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Introduction and results

Dimension theory was popularized by Mandelbrot in the article How long is the coast of Britain ? [START_REF] Mandelbrot | How long is the coast of britain? statistical self-similarity and fractional dimension[END_REF] and shed light on the general problem of measuring how large a natural object is. The category of objects considered are metric spaces possibly endowed with a measure.

Dimension theory encompasses not only smooth spaces such as manifolds, but also wild spaces such as fractals, so that the dimension may be any non-negative real number. There are several notions of dimension: for instance Hausdorff [START_REF] Hausdorff | Dimension und äußeres maß[END_REF], packing [START_REF] Tricot | Two definitions of fractional dimension[END_REF] or box dimensions; also when the space is endowed with a measure, there are moreover the local and the quantization dimensions. These different versions of dimension are bi-Lipschitz invariants. They are in general not equal, so that they reveal different aspects of the underlying space. The seminal works of Hausdorff, Frostman, Tricot, Fan, Tamashiro, Pötzelberger, Graf-Luschgy and Dereich-Lifshits described the relationship between these notions and gave conditions under which they coincide.

Obviously these invariants do not give much information on infinite dimensional spaces. However such spaces are subject to many studies. Kolmogorov-Tikhomirov in [START_REF] Kolmogorov | ε-entropy and ε-capacity of sets in functional spaces[END_REF] gave asymptotics of the covering numbers of functional spaces. Dereich-Lifshits gave asymptotics of the mass of the small balls for the Wiener measure and exhibited their relationship with the quantization problem, see [DFMS03, DL05, CM44, Chu47, BR92, KL93]. Also Berger and Bochi [START_REF] Berger | Complexities of differentiable dynamical systems[END_REF] gave estimates on the covering number and quantization number of the ergodic decomposition of some smooth dynamical systems. See also [START_REF] Baldi | Some exact equivalents for the brownian motion in hölder norm[END_REF][START_REF] Benoît R Kloeckner | A geometric study of wasserstein spaces: ultrametrics[END_REF][START_REF] Berger | On emergence and complexity of ergodic decompositions[END_REF].

We will introduce the notion of scale to unify both the different kinds of dimensions and the latter infinite dimensional studies. Scales are families of invariants of different kinds (box, Hausdorff, packing, quantization, local) and different growths (dim, ord . . . ). Scales generalize all the previous kinds of dimensions and allow to describe some aspects of the above examples of infinite dimensional spaces and measures. The different growths of scales are given by scalings (see Definition 1.2).

We will generalize the well known comparison theorems between the different kind of dimensions to all the different growths of scales in Theorem A, Theorem B and Theorem C. See Section 1.2. The main difficulty will be to prove Theorem C which enables to compare the quantization scales with both the local and the box scales.

An application of Theorem A, together with new estimates, is to show the coincidence of the box, Hausdorff and packing orders for finitely regular functional spaces; refining [START_REF] Kolmogorov | ε-entropy and ε-capacity of sets in functional spaces[END_REF]Thm XV]. Theorem C together with [START_REF] Dereich | Probabilities of randomly centered small balls and quantization in Banach spaces[END_REF] immediately implies the coincidence of local, Hausdorff, packing, quantization and box orders of the Wiener measure for the L p -norm, for any p ∈ [1, ∞]. Moreover, a consequence of Theorem C is that the local order of the ergodic decomposition is at most its quantization order; which solves a problem set by Berger in [START_REF] Berger | On emergence and complexity of ergodic decompositions[END_REF]. See Section 1.3.3.
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Then we define the lower and upper box dimensions as:

dim B X = sup α > 0 : B α ϵ (X) ---→ ϵ→0 +∞ and dim B X = inf α > 0 : B α ϵ (X) ---→ ϵ→0 0 .
Similarly, we define Hausdorff dimension by: dim H X = sup α > 0 : H α ϵ (X) ---→ ϵ→0 +∞ = inf α > 0 : H α ϵ (X) ---→ ϵ→0 0 .

It always holds dim H X ≤ dim B X ≤ dim B X, in general, none of these inequalities is an equality. For instance the set (0, 1) ∩ Q has null Hausdorff dimension and both box dimensions equal to 1. Moreover, there are non-homogeneous Cantor sets such that dim B X < dim B X. See e.g. [START_REF] Fan | Relationships between different dimensions of a measure[END_REF]. Hausdorff and box dimensions enjoy different properties, while Hausdorff dimension is countable stable (the dimension of a countable union is the supremum of the dimensions), the box dimensions are stable by closure. One way to define packing dimension is to modify upper box dimension to make it countable stable:

dim P X = inf sup n≥1 dim B E n ,
where the infimum is taken over countable coverings (E n ) n≥1 of X. These four versions of dimension are bi-Lipschitz invariants; they quantify different aspects of the geometry of the studied metric space.

In the next section we will recall how these invariants are related. The idea is to replace the family (ϕ α ) α>0 = (ϵ ∈ (0, 1) → ϵ α ) α>0 by families of functions, called scalings, defining comparable versions of scales, which encompasses the following examples of growth:

Example 1.1.

1. The family dim = (ϵ ∈ (0, 1) → ϵ α ) α>0 which is used in the definitions of dimensions, 2. the family ord = (ϵ ∈ (0, 1) → exp(-ϵ -α )) α>0 which fits with the growth of the covering number of spaces of finitely regular functions studied by Kolmogorov-Tikhomirov [START_REF] Kolmogorov | ε-entropy and ε-capacity of sets in functional spaces[END_REF], see Theorem 1.10, or with the one of the space of ergodic measures spaces of chaotic dynamics by Berger-Bochi [START_REF] Berger | Complexities of differentiable dynamical systems[END_REF], see Proposition 1.15, 3. the family ϵ ∈ (0, 1) → exp(-(log ϵ -1 ) α ) α>0 which fits with the growth of the covering number of holomorphic functions estimated by Kolmogorov-Tikhomirov [START_REF] Kolmogorov | ε-entropy and ε-capacity of sets in functional spaces[END_REF], see Theorem 2.5.

Yet to keep a comparison between the generalization of box, Hausdorff and packing dimensions, the family (ϕ α ) α>0 must satisfies some mild assumptions, which leads to the notion of scaling: Definition 1.2 (Scaling). A family scl = (scl α ) α≥0 of positive non-decreasing functions on (0, 1) is a scaling when for any α > β > 0 and any λ > 1 close enough to 1, it holds:

( * ) scl α (ϵ) = o scl β (ϵ λ ) and scl α (ϵ) = o scl β (ϵ) λ when ϵ → 0 .
Remark 1.3. The left hand side condition is used in all the proof of our theorems represented on Fig. 1. The right hand side condition is only used to prove the equalities between packing and upper local scales in Theorem B and to compare upper local scales with upper box and upper quantization scales in Theorem C inequalities (c)&(g) . It moreover allows to characterize packing scale with packing measure.

Remark 1.4. There are scalings that are smaller than dimension, e.g. (ϵ ∈ (0, 1) → log(ϵ -1 ) -α ) α>0 that is adapted to study the set {2 -n β : n ≥ 1} where β is a positive real number.

We will show in Proposition 2.4 that 1 -2 -3 in Example 1.1 are scalings. Scalings allow to define scales which generalize packing dimension, Hausdorff dimension, box dimensions, quantization dimensions and local dimensions that are local counterparts for measures. For each scaling, the different kind of scales do not a priori coincide on a generic space. Nevertheless in Section 1.3, as a direct application of our comparison theorems, we bring examples of metric spaces and measures where all those definitions coincide. This equality between the different scales gives us hints of the regularity of such spaces and measures.

Now for a metric space (X, d), replacing the specific family dim in the definition of box dimensions by any scaling scl = (scl α ) α>0 gives the following: Definition 1.5 (Box scales). Lower and upper box scales of a metric space (X, d) are defined by:

scl B X = sup α > 0 : N ϵ (X) • scl α (ϵ) ---→ ϵ→0 +∞ and scl B X = inf α > 0 : N ϵ (X) • scl α (ϵ) ---→ ϵ→0 0 .
Moreover we will generalize the notion Hausdorff and packing dimensions to the Hausdorff scale denoted scl H X (see Definition 2.13) and packing scale denoted scl P X (see Definition 2.14).

Results on comparisons of scales

In this section, we introduce other kind of scales and Theorems A, B and C which state the inequalities between them as illustrated in Fig. 1. First, we bring the following generalization of inequalities comparing dimensions of metric spaces to the frame of scales: Theorem A. Let (X, d) be a metric space and scl a scaling, the following inequalities hold: Each arrow is an inequality, the scale at the starting point of the arrow is at least the one at its ending point : " → " = " ≥ ". None of them is an equality in the general case. If there is no path between two scales scl 1 and scl 2 then there exist examples of spaces endowed with a measure such that both scl 1 > scl 2 and scl 1 < scl 2 can happen. See Example 4.6.

scl H X ≤ scl P X ≤ scl B X and scl H X ≤ scl B X ≤ scl B X .
In the specific case of dimension these inequalities are well known and redacted for instance by Tricot [START_REF] Tricot | Two definitions of fractional dimension[END_REF] or Falconer [START_REF] Kenneth | Techniques in fractal geometry[END_REF][START_REF] Falconer | Fractal geometry: mathematical foundations and applications[END_REF]. The proof of this theorem will be done in Section 2.5.

When the metric space (X, d) is endowed with a measure µ, Frostman first studied the relationship between the Hausdorff dimension and the growth of the mass of the small balls. This has been intensively studied by Fan [START_REF] Fan | Relationships between different dimensions of a measure[END_REF][START_REF] Hua | Sur les dimensions de mesures[END_REF], Pötzelberger [START_REF] Pötzelberger | The quantization dimension of distributions[END_REF], Tamashiro [START_REF] Tamashiro | Dimensions in a separable metric space[END_REF] as local dimension. Similarly we introduce local scales that extend the notion of local dimensions of a measure: Definition 1.6 (Local scales). Let µ be Borel measure on a metric space (X, d) and scl a scaling. The lower and upper scales of µ are the functions that map a point x ∈ X to:

scl loc µ(x) = sup α > 0 : µ (B(x, ϵ)) scl α (ϵ) ---→ ϵ→0 0 and scl loc µ(x) = inf α > 0 : µ (B(x, ϵ)) scl α (ϵ) ---→ ϵ→0 +∞ .
As in dimension theory, we should not compare the local scales with the scales of X but to the ones of its subsets with positive mass. This observation leads to consider the following: Definition 1.7 (Hausdorff, packing and box scales of a measure). Let scl be a scaling and µ a non-null Borel measure on a metric space (X, d). For any scl • ∈ scl H , scl P , scl B , scl B we define lower and upper scales of the measure µ by:

scl • µ = inf E∈B {scl • E : µ(E) > 0} and scl * • µ = inf E∈B {scl • E : µ(X\E) = 0} ,
where B is the set of Borel subsets of X.

