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Abstract

We introduce the notion of scale to generalize some aspects of dimension theory. Several versions

of scales exist such as Hausdorff, packing, box, local and quantization. We prove general theorems com-

paring them. They are applied to describe the largeness of ergodic decompositions, Wiener measure

and functional spaces. The first application solves a problem set by Berger on the notions of emergence

(2020); the second lies in the study of small ball estimates of the Wiener measure and extends an esti-

mation of Dereich-Lifshits (2005); the last refines the Kolmogorov-Tikhomirov theorems (1958) on the

ϵ-capacity of functional spaces.
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1 Introduction and results

Dimension theory was popularized by Mandelbrot in the article How long is the coast of Britain ? [Man67]

and shed light on the general problem of measuring how large a natural object is. The category of objects

considered are metric spaces possibly endowed with a measure.

Dimension theory encompasses not only smooth spaces such asmanifolds, but also wild spaces such as

fractals, so that the dimension may be any non-negative real number. There are several notions of dimen-

sion: for instance Hausdorff [Hau18], packing [Tri82] or box dimensions; also when the space is endowed

with a measure, there are moreover the local and the quantization dimensions. These different versions of

dimension are bi-Lipschitz invariants. They are in general not equal, so that they reveal different aspects

of the underlying space. The seminal works of Hausdorff, Frostman, Tricot, Fan, Tamashiro, Pötzelberger,

Graf-Luschgy and Dereich-Lifshits described the relationship between these notions and gave conditions

under which they coincide.

Obviously these invariants do not give much information on infinite dimensional spaces. However

such spaces are subject to many studies. Kolmogorov-Tikhomirov in [KT93] gave asymptotics of the

covering numbers of functional spaces. Dereich-Lifshits gave asymptotics of the mass of the small balls

for the Wiener measure and exhibited their relationship with the quantization problem, see [DFMS03,

DL05, CM44, Chu47, BR92, KL93]. Also Berger and Bochi [Ber20] gave estimates on the covering number

and quantization number of the ergodic decomposition of some smooth dynamical systems. See also

[BR92, Klo15, BB21].

We will introduce the notion of scale to unify both the different kinds of dimensions and the latter

infinite dimensional studies. Scales are families of invariants of different kinds (box, Hausdorff, packing,
quantization, local) and different growths (dim, ord . . . ). Scales generalize all the previous kinds of di-

mensions and allow to describe some aspects of the above examples of infinite dimensional spaces and

measures. The different growths of scales are given by scalings (see Definition 1.2).

We will generalize the well known comparison theorems between the different kind of dimensions to

all the different growths of scales in Theorem A, Theorem B and Theorem C. See Section 1.2. The main

difficulty will be to prove Theorem Cwhich enables to compare the quantization scales with both the local

and the box scales.

An application of Theorem A, together with new estimates, is to show the coincidence of the box,

Hausdorff and packing orders for finitely regular functional spaces; refining [KT93, Thm XV]. Theorem C

together with [DL05] immediately implies the coincidence of local, Hausdorff, packing, quantization and

box orders of the Wiener measure for the Lp
-norm, for any p ∈ [1,∞]. Moreover, a consequence of

Theorem C is that the local order of the ergodic decomposition is at most its quantization order; which

solves a problem set by Berger in [BB21]. See Section 1.3.3.
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1.1 From dimension to scale

The Hausdorff, packing and box dimensions of a totally bounded metric space (X, d) are defined by look-

ing at families of subsets ofX . For the box dimensions, we consider the set CB(ϵ) of finite coverings ofX
by balls with radius ϵ > 0. For the Hausdorff dimension, we consider the set CH(ϵ) of countable coverings

(Ei)i≥1 of X by sets with diameter at most ϵ > 0. For α > 0, consider the following quantities. For the

box dimensions, denote:

Bα
ϵ (X) := inf

C∈CB(ϵ)

∑
B∈C

radius (B)α = ϵα · inf
C∈CB(ϵ)

CardC .

The quantityNϵ = inf
C∈CB(ϵ)

CardC is called the ϵ-covering number of (X, d). For theHausdorff dimension,

denote:

Hα
ϵ (X) := inf

C∈CH(ϵ)

∑
E∈C

diam(E)α .

Then we define the lower and upper box dimensions as:

dimBX = sup
{
α > 0 : Bα

ϵ (X) −−−→
ϵ→0

+∞
}

and dimBX = inf
{
α > 0 : Bα

ϵ (X) −−−→
ϵ→0

0
}

.

Similarly, we define Hausdorff dimension by:

dimHX = sup
{
α > 0 : Hα

ϵ (X) −−−→
ϵ→0

+∞
}
= inf

{
α > 0 : Hα

ϵ (X) −−−→
ϵ→0

0
}

.

It always holds dimHX ≤ dimBX ≤ dimBX , in general, none of these inequalities is an equality. For

instance the set (0, 1) ∩Q has null Hausdorff dimension and both box dimensions equal to 1. Moreover,

there are non-homogeneous Cantor sets such that dimBX < dimBX . See e.g. [FLR02]. Hausdorff and

box dimensions enjoy different properties, while Hausdorff dimension is countable stable (the dimension

of a countable union is the supremum of the dimensions), the box dimensions are stable by closure. One

way to define packing dimension is to modify upper box dimension to make it countable stable:

dimPX = inf sup
n≥1

dimBEn ,

where the infimum is taken over countable coverings (En)n≥1 of X . These four versions of dimension

are bi-Lipschitz invariants; they quantify different aspects of the geometry of the studied metric space.

In the next section we will recall how these invariants are related. The idea is to replace the family

(ϕα)α>0 = (ϵ ∈ (0, 1) 7→ ϵα)α>0 by families of functions, called scalings, defining comparable versions

of scales, which encompasses the following examples of growth:

Example 1.1. 1. The family dim = (ϵ ∈ (0, 1) 7→ ϵα)α>0 which is used in the definitions of dimensions,

2. the family ord = (ϵ ∈ (0, 1) 7→ exp(−ϵ−α))α>0 which fits with the growth of the covering number
of spaces of finitely regular functions studied by Kolmogorov-Tikhomirov [KT93], see Theorem 1.10, or
with the one of the space of ergodic measures spaces of chaotic dynamics by Berger-Bochi [Ber20], see
Proposition 1.15,
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3. the family
(
ϵ ∈ (0, 1) 7→ exp(−(log ϵ−1)α)

)
α>0

which fits with the growth of the covering number
of holomorphic functions estimated by Kolmogorov-Tikhomirov [KT93], see Theorem 2.5.

Yet to keep a comparison between the generalization of box, Hausdorff and packing dimensions, the

family (ϕα)α>0 must satisfies some mild assumptions, which leads to the notion of scaling:

Definition 1.2 (Scaling). A family scl = (sclα)α≥0 of positive non-decreasing functions on (0, 1) is a scaling
when for any α > β > 0 and any λ > 1 close enough to 1, it holds:

(∗) sclα(ϵ) = o
(
sclβ(ϵ

λ)
)

and sclα(ϵ) = o
(
sclβ(ϵ)

λ
)

when ϵ → 0 .

Remark 1.3. The left hand side condition is used in all the proof of our theorems represented on Fig. 1.
The right hand side condition is only used to prove the equalities between packing and upper local scales in
Theorem B and to compare upper local scales with upper box and upper quantization scales in Theorem C
inequalities (c)&(g) . It moreover allows to characterize packing scale with packing measure.

Remark 1.4. There are scalings that are smaller than dimension, e.g. (ϵ ∈ (0, 1) 7→ log(ϵ−1)−α)α>0 that
is adapted to study the set {2−nβ

: n ≥ 1} where β is a positive real number.

We will show in Proposition 2.4 that 1 − 2 − 3 in Example 1.1 are scalings. Scalings allow to define

scales which generalize packing dimension, Hausdorff dimension, box dimensions, quantization dimen-

sions and local dimensions that are local counterparts for measures. For each scaling, the different kind

of scales do not a priori coincide on a generic space. Nevertheless in Section 1.3, as a direct application of

our comparison theorems, we bring examples of metric spaces and measures where all those definitions

coincide. This equality between the different scales gives us hints of the regularity of such spaces and

measures.

Now for a metric space (X, d), replacing the specific family dim in the definition of box dimensions

by any scaling scl = (sclα)α>0 gives the following:

Definition 1.5 (Box scales). Lower and upper box scales of a metric space (X, d) are defined by:

sclBX = sup
{
α > 0 : Nϵ(X) · sclα(ϵ) −−−→

ϵ→0
+∞

}
and sclBX = inf

{
α > 0 : Nϵ(X) · sclα(ϵ) −−−→

ϵ→0
0
}

.

Moreover we will generalize the notion Hausdorff and packing dimensions to the Hausdorff scale de-
noted sclHX (see Definition 2.13) and packing scale denoted sclPX (see Definition 2.14).

1.2 Results on comparisons of scales

In this section, we introduce other kind of scales and Theorems A, B and C which state the inequalities

between them as illustrated in Fig. 1. First, we bring the following generalization of inequalities comparing

dimensions of metric spaces to the frame of scales:

Theorem A. Let (X, d) be a metric space and scl a scaling, the following inequalities hold:

sclHX ≤ sclPX ≤ sclBX and sclHX ≤ sclBX ≤ sclBX .

4



Figure 1: Diagram presenting results of Theorems A, B and C. Each arrow is an inequality, the scale at

the starting point of the arrow is at least the one at its ending point : ” → ” = ” ≥ ”. None of them

is an equality in the general case. If there is no path between two scales scl1 and scl2 then there exist

examples of spaces endowed with a measure such that both scl1 > scl2 and scl1 < scl2 can happen. See

Example 4.6.

In the specific case of dimension these inequalities are well known and redacted for instance by Tricot

[Tri82] or Falconer [FF97, Fal04]. The proof of this theorem will be done in Section 2.5.

