Lemma 2.10:
Nae(X) < Ne(X) < Ne(X)
we obtain the sought result by Lemma 2.2. O

Remark 2.12. Another property for the scaling scI”? from Proposition 2.4, with p,q > 1, is that the upper

and lower box scales for a metric space (X, d) can be written as:

, . logP (N (X))
scl?(X) = lim inf Tlogt (e 1)

and
—D,q

. log®” (N:(X))
Px) =1 286 el
sclp (X) N e Ty

In particular, for dimension and order:

dimg(X) = 1i£r§51f1(){g(ig'/\([:(1)())) , dimp(X) = lir:ljélpblg()(g/\(fé(l)(;)) .
and log log(N.(X)) log log(N.(X)) .

ordg(X) = hleriglf Tog(c—1) , ordp(X)= lhen_%lp Tog(e—1)

The above equalities coincide with the usual definitions of box dimensions and orders.

2.3 HausdorfT scales

The definition of Hausdorff scales, generalizing Hausdorff dimension, is introduced here using the defi-
nition of Hausdorff outer measure as given by Tricot in [ ]. We still consider a metric space (X, d).
Given an increasing function ¢ € C(R* ,R% ), such that ¢(¢) — 0 when ¢ — 0, we define:

HI(X) = inf N o(Bi): X =B, Vie:|Bj|<ey,
jeJ

Jcountable )
jeJ
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where |B]| is the radius of a ball B C X. A countable family (B;),c s of balls with radius at most € > 0
such that X = (J,. ; B; will be called an e-cover of X. * Since the set of e-cover is not decreasing for

inclusion when € decreases to 0, the following limit exists:

H?(X) := lim H®(X) .

e—0

Now replacing (X, d) in the previous definitions by any subset E of X endowed with the same metric d,

we observe that % defines an outer-measure on X. We now introduce the following:

Definition 2.13 ( Hausdorff scale). The Hausdorff scale of a metric space (X, d) is defined by:
scly X =sup {a > 0: H*"(X) = +oo} = inf {a > 0: H*(X) =0} .

Note that the above definition gives us two quantities on the right hand side that are a priori not equal.

However, the mild assumptions in the definition of scaling allow to verify that they indeed coincide.

Proof of the equality in Definition 2.13. Tt is clear from definition that o +— H* (X) is non-increasing. It
is then enough to check that if there exists & > 0 such that 0 < H*?l«(X) < +oo0 then, for any positive
0 < a, it holds:

H*le+5(X) =0 and H*(X) = +oo.

Let us fix 7 > 0, by Definition 1.2, for € > 0 small it holds:
sclats(€) < m-scly(e) and  scly(e) < n-scly—s(e) .
Thus by the definition of Hausdorff measure, since € is small, it holds:
0< %HSC‘“ (X) < HM(X) < H*(X) < 400

Given (B;), e an e-cover of X, the following holds:

1 scly scly
S (X) <M (X)g%;scla(wjl),
J

and then:

1. 1
o (X) <~ Y scla(IBj]) < D sela—s(IBy]) -
K T jer
Since this holds for any e-cover, the latter inequality leads to:
iHscla (X) < Hsclo_g (X)
2n - ’

and so: 1
scl sclg
. «@ X < a—3§ X .
3 (X) < s ()

2Note that the historical construction of the Hausdorff measures uses subsets of X with diameter at most € instead of the balls

with radius at most €. However both these constructions lead to the same definitions of Hausdorff scales.

15



On the other side, there exists an e-cover (B;);es of E such that:

> scla(|Byl) < 2HIM(X) .

JjeJ
Now since H5¢l (X)) < H5¢le (X)), this leads to:

> sclats(IBjl) <n- Y scla(|By]) < 20 1 (X) .
el i

From there:

Howo (X) < 2 1 (X))

and this holds for any small e. We have just shown:

1 , ;

o T (X) <M (X)) and HE(X) < 2 HN (X))

n
Since 7 can be arbitrarily close to 0, it follows that H*l«-5(X) = +oo0 and H5+5(X) = 0, which
concludes the proof. O

As box scales, Hausdorff scales are increasing for inclusion. We show a stronger property of Hausdorff

scales in Lemma 2.20.
2.4 Packing scales

2.4.1 Packing scales through modified box scales

The original construction of packing dimension relies on the packing measure introduced by Tricot in
[ ]. We first define packing scales by modifying upper box scales and we show then later how it is

related to packing measures.

Definition 2.14 (Packing scale). Let (X, d) be a metric space and scl a scaling. The packing scale of X is
defined by:

sclpX = inf { supsclpEy ¢ (Ep)n>1 € XV st | B =X

n>1 n>1
The following comes directly from definition of packing scale:

Proposition 2.15. Let (X, d) be a metric space and scl a scaling. It holds:

sclpX <sclpX .

2.4.2 Packing measures

In this paragraph we show the relationship between packing measures and packing scales. Let us first

recall a few definitions.
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Given € > 0, an e-pack of a metric space (X, d) is a countable collection of disjoint balls of X with
radii at most e. As for Hausdorff outer measure, consider ¢ : R — R an increasing function such that
¢(€) — 0 when € — 0. For ¢ > 0, put:

PO(X —sup{Z¢|B| By)icr 1sanepackofX}
i€l
Since P?(X) is non-increasing when ¢ decreases to 0, the following quantity is well defined:
PY(X) := lim P(X).
e—0
The idea of Tricot is to build an outer measure from this quantity:

Definition 2.16 (Packing measure). For any subset E of X endowed with the same metric d, the packing
¢-measure of E is defined by:

= inf ZPO E= U E,
n>1 n>1

Note that P? is an outer-measure on X and can eventually be infinite or null. The following shows the
equivalence of Tricot’s counterpart definition of the packing scale; this will be useful to show the equality

between upper local scale and packing scale of a measure given by Theorem C eq. (c&g).
Proposition 2.17. The packing scale of a metric space (X, d) verifies:
sup {a > 0: P*(X) = +oo} = sclpX =inf {a > 0: P (X) =0} .