In the case of dimension, Frostman [START_REF] Frostman | Potentiel d'équilibre et capacité des ensembles[END_REF], Tricot [START_REF] Tricot | Two definitions of fractional dimension[END_REF], Fan [START_REF] Hua | Sur les dimensions de mesures[END_REF][START_REF] Fan | Relationships between different dimensions of a measure[END_REF] and Tamashiro [START_REF] Tamashiro | Dimensions in a separable metric space[END_REF] exhibited the relationship between the Hausdorff and packing dimensions of measures and their local dimensions. The following theorem is a straightforward generalization of their results: Theorem B. Let µ be a Borel measure on a metric space (X, d), then for any scaling scl, Hausdorff and packing scales of µ are characterized by: scl H µ = ess inf scl loc µ, scl * H µ = ess sup scl loc µ, scl P µ = ess inf scl loc µ, scl * P µ = ess sup scl loc µ ,

where ess sup and ess inf denote the essential suprema and infima of a function.

The proof of the latter theorem is done in Section 3.1. Let us introduce a last kind of scale, the quantization scale. It generalizes the quantization dimension which dragged much research interest [GL07, Pöt99, DFMS03, DL05, Ber17, BB21, Ber20]. Definition 1.8 (Quantization scales). Let (X, d) be a metric space and µ a Borel measure on X. The quantization number Q µ of µ is the function that maps ϵ > 0 to the minimal cardinality of a set of points that is on average ϵ-close to any point in X:

Q µ (ϵ) = inf N ≥ 0 : ∃ {c i } i=1,...,N ⊂ X, X d(x, {c i } 1≤i≤N )dµ(x) ≤ ϵ .
Then lower and upper quantization scales of µ for a given scaling scl are defined by:

scl Q µ = sup α > 0 : Q µ (ϵ) • scl α (ϵ) ---→ ϵ→0 +∞ and scl Q µ = inf α > 0 : Q µ (ϵ) • scl α (ϵ) ---→ ϵ→0 0 .
The following gives relationships between the remaining kind of introduced scales of measures:

Theorem C (Main). Let (X, d) be a metric space. Let µ be a Borel measure on X. For any scaling scl, the following inequalities on the scales of µ hold:

ess inf scl loc µ ≤ (a) scl B µ ≤ (b) scl Q µ ; ess inf scl loc µ ≤ (c) scl B µ ≤ (d) scl Q µ and ess sup scl loc µ ≤ (e) scl Q µ ≤ (f ) scl * B µ ; ess sup scl loc µ ≤ (g) scl Q µ ≤ (h) scl * B µ .
The proof of inequalities (b) and (d) is done at Theorem 3.10 and relies mainly on the use of Borel-Cantelli lemma. Even in the specific case of dimension, these inequalities were not shown yet, as far as we know. The proof of inequalities (f ) and (h) is straightforward, see Lemma 3.8. Inequalities (e) and (g) were shown by Pötzelberger in [START_REF] Pötzelberger | The quantization dimension of distributions[END_REF] for dimension and in [0, 1] d . A new approach for the general case of scales of inequalities (e) and (g) is brought in Theorem 3.11. We deduce the inequality (a) from (e) and (f ) and inequality (c) from (g) and (h). As a direct application, inequality (e) allows to answer to a problem set by Berger in [START_REF] Berger | Complexities of differentiable dynamical systems[END_REF] (see Section 1.3.3). We will give in Section 4.1 examples of topological compact groups different versions of orders do not coincide. Moreover in that same section we show that for a metric group where the law is Lipschitz, the Hausdorff scale coincides with the lower box scale and the packing scale coincides with the upper box scale.

Applications

Let us see how our main theorems imply easily the coincidence of the scales of some natural infinite dimensional spaces.

Wiener measure

First example is the calculus of the orders of the Wiener measure W that describes uni-dimensional standard Brownian motion on [0, 1]. Recall that W is the law of a continuous process (B t ) t∈[0,1] with independent increments. It is such that for any t ≥ s the law of the random variable B t -B s is N (0, t -s). Computation of the local scales of the Wiener measure relies on small ball estimates which received much interest [START_REF] Cameron | The wiener measure of hilbert neighborhoods in the space of real continuous functions[END_REF][START_REF] Lai | On the maximum partial sum of independent random variables[END_REF][START_REF] Baldi | Some exact equivalents for the brownian motion in hölder norm[END_REF][START_REF] Kuelbs | Metric entropy and the small ball problem for gaussian measures[END_REF]. These results gave asymptotics on the measure of small balls centered at 0 for L p norms and Hölder norms. Moreover for a random ball the Dereich-Lifshits made the following estimation for L p -norms: Theorem 1.9 (Dereich-Lifshits [START_REF] Dereich | Probabilities of randomly centered small balls and quantization in Banach spaces[END_REF][Results 3.2, 5.1, 6.1, 6.3]). For the Wiener measure on C 0 ([0, 1], R) endowed with the L p -norm, for p ∈ [1, ∞], there exists1 a constant κ > 0 such that for W -almost any ω ∈ C 0 ([0, 1], R):

-ϵ 2 • log W (B(ω, ϵ)) → κ, when ϵ → 0 , and moreover the quantization number of W verifies:

ϵ 2 • log Q W (ϵ) → κ, when ϵ → 0 .
As a direct consequence of Theorem B and Theorem C we get that the new invariants we introduced for a measure with growth given by ord all coincide:

Theorem D (Orders of the Wiener measure). For the Wiener measure on C 0 ([0, 1], R) endowed with the L p -norm, for p ∈ [1, ∞], verifies for W -almost every ω ∈ C 0 ([0, 1]) :

ord loc W (ω) = ord H W = ord * H W = ord loc W (ω) = ord P W = ord * P W = ord B W = ord Q W = ord B W = ord Q W = 2 .
Proof. By Theorem 1.9, for W -almost ω and for any p ∈ [1, ∞], in the L p -norm it holds:

ord loc W (ω) = ord loc W (ω) = 2 = ord Q W = ord Q W .
Now by Theorem B since local orders of the Wiener measure are almost constant everywhere, it holds:

ord H W = ord loc W (ω) = ord * H W and ord P W = ord loc W (ω) = ord * P W .
Finally since by Theorem C, it holds:

ess inf ord loc W ≤ ord B W ≤ ord B W ≤ ord Q W ,
the sought result comes by combining the three above lines of equalities and inequalities.

1.3.2 Functional spaces endowed with the C 0 -norm Let d be a positive integer. For any integer k ≥ 0 and for any α ∈ [0, 1] denote:

F d,k,α := f ∈ C k ([0, 1] d , [-1, 1]) : ∥f ∥ C k ≤ 1, and if α > 0, the map D k f is α-Hölder with constant 1 .
We endow this space with the C 0 norm. See Section 4.2 for the definition of the C k -norms.Kolmogorov-Tikhomirov gave the following asymptotics:

Theorem 1.10 (Kolmogorov-Tikhomirov, [KT93][Thm XV]).
Let d be a positive integer. For any integer k and for any α ∈ [0, 1], there exist two constants

C 1 > C 2 > 0 such that the covering number N ϵ (F d,k,α ) of the space (F d,k,α , ∥ • ∥ ∞ ) verifies: C 1 • ϵ -d k+α ≥ log N ϵ (F d,k,α ) ≥ C 2 • ϵ -d k+α .
In Section 4.2 by embedding a group whose Hausdorff order is bounded from below into F k,d,α (see Section 4.2), via an expanding map, we will prove: Lemma 1.11. Let d be a positive integer. For any integer k and for any α ∈ [0, 1], it holds:

ord H F d,k,α ≥ d k + α .
The above lemma together with Theorem A gives the following extension of Kolmogorov-Tikhomirov's Theorem:

Theorem E. Let d be a positive integer. For any integer k and for any α ∈ [0, 1], it holds:

ord H F d,k,α = ord P F d,k,α = ord B F d,k,α = ord B F d,k,α = d k + α .
Proof of Theorem E. First, by Theorem A, it holds:

ord H F d,k,α ≤ ord B F d,k,α ≤ ord B F d,k,α and ord H F d,k,α ≤ ord P F d,k,α ≤ ord B F d,k,α .
From there by Theorem 1.10 and Lemma 1.11, it holds:

d k + α ≤ ord H F d,k,α ≤ ord B F d,k,α ≤ ord B F d,k,α = d k + α , and 
d k + α ≤ ord H F d,k,α ≤ ord P F d,k,α ≤ ord B F d,k,α = d k + α .
From there, all of the above inequalities are indeed equalities, which gives the sought result.

Local and global emergence

The framework of scales moreover allow to answer to a problem set by Berger in [START_REF] Berger | Complexities of differentiable dynamical systems[END_REF] on wild dynamical systems. We now consider a compact metric space (X, d) and a measurable map f : X → X. We denote M the set of probability Borel measures on X and M f the subset of M of f -invariant measures. The space M is endowed with the Wasserstein distance W 1 defined by:

W 1 (ν 1 , ν 2 ) = sup ϕ∈Lip 1 (X) ϕd(ν 1 -ν 2 ) ,
inducing the weak *topology for which M is compact. A way to measure the wildness of a dynamical system is to measure how far from being ergodic an invariant measure µ is. Then by Birkhoff's theorem given a measure µ ∈ M f , for µ-almost every x ∈ X the following measure is well defined:

e(x) := lim n→∞ 1 n n-1 k=0 δ f k (x) ,
and moreover the limit measure is ergodic. The definition of emergence, introduced by Berger, describes the size of the set of ergodic measures reachable by limits of empirical measures given an f -invariant probability measure on X.

Definition 1.12 (Emergence, [START_REF] Berger | Emergence and non-typicality of the finiteness of the attractors in many topologies[END_REF][START_REF] Berger | On emergence and complexity of ergodic decompositions[END_REF]). The emergence of a measure µ ∈ M f at ϵ > 0 is defined by:

E µ (ϵ) = min{N ∈ N : ∃ν 1 , . . . , ν N ∈ M f , X W 1 (e f (x), {ν i } 1≤i≤N )dµ(x) ≤ ϵ} .
The case of high emergence corresponds to dynamics where the considered measure is not ergodic at all. The following result shows us that the order is an adapted scaling in the study of the ergodic decomposition.

Theorem 1.13 ( [BGV07, Klo15, BB21] ). Let (X, d) be a metric compact space of finite then:

dim B X ≤ ord B (M) ≤ ord B (M) ≤ dim B X .
For a given measure µ ∈ M f we define its emergence order by:

ordE µ := lim sup ϵ→0 log log E µ (ϵ) -log ϵ = inf α > 0 : E µ (ϵ) • exp(-ϵ -α ) ---→ ϵ→0 0 .
We denote µ e f := e f ⋆ µ the ergodic decomposition of µ; it is the probability measure on M f equal to the push forward by e of µ. A local analogous local quantity to the emergence order is the local order of the ergodic decomposition of µ, for ν ∈ M f it is defined by:

ordE loc µ (ν) := lim sup ϵ→0 log -log(µ e f (B(ν, ϵ)) -log ϵ .
Berger asked if the the following comparison between asymptotic behaviour of the mass of the balls of the ergodic decomposition of µ and the asymptotic behaviour of its quantization holds.