When the metric space (X, d) is endowed with a measure µ, Frostman first studied the relationship

between the Hausdorff dimension and the growth of the mass of the small balls. This has been intensively

studied by Fan [FLR02, Fan94], Pötzelberger [Pöt99], Tamashiro [Tam95] as local dimension. Similarly we

introduce local scales that extend the notion of local dimensions of a measure:

Definition 1.6 (Local scales). Let µ be Borel measure on a metric space (X, d) and scl a scaling. The lower
and upper scales of µ are the functions that map a point x ∈ X to:

scllocµ(x) = sup

{
α > 0 :

µ (B(x, ϵ))

sclα(ϵ)
−−−→
ϵ→0

0

}
and scllocµ(x) = inf

{
α > 0 :

µ (B(x, ϵ))

sclα(ϵ)
−−−→
ϵ→0

+∞
}

.

As in dimension theory, we should not compare the local scales with the scales of X but to the ones

of its subsets with positive mass. This observation leads to consider the following:
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Definition 1.7 (Hausdorff, packing and box scales of a measure). Let scl be a scaling and µ a non-null
Borel measure on a metric space (X, d). For any scl• ∈

{
sclH , sclP , sclB , sclB

}
we define lower and upper

scales of the measure µ by:

scl•µ = inf
E∈B

{scl•E : µ(E) > 0} and scl∗•µ = inf
E∈B

{scl•E : µ(X\E) = 0} ,

where B is the set of Borel subsets of X .

In the case of dimension, Frostman [Fro35], Tricot [Tri82], Fan [Fan94, FLR02] and Tamashiro [Tam95]

exhibited the relationship between the Hausdorff and packing dimensions of measures and their local

dimensions. The following theorem is a straightforward generalization of their results:

Theorem B. Let µ be a Borel measure on a metric space (X, d), then for any scaling scl, Hausdorff and
packing scales of µ are characterized by:

sclHµ = ess inf scllocµ, scl∗Hµ = ess sup scllocµ, sclPµ = ess inf scllocµ, scl∗Pµ = ess sup scllocµ ,

where ess sup and ess inf denote the essential suprema and infima of a function.

The proof of the latter theorem is done in Section 3.1.

Let us introduce a last kind of scale, the quantization scale. It generalizes the quantization dimension

which dragged much research interest [GL07, Pöt99, DFMS03, DL05, Ber17, BB21, Ber20].

Definition 1.8 (Quantization scales). Let (X, d) be a metric space and µ a Borel measure onX . The quan-
tization numberQµ of µ is the function that maps ϵ > 0 to the minimal cardinality of a set of points that is
on average ϵ-close to any point in X :

Qµ(ϵ) = inf

{
N ≥ 0 : ∃ {ci}i=1,...,N ⊂ X,

∫
X

d(x, {ci}1≤i≤N )dµ(x) ≤ ϵ

}
.

Then lower and upper quantization scales of µ for a given scaling scl are defined by:

sclQµ = sup
{
α > 0 : Qµ(ϵ) · sclα(ϵ) −−−→

ϵ→0
+∞

}
and sclQµ = inf

{
α > 0 : Qµ(ϵ) · sclα(ϵ) −−−→

ϵ→0
0
}

.

The following gives relationships between the remaining kind of introduced scales of measures:

Theorem C (Main). Let (X, d) be a metric space. Let µ be a Borel measure on X . For any scaling scl, the
following inequalities on the scales of µ hold:

ess inf scllocµ ≤︸︷︷︸
(a)

sclBµ ≤︸︷︷︸
(b)

sclQµ ; ess inf scllocµ ≤︸︷︷︸
(c)

sclBµ ≤︸︷︷︸
(d)

sclQµ

and
ess sup scllocµ ≤︸︷︷︸

(e)

sclQµ ≤︸︷︷︸
(f)

scl∗Bµ ; ess sup scllocµ ≤︸︷︷︸
(g)

sclQµ ≤︸︷︷︸
(h)

scl
∗
Bµ .

The proof of inequalities (b) and (d) is done at Theorem 3.10 and relies mainly on the use of Borel-

Cantelli lemma. Even in the specific case of dimension, these inequalities were not shown yet, as far as

we know. The proof of inequalities (f) and (h) is straightforward, see Lemma 3.8. Inequalities (e) and
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(g) were shown by Pötzelberger in [Pöt99] for dimension and in [0, 1]d. A new approach for the general

case of scales of inequalities (e) and (g) is brought in Theorem 3.11. We deduce the inequality (a) from

(e) and (f) and inequality (c) from (g) and (h). As a direct application, inequality (e) allows to answer to

a problem set by Berger in [Ber20] (see Section 1.3.3). We will give in Section 4.1 examples of topological

compact groups different versions of orders do not coincide. Moreover in that same section we show that

for a metric group where the law is Lipschitz, the Hausdorff scale coincides with the lower box scale and

the packing scale coincides with the upper box scale.

1.3 Applications

Let us see how our main theorems imply easily the coincidence of the scales of some natural infinite

dimensional spaces.

1.3.1 Wiener measure

First example is the calculus of the orders of the Wiener measureW that describes uni-dimensional stan-

dard Brownian motion on [0, 1]. Recall that W is the law of a continuous process (Bt)t∈[0,1] with inde-

pendent increments. It is such that for any t ≥ s the law of the random variable Bt − Bs is N (0, t− s).

Computation of the local scales of the Wiener measure relies on small ball estimates which received much

interest [CM44, Chu47, BR92, KL93]. These results gave asymptotics on the measure of small balls cen-

tered at 0 for Lp
norms and Hölder norms. Moreover for a random ball the Dereich-Lifshits made the

following estimation for Lp
-norms:

Theorem 1.9 (Dereich-Lifshits [DL05][Results 3.2, 5.1, 6.1, 6.3]). For the Wiener measure on C0([0, 1],R)
endowed with the Lp-norm, for p ∈ [1,∞], there exists 1 a constant κ > 0 such that for W -almost any
ω ∈ C0([0, 1],R):

−ϵ2 · logW (B(ω, ϵ)) → κ,when ϵ → 0 ,

and moreover the quantization number of W verifies:

ϵ2 · logQW (ϵ) → κ,when ϵ → 0 .

As a direct consequence of Theorem B and Theorem C we get that the new invariants we introduced

for a measure with growth given by ord all coincide:

Theorem D (Orders of the Wiener measure). For the Wiener measure on C0([0, 1],R) endowed with the
Lp-norm, for p ∈ [1,∞], verifies for W -almost every ω ∈ C0([0, 1]) :

ordlocW (ω) = ordHW = ord∗HW = ordlocW (ω) = ordPW = ord∗PW = ordBW = ordQW = ordBW = ordQW = 2 .

Proof. By Theorem 1.9, for W -almost ω and for any p ∈ [1,∞], in the Lp
-norm it holds:

ordlocW (ω) = ordlocW (ω) = 2 = ordQW = ordQW .

1
Note that for p < ∞, the constant κ does not depend on the value of p.
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Now by Theorem B since local orders of the Wiener measure are almost constant everywhere, it holds:

ordHW = ordlocW (ω) = ord∗HW and ordPW = ordlocW (ω) = ord∗PW .

Finally since by Theorem C, it holds:

ess inf ordlocW ≤ ordBW ≤ ordBW ≤ ordQW ,

the sought result comes by combining the three above lines of equalities and inequalities.

1.3.2 Functional spaces endowed with the C0-norm

Let d be a positive integer. For any integer k ≥ 0 and for any α ∈ [0, 1] denote:

Fd,k,α :=
{
f ∈ Ck([0, 1]d, [−1, 1]) : ∥f∥Ck ≤ 1, and if α > 0, the map Dkf is α-Hölder with constant 1

}
.

We endow this space with the C0
norm. See Section 4.2 for the definition of the Ck

-norms.Kolmogorov-

Tikhomirov gave the following asymptotics:

Theorem 1.10 (Kolmogorov-Tikhomirov, [KT93][Thm XV]). Let d be a positive integer. For any integer k
and for any α ∈ [0, 1], there exist two constants C1 > C2 > 0 such that the covering numberNϵ(Fd,k,α) of
the space (Fd,k,α, ∥ · ∥∞) verifies:

C1 · ϵ−
d

k+α ≥ logNϵ(Fd,k,α) ≥ C2 · ϵ−
d

k+α .

In Section 4.2 by embedding a group whose Hausdorff order is bounded from below into Fk,d,α
(see

Section 4.2), via an expanding map, we will prove:

Lemma 1.11. Let d be a positive integer. For any integer k and for any α ∈ [0, 1], it holds:

ordHFd,k,α ≥ d

k + α
.

The above lemma togetherwith TheoremAgives the following extension of Kolmogorov-Tikhomirov’s

Theorem:

Theorem E. Let d be a positive integer. For any integer k and for any α ∈ [0, 1], it holds:

ordHFd,k,α = ordPFd,k,α = ordBFd,k,α = ordBFd,k,α =
d

k + α
.

Proof of Theorem E. First, by Theorem A, it holds:

ordHFd,k,α ≤ ordBFd,k,α ≤ ordBFd,k,α
and ordHFd,k,α ≤ ordPFd,k,α ≤ ordBFd,k,α .

From there by Theorem 1.10 and Lemma 1.11, it holds:

d

k + α
≤ ordHFd,k,α ≤ ordBFd,k,α ≤ ordBFd,k,α =

d

k + α
,

and

d

k + α
≤ ordHFd,k,α ≤ ordPFd,k,α ≤ ordBFd,k,α =

d

k + α
.