Proof. Let (E,,),>1 be a family of subsets of X. Using that each map o — P5 (E,,) is not increasing,

we prove:

(2.1) inf{a>0: ZPSCI‘* (E,) =0, =supinf {a >0: PSCI (E,) = O} )
n>1 n>1

We show below the following:

Lemma 2.18. Given o > 0, if P5% (E) is a finite and positive number then for any § € (0, o), it holds:
Pyt (B)=0 and Py ""*(E)=+oc.
The right hand side equality of the latter lemma implies:

(2.2) sup a>0: Z'Pgd ) = 400 p = supsup {a >0: 'PSCI ( ) = +OO} .

n>1 n21
We now compare the right hand term using the following shown below:

Lemma 2.19. Forany E C X, it holds:

sup{oz>0 Pyl (E) = +oo}:aBE:inf{a>0:PSd“(E):O}.

17



Consequently by Egs. (2.1) and (2.2) and Lemmas 2.18 and 2.19:

sup a > 0: ZPSCI" (E,) = +oc0 p =supsclgE, =inf{ a>0: Z PSCla (En) =0

n>1 n21 n>1
Taking the infimum over families (E),),,>1 which covers X we obtain the sought result. O

Proof of Lemma 2.18. Given n) > 0, by Definition 1.2 of scaling, for ¢ > 0 small enough, it holds:
sclats(e) < m-scly(e) and  scly(e) < n-scly_s(e) .

Moreover there exists (B;);>1 an e-pack of E such that:

er 1 2 :
SCQ E < S 1 B»’ .
9" e ( )_j>1bcoc(| J|)

Combining the two inequalities above leads to:

1 - SC 5
57’?1” (B) <" scla—s(|Bjl) < Pl (E) .
=1

Taking the limit when € tends to 0 gives %’PSCI“ (B) < ’PSCI“"S (E). On the other side consider (B;);>1
an e-pack of E. It holds:
> scla(|Bj]) < P (E) < Pyl (E)

j=>1
moreover it holds:

0y sclats(1Byl) < D scla(|Bjl) -

Jj=21 Jj21

Since this holds true for any e-cover and € > 0 arbitrary small, it follows:
Py (E) < - Py (B)
By taking 7 arbitrarily small, it comes P*'e=5 (E) = 400 and P*la+3 (E) = 0. O
Proof of Lemma 2.19. By Lemma 2.18, it suffices to show that:
(2.3) sup {a >0: Py (E) = +oo} < sclgE < inf {a >0: Pyl (E) = 0} ,

Consider v > 0 such that P (E) = 0. Then for € > 0 sufficiently small it holds P*»(E) < 1. In
particular the packing number (see def. 2.9) satisfies N, (E) - sclo(€) < 1. Taking the limit when e tends
to 0 leads to sclg E < a by Lemma 2.11. This proves the right hand side of Eq. (2.3).

To show the left hand side inequality, it suffices to show that sclgE is at least any « such that
Psle(E) = +o0. For such an a, given ¢ > 0, there exists an e-pack (B;);>1 such that:

Zscla(|Bj|) >1.

Jjz1
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For k > 1 an integer, put:
ny, := Card {j >1:270D <sel H(1By) < 2*’“} .

Thus, since scl, is not decreasing, it holds:

an'Q_k>1-

Since B; has radius at most 6, we have n; = 0 for any k£ < —log, scla(9). Then for § > 0 small, there

exists an integer j > 2 such that n; > 57227 In fact, otherwise we would have:

1
—k
Z ng - 2 < Z ﬁ <1 s
k>1 k>2
which contradicts the above inequality. Then E contains the centers of n; disjoint balls with radii at least
Sd;l (2-G+1), in particular:
-A7sc1;1(2—<j+1>)(E) >n; > 220

and moreover:

j > —logyscly(0) .

Since this inequality holds true for ¢ arbitrarily small, there exists an increasing sequence of integers
(Jn)n>1 such that:
Nﬁn (E) > 35227u ,

with €, = scl;'(27U»*1). Let us consider a positive number 3 < a, by Definition 1.2 of scaling, for
A > 1 close to 1, it holds:
-1
sclg(e) - (scla (€)™ — oo
e—

On the other hand, given a such A > 1, for n large enough, it holds:
j;22jn > 2>\_1(jn+1) ,

it follows: N

N..(B) > (2—<-7'n+1>)‘A ~ (sl (o)

Thus we finally have:

sclg(en) - N, (E) > sclg(e) - (scloé(e))*’\_1 — 400

e—0

By Lemma 2.11 we deduce sclgE > a. Since this holds true for /3 arbitrary close to q, it follows sclgE >
Q. O

The following is similar to the proof Definition 3.1 of Hausdorff scales.
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2.5 Properties and comparison of scales of metric spaces

We first give a few basic properties of scales that would allow to compare them. Since both packing and

Hausdorff scales are defined via measures, they both are countable stable as shown in the following:

Lemma 2.20 (Countable stability). Let (X, d) be a metric space. Let I be a countable set and (E;);>1 a
covering of X, then for any scaling scl:

scly X =supsclyF; and sclpX =supsclpFE; .

i>1 i>1
Proof. The equality on packing scales is obvious by definition with modified upper box scales. Let us
prove the equality on Hausdorff scales. By monotonicity of the Hausdorff measure, it holds sclz X >
sup; >, scly E;. For the reverse inequality, consider o > sup,;>; scly E;, then for any ¢ > 1 it holds
H (E;) = 0. Thus:

Wl (X) <Y H N (B) =0,

i>1

and then sclg X < c. Since this is true for any o > sup;~; sclg E;, the sought result comes. O

Note that countable stability is not a property of box scales. To see that, it suffices to consider a
countable dense subset of a metric space (X, d) with positive box scales.

The following lemma shows in particular that the above scales are bi-Lipschitz invariant quantities.

Lemma 2.21. Let (X, d) and (Y, d) be two metric spaces such that there exists a Lipschitz map f : (X,d) —
(Y, d). Then for any scaling scl, the scales of f(X) are at most the ones of X :

sclgf(X) <sclgX; sclpf(X)<sclpX; sclgf(X)<scpX; sclpf(X)<sclpX .
We prove this lemma below. As a direct application, we obtain the following:

Corollary 2.22. Let (X, d) and (Y, d) be two metric spaces. Suppose there exist an embedding g : (Y,0) —
(X, d) such that g~ ! is Lipschitz on g(X). Then for any scaling scl, the scales of Y are at most the ones of
X:

sclgY <sclyX; sclpY <sclpY; sclgY <sclpX; sclg¥ <sclpX .