Problem 1.14 (Berger,[START_REF] Berger | Complexities of differentiable dynamical systems[END_REF]Pbm 4.22] ). Let (X, d) be a compact metric space, f : X → X a measurable map and µ a Borel f -invariant measure on X. Does the following holds ?

M { ordE loc µ dµ e f ≤ ordE µ .
We propose here a stronger result that answer to latter problem as a direct application of Theorem C:

Proposition 1.15. Let (X, d) be a compact metric space, f : X → X a measurable map and µ a Borel f -invariant measure on X. For µ e f -almost every ν ∈ M, it holds:

ordE loc µ (ν) ≤ ordE µ .
Proof. Note that ordE loc µ = ord loc µ e f and ordE µ = ord Q µ e f . Now by Theorem C, it holds µ e f -almost surely that ord loc µ e f ≤ ord Q µ e f which is the sought result.

2 Metric scales

Scalings

We first recall that a scaling is a family scl = (scl α ) α≥0 of positive non-decreasing functions on (0, 1) is a scaling when for any α > β > 0 and any λ > 1 close enough to 1, it holds:

( * ) scl α (ϵ) = o scl β (ϵ λ ) and scl α (ϵ) = o scl β (ϵ) λ when ϵ → 0 .
An immediate consequence of the latter definition is the following:

Fact 2.1. Let scl be a scaling then for any α > β > 0 and for any constant C > 0 it holds for ϵ > 0 small enough:

scl α (ϵ) ≤ scl β (C • ϵ) .
A consequence of the latter fact is the following which compares scales of metric spaces and measures:

Lemma 2.2. Let f, g : R * + → R * + be two functions defined such that f ≤ g near 0, thus for any constant

C > 0: inf α > 0 : f (C • ϵ) • scl α (ϵ) ---→ ϵ→0 0 ≤ inf α > 0 : g(ϵ) • scl α (ϵ) ---→ ϵ→0 0 and sup α > 0 : f (C • ϵ) • scl α (ϵ) ---→ ϵ→0 +∞ ≤ sup α > 0 : g(ϵ) • scl α (ϵ) ---→ ϵ→0 +∞ .
Proof. It suffices to observe that, by Fact 2.1, for any α > β > 0, and ϵ > 0 small, it holds:

f (ϵ) • scl α (ϵ) ≤ g(ϵ) • scl β (C -1 • ϵ) = g(C • ε) • scl β (ε) , with ε = C • ϵ.
Lemma 2.3 gives a sequential characterization of scales.

Lemma 2.3 (Sequential characterization of scales). Let scl be a scaling and f : R * + → R * + a non increasing function. Let (r n ) n≥1 be a positive sequence decreasing to 0 such that log r n+1 ∼ log r n when n → +∞, then it holds:

inf α > 0 : f (ϵ) • scl α (ϵ) ---→ ϵ→0 0 = inf α > 0 : f (r n ) • scl α (r n ) -----→ n→+∞ 0 and sup α > 0 : f (ϵ) • scl α (ϵ) ---→ ϵ→0 +∞ = sup α > 0 : f (r n ) • scl α (r n ) -----→ n→+∞ +∞ .
Proof. Consider α > 0 and ϵ > 0. If ϵ is small enough, there exists an integer n > 0 that verifies r n+1 < ϵ ≤ r n , thus, since f is not increasing and scl α is increasing, it holds:

f (r n ) • scl α (r n+1 ) ≤ f (ϵ) • scl α (ϵ) ≤ f (r n+1 ) • scl α (r n ) .
Consider now β, γ such that 0 < β < α < γ, thus for λ close to 1 and ϵ is small enough, one has by Definition 1.2 of scaling that:

scl γ (r n ) ≤ scl α (r λ n ) and scl α (r n ) ≤ scl β (r λ n ) .
Observe now that r n+1 = r log r n+1 log rn n , and since log r n+1 ∼ log r n . For n great enough, it holds then:

r λ n ≤ r n+1 .
Since the functions of the scaling are increasing, it follows:

scl γ (r n ) ≤ scl α (r n+1 ) and scl α (r n ) ≤ scl β (r n+1 ) .
We can now deduce from the latter and the first line of inequalities that:

f (r n ) • scl γ (r n ) ≤ f (ϵ) • scl α (ϵ) and f (ϵ) • scl α (ϵ) ≤ f (r n+1 ) • scl β (r n+1 ) .
Since γ and β can be chosen arbitrarily close to α, we deduce the sought result.

The following Proposition 2.4 provides many scalings and shows in particular that the families brought in Example 1.1 are indeed scalings.

Proposition 2.4. For any integers p, q ≥ 1, the family scl p,q = (scl p,q α ) α>0 defined for any α > 0 by:

scl p,q α : ϵ ∈ (0, 1) → 1 exp •p (α • log •q + (ϵ -1 ))
is a scaling; where log + : t ∈ R → log(t) • 1 1 t>1 is the positive part of the logarithm.

We prove this proposition below. Now note in particular that scl 1,1 = dim = (ϵ ∈ (0, 1) → ϵ α ) α>0 and scl 2,1 = ord = (ϵ ∈ (0, 1) → exp(-ϵ -α )) α>0 are both scalings. Let us give an example of space which have finite box scales for the scaling scl 2,2 as defined in Proposition 2.4. Consider the space A of holomorphic functions on the disk D(R) ⊂ C of radius R > 1 which are uniformly bounded by 1:

A =    ϕ = n≥0 a n z n ∈ C ω (D(R), C) : sup D(R) |ϕ| ≤ 1    endowed with the norm∥ϕ∥ ∞ := sup z∈D(1) |ϕ(z)| .
The following implies:

scl 2,2 B A = scl 2,2 B A = 2 .
Theorem 2.5 (Kolmogorov, Tikhomirov [START_REF] Kolmogorov | ε-entropy and ε-capacity of sets in functional spaces[END_REF][Equality 129] ). The following estimation on the covering number of (A, ∥ • ∥ ∞ ) holds:

log N ϵ (A) = (log R) -1 • | log ϵ| 2 + O(log ϵ -1 • log log ϵ -1
), when ϵ tends to 0. .

Let us now prove Proposition 2.4:

Proof of Proposition 2.4. First it is clear that scl p,q is a family of non-decreasing functions. Moreover the family is non-increasing. We prove the following below:

Lemma 2.6. For any γ > 0 and ν > 1 close to 1, it holds for ϵ > 0 small:

scl p,q ν•γ (ϵ) ≤ scl p,q γ (ϵ ν ) and scl p,q ν•γ (ϵ) ≤ scl p,q γ (ϵ) ν , when ϵ → 0.
Let us show how this lemma implies condition ( * ) in Definition 1.2 of scaling and thus the result of the proposition. For α > β > 0, consider λ > 1 such that α > λ 2 • β, since the family is non-increasing, it holds: scl p,q α ≤ scl p,q λ 2 •β . Now by the above lemma, it holds for ϵ > 0 small:

scl p,q λ 2 •β (ϵ) ≤ scl p,q λ•β (ϵ λ ) ≤ scl p,q β (ϵ λ ) λ and scl p,q λ 2 •β (ϵ) ≤ scl p,q β (ϵ) λ 2 .
Thus it comes:

scl p,q α (ϵ) scl p,q β (ϵ λ ) ≤ scl p,q β (ϵ λ ) λ-1 ---→ ϵ→0 0 and scl p,q α (ϵ) scl p,q β (ϵ) λ ≤ scl p,q β (ϵ) λ(λ-1) ---→ ϵ→0 0 ;
which allows to conclude the proof of the proposition. It remains to show the above lemma. The following can be proved recursively on d ≥ 1:

Fact 2.7. For any ν > 1, for any d ≥ 1 and for y > 0 great enough, it holds:

log •d (y ν ) ≤ ν • log •d (y) .
Using Fact 2.7 with d = q and y = ϵ -1 for ϵ > 0 small gives:

γ • log •q (ϵ -ν ) ≤ λ • γ • log •q (ϵ -1 ) .
Since t → exp •p (t) -1 is decreasing, it comes:

scl p,q ν•γ (ϵ) ≤ scl p,q γ (ϵ ν ) ,
which gives the first inequality in the lemma. Moreover by Fact 2.7 with d = p and y great enough, it holds:

log •p (y ν ) ≤ ν • log •p (y) .
Applying exp •p to both sides gives:

y ν ≤ exp •p (ν • log •p (y)) .
Now with y -1 = scl γ (ϵ), we have:

exp •p (ν • log •p (y)) = (scl ν•γ (ϵ)) -1 .
From there we obtain:

scl ν•γ (ϵ) ≤ scl γ (ϵ) ν ,
which is the remaining inequality in the lemma.

Box scales

As we introduced in Definition 1.5, lower and upper box scales of a metric space (X, d) are defined by:

scl B X = sup α > 0 : N ϵ (X) • scl α (ϵ) ---→ ϵ→0 +∞ and scl B X = inf α > 0 : N ϵ (X) • scl α (ϵ) ---→ ϵ→0 0 ,
where the covering number N ϵ (X) is the minimal cardinality of a covering of X by balls with radius ϵ > 0.

In general, the upper and lower box scales must not coincide, we give new examples for order in Example 4.6. Now we give a few properties of box scales that are well known in the specific case of dimension.

Fact 2.8. Let (X, d) be a metric space. The following properties hold true:

1. if scl B (X) < +∞, then (X, d) is totally bounded, 2. for any subset E ⊂ X it holds scl B E ≤ scl B X and scl B E ≤ scl B X, 3. for any subset E of X it holds scl B E = scl B cl(E) and scl B E = scl B cl(E).
1. and 2. are straightforward. To see 3. it is enough to observe that

N ϵ (E) ≤ N ϵ (cl(E)) ≤ N ϵ/2 (E)
for any ϵ > 0.

Box scales are sometimes easier to compare with other scales using packing number:

Definition 2.9 (Packing number). For ϵ > 0 let Ñϵ (X) be the packing number of the metric space (X, d).

It is the maximum cardinality of an ϵ-separated set of points in X for the distance d:

Ñϵ (X) = sup{N ≥ 0 : ∃x 1 , . . . x N ∈ X, d(x i , x j ) ≥ ϵ for any 1 ≤ i < j ≤ N } .
A well know comparison between packing and covering number is the following:

Lemma 2.10. Let (X, d) be a metric space. For any ϵ > 0, it holds:

Ñ2ϵ (X) ≤ N ϵ (X) ≤ Ñϵ (X) .
A direct application of this lemma is that we can replace the covering number by the packing number in the definitions of box scales without changing their values: Lemma 2.11. Let (X, d) be a metric space and scl a scaling, then box scales of X can be written as:

scl B X = sup α > 0 : Ñϵ (X) • scl α (ϵ) ---→ ϵ→0 +∞ and scl B X = inf α > 0 : Ñϵ (X) • scl α (ϵ) ---→ ϵ→0 0 .
Proof. Since for any ϵ > 0 it holds by Lemma 2.10:

Ñ2ϵ (X) ≤ N ϵ (X) ≤ Ñϵ (X) ,
we obtain the sought result by Lemma 2.2.