From there, all of the above inequalities are indeed equalities, which gives the sought result.
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1.3.3 Local and global emergence

The framework of scalesmoreover allow to answer to a problem set by Berger in [Ber20] onwild dynamical

systems. We now consider a compact metric space (X, d) and a measurable map f : X → X . We denote

M the set of probability Borel measures on X and Mf the subset of M of f -invariant measures. The

space M is endowed with the Wasserstein distanceW1 defined by:

W1(ν1, ν2) = sup
ϕ∈Lip1(X)

∫
ϕd(ν1 − ν2) ,

inducing the weak ∗- topology for which M is compact. A way to measure the wildness of a dynamical

system is to measure how far from being ergodic an invariant measure µ is. Then by Birkhoff’s theorem

given a measure µ ∈ Mf , for µ-almost every x ∈ X the following measure is well defined:

e(x) := lim
n→∞

1

n

n−1∑
k=0

δfk(x) ,

and moreover the limit measure is ergodic. The definition of emergence, introduced by Berger, describes

the size of the set of ergodic measures reachable by limits of empirical measures given an f -invariant

probability measure on X .

Definition 1.12 (Emergence, [Ber17, BB21]). The emergence of a measure µ ∈ Mf at ϵ > 0 is defined by:

Eµ(ϵ) = min{N ∈ N : ∃ν1, . . . , νN ∈ Mf ,

∫
X

W1(ef (x), {νi}1≤i≤N )dµ(x) ≤ ϵ} .

The case of high emergence corresponds to dynamics where the considered measure is not ergodic

at all. The following result shows us that the order is an adapted scaling in the study of the ergodic

decomposition.

Theorem 1.13 ( [BGV07, Klo15, BB21] ). Let (X, d) be a metric compact space of finite then:

dimBX ≤ ordB(M) ≤ ordB(M) ≤ dimBX .

For a given measure µ ∈ Mf we define its emergence order by:

ordEµ := lim sup
ϵ→0

log log Eµ(ϵ)
− log ϵ

= inf
{
α > 0 : Eµ(ϵ) · exp(−ϵ−α) −−−→

ϵ→0
0
}

.

We denote µef := ef ⋆ µ the ergodic decomposition of µ; it is the probability measure onMf equal to

the push forward by e of µ. A local analogous local quantity to the emergence order is the local order of

the ergodic decomposition of µ, for ν ∈ Mf it is defined by:

ordE loc
µ (ν) := lim sup

ϵ→0

log− log(µef (B(ν, ϵ))

− log ϵ
.

Berger asked if the the following comparison between asymptotic behaviour of the mass of the balls of

the ergodic decomposition of µ and the asymptotic behaviour of its quantization holds.
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Problem 1.14 (Berger, [Ber20, Pbm 4.22] ). Let (X, d) be a compact metric space, f : X → X a measurable
map and µ a Borel f -invariant measure on X . Does the following holds ?∫

M{

ordE loc
µ dµef ≤ ordEµ .

We propose here a stronger result that answer to latter problem as a direct application of Theorem C:

Proposition 1.15. Let (X, d) be a compact metric space, f : X → X a measurable map and µ a Borel
f -invariant measure on X . For µef -almost every ν ∈ M, it holds:

ordE loc
µ (ν) ≤ ordEµ .

Proof. Note that ordE loc
µ = ordlocµef and ordEµ = ordQµef . Now by Theorem C, it holds µef -almost

surely that ordlocµef ≤ ordQµef which is the sought result.

2 Metric scales

2.1 Scalings

We first recall that a scaling is a family scl = (sclα)α≥0 of positive non-decreasing functions on (0, 1) is

a scaling when for any α > β > 0 and any λ > 1 close enough to 1, it holds:

(∗) sclα(ϵ) = o
(
sclβ(ϵ

λ)
)

and sclα(ϵ) = o
(
sclβ(ϵ)

λ
)

when ϵ → 0 .

An immediate consequence of the latter definition is the following:

Fact 2.1. Let scl be a scaling then for any α > β > 0 and for any constant C > 0 it holds for ϵ > 0 small
enough:

sclα(ϵ) ≤ sclβ(C · ϵ) .

A consequence of the latter fact is the following which compares scales of metric spaces and measures:

Lemma 2.2. Let f, g : R∗
+ → R∗

+ be two functions defined such that f ≤ g near 0, thus for any constant
C > 0:

inf
{
α > 0 : f(C · ϵ) · sclα(ϵ) −−−→

ϵ→0
0
}
≤ inf

{
α > 0 : g(ϵ) · sclα(ϵ) −−−→

ϵ→0
0
}

and

sup
{
α > 0 : f(C · ϵ) · sclα(ϵ) −−−→

ϵ→0
+∞

}
≤ sup

{
α > 0 : g(ϵ) · sclα(ϵ) −−−→

ϵ→0
+∞

}
.

Proof. It suffices to observe that, by Fact 2.1, for any α > β > 0, and ϵ > 0 small, it holds:

f(ϵ) · sclα(ϵ) ≤ g(ϵ) · sclβ(C−1 · ϵ) = g(C · ϵ̃) · sclβ(ϵ̃) ,

with ϵ̃ = C · ϵ.

Lemma 2.3 gives a sequential characterization of scales.
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Lemma 2.3 (Sequential characterization of scales). Let scl be a scaling and f : R∗
+ → R∗

+ a non increasing
function. Let (rn)n≥1 be a positive sequence decreasing to 0 such that log rn+1 ∼ log rn when n → +∞,
then it holds:

inf
{
α > 0 : f(ϵ) · sclα(ϵ) −−−→

ϵ→0
0
}
= inf

{
α > 0 : f(rn) · sclα(rn) −−−−−→

n→+∞
0

}
and

sup
{
α > 0 : f(ϵ) · sclα(ϵ) −−−→

ϵ→0
+∞

}
= sup

{
α > 0 : f(rn) · sclα(rn) −−−−−→

n→+∞
+∞

}
.

Proof. Consider α > 0 and ϵ > 0. If ϵ is small enough, there exists an integer n > 0 that verifies

rn+1 < ϵ ≤ rn, thus, since f is not increasing and sclα is increasing, it holds:

f(rn) · sclα(rn+1) ≤ f(ϵ) · sclα(ϵ) ≤ f(rn+1) · sclα(rn) .

Consider now β, γ such that 0 < β < α < γ, thus for λ close to 1 and ϵ is small enough, one has by

Definition 1.2 of scaling that:

sclγ(rn) ≤ sclα(r
λ
n) and sclα(rn) ≤ sclβ(r

λ
n) .

Observe now that rn+1 = r
log rn+1
log rn

n , and since log rn+1 ∼ log rn. For n great enough, it holds then:

rλn ≤ rn+1 .

Since the functions of the scaling are increasing, it follows:

sclγ(rn) ≤ sclα(rn+1) and sclα(rn) ≤ sclβ(rn+1) .

We can now deduce from the latter and the first line of inequalities that:

f(rn) · sclγ(rn) ≤ f(ϵ) · sclα(ϵ) and f(ϵ) · sclα(ϵ) ≤ f(rn+1) · sclβ(rn+1) .

Since γ and β can be chosen arbitrarily close to α, we deduce the sought result.

The following Proposition 2.4 providesmany scalings and shows in particular that the families brought

in Example 1.1 are indeed scalings.

Proposition 2.4. For any integers p, q ≥ 1, the family sclp,q = (sclp,qα )α>0 defined for any α > 0 by:

sclp,qα : ϵ ∈ (0, 1) 7→ 1

exp◦p(α · log◦q+ (ϵ−1))

is a scaling; where log+ : t ∈ R 7→ log(t) · 11t>1 is the positive part of the logarithm.

We prove this proposition below. Now note in particular that scl1,1 = dim = (ϵ ∈ (0, 1) 7→ ϵα)α>0

and scl2,1 = ord = (ϵ ∈ (0, 1) 7→ exp(−ϵ−α))α>0 are both scalings. Let us give an example of space
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which have finite box scales for the scaling scl2,2 as defined in Proposition 2.4. Consider the space A of

holomorphic functions on the disk D(R) ⊂ C of radius R > 1 which are uniformly bounded by 1:

A =

ϕ =
∑
n≥0

anz
n ∈ Cω(D(R),C) : sup

D(R)

|ϕ| ≤ 1

 endowed with the norm∥ϕ∥∞ := sup
z∈D(1)

|ϕ(z)| .

The following implies:

scl2,2B A = scl
2,2

B A = 2 .

Theorem 2.5 (Kolmogorov, Tikhomirov [KT93][Equality 129] ). The following estimation on the covering
number of (A, ∥ · ∥∞) holds:

logNϵ(A) = (logR)−1 · | log ϵ|2 +O(log ϵ−1 · log log ϵ−1), when ϵ tends to 0. .

Let us now prove Proposition 2.4:

Proof of Proposition 2.4. First it is clear that sclp,q is a family of non-decreasing functions. Moreover the

family is non-increasing. We prove the following below:

Lemma 2.6. For any γ > 0 and ν > 1 close to 1, it holds for ϵ > 0 small:

sclp,qν·γ(ϵ) ≤ sclp,qγ (ϵν) and sclp,qν·γ(ϵ) ≤ sclp,qγ (ϵ)ν ,

when ϵ → 0.

Let us show how this lemma implies condition (∗) in Definition 1.2 of scaling and thus the result of

the proposition. For α > β > 0, consider λ > 1 such that α > λ2 · β, since the family is non-increasing,

it holds:

sclp,qα ≤ sclp,qλ2·β .

Now by the above lemma, it holds for ϵ > 0 small:

sclp,qλ2·β(ϵ) ≤ sclp,qλ·β(ϵ
λ) ≤

(
sclp,qβ (ϵλ)

)λ
and sclp,qλ2·β(ϵ) ≤

(
sclp,qβ (ϵ)

)λ2

.