Proof of Corollary 2.22. By Lemma 2.21 we have sclsY < sclog(Y') for any scl, € {scly,sclpscly,sclp}.
As g(Y) C X, we have also sclog(Y) < scle X. O

Proof of Lemma 2.21. Let us fix € > 0. Suppose that f is K- Lipschitz for a constant K > 0. We first
show the inequalities on box and packing scales. Consider a finite covering by a collection of balls
(B(zj,€))1<j<n where z; € X forany 1 < j < N and N = N (X). Since X = U;V:1 B(xzj,e), it

comes:

N
fxycft B(xj,¢) | € | B(f(2), K - ¢j) .

1 j=1

—-

J
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Then (B(f(x;),€))1<;j<n is a covering by K - e-balls of f(X). Then Nx..(f(X)) < N(X) and all the
inequalities on the box and packing scales are immediately deduced. Now for Hausdorff scales, consider

a countable set J and {B(z;,¢;) : j € J} an e-cover of X. Then it comes:

fX) c | B(f(z)), K - ¢5) -

jeJ
For any @ > > 0 and § > 0 small enough, by Fact 2.1, it holds:

scly(8) < sclg(K1-46) .

Hence for € small, it holds:

M (F0) < 3 scla(K - ) <3 scla(ey)

jeJ jeJ

As 8 > scly X, the e-cover (B(z, €;)) jes canbe chosen such that ) ; sclg(e;) is arbitrary small. Thus
’H}?l‘g (f(X)) =0, and so scly f(X) < a. As « is arbitrary close to scly X, it holds:

sclp f(X) <sclgX .
O

The end of this section consists of comparing the different scales introduced and prove Theorem A.
We start by comparing the Hausdorff and lower box scale. The following proposition generalizes well
known facts on dimension. See e.g. [ 1[(3.17)].

Proposition 2.23. Let (X, d) be a metric space and scl a scaling, its Hausdor{f scale is at most its lower box
scale:
sclp X <sclpX .

Proof. We can assume without any loss of generality that (X, d) is totally bounded. If scly X = 0 the
inequality obviously holds, thus consider a positive number o < sclgyX. For 6 > 0 small enough,
H5' (X) > 1. Thus there exist § -covers and for any §-cover (Bj)1<j<n;(x)» it holds:

1< Z sclo (|Bj]) = N5 (X) - scla(9) .

1<G<Ns (F)
From there, it holds sclz X > «. We conclude by taking « arbitrarily close to sclg X. O

We have compared Hausdorff and packing scales with their corresponding box scales. It remains to

compare each other with the following:

Proposition 2.24. Let (X, d) be a metric space and scl a scaling. It holds:

scly X <sclpX .

21



Proof. By Lemma 2.20, it holds:

sclg X = inf supsclg FE,, ,
Uns1 En=Xn>1

where the infimum is taken over countable coverings of X. Moreover by Proposition 2.23, we have:
sclyE < sclgE <sclgE ,
for any subset E' of X. It follows then:

sclgX < inf supsclgFE,, =sclpX .
Unz1 En=Xn>1

To conclude this section we now shall prove Theorem A:

Proof of Theorem A. Let (X, d) be a metric space and scl a scaling. By Proposition 2.23, Proposition 2.24
and Proposition 2.15, it holds respectively:

SC|HX < LdBX, SC|HX < SC|pX and SC|HX < QBX.
Now since sclz X < sclg X obviously holds, we deduce the sought result:

sclgpX <sclpX <sclpX and sclgX <sclpX <sclpX .

3 Scales of measures

In this section we recall the different versions of scales of measures we introduced and show the inequal-
ities and equalities comparing them. In particular we provide proofs of Theorem B and Theorem C. They
generalize known facts of dimension theory to any scaling and moreover bring new comparisons (see
Theorem 3.10) between quantization and box scales that were not shown yet for even for the case of

dimension.

3.1 Hausdorff, packing and local scales of measures

Let us recall the definition of local scales. Let p be a Borel measure on a metric space (X, d) and scl a
scaling. The lower and upper scales of 1 are the functions that map a point € X to:

(B(,¢€))

1%
Ldlocu(x) = sup {a >0: SCla(E)

— B
— 0 and sc|10cu(x) =inf{a>0: M — s 4005 .
e—0 scly(€) €0

We shall compare local scales with the followings:
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Definition 3.1 (Hausdorff scales of a measure). Let scl be a scaling and . a non-null Borel measure on a

metric space (X, d). We define Hausdorff and x-Hausdorff scales of the measure p by:
sclgp = éré% {sclgE : u(E) >0} and sclyu= Elré% {sclgE : u(X\E) =0} ,

where B is the set of Borel subsets of X .

Definition 3.2 (Packing scales of a measure). Let scl be a scaling and 1 a non-null Borel measure on a

metric space (X, d). We define packing and x-packing scales of 11 by:
lpp = inf {sclpE : u(E) >0 d sclpp = inf {sclpE : u(X\FE) =0} .
sclpp = inf {sclpE: p(E) >0} and sclpp= inf {sclpE: p(X\E) = 0}
Remark 3.3. In order to avoid excluding the null measure 0, we set scl 0 = scl7;0 = sclp0 = sclp0 = 0.

The lemma below will allows to compare local scales with the other scales of measures.

Lemma 3.4. Let i be a Borel measure on X. Then for any Borel subset F' of X such that u(F) > 0, the

restriction o of | to F verifies:
ess inf scliocpr < ess infscloco  and ess inf scl;, . ¢t < ess inf scl;, 0.
Moreover, if there exists o > 0 such that F' C {x e X: alocu(x) > a}, it holds then:
ess inf sclipeo > o,
and similarly if F C {z € X : scl,.u(z) > a}, it holds:
ess inf sclj, .0 > a .

Proof. Consider a point € X, then for any € > 0, one has o(B(x,¢)) < u(B(z,€)), thus by definition
of local scales:

aloc,u < aloca and Ld]ocﬂ < Ldloca .

Now if there exists & > 0 such that F' C {x € X :scloep(r) > a}, as schocp(x) > a for u-almost every
x in F, it comes by the above inequality that scli,co(x) > « for u-almost every x in F, and thus for

o-almost every x € X. It follows ess inf sclj,.0 > a. And the same holds for lower local scales. O]

The following is a first step in the proof of Theorem B. We prove this lemma later. We first use it to

prove Theorem C.