Remark 2.12. Another property for the scaling scl p,q from Proposition 2.4, with p, q ≥ 1, is that the upper and lower box scales for a metric space (X, d) can be written as:

scl p,q B (X) = lim inf ϵ→0 log •p (N ϵ (X)) log •q (ϵ -1 )
and

scl p,q B (X) = lim sup ϵ→0 log •p (N ϵ (X)) log •q (ϵ -1
) .

In particular, for dimension and order:

dim B (X) = lim inf ϵ→0 log(N ϵ (X)) log(ϵ -1 ) , dim B (X) = lim sup ϵ→0 log(N ϵ (X)) log(ϵ -1 ) . and ord B (X) = lim inf ϵ→0 log log(N ϵ (X)) log(ϵ -1 ) , ord B (X) = lim sup ϵ→0 log log(N ϵ (X)) log(ϵ -1
) .

The above equalities coincide with the usual definitions of box dimensions and orders.

Hausdorff scales

The definition of Hausdorff scales, generalizing Hausdorff dimension, is introduced here using the definition of Hausdorff outer measure as given by Tricot in [START_REF] Tricot | Two definitions of fractional dimension[END_REF]. We still consider a metric space (X, d).

Given an increasing function ϕ ∈ C(R * + , R * + ), such that ϕ(ϵ) → 0 when ϵ → 0, we define:

H ϕ ϵ (X) := inf Jcountable    j∈J ϕ(|B j |) : X = j∈J B j , ∀j ∈ J : |B j | ≤ ϵ    ,
where |B| is the radius of a ball B ⊂ X. A countable family (B j ) j∈J of balls with radius at most ϵ > 0 such that X = j∈J B j will be called an ϵ-cover of X.2 Since the set of ϵ-cover is not decreasing for inclusion when ϵ decreases to 0, the following limit exists:

H ϕ (X) := lim ϵ→0 H ϕ ϵ (X) .
Now replacing (X, d) in the previous definitions by any subset E of X endowed with the same metric d, we observe that H ϕ defines an outer-measure on X. We now introduce the following:

Definition 2.13 ( Hausdorff scale). The Hausdorff scale of a metric space (X, d) is defined by:

scl H X = sup α > 0 : H sclα (X) = +∞ = inf α > 0 : H sclα (X) = 0 .
Note that the above definition gives us two quantities on the right hand side that are a priori not equal. However, the mild assumptions in the definition of scaling allow to verify that they indeed coincide.

Proof of the equality in Definition 2.13. It is clear from definition that α → H sclα (X) is non-increasing. It is then enough to check that if there exists α > 0 such that 0 < H sclα (X) < +∞ then, for any positive δ < α , it holds:

H scl α+δ (X) = 0 and H scl α-δ (X) = +∞ .
Let us fix η > 0, by Definition 1.2 , for ϵ > 0 small it holds:

scl α+δ (ϵ) ≤ η • scl α (ϵ) and scl α (ϵ) ≤ η • scl α-δ (ϵ) .
Thus by the definition of Hausdorff measure, since ϵ is small, it holds:

0 < 1 2 H sclα (X) ≤ H sclα ϵ (X) ≤ H sclα (X) < +∞ .
Given (B j ) j∈J an ϵ-cover of X, the following holds:

1 2 H sclα (X) ≤ H sclα ϵ (X) ≤ j∈J scl α (|B j |) ,
and then:

1 2η H sclα (X) ≤ 1 η j∈J scl α (|B j |) ≤ j∈J scl α-δ (|B j |) .
Since this holds for any ϵ-cover, the latter inequality leads to:

1 2η H sclα (X) ≤ H scl α-δ ϵ (X) ,
and so:

1 2η H sclα (X) ≤ H scl α-δ (X) .
On the other side, there exists an ϵ-cover (B j ) j∈J of E such that:

j∈J scl α (|B j |) ≤ 2H sclα ϵ (X) .
Now since H sclα ϵ (X) ≤ H sclα (X), this leads to:

j∈J scl α+δ (|B j |) ≤ η • j scl α (|B j |) ≤ 2η • H sclα (X) .
From there:

H scl α+δ ϵ (X) ≤ 2η • H sclα (X) ,
and this holds for any small ϵ. We have just shown:

1 2η H sclα (X) ≤ H scl α-δ (X) and H scl α+δ ϵ (X) ≤ 2η • H sclα (X) .
Since η can be arbitrarily close to 0, it follows that H scl α-δ (X) = +∞ and H scl α+δ (X) = 0, which concludes the proof.

As box scales, Hausdorff scales are increasing for inclusion. We show a stronger property of Hausdorff scales in Lemma 2.20.

Packing scales

Packing scales through modified box scales

The original construction of packing dimension relies on the packing measure introduced by Tricot in [START_REF] Tricot | Two definitions of fractional dimension[END_REF]. We first define packing scales by modifying upper box scales and we show then later how it is related to packing measures. Definition 2.14 (Packing scale). Let (X, d) be a metric space and scl a scaling. The packing scale of X is defined by:

scl P X = inf    sup n≥1 scl B E n : (E n ) n≥1 ⊂ X N s.t. n≥1 E n = X    .
The following comes directly from definition of packing scale: Proposition 2.15. Let (X, d) be a metric space and scl a scaling. It holds:

scl P X ≤ scl B X .

Packing measures

In this paragraph we show the relationship between packing measures and packing scales. Let us first recall a few definitions.

Given ϵ > 0, an ϵ-pack of a metric space (X, d) is a countable collection of disjoint balls of X with radii at most ϵ. As for Hausdorff outer measure, consider ϕ : R * + → R * + an increasing function such that ϕ(ϵ) → 0 when ϵ → 0. For ϵ > 0, put:

P ϕ ϵ (X) := sup i∈I ϕ(|B i |) : (B i ) i∈I is an ϵ-pack of X .
Since P ϕ ϵ (X) is non-increasing when ϵ decreases to 0, the following quantity is well defined:

P ϕ 0 (X) := lim ϵ→0 P ϕ ϵ (X).
The idea of Tricot is to build an outer measure from this quantity:

Definition 2.16 (Packing measure). For any subset E of X endowed with the same metric d, the packing ϕ-measure of E is defined by:

P ϕ (E) = inf    n≥1 P ϕ 0 (E n ) : E = n≥1 E n    .
Note that P ϕ is an outer-measure on X and can eventually be infinite or null. The following shows the equivalence of Tricot's counterpart definition of the packing scale; this will be useful to show the equality between upper local scale and packing scale of a measure given by Theorem C eq. (c&g).

Proposition 2.17. The packing scale of a metric space (X, d) verifies: sup α > 0 : P sclα (X) = +∞ = scl P X = inf α > 0 : P sclα (X) = 0 .

Proof. Let (E n ) n≥1 be a family of subsets of X. Using that each map α → P sclα 0 (E n ) is not increasing, we prove:

(2.1) inf    α > 0 : n≥1 P sclα 0 (E n ) = 0    = sup n≥1 inf α > 0 : P sclα 0 (E n ) = 0 .
We show below the following:

Lemma 2.18. Given α > 0, if P sclα 0 (E) is a finite and positive number then for any δ ∈ (0, α), it holds:

P scl α+δ 0 (E) = 0 and P scl α-δ 0 (E) = +∞ .
The right hand side equality of the latter lemma implies:

(2.2) sup    α > 0 : n≥1 P sclα 0 (E n ) = +∞    = sup n≥1 sup α > 0 : P sclα 0 (E n ) = +∞ .
We now compare the right hand term using the following shown below:

Lemma 2.19. For any E ⊂ X, it holds:

sup α > 0 : P sclα 0 (E) = +∞ = scl B E = inf α > 0 : P sclα 0 (E) = 0 .
Consequently by Eqs. (2.1) and (2.2) and Lemmas 2.18 and 2.19:

sup    α > 0 : n≥1 P sclα 0 (E n ) = +∞    = sup n≥1 scl B E n = inf    α > 0 : n≥1 P sclα 0 (E n ) = 0    .
Taking the infimum over families (E n ) n≥1 which covers X we obtain the sought result.

Proof of Lemma 2.18. Given η > 0, by Definition 1.2 of scaling, for ϵ > 0 small enough, it holds:

scl α+δ (ϵ) ≤ η • scl α (ϵ) and scl α (ϵ) ≤ η • scl α-δ (ϵ) .
Moreover there exists (B j ) j≥1 an ϵ-pack of E such that:

1 2 P sclα ϵ (E) ≤ j≥1 scl α (|B j |) .
Combining the two inequalities above leads to:

1 2 P sclα ϵ (E) ≤ η -1 • j≥1 scl α-δ (|B j |) ≤ P scl α-δ ϵ (E) .
Taking the limit when ϵ tends to 0 gives 1 2 P sclα 0 (E) ≤ P Since this holds true for any ϵ-cover and ϵ > 0 arbitrary small, it follows:

P scl α+δ 0 (E) ≤ η • P sclα 0 (E) .
By taking η arbitrarily small, it comes P scl α-δ (E) = +∞ and P scl α+δ (E) = 0.

Proof of Lemma 2.19. By Lemma 2.18, it suffices to show that:

(2.3) sup α > 0 :

P sclα 0 (E) = +∞ ≤ scl B E ≤ inf α > 0 : P sclα 0 (E) = 0 ,
Consider α > 0 such that P sclα 0 (E) = 0. Then for ϵ > 0 sufficiently small it holds P sclα ϵ (E) ≤ 1. In particular the packing number (see def. 2.9) satisfies Ñϵ (E) • scl α (ϵ) < 1. Taking the limit when ϵ tends to 0 leads to scl B E ≤ α by Lemma 2.11. This proves the right hand side of Eq. (2.3).

To show the left hand side inequality, it suffices to show that scl B E is at least any α such that P sclα 0 (E) = +∞. For such an α, given ϵ > 0, there exists an ϵ-pack (B j ) j≥1 such that:

j≥1 scl α (|B j |) > 1 .
For k ≥ 1 an integer, put:

n k := Card j ≥ 1 : 2 -(k+1) ≤ scl -1 α (|B j |) < 2 -k .
Thus, since scl α is not decreasing, it holds:

k≥1 n k • 2 -k > 1 .
Since B j has radius at most δ, we have n k = 0 for any k < -log 2 scl α (δ). Then for δ > 0 small, there exists an integer j ≥ 2 such that n j > j -2 2 j . In fact, otherwise we would have:

k≥1 n k • 2 -k ≤ k≥2 1 k 2 < 1 ,
which contradicts the above inequality. Then E contains the centers of n j disjoint balls with radii at least scl -1 α (2 -(j+1) ), in particular:

Ñscl -1 α (2 -(j+1)
) (E) ≥ n j > j -2 2 j , and moreover: j ≥ -log 2 scl α (δ) .

Since this inequality holds true for δ arbitrarily small, there exists an increasing sequence of integers (j n ) n≥1 such that:

Ñϵn (E) > j -2 n 2 jn , with ϵ n = scl -1 α (2 -(jn+1)
). Let us consider a positive number β < α, by Definition 1.2 of scaling, for λ > 1 close to 1, it holds:

scl β (ϵ) • (scl α (ϵ)) -λ -1 ---→ ϵ→0 +∞ .
On the other hand, given a such λ > 1, for n large enough, it holds:

j -2 n 2 jn ≥ 2 λ -1 (jn+1) ,
it follows:

Ñϵn (E) ≥ 2 -(jn+1) -λ -1 = (scl α (ϵ n )) -λ -1
.