Thus it comes:

sclp,qα (ϵ)

sclp,qβ (ϵλ)
≤
(
sclp,qβ (ϵλ)

)λ−1

−−−→
ϵ→0

0 and

sclp,qα (ϵ)

sclp,qβ (ϵ)λ
≤
(
sclp,qβ (ϵ)

)λ(λ−1)

−−−→
ϵ→0

0 ;

which allows to conclude the proof of the proposition. It remains to show the above lemma. The following

can be proved recursively on d ≥ 1:

Fact 2.7. For any ν > 1, for any d ≥ 1 and for y > 0 great enough, it holds:

log◦d(yν) ≤ ν · log◦d(y) .

12



Using Fact 2.7 with d = q and y = ϵ−1
for ϵ > 0 small gives:

γ · log◦q(ϵ−ν) ≤ λ · γ · log◦q(ϵ−1) .

Since t 7→ exp◦p(t)−1
is decreasing, it comes:

sclp,qν·γ(ϵ) ≤ sclp,qγ (ϵν) ,

which gives the first inequality in the lemma.

Moreover by Fact 2.7 with d = p and y great enough, it holds:

log◦p(yν) ≤ ν · log◦p(y) .

Applying exp◦p to both sides gives:

yν ≤ exp◦p(ν · log◦p(y)) .

Now with y−1 = sclγ(ϵ), we have:

exp◦p(ν · log◦p(y)) = (sclν·γ(ϵ))
−1

.

From there we obtain:

sclν·γ(ϵ) ≤ sclγ(ϵ)
ν ,

which is the remaining inequality in the lemma.

2.2 Box scales

As we introduced in Definition 1.5, lower and upper box scales of a metric space (X, d) are defined by:

sclBX = sup
{
α > 0 : Nϵ(X) · sclα(ϵ) −−−→

ϵ→0
+∞

}
and sclBX = inf

{
α > 0 : Nϵ(X) · sclα(ϵ) −−−→

ϵ→0
0
}

,

where the covering number Nϵ(X) is the minimal cardinality of a covering of X by balls with radius

ϵ > 0.

In general, the upper and lower box scales must not coincide, we give new examples for order in

Example 4.6. Now we give a few properties of box scales that are well known in the specific case of

dimension.

Fact 2.8. Let (X, d) be a metric space. The following properties hold true:

1. if sclB(X) < +∞, then (X, d) is totally bounded,

2. for any subset E ⊂ X it holds sclBE ≤ sclBX and sclBE ≤ sclBX ,

3. for any subset E of X it holds sclBE = sclBcl(E) and sclBE = sclBcl(E).

1. and 2. are straightforward. To see 3. it is enough to observe that Nϵ(E) ≤ Nϵ(cl(E)) ≤ Nϵ/2(E)

for any ϵ > 0.

Box scales are sometimes easier to compare with other scales using packing number:
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Definition 2.9 (Packing number). For ϵ > 0 let Ñϵ(X) be the packing number of the metric space (X, d).
It is the maximum cardinality of an ϵ-separated set of points in X for the distance d:

Ñϵ(X) = sup{N ≥ 0 : ∃x1, . . . xN ∈ X, d(xi, xj) ≥ ϵ for any 1 ≤ i < j ≤ N } .

A well know comparison between packing and covering number is the following:

Lemma 2.10. Let (X, d) be a metric space. For any ϵ > 0, it holds:

Ñ2ϵ(X) ≤ Nϵ(X) ≤ Ñϵ(X) .

A direct application of this lemma is that we can replace the covering number by the packing number

in the definitions of box scales without changing their values:

Lemma 2.11. Let (X, d) be a metric space and scl a scaling, then box scales of X can be written as:

sclBX = sup
{
α > 0 : Ñϵ(X) · sclα(ϵ) −−−→

ϵ→0
+∞

}
and sclBX = inf

{
α > 0 : Ñϵ(X) · sclα(ϵ) −−−→

ϵ→0
0
}

.

Proof. Since for any ϵ > 0 it holds by Lemma 2.10:

Ñ2ϵ(X) ≤ Nϵ(X) ≤ Ñϵ(X) ,

we obtain the sought result by Lemma 2.2.

Remark 2.12. Another property for the scaling sclp,q from Proposition 2.4, with p, q ≥ 1, is that the upper
and lower box scales for a metric space (X, d) can be written as:

sclp,qB (X) = lim inf
ϵ→0

log◦p(Nϵ(X))

log◦q(ϵ−1)

and

scl
p,q

B (X) = lim sup
ϵ→0

log◦p(Nϵ(X))

log◦q(ϵ−1)
.

In particular, for dimension and order:

dimB(X) = lim inf
ϵ→0

log(Nϵ(X))

log(ϵ−1)
, dimB(X) = lim sup

ϵ→0

log(Nϵ(X))

log(ϵ−1)
.

and
ordB(X) = lim inf

ϵ→0

log log(Nϵ(X))

log(ϵ−1)
, ordB(X) = lim sup

ϵ→0

log log(Nϵ(X))

log(ϵ−1)
.

The above equalities coincide with the usual definitions of box dimensions and orders.

2.3 Hausdorff scales

The definition of Hausdorff scales, generalizing Hausdorff dimension, is introduced here using the defi-

nition of Hausdorff outer measure as given by Tricot in [Tri82]. We still consider a metric space (X, d).

Given an increasing function ϕ ∈ C(R∗
+,R∗

+), such that ϕ(ϵ) → 0 when ϵ → 0, we define:

Hϕ
ϵ (X) := inf

Jcountable

∑
j∈J

ϕ(|Bj |) : X =
⋃
j∈J

Bj , ∀j ∈ J : |Bj | ≤ ϵ

 ,

14



where |B| is the radius of a ball B ⊂ X . A countable family (Bj)j∈J of balls with radius at most ϵ > 0

such that X =
⋃

j∈J Bj will be called an ϵ-cover of X .
2
Since the set of ϵ-cover is not decreasing for

inclusion when ϵ decreases to 0, the following limit exists:

Hϕ(X) := lim
ϵ→0

Hϕ
ϵ (X) .

Now replacing (X, d) in the previous definitions by any subset E ofX endowed with the same metric d,

we observe that Hϕ
defines an outer-measure on X . We now introduce the following:

Definition 2.13 ( Hausdorff scale). The Hausdorff scale of a metric space (X, d) is defined by:

sclHX = sup
{
α > 0 : Hsclα(X) = +∞

}
= inf

{
α > 0 : Hsclα(X) = 0

}
.

Note that the above definition gives us two quantities on the right hand side that are a priori not equal.

However, the mild assumptions in the definition of scaling allow to verify that they indeed coincide.

Proof of the equality in Definition 2.13. It is clear from definition that α 7→ Hsclα(X) is non-increasing. It

is then enough to check that if there exists α > 0 such that 0 < Hsclα(X) < +∞ then, for any positive

δ < α , it holds:

Hsclα+δ(X) = 0 and Hsclα−δ(X) = +∞ .

Let us fix η > 0, by Definition 1.2 , for ϵ > 0 small it holds:

sclα+δ(ϵ) ≤ η · sclα(ϵ) and sclα(ϵ) ≤ η · sclα−δ(ϵ) .

Thus by the definition of Hausdorff measure, since ϵ is small, it holds:

0 <
1

2
Hsclα(X) ≤ Hsclα

ϵ (X) ≤ Hsclα(X) < +∞ .

Given (Bj)j∈J an ϵ-cover of X , the following holds:

1

2
Hsclα(X) ≤ Hsclα

ϵ (X) ≤
∑
j∈J

sclα(|Bj |) ,

and then:

1

2η
Hsclα(X) ≤ 1

η

∑
j∈J

sclα(|Bj |) ≤
∑
j∈J

sclα−δ(|Bj |) .

Since this holds for any ϵ-cover, the latter inequality leads to:

1

2η
Hsclα(X) ≤ Hsclα−δ

ϵ (X) ,

and so:

1

2η
Hsclα(X) ≤ Hsclα−δ(X) .

2
Note that the historical construction of the Hausdorff measures uses subsets of X with diameter at most ϵ instead of the balls

with radius at most ϵ. However both these constructions lead to the same definitions of Hausdorff scales.
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On the other side, there exists an ϵ-cover (Bj)j∈J of E such that:∑
j∈J

sclα(|Bj |) ≤ 2Hsclα
ϵ (X) .

Now since Hsclα
ϵ (X) ≤ Hsclα(X), this leads to:∑

j∈J

sclα+δ(|Bj |) ≤ η ·
∑
j

sclα(|Bj |) ≤ 2η · Hsclα(X) .

From there:

Hsclα+δ
ϵ (X) ≤ 2η · Hsclα(X) ,

and this holds for any small ϵ. We have just shown:

1

2η
Hsclα(X) ≤ Hsclα−δ(X) and Hsclα+δ

ϵ (X) ≤ 2η · Hsclα(X) .

Since η can be arbitrarily close to 0, it follows that Hsclα−δ(X) = +∞ and Hsclα+δ(X) = 0, which

concludes the proof.

As box scales, Hausdorff scales are increasing for inclusion. We show a stronger property of Hausdorff

scales in Lemma 2.20.

2.4 Packing scales

2.4.1 Packing scales through modified box scales

The original construction of packing dimension relies on the packing measure introduced by Tricot in

[Tri82]. We first define packing scales by modifying upper box scales and we show then later how it is

related to packing measures.

Definition 2.14 (Packing scale). Let (X, d) be a metric space and scl a scaling. The packing scale of X is
defined by:

sclPX = inf

sup
n≥1

sclBEn : (En)n≥1 ⊂ XN s.t.
⋃
n≥1

En = X

 .

The following comes directly from definition of packing scale:

Proposition 2.15. Let (X, d) be a metric space and scl a scaling. It holds:

sclPX ≤ sclBX .