Lemma 3.5. Let (X, d) be a metric space and . a Borel measure on X. Let scl be a scaling. The lower and

upper local scales of . are respectively not greater than the Hausdorff and packing scales of the space X :
esssupsch,.p <sclyX and esssupschocp < sclpX .
Remark 3.6. Note that in the above we can replace X by any subset of X with total mass, this leads to:

ess sup scl.p < sclyp  and  ess supaloc,u <sclpp® .
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3.2 Quantization and box scales of measures

Let us first recall the definition of quantization scales. Let (X, d) be a metric space and i a Borel measure
on X. The quantization number Q,, of y is the function that maps € > 0 to the minimal cardinality of a

set of points that is on average e-close to any point in X:

Quu(e) = inf {N >0:3{cihioy v CX, /X d(@,{ci}ti<icn)dp(z) < 6} :

Then lower and upper quantization scales of y for a given scaling scl are defined by:
sclop = sup {a >0:9,(€) - scla(e) — —i—oo} and sclop = inf {a > 0:Q,(e) - scla(e) — 0} .

Quantization scales of a measure are compared in Theorem C with box scales:

Definition 3.7 (Box scales of a measure). Let scl be a scaling and pu a positive Borel measure on a metric

space (X, d). We define the lower box scale and the x-lower box scale of i1 by:

sclpp = jnf {sclpE: u(E) >0} and sclpp = inf {sclpE: u(X\E) =0} .
Similarly, we define the upper box scale and the *-upper box scale of 1 by:

sclpu = éréfB {sclpE : n(E) >0} and sclgp= EHEIfB {sclgE : n(X\E) =0} ,
where B is the set of Borel subsets of X .

As for Hausdorff scales of measures we chose that all box scales of the null measure are equal to 0 as

a convention. The following is straightforward:

Lemma 3.8. Let (X, d) be a metric space and 11 a Borel measure on X . Given scl a scaling, it holds:
sclop < sclipp and sclgu < sclpp .

Proof. We can assume without loss of generality that E*B 1 and scl o are finite. Let E be a Borel set with
total mass such that sclg F is finite, then E is totally bounded. Now for € > 0, consider a covering by

e-balls centered at some points 1, ..., zy in E. Since p( X\ E) = 0, it comes:
[ daeihacnint@) = [ dodaidcian)dute) < c.
Thus Q,(¢) < N.(E), and by Lemma 2.2:
LdQ;“ < LdBE and EQ[L < EBE .

Since this holds true for any Borel set ' with total mass, the sought results comes. O

The following lemma will allow to compare quantization scales with box scales.
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Lemma 3.9. Let ;1 be a Borel measure on (X, d) such that Q,,(¢) < +oo for any e > 0. Let us fixe > 0
and an integer N > Q,,(€). Thus consider x1,...,xn € X such that:

/ d(z, {xi}lgiSN)dM(x) Se.
X

For anyr > 0, with E, := Ufil B(x;,r), it holds:

W(X\E,) <

Sl

Proof. Since X\ E,, the complement of E, in X is the set of points with distance at most r from the set
{z1,...,x,}, it holds:

PrOAB) S [ e (i) <.

which gives the sought result by dividing both sides by 7. O

The following result exhibits the relationship between quantization scales and box scales. As far as we
know, this result has not yet have been proved even for the specific case of dimension. It is a key element

in the answer to Problem 1.14.

Theorem 3.10. Let i be a non null Borel measure on a metric space (X, d). For any scaling scl, there exists

a Borel set F' with positive mass such that:
sclpF <sclou and sclgF §QQM.

In particular, it holds:
sclppu <sclop and sclpp <sclgu .

Proof. If Q,,(€) is not finite for any € > 0, then F' = X satisfies the sought properties. Let us suppose
now that the quantization number of p is finite. Given an integer n > 0, we set €, := exp(—n) and

2 2

rn = n® - exp(—n) = n* - €,. We also consider a finite set of points C,, C X that contains exactly

Q,.(€en) points and such that:
[ e Cyauto) < e
X

We can then consider the following set:

E, = U Bl(e,ry)

ceCp,

then by Lemma 3.9, it holds:

€n 1
< —=—.
n(X\Ey) < r n

n

Thus, it holds:
> (X\Ey) < 400

n>0
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By Borell-Cantelli lemma, we obtain:

L U ﬂEn =u(X)>0.

m>0n>m

Thus there exists an integer m > 0 such that y (ﬂn>m En) > (0. We fix such an integer m and set

F = ﬂn>m E,,. It remains to check that sclg F' < LdQN and sclgF < GQM. By definition, one has

F C E,, forany n > m. Then since F' C E, = (J ¢, B(c,n), it holds:

N, (F) < Card C,, = Q,(en)

Since this holds true for any n greater than m, and since logr, ~ loge, = —n, we finally have by
Lemmas 2.2 and 2.3 that:
sclgF' < SL'@M and sclgF < QQ,u .

O

3.3 Comparison between local and global scales of measures and proof of The-

orem C

By the latter theorem, to finish the proof of Theorem C, it remains only to show:

Theorem 3.11. Let (X, d) be a separable metric space and p a finite Borel measure on X. Let scl be a
scaling. It holds:
ess supscl,.pu < sclopu  and  ess sup schoep < sclop .

Proof. We can suppose without any loss of generality that there exists @ < esssupscl.p and § <
ess sup sclioopt. We now set E := {z € X :sclo.u(z) >a and schoepu(z) > B}. By definition of
essential suprema, we have (E) > 0. Thus the restriction o of i to E is a positive measure. Thus by
Lemma 3.4 one has ess inf scl; .0 > « and ess inf sclioco > . Moreover by Theorem 3.10, there is a Borel
set ' C E with ¢(F') > 0 an such that:

sclgF' < 57C|Q0' < LdQM and sclgF < QQJ < QQM .
Yet by Proposition 2.23 and Proposition 2.15, it holds respectively:
sclgpF <sclgpF and sclpF < sclgF .
Now, by setting 7 the restriction of i to £, Lemma 3.4 also gives:
a < essinfscl, 0 <essinfscl,,, 7 and B < essinfscly.o < essinfsclyer
By Lemma 3.5, it holds:

essinfscl, .7 <sclgF and ess inf scliyer < sclpF' .
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Finally, combining all the above inequalities leads to:
a <essinfscl, .7 <sclgF <sclgF < LdQM

and

B < ess infsclioem < sclpF < sclgF < EQu .