Thus we finally have:

scl β (ϵ n ) • Ñϵn (E) > scl β (ϵ) • (scl α (ϵ)) -λ -1 ---→ ϵ→0 +∞ .
By Lemma 2.11 we deduce scl B E ≥ α. Since this holds true for β arbitrary close to α, it follows scl B E ≥ α.

The following is similar to the proof Definition 3.1 of Hausdorff scales.

Properties and comparison of scales of metric spaces

We first give a few basic properties of scales that would allow to compare them. Since both packing and Hausdorff scales are defined via measures, they both are countable stable as shown in the following:

Lemma 2.20 (Countable stability). Let (X, d) be a metric space. Let I be a countable set and (E i ) i≥1 a covering of X, then for any scaling scl:

scl H X = sup i≥1
scl H E i and scl P X = sup

i≥1 scl P E i .
Proof. 

H sclα (X) ≤ i≥1 H sclα (E i ) = 0 ,
and then scl H X ≤ α. Since this is true for any α > sup i≥1 scl H E i , the sought result comes.

Note that countable stability is not a property of box scales. To see that, it suffices to consider a countable dense subset of a metric space (X, d) with positive box scales.

The following lemma shows in particular that the above scales are bi-Lipschitz invariant quantities.

Lemma 2.21. Let (X, d) and (Y, d) be two metric spaces such that there exists a Lipschitz map f : (X, d) → (Y, d). Then for any scaling scl, the scales of f (X) are at most the ones of X:

scl H f (X) ≤ scl H X; scl P f (X) ≤ scl P X; scl B f (X) ≤ scl B X; scl B f (X) ≤ scl B X .
We prove this lemma below. As a direct application, we obtain the following:

Corollary 2.22. Let (X, d) and (Y, d) be two metric spaces. Suppose there exist an embedding g : (Y, δ) → (X, d) such that g -1 is Lipschitz on g(X). Then for any scaling scl, the scales of Y are at most the ones of X:

scl H Y ≤ scl H X; scl P Y ≤ scl P Y ; scl B Y ≤ scl B X; scl B Y ≤ scl B X .
Proof of Corollary 2.22. By Lemma 2.21 we have scl

• Y ≤ scl • g(Y ) for any scl • ∈ {scl H , scl P scl B , scl B }.
As g(Y ) ⊂ X, we have also

scl • g(Y ) ≤ scl • X.
Proof of Lemma 2.21. Let us fix ϵ > 0. Suppose that f is K-Lipschitz for a constant K > 0. We first show the inequalities on box and packing scales. Consider a finite covering by a collection of balls (B(x j , ϵ)) 1≤j≤N where x j ∈ X for any 1 ≤ j ≤ N and N = N ϵ (X). Since X = N j=1 B(x j , ϵ), it comes:

f (X) ⊂ f   N j=1 B(x j , ϵ j )   ⊂ N j=1 B(f (x j ), K • ϵ j ) .
Then (B(f (x j ), ϵ)) 1≤j≤N is a covering by K • ϵ-balls of f (X). Then N K•ϵ (f (X)) ≤ N ϵ (X) and all the inequalities on the box and packing scales are immediately deduced. Now for Hausdorff scales, consider a countable set J and {B(x j , ϵ j ) : j ∈ J} an ϵ-cover of X. Then it comes:

f (X) ⊂ j∈J B(f (x j ), K • ϵ j ) .
For any α > β > 0 and δ > 0 small enough, by Fact 2.1 , it holds:

scl α (δ) ≤ scl β (K -1 • δ) .
Hence for ϵ small, it holds:

H sclα K•ϵ (f (X)) ≤ j∈J scl α (K • ϵ j ) ≤ j∈J scl β (ϵ j ) .
As β > scl H X, the ϵ-cover (B(x j , ϵ j )) j∈J can be chosen such that j∈J scl β (ϵ j ) is arbitrary small. Thus H sclα K•ϵ (f (X)) = 0, and so scl H f (X) ≤ α. As α is arbitrary close to scl H X, it holds:

scl H f (X) ≤ scl H X .
The end of this section consists of comparing the different scales introduced and prove Theorem A. We start by comparing the Hausdorff and lower box scale. The following proposition generalizes well known facts on dimension. See e.g. [START_REF] Falconer | Fractal geometry: mathematical foundations and applications[END_REF][(3.17)].

Proposition 2.23. Let (X, d) be a metric space and scl a scaling, its Hausdorff scale is at most its lower box scale:

scl H X ≤ scl B X .

Proof. We can assume without any loss of generality that (X, d) is totally bounded. If scl H X = 0 the inequality obviously holds, thus consider a positive number α < scl H X. For δ > 0 small enough, H sclα δ (X) > 1. Thus there exist δ -covers and for any δ-cover (B j ) 1≤j≤N δ (X) , it holds:

1 < 1≤j≤N δ (F ) scl α (|B j |) = N δ (X) • scl α (δ) .
From there, it holds scl B X ≥ α. We conclude by taking α arbitrarily close to scl H X.

We have compared Hausdorff and packing scales with their corresponding box scales. It remains to compare each other with the following: Proposition 2.24. Let (X, d) be a metric space and scl a scaling. It holds:

scl H X ≤ scl P X .
Proof. By Lemma 2.20, it holds:

scl H X = inf n≥1 En=X sup n≥1 scl H E n ,
where the infimum is taken over countable coverings of X. Moreover by Proposition 2.23, we have:

scl H E ≤ scl B E ≤ scl B E ,
for any subset E of X. It follows then:

scl H X ≤ inf n≥1 En=X sup n≥1 scl B E n = scl P X .
To conclude this section we now shall prove Theorem A:

Proof of Theorem A. Let (X, d) be a metric space and scl a scaling. By Proposition 2.23, Proposition 2.24 and Proposition 2.15, it holds respectively:

scl H X ≤ scl B X, scl H X ≤ scl P X and scl H X ≤ scl B X .
Now since scl B X ≤ scl B X obviously holds, we deduce the sought result:

scl H X ≤ scl P X ≤ scl B X and scl H X ≤ scl B X ≤ scl B X .

Scales of measures

In this section we recall the different versions of scales of measures we introduced and show the inequalities and equalities comparing them. In particular we provide proofs of Theorem B and Theorem C. They generalize known facts of dimension theory to any scaling and moreover bring new comparisons (see Theorem 3.10) between quantization and box scales that were not shown yet for even for the case of dimension.

Hausdorff, packing and local scales of measures

Let us recall the definition of local scales. Let µ be a Borel measure on a metric space (X, d) and scl a scaling. The lower and upper scales of µ are the functions that map a point x ∈ X to:

scl loc µ(x) = sup α > 0 : µ (B(x, ϵ)) scl α (ϵ) ---→ ϵ→0 0 and scl loc µ(x) = inf α > 0 : µ (B(x, ϵ)) scl α (ϵ) ---→ ϵ→0 +∞ .
We shall compare local scales with the followings: Definition 3.1 (Hausdorff scales of a measure). Let scl be a scaling and µ a non-null Borel measure on a metric space (X, d). We define Hausdorff and * -Hausdorff scales of the measure µ by:

scl H µ = inf E∈B {scl H E : µ(E) > 0} and scl * H µ = inf E∈B {scl H E : µ(X\E) = 0} ,
where B is the set of Borel subsets of X.

Definition 3.2 (Packing scales of a measure). Let scl be a scaling and µ a non-null Borel measure on a metric space (X, d). We define packing and * -packing scales of µ by:

scl P µ = inf E∈B {scl P E : µ(E) > 0} and scl * P µ = inf E∈B {scl P E : µ(X\E) = 0} .
Remark 3.3. In order to avoid excluding the null measure 0, we set scl H 0 = scl * H 0 = scl P 0 = scl * P 0 = 0.

The lemma below will allows to compare local scales with the other scales of measures.

Lemma 3.4. Let µ be a Borel measure on X. Then for any Borel subset F of X such that µ(F ) > 0, the restriction σ of µ to F verifies:

ess inf scl loc µ ≤ ess inf scl loc σ and ess inf scl loc µ ≤ ess inf scl loc σ.

Moreover, if there exists α > 0 such that F ⊂ x ∈ X : scl loc µ(x) > α , it holds then:

ess inf scl loc σ ≥ α ,
and similarly if F ⊂ {x ∈ X : scl loc µ(x) > α}, it holds:

ess inf scl loc σ ≥ α .
Proof. Consider a point x ∈ X, then for any ϵ > 0, one has σ(B(x, ϵ)) ≤ µ(B(x, ϵ)), thus by definition of local scales: scl loc µ ≤ scl loc σ and scl loc µ ≤ scl loc σ .

Now if there exists α > 0 such that F ⊂ x ∈ X : scl loc µ(x) > α , as scl loc µ(x) ≥ α for µ-almost every x in F , it comes by the above inequality that scl loc σ(x) ≥ α for µ-almost every x in F , and thus for σ-almost every x ∈ X. It follows ess inf scl loc σ ≥ α. And the same holds for lower local scales.

The following is a first step in the proof of Theorem B. We prove this lemma later. We first use it to prove Theorem C. Lemma 3.5. Let (X, d) be a metric space and µ a Borel measure on X. Let scl be a scaling. The lower and upper local scales of µ are respectively not greater than the Hausdorff and packing scales of the space X: ess sup scl loc µ ≤ scl H X and ess sup scl loc µ ≤ scl P X .

Remark 3.6. Note that in the above we can replace X by any subset of X with total mass, this leads to: ess sup scl loc µ ≤ scl * H µ and ess sup scl loc µ ≤ scl P µ * .

Quantization and box scales of measures

Let us first recall the definition of quantization scales. Let (X, d) be a metric space and µ a Borel measure on X. The quantization number Q µ of µ is the function that maps ϵ > 0 to the minimal cardinality of a set of points that is on average ϵ-close to any point in X:

Q µ (ϵ) = inf N ≥ 0 : ∃ {c i } i=1,...,N ⊂ X, X d(x, {c i } 1≤i≤N )dµ(x) ≤ ϵ .
Then lower and upper quantization scales of µ for a given scaling scl are defined by:

scl Q µ = sup α > 0 : Q µ (ϵ) • scl α (ϵ) ---→ ϵ→0 +∞ and scl Q µ = inf α > 0 : Q µ (ϵ) • scl α (ϵ) ---→ ϵ→0 0 .
Quantization scales of a measure are compared in Theorem C with box scales:

Definition 3.7 (Box scales of a measure). Let scl be a scaling and µ a positive Borel measure on a metric space (X, d). We define the lower box scale and the * -lower box scale of µ by:

scl B µ = inf E∈B {scl B E : µ(E) > 0} and scl * B µ = inf E∈B {scl B E : µ(X\E) = 0} .
Similarly, we define the upper box scale and the * -upper box scale of µ by:

scl B µ = inf E∈B scl B E : µ(E) > 0 and scl * B µ = inf E∈B scl B E : µ(X\E) = 0 ,
where B is the set of Borel subsets of X.