2.4.2 Packing measures

In this paragraph we show the relationship between packing measures and packing scales. Let us first

recall a few definitions.
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Given ϵ > 0, an ϵ-pack of a metric space (X, d) is a countable collection of disjoint balls of X with

radii at most ϵ. As for Hausdorff outer measure, consider ϕ : R∗
+ → R∗

+ an increasing function such that

ϕ(ϵ) → 0 when ϵ → 0. For ϵ > 0, put:

Pϕ
ϵ (X) := sup

{∑
i∈I

ϕ(|Bi|) : (Bi)i∈I is an ϵ-pack of X

}
.

Since Pϕ
ϵ (X) is non-increasing when ϵ decreases to 0, the following quantity is well defined:

Pϕ
0 (X) := lim

ϵ→0
Pϕ
ϵ (X).

The idea of Tricot is to build an outer measure from this quantity:

Definition 2.16 (Packing measure). For any subset E of X endowed with the same metric d, the packing
ϕ-measure of E is defined by:

Pϕ(E) = inf

∑
n≥1

Pϕ
0 (En) : E =

⋃
n≥1

En

 .

Note thatPϕ
is an outer-measure onX and can eventually be infinite or null. The following shows the

equivalence of Tricot’s counterpart definition of the packing scale; this will be useful to show the equality

between upper local scale and packing scale of a measure given by Theorem C eq. (c&g).

Proposition 2.17. The packing scale of a metric space (X, d) verifies:

sup
{
α > 0 : Psclα(X) = +∞

}
= sclPX = inf

{
α > 0 : Psclα(X) = 0

}
.

Proof. Let (En)n≥1 be a family of subsets of X . Using that each map α 7→ Psclα
0 (En) is not increasing,

we prove:

(2.1) inf

α > 0 :
∑
n≥1

Psclα
0 (En) = 0

 = sup
n≥1

inf
{
α > 0 : Psclα

0 (En) = 0
}

.

We show below the following:

Lemma 2.18. Given α > 0, if Psclα
0 (E) is a finite and positive number then for any δ ∈ (0, α), it holds:

Psclα+δ

0 (E) = 0 and Psclα−δ

0 (E) = +∞ .

The right hand side equality of the latter lemma implies:

(2.2) sup

α > 0 :
∑
n≥1

Psclα
0 (En) = +∞

 = sup
n≥1

sup
{
α > 0 : Psclα

0 (En) = +∞
}

.

We now compare the right hand term using the following shown below:

Lemma 2.19. For any E ⊂ X , it holds:

sup
{
α > 0 : Psclα

0 (E) = +∞
}
= sclBE = inf

{
α > 0 : Psclα

0 (E) = 0
}

.
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Consequently by Eqs. (2.1) and (2.2) and Lemmas 2.18 and 2.19:

sup

α > 0 :
∑
n≥1

Psclα
0 (En) = +∞

 = sup
n≥1

sclBEn = inf

α > 0 :
∑
n≥1

Psclα
0 (En) = 0

 .

Taking the infimum over families (En)n≥1 which covers X we obtain the sought result.

Proof of Lemma 2.18. Given η > 0, by Definition 1.2 of scaling, for ϵ > 0 small enough, it holds:

sclα+δ(ϵ) ≤ η · sclα(ϵ) and sclα(ϵ) ≤ η · sclα−δ(ϵ) .

Moreover there exists (Bj)j≥1 an ϵ-pack of E such that:

1

2
Psclα
ϵ (E) ≤

∑
j≥1

sclα(|Bj |) .

Combining the two inequalities above leads to:

1

2
Psclα
ϵ (E) ≤ η−1 ·

∑
j≥1

sclα−δ(|Bj |) ≤ Psclα−δ
ϵ (E) .

Taking the limit when ϵ tends to 0 gives
1
2P

sclα
0 (E) ≤ Psclα−δ

0 (E). On the other side consider (Bj)j≥1

an ϵ-pack of E. It holds: ∑
j≥1

sclα(|Bj |) ≤ Psclα
ϵ (E) ≤ Psclα

0 (E) ,

moreover it holds:

η ·
∑
j≥1

sclα+δ(|Bj |) ≤
∑
j≥1

sclα(|Bj |) .

Since this holds true for any ϵ-cover and ϵ > 0 arbitrary small, it follows:

Psclα+δ

0 (E) ≤ η · Psclα
0 (E) .

By taking η arbitrarily small, it comes Psclα−δ(E) = +∞ and Psclα+δ(E) = 0.

Proof of Lemma 2.19. By Lemma 2.18, it suffices to show that:

(2.3) sup
{
α > 0 : Psclα

0 (E) = +∞
}
≤ sclBE ≤ inf

{
α > 0 : Psclα

0 (E) = 0
}

,

Consider α > 0 such that Psclα
0 (E) = 0. Then for ϵ > 0 sufficiently small it holds Psclα

ϵ (E) ≤ 1. In

particular the packing number (see def. 2.9) satisfies Ñϵ(E) · sclα(ϵ) < 1. Taking the limit when ϵ tends

to 0 leads to sclBE ≤ α by Lemma 2.11. This proves the right hand side of Eq. (2.3).

To show the left hand side inequality, it suffices to show that sclBE is at least any α such that

Psclα
0 (E) = +∞. For such an α, given ϵ > 0, there exists an ϵ-pack (Bj)j≥1 such that:∑

j≥1

sclα(|Bj |) > 1 .
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For k ≥ 1 an integer, put:

nk := Card
{
j ≥ 1 : 2−(k+1) ≤ scl−1

α (|Bj |) < 2−k
}

.

Thus, since sclα is not decreasing, it holds:∑
k≥1

nk · 2−k > 1 .

Since Bj has radius at most δ, we have nk = 0 for any k < − log2 sclα(δ). Then for δ > 0 small, there

exists an integer j ≥ 2 such that nj > j−22j . In fact, otherwise we would have:∑
k≥1

nk · 2−k ≤
∑
k≥2

1

k2
< 1 ,

which contradicts the above inequality. Then E contains the centers of nj disjoint balls with radii at least

scl−1
α (2−(j+1)), in particular:

Ñscl−1
α (2−(j+1))(E) ≥ nj > j−22j ,

and moreover:

j ≥ − log2 sclα(δ) .

Since this inequality holds true for δ arbitrarily small, there exists an increasing sequence of integers

(jn)n≥1 such that:

Ñϵn(E) > j−2
n 2jn ,

with ϵn = scl−1
α (2−(jn+1)). Let us consider a positive number β < α, by Definition 1.2 of scaling, for

λ > 1 close to 1, it holds:

sclβ(ϵ) · (sclα(ϵ))−λ−1

−−−→
ϵ→0

+∞ .

On the other hand, given a such λ > 1, for n large enough, it holds:

j−2
n 2jn ≥ 2λ

−1(jn+1) ,

it follows:

Ñϵn(E) ≥
(
2−(jn+1)

)−λ−1

= (sclα(ϵn))
−λ−1

.

Thus we finally have:

sclβ(ϵn) · Ñϵn(E) > sclβ(ϵ) · (sclα(ϵ))−λ−1

−−−→
ϵ→0

+∞ .

By Lemma 2.11 we deduce sclBE ≥ α. Since this holds true for β arbitrary close to α, it follows sclBE ≥
α.

The following is similar to the proof Definition 3.1 of Hausdorff scales.
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2.5 Properties and comparison of scales of metric spaces

We first give a few basic properties of scales that would allow to compare them. Since both packing and

Hausdorff scales are defined via measures, they both are countable stable as shown in the following:

Lemma 2.20 (Countable stability). Let (X, d) be a metric space. Let I be a countable set and (Ei)i≥1 a
covering of X , then for any scaling scl:

sclHX = sup
i≥1

sclHEi and sclPX = sup
i≥1

sclPEi .

Proof. The equality on packing scales is obvious by definition with modified upper box scales. Let us

prove the equality on Hausdorff scales. By monotonicity of the Hausdorff measure, it holds sclHX ≥
supi≥1 sclHEi. For the reverse inequality, consider α > supi≥1 sclHEi, then for any i ≥ 1 it holds

Hsclα(Ei) = 0. Thus:

Hsclα(X) ≤
∑
i≥1

Hsclα(Ei) = 0 ,

and then sclHX ≤ α. Since this is true for any α > supi≥1 sclHEi, the sought result comes.

Note that countable stability is not a property of box scales. To see that, it suffices to consider a

countable dense subset of a metric space (X, d) with positive box scales.

The following lemma shows in particular that the above scales are bi-Lipschitz invariant quantities.

Lemma 2.21. Let (X, d) and (Y, d) be two metric spaces such that there exists a Lipschitz map f : (X, d) →
(Y, d). Then for any scaling scl, the scales of f(X) are at most the ones of X :

sclHf(X) ≤ sclHX; sclP f(X) ≤ sclPX; sclBf(X) ≤ sclBX; sclBf(X) ≤ sclBX .

We prove this lemma below. As a direct application, we obtain the following:

Corollary 2.22. Let (X, d) and (Y, d) be two metric spaces. Suppose there exist an embedding g : (Y, δ) →
(X, d) such that g−1 is Lipschitz on g(X). Then for any scaling scl, the scales of Y are at most the ones of
X :

sclHY ≤ sclHX; sclPY ≤ sclPY ; sclBY ≤ sclBX; sclBY ≤ sclBX .

Proof of Corollary 2.22. By Lemma 2.21 we have scl•Y ≤ scl•g(Y ) for any scl• ∈ {sclH , sclP sclB , sclB}.
As g(Y ) ⊂ X , we have also scl•g(Y ) ≤ scl•X .

Proof of Lemma 2.21. Let us fix ϵ > 0. Suppose that f is K- Lipschitz for a constant K > 0. We first

show the inequalities on box and packing scales. Consider a finite covering by a collection of balls

(B(xj , ϵ))1≤j≤N where xj ∈ X for any 1 ≤ j ≤ N and N = Nϵ(X). Since X =
⋃N

j=1 B(xj , ϵ), it

comes:

f(X) ⊂ f

 N⋃
j=1

B(xj , ϵj)

 ⊂
N⋃
j=1

B(f(xj),K · ϵj) .
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Then (B(f(xj), ϵ))1≤j≤N is a covering by K · ϵ-balls of f(X). Then NK·ϵ(f(X)) ≤ Nϵ(X) and all the

inequalities on the box and packing scales are immediately deduced. Now for Hausdorff scales, consider

a countable set J and {B(xj , ϵj) : j ∈ J} an ϵ-cover of X . Then it comes:

f(X) ⊂
⋃
j∈J

B(f(xj),K · ϵj) .