Since this holds true for any « and 3 arbitrarily close to ess sup scl;, .t and ess sup sclocp we have the
sought results. O

We shall now prove Theorem C.
Proof of Theorem C. By Theorem 3.10 it holds:
sclppu <sclop and sclpp < sclgu .

By Theorem 3.11 and Lemma 3.8 it holds:

ess supscl, i < sclop and  ess supschoep < sclop -
Thus it remains only to show:

ess inf scl,,.p < sclgp and ess inf schocp < sclpp .
Given F a subset of X with positive mass, we set o the restriction of x4 to E. By Lemma 3.4, it holds:

ess inf scly, .pu < ess infscl,, .0 and ess inf sclocp < ess inf schoeo .

By Theorem 3.11 it holds:

ess sup sclj, .0 < silea and ess supaloc,u < QQU .

Moreover by Lemma 3.8:

sileo <sclgpE and EQU <sclgE .

Combining all of the above leads to:
essinfscl .y <sclgEl and ess infaloc,u <sclgE .

Taking the infima over such subsets £ C X with positive mass leads to the sought result. O

3.4 Proof of Theorem B

This subsection contains the proof of Theorem B, we recall its statement below. We use Vitali’s lemma
[ ] to compare local scales with Hausdorff and packing scales as did Fan or Tamashiro in their proof

for the specific case of dimension.

Lemma 3.12 (Vitali). Let (X, d) be a separable metric space. Givend > 0, B a family of open balls in X with
radii at most § and F the union of these balls. There exists a countable set J and a §-pack (B(xj,7;));eq C B
of F' such that:

FcC UB(a:j,Srj) .

J
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We first prove Lemma 3.5 that we used to prove Theorem C.

Proof of Lemma 3.5. First we can assume that scly X < +o00, sclpX < 400, and that p is not null,
otherwise both inequalities immediately hold true. In particular, we can assume that X is separable.
LEFT HAND SIDE INEQUALITY: If ess sup scl; i = 0 the inequality is obviously true. Suppose then that
this quantity is positive and consider a positive o < ess sup scl,.pt- Thus, there exists 1o > 0 such that
the set A := {x € X : u(B(z,1)) <scly(r), ¥r € (0,79)} has positive measure. Consider § < r¢, thus
for any d-cover (B;), cs of A it holds:

0<p(A) <D u(B;) <> sca(|By]) -

= =
Since this holds true for an arbitrary cover, it follows:
0 < u(A) < H(A) .
Taking ¢ arbitrarily close to 0 leads to:
0 < p(A) < 1< (A) .
Finally since Hausdorff scale is non-decreasing for inclusion, it holds:
sclgyX >sclgA> o

Note that since this holds true for any @ < ess sup scl;,.it, we indeed have ess sup scl;, .1t < sclg X.
RIGHT HAND SIDE INEQUALITY: Similarly , we consider without any loss of generality that there exists

0 < o < ess sup ﬁocu and put:
F= {x € X :schocp(r) > a}.

Let us fix a family of Borel subsets (Fy) y>1 of X such that F' = UNzl Fn.For0 < 8 < a, by Fact 2.1,
there exists dg > 0 such that for any r < Jg, it holds:

scly (5r) < sclg(r) .

We fix 6 € (0,dp) and an integer N > 1. For any « in Fy by Lemma 2.3 there exists an integer n(z),

minimal, such that 7(z) := exp(—n(z)) < ¢ and:
w(B(z,5r(x))) < scly(5r(x)) .

We now set:
F={B(z,r(x)):x € Fn} .
Thus by Vitali Lemma 3.12, since we assumed (X, d) separable, there exists a countable set .J and a §-pack
(B(xj,7j)) e, C F of Fsuch that Fiy C U, ; B(w;, 57;). From there:
PFN) <D (B, 5r5)) <> scla(5r) <Y sclg(ry) -

JjeJ JjeJ JjeJ
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Since this holds true for any d-pack, it follows:

i (i) = u(Fy) .
and then taking § arbitrarily close to 0 leads to:

o™ (Fx) = ul(F) -
By taking the sum over N > 1, it holds:

STR(FEN) = > w(Fy) > u(F) > 0.

N>1 N>1

Recall that (Fiv) n>1 is an arbitrary covering of Borel sets of F, thus:
P (F) > p(F) > 0.
It holds then sclp F > 3 for any 3 < o < ess sup ess sup sclo.z which allows to conclude the proof. [
We deduce then:

Proposition 3.13. Let (X, d) be a metric space and (v a Borel measure on X, then:
essinfscl . <sclgp and ess infalocp <sclpu ,

and

esssupscl, . < scljju and esssupsclocp < sclpp .

Proof. The second line of inequalities are given by Remark 3.6. It remains to show the first line of inequal-
ities. Let E be a Borel subset of X with y positive mass. Thus with o the restriction of i to E, it holds by
Lemma 3.5:

ess supscl, .0 <sclgE and esssupsclioco <sclpE .

By Lemma 3.4, it holds:
ess infscl,.p <sclgE and essinfscloep < sclpE .

Taking the infima over E with positive mass ends the proof. O

Explicit links between packing scales, Hausdorff scales and local scales of measures can be now estab-
lished by proving Theorem B. Let us first recall its statement: Let (X, d) be a metric space and p a Borel
measure on X, then:

sclgp = ess inf scly . < sclpp = ess inf sclocp

and

scljpu = ess supscly, 1 < sclpp = ess sup sclipeft -
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Proof of Theorem B. By Proposition 3.13 it remains only to show four inequalities.

We first prove sclgp < ess inf scl;, ... We can assume that ess inf scl;,. < 400, otherwise the result
immediately comes, and fix a > ess inf scl, ... Consider 5 > «, thus by definition of scaling, there exists
d > 0 such that for any r € (0, 6) one has sclg(5r) < scly (7). Denote:

F:={x e X :scl.pux) <a}l,

then p(F') > 0 and by Lemma 2.3 for any x in F' there exists an integer n(z), minimal, such that r(z) :=
exp(—n(z)) < § and:

p(B(z,r(x))) = scla(r(x)) -
Now set:

F :={B(z,r(x)):xz € F}.