As for Hausdorff scales of measures we chose that all box scales of the null measure are equal to 0 as a convention. The following is straightforward: Lemma 3.8. Let (X, d) be a metric space and µ a Borel measure on X. Given scl a scaling, it holds:

scl Q µ ≤ scl * B µ and scl Q µ ≤ scl * B µ .
Proof. We can assume without loss of generality that scl * B µ and scl * B µ are finite. Let E be a Borel set with total mass such that scl B E is finite, then E is totally bounded. Now for ϵ > 0, consider a covering by ϵ-balls centered at some points x 1 , ..., x N in E. Since µ(X\E) = 0, it comes:

X d(x, {x i } 1≤i≤N )dµ(x) = E d(x, {x i } 1≤i≤N )dµ(x) ≤ ϵ .
Thus Q µ (ϵ) ≤ N ϵ (E), and by Lemma 2.2:

scl Q µ ≤ scl B E and scl Q µ ≤ scl B E .
Since this holds true for any Borel set E with total mass, the sought results comes.

The following lemma will allow to compare quantization scales with box scales. Lemma 3.9. Let µ be a Borel measure on (X, d) such that Q µ (ϵ) < +∞ for any ϵ > 0. Let us fix ϵ > 0 and an integer N ≥ Q µ (ϵ). Thus consider x 1 , . . . , x N ∈ X such that:

X d(x, {x i } 1≤i≤N )dµ(x) ≤ ϵ .
For any r > 0, with E r := N i=1 B(x i , r), it holds:

µ(X\E r ) ≤ ϵ r .
Proof. Since X\E r , the complement of E r in X is the set of points with distance at most r from the set {x 1 , . . . , x n }, it holds:

r • µ(X\E r ) ≤ X\Er d(x, {x i } 1≤i≤N )dµ(x) ≤ ϵ ,
which gives the sought result by dividing both sides by r.

The following result exhibits the relationship between quantization scales and box scales. As far as we know, this result has not yet have been proved even for the specific case of dimension. It is a key element in the answer to Problem 1.14.

Theorem 3.10. Let µ be a non null Borel measure on a metric space (X, d). For any scaling scl, there exists a Borel set F with positive mass such that:

scl B F ≤ scl Q µ and scl B F ≤ scl Q µ .
In particular, it holds:

scl B µ ≤ scl Q µ and scl B µ ≤ scl Q µ .
Proof. If Q µ (ϵ) is not finite for any ϵ > 0, then F = X satisfies the sought properties. Let us suppose now that the quantization number of µ is finite. Given an integer n ≥ 0, we set ϵ n := exp(-n) and

r n := n 2 • exp(-n) = n 2 • ϵ n .
We also consider a finite set of points C n ⊂ X that contains exactly Q µ (ϵ n ) points and such that:

X d(x, C n )dµ(x) ≤ ϵ n .
We can then consider the following set:

E n := c∈Cn B(c, r n ) ,
then by Lemma 3.9, it holds:

µ(X\E n ) ≤ ϵ n r n = 1 n 2 .
Thus, it holds:

n≥0 µ(X\E n ) < +∞ .
By Borell-Cantelli lemma, we obtain:

µ   m≥0 n≥m E n   = µ(X) > 0 .
Thus there exists an integer m ≥ 0 such that µ n≥m E n > 0. We fix such an integer m and set

F := n≥m E n . It remains to check that scl B F ≤ scl Q µ and scl B F ≤ scl Q µ. By definition, one has F ⊂ E n for any n ≥ m. Then since F ⊂ E n = c∈Cn B(c, r n ), it holds: N rn (F ) ≤ Card C n = Q µ (ϵ n )
Since this holds true for any n greater than m, and since log r n ∼ log ϵ n = -n, we finally have by Lemmas 2.2 and 2.3 that:

scl B F ≤ scl Q µ and scl B F ≤ scl Q µ .

Comparison between local and global scales of measures and proof of Theorem C

By the latter theorem, to finish the proof of Theorem C, it remains only to show:

Theorem 3.11. Let (X, d) be a separable metric space and µ a finite Borel measure on X. Let scl be a scaling. It holds: ess sup scl loc µ ≤ scl Q µ and ess sup scl loc µ ≤ scl Q µ .

Proof. We can suppose without any loss of generality that there exists α < ess sup scl loc µ and β < ess sup scl loc µ. We now set E := x ∈ X : scl loc µ(x) > α and scl loc µ(x) > β . By definition of essential suprema, we have µ(E) > 0. Thus the restriction σ of µ to E is a positive measure. Thus by Lemma 3.4 one has ess inf scl loc σ ≥ α and ess inf scl loc σ ≥ β. Moreover by Theorem 3.10, there is a Borel set F ⊂ E with σ(F ) > 0 an such that:

scl B F ≤ scl Q σ ≤ scl Q µ and scl B F ≤ scl Q σ ≤ scl Q µ .
Yet by Proposition 2.23 and Proposition 2.15, it holds respectively:

scl H F ≤ scl B F and scl P F ≤ scl B F .
Now, by setting τ the restriction of µ to F , Lemma 3.4 also gives:

α ≤ ess inf scl loc σ ≤ ess inf scl loc τ and β ≤ ess inf scl loc σ ≤ ess inf scl loc τ .

By Lemma 3.5, it holds:

ess inf scl loc τ ≤ scl H F and ess inf scl loc τ ≤ scl P F .

Finally, combining all the above inequalities leads to:

α ≤ ess inf scl loc τ ≤ scl H F ≤ scl B F ≤ scl Q µ and β ≤ ess inf scl loc τ ≤ scl P F ≤ scl B F ≤ scl Q µ .
Since this holds true for any α and β arbitrarily close to ess sup scl loc µ and ess sup scl loc µ we have the sought results.

We shall now prove Theorem C.

Proof of Theorem C. By Theorem 3.10 it holds:

scl B µ ≤ scl Q µ and scl B µ ≤ scl Q µ .
By Theorem 3.11 and Lemma 3.8 it holds:

ess sup scl loc µ ≤ scl Q µ and ess sup scl loc µ ≤ scl Q µ .
Thus it remains only to show:

ess inf scl loc µ ≤ scl B µ and ess inf scl loc µ ≤ scl B µ .
Given E a subset of X with positive mass, we set σ the restriction of µ to E. By Lemma 3.4, it holds:

ess inf scl loc µ ≤ ess inf scl loc σ and ess inf scl loc µ ≤ ess inf scl loc σ .

By Theorem 3.11 it holds:

ess sup scl loc σ ≤ scl Q σ and ess sup scl loc µ ≤ scl Q σ .

Moreover by Lemma 3.8:

scl Q σ ≤ scl B E and scl Q σ ≤ scl B E .
Combining all of the above leads to:

ess inf scl loc µ ≤ scl B E and ess inf scl loc µ ≤ scl B E .
Taking the infima over such subsets E ⊂ X with positive mass leads to the sought result.

Proof of Theorem B

This subsection contains the proof of Theorem B, we recall its statement below. We use Vitali's lemma [START_REF] Vitali | Sui gruppi di punti e sulle funzioni di variabili reali[END_REF] to compare local scales with Hausdorff and packing scales as did Fan or Tamashiro in their proof for the specific case of dimension.

Lemma 3.12 (Vitali). Let (X, d) be a separable metric space. Given δ > 0, B a family of open balls in X with radii at most δ and F the union of these balls. There exists a countable set J and a δ-pack (B(x j , r j )) j∈J ⊂ B of F such that: F ⊂ j B(x j , 5r j ) .

scl β (5r) ≤ scl α (r). Denote F := {x ∈ X : scl loc µ(x) < α}, thus F has total mass and by Lemma 2.3 for any x in F there exists an integer n(x), minimal, such that r(x) := exp(-n(x)) ≤ δ and:

µ (B(x, r(x))) ≥ scl α (r(x)) .

Now put:

F := {B(x, r(x)) : x ∈ F } .
By Vitali's Lemma 3.12, there exists a countable set J and a δ-pack (B(x j , r j )) j∈J ⊂ F of F such that F ⊂ j∈J B(x j , 5r j ). Thus:

j∈J scl β (5r j ) ≤ j∈J scl α (r j ) ≤ j∈J µ(B(x j , r j )) ≤ µ(F ) .
Since this holds true for δ arbitrarily close to 0, we deduce that H scl β (F ) ≤ µ(F ). Then, taking β > α close to α leads to scl H F ≤ α, and thus by taking α arbitrarily close to ess sup scl loc µ, we indeed have scl * H µ ≤ ess sup scl loc µ.

To conclude, we prove scl P µ ≤ ess inf scl loc µ. Let E be a Borel set with positive measure. Let σ be the restriction of µ to E, thus by Lemma 3.4: ess inf scl loc µ ≤ ess inf scl loc σ , and then by Lemma 3.5, it holds: ess inf scl loc µ ≤ ess inf scl loc σ ≤ ess sup scl loc σ ≤ scl P E .

This holds true for any E such that µ(E) > 0, thus ess inf scl loc µ ≤ scl P µ.

Finally, let us show scl * P µ ≤ ess sup scl loc µ. Put α > ess inf scl loc µ and set F := x ∈ X : scl loc µ < α , then µ(F ) > 0, and denote:

E := i≥1 E i where E i = x ∈ E : ∀r ≤ 2 -i , µ(B(x, r)) ≥ scl α (r) .
By Lemma 2.20, we have scl P E = sup i≥1 scl P E i , it is then enough to show that for any i ≥ 1, we have scl P E i ≤ α. Indeed we can take α arbitrarily close to ess inf scl loc µ. We then fix i ≥ 1. Fix δ ∈ (0, 2 -i ).

We consider J a countable set and (B j ) j∈J a δ-pack of E i . Then:

j∈J scl α (|B j |) ≤ j∈J µ(B j ) ≤ 1 .
Since this holds true for any δ-pack, it follows:

P sclα δ (E i ) ≤ 1 .
When δ tends to 0, the latter inequality leads to:

P sclα (E i ) ≤ P sclα 0 (E i ) ≤ 1 .
From there, we deduce scl P E i ≤ α, which concludes the proof of the last inequality and thus the one of Theorem B. Lemma 4.4. For any n ≥ 1 the ϵ n -covering number N ϵn (Z) verifies for any z ∈ Z:

N ϵn (Z) = µ(B(z, ϵ n )) -1 = n k=1 Card Z k .
Proof of Proposition 4.1. Since log ϵ n+1 ∼ log ϵ n when n → +∞, we have by Lemma 2.3:

scl B Z = sup α > 0 : scl α (ϵ n ) • N ϵn (Z) ----→ n→∞ +∞ and scl B Z = inf α > 0 : scl α (ϵ n ) • N ϵn (Z) ----→ n→∞ 0 ,
and we have the same form for local scales. Then the sought results follow from Lemma 4.4.