For any α > β > 0 and δ > 0 small enough, by Fact 2.1 , it holds:

sclα(δ) ≤ sclβ(K
−1 · δ) .

Hence for ϵ small, it holds:

Hsclα
K·ϵ (f(X)) ≤

∑
j∈J

sclα(K · ϵj) ≤
∑
j∈J

sclβ(ϵj) .

As β > sclHX , the ϵ-cover (B(xj , ϵj))j∈J can be chosen such that

∑
j∈J sclβ(ϵj) is arbitrary small. Thus

Hsclα
K·ϵ (f(X)) = 0, and so sclHf(X) ≤ α. As α is arbitrary close to sclHX , it holds:

sclHf(X) ≤ sclHX .

The end of this section consists of comparing the different scales introduced and prove Theorem A.

We start by comparing the Hausdorff and lower box scale. The following proposition generalizes well

known facts on dimension. See e.g. [Fal04][(3.17)].

Proposition 2.23. Let (X, d) be a metric space and scl a scaling, its Hausdorff scale is at most its lower box
scale:

sclHX ≤ sclBX .

Proof. We can assume without any loss of generality that (X, d) is totally bounded. If sclHX = 0 the

inequality obviously holds, thus consider a positive number α < sclHX . For δ > 0 small enough,

Hsclα
δ (X) > 1. Thus there exist δ -covers and for any δ-cover (Bj)1≤j≤Nδ(X), it holds:

1 <
∑

1≤j≤Nδ(F )

sclα(|Bj |) = Nδ(X) · sclα(δ) .

From there, it holds sclBX ≥ α. We conclude by taking α arbitrarily close to sclHX .

We have compared Hausdorff and packing scales with their corresponding box scales. It remains to

compare each other with the following:

Proposition 2.24. Let (X, d) be a metric space and scl a scaling. It holds:

sclHX ≤ sclPX .
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Proof. By Lemma 2.20, it holds:

sclHX = inf⋃
n≥1 En=X

sup
n≥1

sclHEn ,

where the infimum is taken over countable coverings of X . Moreover by Proposition 2.23, we have:

sclHE ≤ sclBE ≤ sclBE ,

for any subset E of X . It follows then:

sclHX ≤ inf⋃
n≥1 En=X

sup
n≥1

sclBEn = sclPX .

To conclude this section we now shall prove Theorem A:

Proof of Theorem A. Let (X, d) be a metric space and scl a scaling. By Proposition 2.23, Proposition 2.24

and Proposition 2.15, it holds respectively:

sclHX ≤ sclBX, sclHX ≤ sclPX and sclHX ≤ sclBX .

Now since sclBX ≤ sclBX obviously holds, we deduce the sought result:

sclHX ≤ sclPX ≤ sclBX and sclHX ≤ sclBX ≤ sclBX .

3 Scales of measures

In this section we recall the different versions of scales of measures we introduced and show the inequal-

ities and equalities comparing them. In particular we provide proofs of Theorem B and Theorem C. They

generalize known facts of dimension theory to any scaling and moreover bring new comparisons (see

Theorem 3.10) between quantization and box scales that were not shown yet for even for the case of

dimension.

3.1 Hausdorff, packing and local scales of measures

Let us recall the definition of local scales. Let µ be a Borel measure on a metric space (X, d) and scl a

scaling. The lower and upper scales of µ are the functions that map a point x ∈ X to:

scllocµ(x) = sup

{
α > 0 :

µ (B(x, ϵ))

sclα(ϵ)
−−−→
ϵ→0

0

}
and scllocµ(x) = inf

{
α > 0 :

µ (B(x, ϵ))

sclα(ϵ)
−−−→
ϵ→0

+∞
}

.

We shall compare local scales with the followings:
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Definition 3.1 (Hausdorff scales of a measure). Let scl be a scaling and µ a non-null Borel measure on a
metric space (X, d). We define Hausdorff and ∗-Hausdorff scales of the measure µ by:

sclHµ = inf
E∈B

{sclHE : µ(E) > 0} and scl∗Hµ = inf
E∈B

{sclHE : µ(X\E) = 0} ,

where B is the set of Borel subsets of X .

Definition 3.2 (Packing scales of a measure). Let scl be a scaling and µ a non-null Borel measure on a
metric space (X, d). We define packing and ∗-packing scales of µ by:

sclPµ = inf
E∈B

{sclPE : µ(E) > 0} and scl∗Pµ = inf
E∈B

{sclPE : µ(X\E) = 0} .

Remark 3.3. In order to avoid excluding the null measure 0, we set sclH0 = scl∗H0 = sclP 0 = scl∗P 0 = 0.

The lemma below will allows to compare local scales with the other scales of measures.

Lemma 3.4. Let µ be a Borel measure on X . Then for any Borel subset F of X such that µ(F ) > 0, the
restriction σ of µ to F verifies:

ess inf scllocµ ≤ ess inf scllocσ and ess inf scllocµ ≤ ess inf scllocσ.

Moreover, if there exists α > 0 such that F ⊂
{
x ∈ X : scllocµ(x) > α

}
, it holds then:

ess inf scllocσ ≥ α ,

and similarly if F ⊂ {x ∈ X : scllocµ(x) > α}, it holds:

ess inf scllocσ ≥ α .

Proof. Consider a point x ∈ X , then for any ϵ > 0, one has σ(B(x, ϵ)) ≤ µ(B(x, ϵ)), thus by definition

of local scales:

scllocµ ≤ scllocσ and scllocµ ≤ scllocσ .

Now if there exists α > 0 such that F ⊂
{
x ∈ X : scllocµ(x) > α

}
, as scllocµ(x) ≥ α for µ-almost every

x in F , it comes by the above inequality that scllocσ(x) ≥ α for µ-almost every x in F , and thus for

σ-almost every x ∈ X . It follows ess inf scllocσ ≥ α. And the same holds for lower local scales.

The following is a first step in the proof of Theorem B. We prove this lemma later. We first use it to

prove Theorem C.

Lemma 3.5. Let (X, d) be a metric space and µ a Borel measure on X . Let scl be a scaling. The lower and
upper local scales of µ are respectively not greater than the Hausdorff and packing scales of the space X :

ess sup scllocµ ≤ sclHX and ess sup scllocµ ≤ sclPX .

Remark 3.6. Note that in the above we can replace X by any subset of X with total mass, this leads to:

ess sup scllocµ ≤ scl∗Hµ and ess sup scllocµ ≤ sclPµ
∗ .
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3.2 Quantization and box scales of measures

Let us first recall the definition of quantization scales. Let (X, d) be a metric space and µ a Borel measure

on X . The quantization number Qµ of µ is the function that maps ϵ > 0 to the minimal cardinality of a

set of points that is on average ϵ-close to any point in X :

Qµ(ϵ) = inf

{
N ≥ 0 : ∃ {ci}i=1,...,N ⊂ X,

∫
X

d(x, {ci}1≤i≤N )dµ(x) ≤ ϵ

}
.

Then lower and upper quantization scales of µ for a given scaling scl are defined by:

sclQµ = sup
{
α > 0 : Qµ(ϵ) · sclα(ϵ) −−−→

ϵ→0
+∞

}
and sclQµ = inf

{
α > 0 : Qµ(ϵ) · sclα(ϵ) −−−→

ϵ→0
0
}

.

Quantization scales of a measure are compared in Theorem C with box scales:

Definition 3.7 (Box scales of a measure). Let scl be a scaling and µ a positive Borel measure on a metric
space (X, d). We define the lower box scale and the ∗-lower box scale of µ by:

sclBµ = inf
E∈B

{sclBE : µ(E) > 0} and scl∗Bµ = inf
E∈B

{sclBE : µ(X\E) = 0} .

Similarly, we define the upper box scale and the ∗-upper box scale of µ by:

sclBµ = inf
E∈B

{
sclBE : µ(E) > 0

}
and scl

∗
Bµ = inf

E∈B

{
sclBE : µ(X\E) = 0

}
,

where B is the set of Borel subsets of X .

As for Hausdorff scales of measures we chose that all box scales of the null measure are equal to 0 as

a convention. The following is straightforward:

Lemma 3.8. Let (X, d) be a metric space and µ a Borel measure on X . Given scl a scaling, it holds:

sclQµ ≤ scl∗Bµ and sclQµ ≤ scl
∗
Bµ .

Proof. We can assume without loss of generality that scl
∗
Bµ and scl∗Bµ are finite. Let E be a Borel set with

total mass such that sclBE is finite, then E is totally bounded. Now for ϵ > 0, consider a covering by

ϵ-balls centered at some points x1, ..., xN in E. Since µ(X\E) = 0, it comes:∫
X

d(x, {xi}1≤i≤N )dµ(x) =

∫
E

d(x, {xi}1≤i≤N )dµ(x) ≤ ϵ .

Thus Qµ(ϵ) ≤ Nϵ(E), and by Lemma 2.2:

sclQµ ≤ sclBE and sclQµ ≤ sclBE .

Since this holds true for any Borel set E with total mass, the sought results comes.

The following lemma will allow to compare quantization scales with box scales.
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Lemma 3.9. Let µ be a Borel measure on (X, d) such that Qµ(ϵ) < +∞ for any ϵ > 0. Let us fix ϵ > 0

and an integer N ≥ Qµ(ϵ). Thus consider x1, . . . , xN ∈ X such that:∫
X

d(x, {xi}1≤i≤N )dµ(x) ≤ ϵ .