By Vitali Lemma 3.12, there exists a countable set J and a 6-pack {B(z;,7;)},.; C F of F' such that
F CUje; B(xj,5r;). Then, it holds:

> selg(5r;) < scla(ry) <> p(Blay,ry) < p(F) .
JjeJ JjeJ jeJ

We then have H;f;lﬂ (F) < u(F). Since this holds true § as small as we want, we deduce H*' (F) < u(F);
and this holds true for any 8 > «. We finally get sclg ' < « and then by taking « close to ess inf scljocpt,
we indeed have sclypu < sclg F' < ess inf sclipcpt-

We prove now sclpp < ess inf sclioe (. Similarly as for Hausdorff scales, we can assume that ess inf sclioe 1
is finite. Consider then o > ess sup scliocpt and set E = {x € X : schoep(r) < a}, thus u(X\FE) = 0.
Moreover it holds:

E = U E; where E; ={z € E:Vr <27, pu(B(z,1)) >scla(r)} .

i>1

By Lemma 2.20, it holds sclpE' = sup;>; sclpE;. It is then enough to show that for any 7 > 1, we
have sclp E; < a. Indeed, then taking « arbitrarily close to ess sup sclioc 1 allows to conclude. In that way
let us fixi > 1. Fix § € (0,27%), and consider J a countable set and (B;) ;e a d-pack of E;. It follows:

Sosclal(Byl) < 3By < 1.

jeJ jeJ

Since this holds true for any d-pack, we have:
Pyl (B) <1.
Taking ¢ arbitrarily close to 0 leads to:
Pl (B;) < Pyl (By) < 1.

From there, sclp E; < a, which concludes the proof of sclpp < ess inf aloc,u.
Let us now prove scljp < ess supscly, ... We can assume that ess sup scl,, ./ is finite and fix a real

number o > ess supscly,.p. For 8 > «, then consider 6 > 0 such that for any r € (0,d) we have
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sclg(5r) < scly(r). Denote F' := {z € X : scl;,.p(z) < a}, thus F' has total mass and by Lemma 2.3 for
any z in F' there exists an integer n(x), minimal, such that 7(z) := exp(—n(z)) < ¢ and:

p(B(z,r(x))) = scla(r(z)) -
Now put:
F :={B(z,r(x)):xz € F} .
By Vitali’s Lemma 3.12, there exists a countable set J and a -pack (B(z;,7;))jes C F of F such that
F c U;es B(xj,5r;). Thus:
Y sclg(Brj) <) sela(ry) < ) u(Blay,ry) < pl(F) .
jeT jed jed

Since this holds true for § arbitrarily close to 0, we deduce that #5°'¢ (F') < u(F). Then, taking 8 > «
close to a leads to sclg ' < «, and thus by taking « arbitrarily close to ess sup scl,,. 4, we indeed have
sclyp < ess sup scly, pi-

To conclude, we prove sclpp < ess inf scljocpt. Let E be a Borel set with positive measure. Let o be

the restriction of y to E, thus by Lemma 3.4:
ess inf sclioep < ess inf sclipeo |
and then by Lemma 3.5, it holds:
ess inf scljopt < ess inf sclyco < ess supschoeo < sclpE .

This holds true for any F such that u(E) > 0, thus ess inf schocp < sclpp.
Finally, let us show sclpp < ess sup aloc,u. Put o > ess inf ﬂocu andset F' := {J; € X: aloc,u < a},
then p(F) > 0, and denote:

E = U E; where E; = {z € E:Vr <27°, p(B(z,r)) > scla(r)} .

i>1

By Lemma 2.20, we have sclp E = SUp;>1 sclp E;, it is then enough to show that for any ¢ > 1, we have
sclpE; < a. Indeed we can take « arbitrarily close to ess inf scljo. . We then fix i > 1. Fix § € (0,27%).
We consider J a countable set and (B;),cs a d-pack of E;. Then:

S sela(1Byl) < S u(B)) < 1.

jeJ JjE€J
Since this holds true for any J-pack, it follows:
Pl () <1.
When § tends to 0, the latter inequality leads to:
Pl (By) < Py (B;) < 1.

From there, we deduce sclpE; < a, which concludes the proof of the last inequality and thus the one of
Theorem B. O
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4 Applications

4.1 Scales of infinite products of finite sets

A natural toy model in the study of scales is given by a product Z = [],,~; Zj of finite sets. To define
the metric § on this set, we fix a decreasing sequence (€, ),>1 which verifies log €,+1 ~ loge, when
n/to + oco. We put for £ = (2,)n>1 € Z and y = (Yn)n>1 € Z:

6(£a y) = €m o,

where m := inf{n > 1: z,, # Y} is the minimal index such that the sequences z and y differ. Note that
then if each Z,, is endowed with the discrete topology, then § provides the product topology on Z.

A natural measure on Z is the following product measure:

M= ®n21,ufn 5
where (i, is the equidistributed measure on Z,, forn > 1. The scales of Z and  are given by the following:
Proposition 4.1. For any scaling scl, it holds for any x € Z:

n
1
scligct(z) =sclpZ =sup § a > 0 : scly(en ||7—>+oo
ICM( ) B p{ a( )kzl Carde n—-+4oo }

and
schocpt(z) = sclpZ = inf a>0'scl(e)ﬁ;%0
loc L) = 5€B 2 = e Pt Card Z;, n—+oc :

We shall prove this proposition later. A first corollary can be deduced directly from Theorem A and
C:

Corollary 4.2. For any scaling scl, it holds moreover:
sclyZ =sclou =sclpZ

and

SC|PZ = EQIM = EBZ .