Before proving the remaining lemma we first prove the second corollary:

Proof of Corollary 4.3. By Lemma 4.4, for any n ≥ 1 we have N ϵn (Z) = n k=1 Card Z k , then by Remark 2.12 and Lemma 2.3, it holds:

ord B (X) = lim inf n→+∞ log log(N ϵn (Z)) log(ϵ -1 n ) = lim inf n→+∞ 1 n log C log n k=1 log (Card Z k ) and ord B (X) = lim sup ϵ→0 log log(N ϵn (Z)) log(ϵ -1 n ) lim sup n→+∞ 1 n log C log n k=1 log (Card Z k ) .
This concludes the proof of the corollary.

Finally we provide the remaining:

Proof of Lemma 4.4. Note that for any n ≥ 1 and for any z ∈ Z:

B(z, ϵ n ) = {w ∈ Z : w 1 = z 1 , . . . , w n = z n } .
Thus:

µ(B(z, ϵ n )) = n k=1 n -1 k .
This shows the first equality, it remains to show that N ϵn (Z) = n k=1 n k . Let us consider z 1 , . . . , z N a set of minimal cardinality such that:

Z = N j=1 B(z j , ϵ n ) .
For 1 ≤ j ≤ N , denote z j = (z j k ) k≥1 , thus we have the following:

Fact 4.5. The map:

ϕ : i ∈ {1, . . . , N } → (z i 1 , . . . , z i n ) ∈ Z 1 × • • • × Z n .
is a bijection.

Proof. We first start by showing ϕ injective. Let us assume that there exists i ̸ = j such that ϕ(i) = ϕ(j), then it holds B(z i , ϵ n ) = B(z j , ϵ n ). It follows that there exists a covering of Z by N -1 balls with radius ϵ n , which contradicts the assumption on minimality of N . Thus ϕ is injective. We now show that ϕ is also surjective. Consider α ∈ Z 1 × • • • × Z N . Since Z k is not empty for any k ≥ 1, there exists z ∈ Z such that for any 1 ≤ k ≤ n it holds z k = α k . Then there exists i ∈ {1, . . . , N } such that z ∈ B(z i , ϵ n ).

Thus ϕ(i) = α which gives us the surjectivity.

From there since ϕ is a bijection, we have:

N ϵn (Z) = N = Card Z 1 × • • • × Z N = N k=1 n k . .
Such examples of products of groups allow to exhibit compact metric spaces with arbitrary high order:

Example 4.6. For any α ≥ β > 0, there exists compact metric probability space (Z, δ, µ) such that for any z ∈ Z:

β = ord loc µ(z) = ord H Z = ord Q µ = ord B Z and α = ord loc µ(z) = ord P Z = ord Q µ = ord B Z .
In particular with α > β we obtain examples of metric spaces with finite order such that the Hausdorff and packing orders do not coincide. Moreover, for a countable dense subset F of X, it holds ord H F = ord P F = 0 and ord B F = β < α = ord B F . It follows that none of the inequalities of Theorem A for the case of order in a equality in the general case. Moreover, using disjoint unions of such spaces allows to produce examples of metric spaces where either of the strict equality can happen between any pair of scales that are not compared in Fig. 1.

Proof. Let (u k ) k≥0 be the sequence defined by: From the above lemma, we have:

u k = ⌊exp(exp(β • k))⌋ if c 2j ≤ k < c 2j+1 ⌊exp(exp(α • k))⌋ if c 2j+1 ≤ k < c 2j+2 where c = ⌊ α β ⌋ + 1. We denote Z := n≥1 Z/u k Z endowed
λ mj ≤ 1 m j log m j log(u mj ) ----→ j→+∞ β ,
and so λ -≤ β which concludes the proof of the proposition. In the case α > 0, for any x, y ∈ [0, 1] d :

Functional spaces

∥D k f (x) -D k f (y)∥ ∞ ≤ ∥x -y∥ α .
In particular, F d,k,0 is the unit ball for the C k -norm in C k ([0, 1] d , [-1, 1]). Let us recall the asymptotic given by Kolmogorov-Tikhomirov [START_REF] Kolmogorov | ε-entropy and ε-capacity of sets in functional spaces[END_REF][Thm XV] on the covering number of (F d,k,α , ∥ • ∥ ∞ ) , see Theorem 1.10:

C 1 • ϵ -d k+α ≥ log N ϵ (F d,k,α ) ≥ C 2 • ϵ -d k+α ,
where C 1 > C 2 > 0 are two constants depending on d, k and α. In order to prove Theorem E which states that box, packing and Hausdorff scales of F d,k,α are all equal to d k+α , by Theorem B, it remains to prove Lemma 1.11. The latter states:

ord H F d,k,α ≥ d k + α .
Observe that ∥ϕ∥ q > 0. Let (x j ) 1≤j≤R dn be an exhaustive sequence of the set:

i 1 R n , . . . , i d R n : i 1 , . . . , i d ∈ {0, . . . , R n -1} .

For any λ = (λ 1 , . . . , λ R dn ) ∈ Λ n = {-1, 0, +1} R dn we associate the following map:

f λ : x = (x 1 , . . . , x d ) ∈ [0, 1] d → ϵ n • R dn j=1 λ j • ϕ(R n • ∥x -x j ∥) , with ϵ n := 6 π 2 • n 2 • R qn • ∥ϕ∥ q .
Let us denote S n the set of such maps:

S n = {f λ : λ ∈ Λ n } .
The sequence (ϵ n≥1 ) is chosen such as the following holds:

Lemma 4.10. The distance between f λ , f λ ′ ∈ S n is given by:

∥f λ -f λ ′ ∥ q = 6 π 2 • n 2 • ∥λ -λ ′ ∥ ∞ and ∥f λ -f λ ′ ∥ ∞ = ϵ n • ∥λ -λ ′ ∥ ∞ ,
where ∥λ -λ ′ ∥ ∞ := sup

1≤i≤R dn |λ i -λ ′ i |.
Proof. For any x ∈ [0, 1] d , there exists at most one value j ∈ 1, . . . , R dn such that ∥x -x j ∥ < R -n , thus the maps x → ϕ(∥x -x j ∥ • R n ) for 1 ≤ j ≤ R dn have disjoints supports. It comes then:

∥f λ -f λ ′ ∥ q = ϵ n R dn i=1 |λ i -λ ′ i |ϕ(R n ∥ • -x i ∥) q = ϵ n • sup 1≤i≤R dn |λ i -λ ′ i |•R qn ∥ϕ∥ q = 6 π • n 2 •∥λ-λ ′ ∥ ∞ .
Now, for the C 0 -norm, it holds:

∥f λ -f λ ′ ∥ ∞ = ϵ n R dn i=1 (λ -λ ′ ) • ϕ(R n ∥ • -x i ∥) ∞ = ϵ n • ∥λ -λ ′ ∥ ∞ .
Note in particular that since 0 ∈ S n , for any f λ ∈ S n \ {0}, it holds:

∥f λ ∥ q = 6 π 2 • n 2 and ∥f λ ∥ ∞ = ϵ n .
We now embed n≥1 S n into F d,k,α . For λ = (λ n ) n≥1 ∈ Λ we associate the formal series n≥1 f λn where f λn ∈ S n . Then we have the following: Lemma 4.11. For any λ = (λ n ) n≥1 ∈ Λ the function series n≥1 f λn converges in C 0 ([0, 1] d , [-1, 1]) and moreover its limit lies in F d,k,α . Proof. By Lemma 4.10, it holds:

n≥1 ∥f λn ∥ ∞ ≤ n≥1 ϵ n < +∞ .
It comes that the series n≥1 f λn is normally convergent, thus it is also point-wise convergent and moreover the limit g is continuous. Now note that for any n ≥ 1 and for any 1 ≤ l ≤ k it holds D l f λn (0) = 0, thus by Taylor integral formula, it holds:

∥D l f λn ∥ ∞ ≤ ∥D k f λn ∥ ∞ .
Moreover, still by Lemma 4.10, it holds:

n≥1 ∥f λn ∥ q ≤ n≥1 6 π 2 n 2 = 1 . Now since D k f λn is 6
π 2 n 2 -α-Hölder and D k f λn (0) = 0, for any n ≥ 1, it follows:

n≥1 ∥f λn ∥ C k ≤ n≥1 6 π 2 n 2 = 1 .
Thus the partial sums lie in F d,k,α and so does g as a limit of elements of F d,k,α , which is closed for the C 0 -norm. By Lemma 4.11, the following map is well defined:

I : λ = (λ n ) n≥1 ∈ (Λ, δ) → lim n→+∞ n≥1
f λn ∈ (F d,k,α , ∥ • ∥ ∞ ) .

To conclude the proof, it remains to show that for any λ, λ ′ ∈ Λ:

∥I(λ) -I(λ ′ )∥ ∞ ≥ 1 2 δ(λ, λ ′ ) , Consider λ = (λ n ) n≥1 , λ ′ = (λ ′ n ) n≥1 ∈ Λ.
We denote k := inf{n ≥ 1 : x n ̸ = y n }. Then it holds:

∥I(λ) -I(λ ′ )∥ ∞ = n≥k f λn -f λ ′ n ∞ ≥ ∥f λ k -f λ ′ k ∥ ∞ - n>k ∥f λn -f λ ′ n ∥ ∞ .
Now by Lemma 4.10, it holds respectively:

∥f λ k -f λ ′ k ∥ ∞ ≥ ϵ k and n>k ∥f λn -f λ ′ n ∥ ∞ ≤ 2 n>k ϵ n .
Now recall that ϵ n = 6 π 2 n 2 R qn for any n ≥ 1, then:

n>k ϵ n ≤ n>k ϵ k • R -q(n-k) = ϵ k • 1 R q -1 .
Now since R q ≥ 5, it holds then 1 R q -1 ≤ 1 4 and it follows:

∥I(λ) -I(λ ′ )∥ ∞ ≥ 1 2 ϵ k .
Now since ϵ k = δ(λ, λ ′ ) by definition of δ, the sought result comes.