For any r > 0, with Er :=
⋃N

i=1 B(xi, r), it holds:

µ(X\Er) ≤
ϵ

r
.

Proof. Since X\Er , the complement of Er in X is the set of points with distance at most r from the set

{x1, . . . , xn}, it holds:

r · µ(X\Er) ≤
∫
X\Er

d(x, {xi}1≤i≤N )dµ(x) ≤ ϵ ,

which gives the sought result by dividing both sides by r.

The following result exhibits the relationship between quantization scales and box scales. As far as we

know, this result has not yet have been proved even for the specific case of dimension. It is a key element

in the answer to Problem 1.14.

Theorem 3.10. Let µ be a non null Borel measure on a metric space (X, d). For any scaling scl, there exists
a Borel set F with positive mass such that:

sclBF ≤ sclQµ and sclBF ≤ sclQµ .

In particular, it holds:
sclBµ ≤ sclQµ and sclBµ ≤ sclQµ .

Proof. If Qµ(ϵ) is not finite for any ϵ > 0, then F = X satisfies the sought properties. Let us suppose

now that the quantization number of µ is finite. Given an integer n ≥ 0, we set ϵn := exp(−n) and

rn := n2 · exp(−n) = n2 · ϵn. We also consider a finite set of points Cn ⊂ X that contains exactly

Qµ(ϵn) points and such that: ∫
X

d(x,Cn)dµ(x) ≤ ϵn .

We can then consider the following set:

En :=
⋃

c∈Cn

B(c, rn) ,

then by Lemma 3.9, it holds:

µ(X\En) ≤
ϵn
rn

=
1

n2
.

Thus, it holds: ∑
n≥0

µ(X\En) < +∞ .
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By Borell-Cantelli lemma, we obtain:

µ

 ⋃
m≥0

⋂
n≥m

En

 = µ(X) > 0 .

Thus there exists an integer m ≥ 0 such that µ
(⋂

n≥m En

)
> 0. We fix such an integer m and set

F :=
⋂

n≥m En. It remains to check that sclBF ≤ sclQµ and sclBF ≤ sclQµ. By definition, one has

F ⊂ En for any n ≥ m. Then since F ⊂ En =
⋃

c∈Cn
B(c, rn), it holds:

Nrn(F ) ≤ CardCn = Qµ(ϵn)

Since this holds true for any n greater than m, and since log rn ∼ log ϵn = −n, we finally have by

Lemmas 2.2 and 2.3 that:

sclBF ≤ sclQµ and sclBF ≤ sclQµ .

3.3 Comparison between local and global scales ofmeasures and proof of The-
orem C

By the latter theorem, to finish the proof of Theorem C, it remains only to show:

Theorem 3.11. Let (X, d) be a separable metric space and µ a finite Borel measure on X . Let scl be a
scaling. It holds:

ess sup scllocµ ≤ sclQµ and ess sup scllocµ ≤ sclQµ .

Proof. We can suppose without any loss of generality that there exists α < ess sup scllocµ and β <

ess sup scllocµ. We now set E :=
{
x ∈ X : scllocµ(x) > α and scllocµ(x) > β

}
. By definition of

essential suprema, we have µ(E) > 0. Thus the restriction σ of µ to E is a positive measure. Thus by

Lemma 3.4 one has ess inf scllocσ ≥ α and ess inf scllocσ ≥ β. Moreover by Theorem 3.10, there is a Borel

set F ⊂ E with σ(F ) > 0 an such that:

sclBF ≤ sclQσ ≤ sclQµ and sclBF ≤ sclQσ ≤ sclQµ .

Yet by Proposition 2.23 and Proposition 2.15, it holds respectively:

sclHF ≤ sclBF and sclPF ≤ sclBF .

Now, by setting τ the restriction of µ to F , Lemma 3.4 also gives:

α ≤ ess inf scllocσ ≤ ess inf scllocτ and β ≤ ess inf scllocσ ≤ ess inf scllocτ .

By Lemma 3.5, it holds:

ess inf scllocτ ≤ sclHF and ess inf scllocτ ≤ sclPF .
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Finally, combining all the above inequalities leads to:

α ≤ ess inf scllocτ ≤ sclHF ≤ sclBF ≤ sclQµ

and

β ≤ ess inf scllocτ ≤ sclPF ≤ sclBF ≤ sclQµ .

Since this holds true for any α and β arbitrarily close to ess sup scllocµ and ess sup scllocµ we have the

sought results.

We shall now prove Theorem C.

Proof of Theorem C. By Theorem 3.10 it holds:

sclBµ ≤ sclQµ and sclBµ ≤ sclQµ .

By Theorem 3.11 and Lemma 3.8 it holds:

ess sup scllocµ ≤ sclQµ and ess sup scllocµ ≤ sclQµ .

Thus it remains only to show:

ess inf scllocµ ≤ sclBµ and ess inf scllocµ ≤ sclBµ .

Given E a subset of X with positive mass, we set σ the restriction of µ to E. By Lemma 3.4, it holds:

ess inf scllocµ ≤ ess inf scllocσ and ess inf scllocµ ≤ ess inf scllocσ .

By Theorem 3.11 it holds:

ess sup scllocσ ≤ sclQσ and ess sup scllocµ ≤ sclQσ .

Moreover by Lemma 3.8:

sclQσ ≤ sclBE and sclQσ ≤ sclBE .

Combining all of the above leads to:

ess inf scllocµ ≤ sclBE and ess inf scllocµ ≤ sclBE .

Taking the infima over such subsets E ⊂ X with positive mass leads to the sought result.

3.4 Proof of Theorem B

This subsection contains the proof of Theorem B, we recall its statement below. We use Vitali’s lemma

[Vit08] to compare local scales with Hausdorff and packing scales as did Fan or Tamashiro in their proof

for the specific case of dimension.

Lemma 3.12 (Vitali). Let (X, d) be a separable metric space. Given δ > 0, B a family of open balls inX with
radii at most δ andF the union of these balls. There exists a countable set J and a δ-pack (B(xj , rj))j∈J ⊂ B
of F such that:

F ⊂
⋃
j

B(xj , 5rj) .
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We first prove Lemma 3.5 that we used to prove Theorem C.

Proof of Lemma 3.5. First we can assume that sclHX < +∞, sclPX < +∞, and that µ is not null,

otherwise both inequalities immediately hold true. In particular, we can assume that X is separable.

Left hand side ineqality: If ess sup scllocµ = 0 the inequality is obviously true. Suppose then that

this quantity is positive and consider a positive α < ess sup scllocµ. Thus, there exists r0 > 0 such that

the set A := {x ∈ X : µ(B(x, r)) ≤ sclα(r), ∀r ∈ (0, r0)} has positive measure. Consider δ ≤ r0, thus

for any δ-cover (Bj)j∈J of A it holds:

0 < µ(A) ≤
∑
j∈J

µ(Bj) ≤
∑
j∈J

sclα(|Bj |) .

Since this holds true for an arbitrary cover, it follows:

0 < µ(A) ≤ Hsclα
δ (A) .

Taking δ arbitrarily close to 0 leads to:

0 < µ(A) < Hsclα(A) .

Finally since Hausdorff scale is non-decreasing for inclusion, it holds:

sclHX ≥ sclHA ≥ α .

Note that since this holds true for any α < ess sup scllocµ, we indeed have ess sup scllocµ ≤ sclHX .

Right hand side ineqality: Similarly , we consider without any loss of generality that there exists

0 < α < ess sup scllocµ and put:

F =
{
x ∈ X : scllocµ(x) > α

}
.

Let us fix a family of Borel subsets (FN )N≥1 of X such that F =
⋃

N≥1 FN . For 0 < β < α, by Fact 2.1,

there exists δ0 > 0 such that for any r ≤ δ0, it holds:

sclα(5r) ≤ sclβ(r) .

We fix δ ∈ (0, δ0) and an integer N ≥ 1. For any x in FN by Lemma 2.3 there exists an integer n(x),

minimal, such that r(x) := exp(−n(x)) ≤ δ and:

µ (B(x, 5r(x))) ≤ sclα(5r(x)) .

We now set:

F = {B(x, r(x)) : x ∈ FN} .

Thus by Vitali Lemma 3.12, since we assumed (X, d) separable, there exists a countable set J and a δ-pack

(B(xj , rj))j∈J ⊂ F of F such that FN ⊂
⋃

j∈J B(xj , 5rj). From there:

µ(FN ) ≤
∑
j∈J

µ(B(xj , 5rj)) ≤
∑
j∈J

sclα(5rj) ≤
∑
j∈J

sclβ(rj) .
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Since this holds true for any δ-pack, it follows:

Psclβ
δ (FN ) ≥ µ(FN ) ,

and then taking δ arbitrarily close to 0 leads to:

Psclβ
0 (FN ) ≥ µ(FN ) .

By taking the sum over N ≥ 1, it holds:∑
N≥1

Psclβ
0 (FN ) ≥

∑
N≥1

µ(FN ) ≥ µ(F ) > 0 .

Recall that (FN )N≥1 is an arbitrary covering of Borel sets of F , thus:

Psclβ (F ) ≥ µ(F ) > 0 .

It holds then sclPF ≥ β for any β < α < ess sup ess sup scllocµ which allows to conclude the proof.

We deduce then:

Proposition 3.13. Let (X, d) be a metric space and µ a Borel measure on X , then:

ess inf scllocµ ≤ sclHµ and ess inf scllocµ ≤ sclPµ ,

and
ess sup scllocµ ≤ scl∗Hµ and ess sup scllocµ ≤ scl∗Pµ .

Proof. The second line of inequalities are given by Remark 3.6. It remains to show the first line of inequal-

ities. Let E be a Borel subset ofX with µ positive mass. Thus with σ the restriction of µ to E, it holds by

Lemma 3.5:

ess sup scllocσ ≤ sclHE and ess sup scllocσ ≤ sclPE .