For some particular choice of the sequence (¢, ),,>1 and for scl = ord we obtain moreover:

Corollary 4.3. Suppose that %ﬁge" converges to C > 1 when n — +o0. Then for any scaling scl, it holds
moreover:
dyZ = ordgZ = liminf ! 1 i:l (Card Zy,)
ordyZ = ordpZ = lim inf - log 2 og (Card Zj,
and

ordpZ = ordgZ = limsup
n——+oo NlogC

log <Z log (Card Zk)> .
k=1

Note that log€,, ~ —C'- n implies log €,, ~ log €,,+1 when n — +o0.
The following lemma allows to prove both Proposition 4.1 and its corollaries:
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Lemma 4.4. For anyn > 1 the e,,-covering number N (Z) verifies for any z € Z:

N, (Z) = w(B(z,€,)) ' = H Card Zj, .

k=1

Proof of Proposition 4.1. Since log €,,4+1 ~ log €, when n — 400, we have by Lemma 2.3:

sclpZ = sup {a > 0 :scly(€,) - N

€n

(Z2) —— —|—oo} and sclpZ = inf {oz > 0:scly(€n) - Ne, (Z) —— 0} )

n—oo n—roo
and we have the same form for local scales. Then the sought results follow from Lemma 4.4. O

Before proving the remaining lemma we first prove the second corollary:

Proof of Corollary 4.3. By Lemma 4.4, for any n > 1 we have N, (Z) = [];_, Card Zj, then by Re-
mark 2.12 and Lemma 2.3, it holds:

. Jloglog(N, (2)) . . 1 "
dp(X) =1 f———= =] f 1 1 dZ

ord(X) = lim inf == 1y lim inf = log k; og (Card Zy)
and

— : loglog(N-,.(2)) .. 1 &

ordg(X) = limsup ——————= limsu lo log (Card Z .

5(X) = limsup op(c, 1) msup oo log ; g ( k)

This concludes the proof of the corollary. O

Finally we provide the remaining:
Proof of Lemma 4.4. Note that for any n > 1 and for any z € Z:
B(z,en)={weZ :wy=2z1,...,wn = 2} .
Thus:

M(B(g, En)) - H n]:l'
k=1

This shows the first equality, it remains to show that N, (Z) = [],_; n. Let us consider {z*,..., 2"}

a set of minimal cardinality such that:
N
Z = U B(Z,€n) .
j=1

For 1 < j < N, denote 27 = (Zi-)kzls thus we have the following:

Fact 4.5. The map:
p:ie{l,..., N} (2},....2) € Z1 x -+~ X Z, .

is a bijection.
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Proof. We first start by showing ¢ injective. Let us assume that there exists ¢ # j such that ¢(i) = ¢(j),
then it holds B(2%,¢,) = B(z’, ¢,,). It follows that there exists a covering of Z by N — 1 balls with radius

€n, Which contradicts the assumption on minimality of N. Thus ¢ is injective. We now show that ¢ is

also surjective. Consider « € Z; X --- X Zy. Since Zj, is not empty for any k£ > 1, there exists z € Z
such that for any 1 < k < n it holds 2, = ay, . Then there exists i € {1,..., N} such that z € B(z', ¢,,).
Thus ¢(i) = « which gives us the surjectivity. O

From there since ¢ is a bijection, we have:
N
N, (Z)y=N=CardZ, x --- X Zy = an. .
k=1

O
Such examples of products of groups allow to exhibit compact metric spaces with arbitrary high order:

Example 4.6. Forany «a > 5 > 0, there exists compact metric probability space (Z, 9, iv) such that for any
z € Z:
B = ord,.p(2) = ordg Z = ordppu = ordp Z

and
o = mlocu(z) = orde = RQILL = RBZ .

In particular with o > /3 we obtain examples of metric spaces with finite order such that the Hausdorff
and packing orders do not coincide. Moreover, for a countable dense subset F' of X, it holds ordy F' =
ordpF = 0andordpF = 3 < a = ordg F. Tt follows that none of the inequalities of Theorem A for
the case of order in a equality in the general case. Moreover, using disjoint unions of such spaces allows
to produce examples of metric spaces where either of the strict equality can happen between any pair of

scales that are not compared in Fig. 1.

Proof. Let (ug)k>0 be the sequence defined by:

wy — { lexp(exp(B - k))| if c?j <k< cgjfl
lexp(exp(a - k)| if T <k <22
where ¢ = [§] + 1. We denote Z := [[],,>; Z/uxZ endowed with the metric § defined by:
0(z,w) :=exp(—inf{n >1: 2, # w,})
for z = (25)n>1 and w = (wy,),>1 in Z. Let us denote \,, = % log >}, log ug. Thus by Corollary 4.3:
ordgyZ =ordpZ = BH{EAH

and

ordpZ =ordgZ = limsup A, .

n—-+oo
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It remains to show that A~ := liminf,, , . A, = 8 and AT := lim SUD,, s 1 oo An = « in order to show
that (7, §) satisfies the sought properties. First notice that exp(exp(8-n)) < u,, < exp(exp(«-n)). Thus
A~ > Band AT < . Denote n; = ¢*+1:

1
An; > - loglog(un;) = o .
Thus, taking j — 400 leads to At > a. Moreover, denote m; = ¢+l — 1. We have the following:
Lemma 4.7. Forany j > 1 and for any 1 < k < my, it holds:
Up < Uy -

Proof. If ¢ < k < my, then uj, = exp(exp(f - k)) < exp(exp(f - m;)) = Upm,. Otherwise, we have
k < ¢*, and then uj, < exp(exp(a - ¢*)) < exp(exp(B - ¥ 1)) = wy,,, since a < 3 - c.

O
From the above lemma, we have:
A, < nijlog my; log(tm, ) m g,
and so A~ < [ which concludes the proof of the proposition. O

4.2 Functional spaces
Metric spaces studied here are sub-spaces of differentiable spaces on compact subset of R? for d a positive
integer. We denote by || - || o+ the C*-uniform norm on C*([0, 1], R):

[ fllox = sup D’ fllos -
0<j<k
Definition 4.8. Ford > 1 and k an integer, o« € [0, 1] let us define:
Fhke .- {re C*(10,11%,[=1,1]) : | fllex <1, and ifa > 0, the map D" f is a-Holder with constant 1 }.
In the case o > 0, for any z,y € [0,1]4:
ID*f() = D*F(y)lloo < llz =yl -

In particular, F%*:C is the unit ball for the C*-norm in C*([0, 1]¢, [~1, 1]). Let us recall the asymptotic
given by Kolmogorov-Tikhomirov [ ][Thm XV] on the covering number of (F%%< || - |) , see
Theorem 1.10:

Cy - Fa > log N (Fhke)y > Oy - ¢ Fa

where C; > C3 > 0 are two constants depending on d, k and a. In order to prove Theorem E which
states that box, packing and Hausdorff scales of F%*:@ are all equal to Hia by Theorem B, it remains to

prove Lemma 1.11. The latter states:

d
dgFhhe > ——
ordy ¥kt a
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Proof of Lemma 1.11. We first start with the case & > 0. The case @ = 0 will be deduced from it. We
consider the following set:
A=]] A
n>1

where A, = {—1,0, +1}Rdn and with R = L5k+ﬁj + 1. We endow A with the metric § defined by:
5(A7 A/) =€m ,

with m the minimal index such that the sequences A and )" differ and with (€n)n>0 is a decreasing se-
quence of positive real numbers such that % — RFt® whenn — +00. We can choose (€n)n>1 such
that the following holds:

Lemma 4.9. There exists an embedding I : (A, 8) — (F®* || - || ) such that for any X\, \' € A it holds:
1
) = I\l = 50N X) -

The above lemma allows to conclude the proof of Lemma 1.11. Indeed, since A is a product of finite

sets endowed with a product metric, and since log €,,+1 ~ log €, by Corollary 4.3 it holds:

n n

o 1 . 1 i
ordHAzlégirngg ;logCardAj :lnlglilgmlog ;Rj-logf&

Now, for n > 1 it holds:

n ) loglog 3 + lo RIOTD R d
———log ZRd]~log3 _ 88 & R .
nlog Rk+o et log Rk+a n—too k4
It comes ordgy A = H% Now since by assumption on I in Lemma 4.9, it holds by Corollary 2.22:
ordg FEH > ordy A = d
- k+a’

which concludes the proof of Lemma 1.11. It remains to show:

Proof of Lemma 4.9. Let us denote ¢ := k + o and recall that R := L5%J + 1. We consider the following
map on R:
(b it e R — (2t)q(2 - 2t)q . ]].U<t<1 .

Note that the function ¢ has its support in [0, 1] and takes the value 1 at % The k' derivative of ¢ is
non-constant. For f € F%*< let || f||, be the infimum of the constants C' > 0 such that for any z,y € R:

ID* f(z) = D f(y)ll < C - [l =yl -
Note that | - ||, is a semi-norm on F%*® and moreover:

Flka _ {fe FURO |l <1} .
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Observe that ||¢[|; > 0. Let ()<<~ be an exhaustive sequence of the set:

{(Rl”"”’RliJ ti1y...,tq €{0,..., R —1}} .

Forany A = (A1,...,Agan) € A,, = {-1,0, +1}Rdn we associate the following map:

Rdn
Hhix=(x1,...,2q) € [O,I]dHe,L-Z/\j “P(R™ - ||z — ;) ,
j=1
with
6
W B,

€n =
Let us denote S,, the set of such maps:
Sn:{f)\:/\EAn} .

The sequence (€,>1) is chosen such as the following holds:

Lemma 4.10. The distance between fy, fx € S, is given by:

6
1= Ivlle = g A= Nl and [fx = fxlloo = €n- A = Nlleo
where |[A — N||o := sup |\ — A
1<i<Rdn
Proof. For any x € [0,1], there exists at most one value j € {1,..., R%} such that ||z — ;|| < R™",

thus the maps x — ¢(||z — x| - R") for 1 < j < R have disjoints supports. It comes then:

Rin
=l = en [ DTN = XJOR'T i) = o sup Wi=X-R™ ol = ANl
q

Now, for the C%-norm, it holds:

Rin

1fr = fxlloo = €n |[D A= N) - (Rl - —ill)]| = €n 1A = Nl -
i=1 -
O

Note in particular that since 0 € S,,, for any f) € S,,\ {0}, it holds:

6
I£xllg = 5 and [[fsllc = €n -

We now embed [], -, S, into Fdke For A = (An)n>1 € A we associate the formal series Y ons1
where ), € S,,. Then we have the following:

Lemma 4.11. For any A = (An)n>1 € A the function series 3, o, fx, converges in C([0, 114, [-1,1])

and moreover its limit lies in F&%
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Proof. By Lemma 4.10, it holds:

E:'Uanx>§ 2:(% < 400 .

n>1 n>1
It comes that the series ), -, fx, is normally convergent, thus it is also point-wise convergent and more-
over the limit g is continuous. Now note that for any n > 1 and for any 1 < [ < kit holds D' f,, (0) = 0,
thus by Taylor integral formula, it holds:

ID" £, oo < 1D" £, oo -

Moreover, still by Lemma 4.10, it holds:

6
Z [allg < Z 202 =1

n>1 n>1

Now since D fy is - a-Holder and D* f5, (0) = 0, for any n > 1, it follows:

6
Slfller €3 s =1

n>1 n>1

Thus the partial sums lie in FhE2 and so does g as a limit of elements of FdEe which is closed for the
C%-norm. O

By Lemma 4.11, the following map is well defined:

T:d=(M\)n>1 € (A,0) nETOOZ F € (F2R0 )] ) -

n>1

To conclude the proof, it remains to show that for any A\, \ € A:
1) = TN [loo = 36(A X)),

Consider A = (A\n)n>1,A = (X, )n>1 € A. We denote k := inf{n > 1 : z,, # y,}. Then it holds:

1) = I lloo = {|D_ Fre = Pl = 10 = Frlloo = D I1fxn = Frr llos -

n>k n>k
oo

Now by Lemma 4.10, it holds respectively:

1fne = Pglloe = e and S~ Pl <23 e

n>k n>k
Now recall that ¢,, = #Rq" for any n > 1, then:

Z €n < Z € - RIF) — ¢, . qu_ 1

n>k n>k

Now since R? > 5, it holds then ﬁ < i and it follows:
Q) = I(X) oo > Se -

Now since €, = §(A, ) by definition of §, the sought result comes. O
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This concludes the proof of Lemma 1.11 for the case a > 0. It remains to deduce the case @ = 0

from that previous one. For any 8 > 0, it holds F d.k,8  Fd:k.0 From there since Hausdorff scales are

non decreasing for inclusion, it holds then ord F*:* > ordy F&*:8 > ﬁ. Since we can take 8 > 0
arbitrary small, it indeed holds ord 7 F¢-*:0 > %. O
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