This concludes the proof of Lemma 1.11 for the case α > 0. It remains to deduce the case α = 0 from that previous one. For any β > 0, it holds F d,k,β ⊂ F d,k,0 . From there since Hausdorff scales are non decreasing for inclusion, it holds then ord H F d,k,0 ≥ ord H F d,k,β ≥ d k+β . Since we can take β > 0 arbitrary small, it indeed holds ord H F d,k,0 ≥ d k .
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Figure 1 :

 1 Figure 1: Diagram presenting results of Theorems A, B and C. Each arrow is an inequality, the scale at the starting point of the arrow is at least the one at its ending point : " → " = " ≥ ". None of them is an equality in the general case. If there is no path between two scales scl 1 and scl 2 then there exist examples of spaces endowed with a measure such that both scl 1 > scl 2 and scl 1 < scl 2 can happen. See Example 4.6.

scl α-δ 0 ((

 0 E). On the other side consider (B j ) j≥1 an ϵ-pack of E. It holds: j≥1 scl α (|B j |) ≤ P sclα ϵ scl α+δ (|B j |) ≤ j≥1 scl α (|B j |) .

  with the metric δ defined by: δ(z, w) := exp(-inf {n ≥ 1 :z n ̸ = w n }) for z = (z n ) n≥1 and w = (w n ) n≥1 in Z. Let us denote λ n = 1 n log n k=1 log u k .Thus by Corollary 4.3:ord H Z = ord B Z = lim inf n→+∞ λ nandord P Z = ord B Z = lim sup n→+∞ λ n .It remains to show that λ -:= lim inf n→+∞ λ n = β and λ + := lim sup n→+∞ λ n = α in order to show that (Z, δ) satisfies the sought properties. First notice that exp(exp(β• n)) ≤ u n ≤ exp(exp(α • n)). Thus λ -≥ β and λ + ≤ α. Denote n j = c 2j+1 : λ nj ≥ 1 n log log(u nj ) = α .Thus, taking j → +∞ leads to λ + ≥ α. Moreover, denote m j = c 2j+1 -1. We have the following:Lemma 4.7. For any j ≥ 1 and for any 1 ≤ k ≤ m j , it holds:u k < u mj . Proof. If c 2j ≤ k ≤ m j , then u k = exp(exp(β • k)) ≤ exp(exp(β • m j )) = u mj . Otherwise,we have k < c 2j , and then u k < exp(exp(α • c 2j )) < exp(exp(β • c 2j+1 )) = u mj , since α < β • c.

  Metric spaces studied here are sub-spaces of differentiable spaces on compact subset of R d for d a positive integer. We denote by ∥• ∥ C k the C k -uniform norm on C k ([0, 1] d , R): ∥f ∥ C k := sup 0≤j≤k ∥D j f ∥ ∞ .Definition 4.8. For d ≥ 1 and k an integer, α ∈ [0, 1] let us define:F d,k,α := f ∈ C k ([0, 1] d , [-1, 1]) : ∥f ∥ C k ≤ 1,and if α > 0, the map D k f is α-Hölder with constant 1 .

  The equality on packing scales is obvious by definition with modified upper box scales. Let us prove the equality on Hausdorff scales. By monotonicity of the Hausdorff measure, it holds scl H X ≥ sup i≥1 scl H E i . For the reverse inequality, consider α > sup i≥1 scl H E i , then for any i ≥ 1 it holds H

sclα (E i ) = 0. Thus:

Note that for p < ∞, the constant κ does not depend on the value of p.

Note that the historical construction of the Hausdorff measures uses subsets of X with diameter at most ϵ instead of the balls with radius at most ϵ. However both these constructions lead to the same definitions of Hausdorff scales.

We first prove Lemma 3.5 that we used to prove Theorem C.

Proof of Lemma 3.5. First we can assume that scl H X < +∞, scl P X < +∞, and that µ is not null, otherwise both inequalities immediately hold true. In particular, we can assume that X is separable. Left hand side ineqality: If ess sup scl loc µ = 0 the inequality is obviously true. Suppose then that this quantity is positive and consider a positive α < ess sup scl loc µ. Thus, there exists r 0 > 0 such that the set A := {x ∈ X : µ(B(x, r)) ≤ scl α (r), ∀r ∈ (0, r 0 )} has positive measure. Consider δ ≤ r 0 , thus for any δ-cover (B j ) j∈J of A it holds:

Since this holds true for an arbitrary cover, it follows:

Taking δ arbitrarily close to 0 leads to:

Finally since Hausdorff scale is non-decreasing for inclusion, it holds:

Note that since this holds true for any α < ess sup scl loc µ, we indeed have ess sup scl loc µ ≤ scl H X.

Right hand side ineqality: Similarly , we consider without any loss of generality that there exists 0 < α < ess sup scl loc µ and put:

Let us fix a family of Borel subsets (F N ) N ≥1 of X such that F = N ≥1 F N . For 0 < β < α, by Fact 2.1, there exists δ 0 > 0 such that for any r ≤ δ 0 , it holds:

We fix δ ∈ (0, δ 0 ) and an integer N ≥ 1. For any x in F N by Lemma 2.3 there exists an integer n(x), minimal, such that r(x) := exp(-n(x)) ≤ δ and: µ (B(x, 5r(x))) ≤ scl α (5r(x)) .

We now set:

Thus by Vitali Lemma 3.12, since we assumed (X, d) separable, there exists a countable set J and a δ-pack (B(x j , r j )) j∈J ⊂ F of F such that F N ⊂ j∈J B(x j , 5r j ). From there:

Since this holds true for any δ-pack, it follows:

and then taking δ arbitrarily close to 0 leads to:

By taking the sum over N ≥ 1, it holds:

Recall that (F N ) N ≥1 is an arbitrary covering of Borel sets of F , thus:

It holds then scl P F ≥ β for any β < α < ess sup ess sup scl loc µ which allows to conclude the proof.

We deduce then:

Proposition 3.13. Let (X, d) be a metric space and µ a Borel measure on X, then:

ess inf scl loc µ ≤ scl H µ and ess inf scl loc µ ≤ scl P µ , and ess sup scl loc µ ≤ scl * H µ and ess sup scl loc µ ≤ scl * P µ .

Proof. The second line of inequalities are given by Remark 3.6. It remains to show the first line of inequalities. Let E be a Borel subset of X with µ positive mass. Thus with σ the restriction of µ to E, it holds by Lemma 3.5: ess sup scl loc σ ≤ scl H E and ess sup scl loc σ ≤ scl P E .

By Lemma 3.4, it holds:

Taking the infima over E with positive mass ends the proof.

Explicit links between packing scales, Hausdorff scales and local scales of measures can be now established by proving Theorem B. Let us first recall its statement: Let (X, d) be a metric space and µ a Borel measure on X, then:

scl H µ = ess inf scl loc µ ≤ scl P µ = ess inf scl loc µ and scl * H µ = ess sup scl loc µ ≤ scl * P µ = ess sup scl loc µ .

Proof of Theorem B. By Proposition 3.13 it remains only to show four inequalities.

We first prove scl H µ ≤ ess inf scl loc µ. We can assume that ess inf scl loc < +∞, otherwise the result immediately comes, and fix α > ess inf scl loc . Consider β > α, thus by definition of scaling, there exists δ > 0 such that for any r ∈ (0, δ) one has scl β (5r) ≤ scl α (r). Denote:

then µ(F ) > 0 and by Lemma 2.3 for any x in F there exists an integer n(x), minimal, such that r(x) := exp(-n(x)) ≤ δ and:

µ (B(x, r(x))) ≥ scl α (r(x)) .

Now set:

By Vitali Lemma 3.12, there exists a countable set J and a δ-pack {B(x j , r j )} j∈J ⊂ F of F such that F ⊂ j∈J B(x j , 5r j ). Then, it holds:

We then have H

Since this holds true δ as small as we want, we deduce H scl β (F ) ≤ µ(F ); and this holds true for any β > α. We finally get scl H F ≤ α and then by taking α close to ess inf scl loc µ, we indeed have scl H µ ≤ scl H F ≤ ess inf scl loc µ.

We prove now scl P µ ≤ ess inf scl loc µ. Similarly as for Hausdorff scales, we can assume that ess inf scl loc µ is finite. Consider then α > ess sup scl loc µ and set E = x ∈ X : scl loc µ(x) < α , thus µ(X\E) = 0. Moreover it holds:

By Lemma 2.20, it holds scl P E = sup i≥1 scl P E i . It is then enough to show that for any i ≥ 1, we have scl P E i ≤ α. Indeed, then taking α arbitrarily close to ess sup scl loc µ allows to conclude. In that way let us fix i ≥ 1. Fix δ ∈ (0, 2 -i ), and consider J a countable set and (B j ) j∈J a δ-pack of E i . It follows:

Since this holds true for any δ-pack, we have:

Taking δ arbitrarily close to 0 leads to:

From there, scl P E i ≤ α, which concludes the proof of scl P µ ≤ ess inf scl loc µ.

Let us now prove scl * H µ ≤ ess sup scl loc µ. We can assume that ess sup scl loc µ is finite and fix a real number α > ess sup scl loc µ. For β > α, then consider δ > 0 such that for any r ∈ (0, δ) we have 4 Applications

Scales of infinite products of finite sets

A natural toy model in the study of scales is given by a product Z = n≥1 Z k of finite sets. To define the metric δ on this set, we fix a decreasing sequence (ϵ n ) n≥1 which verifies log ϵ n+1 ∼ log ϵ n when n/to + ∞. We put for x = (x n ) n≥1 ∈ Z and y = (y n ) n≥1 ∈ Z:

where m := inf{n ≥ 1 : x n ̸ = y n } is the minimal index such that the sequences x and y differ. Note that then if each Z n is endowed with the discrete topology, then δ provides the product topology on Z.

A natural measure on Z is the following product measure:

where µ n is the equidistributed measure on Z n for n ≥ 1. The scales of Z and µ are given by the following:

Proposition 4.1. For any scaling scl, it holds for any x ∈ Z:

We shall prove this proposition later. A first corollary can be deduced directly from Theorem A and C: Corollary 4.2. For any scaling scl, it holds moreover:

For some particular choice of the sequence (ϵ n ) n≥1 and for scl = ord we obtain moreover:

Corollary 4.3. Suppose that -log ϵn n converges to C > 1 when n → +∞. Then for any scaling scl, it holds moreover:

and

Note that log ϵ n ∼ -C • n implies log ϵ n ∼ log ϵ n+1 when n → +∞.

The following lemma allows to prove both Proposition 4.1 and its corollaries:

Proof of Lemma 1.11. We first start with the case α > 0. The case α = 0 will be deduced from it. We consider the following set:

where Λ n = {-1, 0, +1} R dn and with R = ⌊5 1 k+α ⌋ + 1. We endow Λ with the metric δ defined by:

with m the minimal index such that the sequences λ and λ ′ differ and with (ϵ n ) n≥0 is a decreasing sequence of positive real numbers such that -log ϵn n → R k+α when n → +∞. We can choose (ϵ n ) n≥1 such that the following holds:

Lemma 4.9. There exists an embedding I : (Λ, δ) → (F d,k,α , ∥ • ∥ ∞ ) such that for any λ, λ ′ ∈ Λ it holds:

The above lemma allows to conclude the proof of Lemma 1.11. Indeed, since Λ is a product of finite sets endowed with a product metric, and since log ϵ n+1 ∼ log ϵ n , by Corollary 4.3 it holds:

Now, for n ≥ 1 it holds:

It comes ord H Λ = d k+α . Now since by assumption on I in Lemma 4.9, it holds by Corollary 2.22:

which concludes the proof of Lemma 1.11. It remains to show:

Proof of Lemma 4.9. Let us denote q := k + α and recall that R := ⌊5 1 q ⌋ + 1. We consider the following map on R:

Note that the function ϕ has its support in [0, 1] and takes the value 1 at 1 2 . The k th derivative of ϕ is non-constant. For f ∈ F d,k,α , let ∥f ∥ q be the infimum of the constants C > 0 such that for any x, y ∈ R:

Note that ∥ • ∥ q is a semi-norm on F d,k,α and moreover: F d,k,α = f ∈ F d,k,0 : ∥f ∥ q ≤ 1 .