By Lemma 3.4, it holds:

ess inf scllocµ ≤ sclHE and ess inf scllocµ ≤ sclPE .

Taking the infima over E with positive mass ends the proof.

Explicit links between packing scales, Hausdorff scales and local scales of measures can be now estab-

lished by proving Theorem B. Let us first recall its statement: Let (X, d) be a metric space and µ a Borel

measure on X , then:

sclHµ = ess inf scllocµ ≤ sclPµ = ess inf scllocµ

and

scl∗Hµ = ess sup scllocµ ≤ scl∗Pµ = ess sup scllocµ .
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Proof of Theorem B. By Proposition 3.13 it remains only to show four inequalities.

We first prove sclHµ ≤ ess inf scllocµ. We can assume that ess inf sclloc < +∞, otherwise the result

immediately comes, and fix α > ess inf sclloc. Consider β > α, thus by definition of scaling, there exists

δ > 0 such that for any r ∈ (0, δ) one has sclβ(5r) ≤ sclα(r). Denote:

F := {x ∈ X : scllocµ(x) < α} ,

then µ(F ) > 0 and by Lemma 2.3 for any x in F there exists an integer n(x), minimal, such that r(x) :=

exp(−n(x)) ≤ δ and:

µ (B(x, r(x))) ≥ sclα(r(x)) .

Now set:

F := {B(x, r(x)) : x ∈ F} .

By Vitali Lemma 3.12, there exists a countable set J and a δ-pack {B(xj , rj)}j∈J ⊂ F of F such that

F ⊂
⋃

j∈J B(xj , 5rj). Then, it holds:∑
j∈J

sclβ(5rj) ≤
∑
j∈J

sclα(rj) ≤
∑
j∈J

µ(B(xj , rj)) ≤ µ(F ) .

We then haveHsclβ
5δ (F ) ≤ µ(F ). Since this holds true δ as small as wewant, we deduceHsclβ (F ) ≤ µ(F );

and this holds true for any β > α. We finally get sclHF ≤ α and then by taking α close to ess inf scllocµ,

we indeed have sclHµ ≤ sclHF ≤ ess inf scllocµ.

We prove now sclPµ ≤ ess inf scllocµ. Similarly as forHausdorff scales, we can assume that ess inf scllocµ

is finite. Consider then α > ess sup scllocµ and set E =
{
x ∈ X : scllocµ(x) < α

}
, thus µ(X\E) = 0.

Moreover it holds:

E =
⋃
i≥1

Ei where Ei =
{
x ∈ E : ∀r ≤ 2−i, µ(B(x, r)) ≥ sclα(r)

}
.

By Lemma 2.20, it holds sclPE = supi≥1 sclPEi. It is then enough to show that for any i ≥ 1, we

have sclPEi ≤ α. Indeed, then taking α arbitrarily close to ess sup scllocµ allows to conclude. In that way

let us fix i ≥ 1. Fix δ ∈ (0, 2−i), and consider J a countable set and (Bj)j∈J a δ-pack of Ei. It follows:∑
j∈J

sclα(|Bj |) ≤
∑
j∈J

µ(Bj) ≤ 1 .

Since this holds true for any δ-pack, we have:

Psclα
δ (Ei) ≤ 1 .

Taking δ arbitrarily close to 0 leads to:

Psclα(Ei) ≤ Psclα
0 (Ei) ≤ 1 .

From there, sclPEi ≤ α, which concludes the proof of sclPµ ≤ ess inf scllocµ.

Let us now prove scl∗Hµ ≤ ess sup scllocµ. We can assume that ess sup scllocµ is finite and fix a real

number α > ess sup scllocµ. For β > α, then consider δ > 0 such that for any r ∈ (0, δ) we have
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sclβ(5r) ≤ sclα(r). Denote F := {x ∈ X : scllocµ(x) < α}, thus F has total mass and by Lemma 2.3 for

any x in F there exists an integer n(x), minimal, such that r(x) := exp(−n(x)) ≤ δ and:

µ (B(x, r(x))) ≥ sclα(r(x)) .

Now put:

F := {B(x, r(x)) : x ∈ F} .

By Vitali’s Lemma 3.12, there exists a countable set J and a δ-pack (B(xj , rj))j∈J ⊂ F of F such that

F ⊂
⋃

j∈J B(xj , 5rj). Thus:∑
j∈J

sclβ(5rj) ≤
∑
j∈J

sclα(rj) ≤
∑
j∈J

µ(B(xj , rj)) ≤ µ(F ) .

Since this holds true for δ arbitrarily close to 0, we deduce that Hsclβ (F ) ≤ µ(F ). Then, taking β > α

close to α leads to sclHF ≤ α, and thus by taking α arbitrarily close to ess sup scllocµ, we indeed have

scl∗Hµ ≤ ess sup scllocµ.

To conclude, we prove sclPµ ≤ ess inf scllocµ. Let E be a Borel set with positive measure. Let σ be

the restriction of µ to E, thus by Lemma 3.4:

ess inf scllocµ ≤ ess inf scllocσ ,

and then by Lemma 3.5, it holds:

ess inf scllocµ ≤ ess inf scllocσ ≤ ess sup scllocσ ≤ sclPE .

This holds true for any E such that µ(E) > 0, thus ess inf scllocµ ≤ sclPµ.

Finally, let us show scl∗Pµ ≤ ess sup scllocµ. Putα > ess inf scllocµ and setF :=
{
x ∈ X : scllocµ < α

}
,

then µ(F ) > 0, and denote:

E :=
⋃
i≥1

Ei where Ei =
{
x ∈ E : ∀r ≤ 2−i, µ(B(x, r)) ≥ sclα(r)

}
.

By Lemma 2.20, we have sclPE = supi≥1 sclPEi, it is then enough to show that for any i ≥ 1, we have

sclPEi ≤ α. Indeed we can take α arbitrarily close to ess inf scllocµ. We then fix i ≥ 1. Fix δ ∈ (0, 2−i).

We consider J a countable set and (Bj)j∈J a δ-pack of Ei. Then:∑
j∈J

sclα(|Bj |) ≤
∑
j∈J

µ(Bj) ≤ 1 .

Since this holds true for any δ-pack, it follows:

Psclα
δ (Ei) ≤ 1 .

When δ tends to 0, the latter inequality leads to:

Psclα(Ei) ≤ Psclα
0 (Ei) ≤ 1 .

From there, we deduce sclPEi ≤ α, which concludes the proof of the last inequality and thus the one of

Theorem B.
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4 Applications

4.1 Scales of infinite products of finite sets

A natural toy model in the study of scales is given by a product Z =
∏

n≥1 Zk of finite sets. To define

the metric δ on this set, we fix a decreasing sequence (ϵn)n≥1 which verifies log ϵn+1 ∼ log ϵn when

n/to+∞. We put for x = (xn)n≥1 ∈ Z and y = (yn)n≥1 ∈ Z :

δ(x, y) := ϵm ,

wherem := inf{n ≥ 1 : xn ̸= yn} is the minimal index such that the sequences x and y differ. Note that

then if each Zn is endowed with the discrete topology, then δ provides the product topology on Z .

A natural measure on Z is the following product measure:

µ := ⊗n≥1µn ,

where µn is the equidistributedmeasure onZn for n ≥ 1. The scales ofZ and µ are given by the following:

Proposition 4.1. For any scaling scl, it holds for any x ∈ Z :

scllocµ(x) = sclBZ = sup

{
α > 0 : sclα(ϵn)

n∏
k=1

1

CardZk
−−−−−→
n→+∞

+∞

}

and

scllocµ(x) = sclBZ = inf

{
α > 0 : sclα(ϵn)

n∏
k=1

1

CardZk
−−−−−→
n→+∞

0

}
.

We shall prove this proposition later. A first corollary can be deduced directly from Theorem A and

C:

Corollary 4.2. For any scaling scl, it holds moreover:

sclHZ = sclQµ = sclBZ

and
sclPZ = sclQµ = sclBZ .

For some particular choice of the sequence (ϵn)n≥1 and for scl = ord we obtain moreover:

Corollary 4.3. Suppose that − log ϵn
n converges to C > 1 when n → +∞. Then for any scaling scl, it holds

moreover:

ordHZ = ordBZ = lim inf
n→+∞

1

n logC
log

(
n∑

k=1

log (CardZk)

)
and

ordPZ = ordBZ = lim sup
n→+∞

1

n logC
log

(
n∑

k=1

log (CardZk)

)
.

Note that log ϵn ∼ −C · n implies log ϵn ∼ log ϵn+1 when n → +∞.

The following lemma allows to prove both Proposition 4.1 and its corollaries:
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Lemma 4.4. For any n ≥ 1 the ϵn-covering number Nϵn(Z) verifies for any z ∈ Z :

Nϵn(Z) = µ(B(z, ϵn))
−1 =

n∏
k=1

CardZk .

Proof of Proposition 4.1. Since log ϵn+1 ∼ log ϵn when n → +∞, we have by Lemma 2.3:

sclBZ = sup
{
α > 0 : sclα(ϵn) · Nϵn(Z) −−−−→

n→∞
+∞

}
and sclBZ = inf

{
α > 0 : sclα(ϵn) · Nϵn(Z) −−−−→

n→∞
0
}

,

and we have the same form for local scales. Then the sought results follow from Lemma 4.4.

Before proving the remaining lemma we first prove the second corollary:

Proof of Corollary 4.3. By Lemma 4.4, for any n ≥ 1 we have Nϵn(Z) =
∏n

k=1 CardZk , then by Re-

mark 2.12 and Lemma 2.3, it holds:

ordB(X) = lim inf
n→+∞

log log(Nϵn(Z))

log(ϵ−1
n )

= lim inf
n→+∞

1

n logC
log

(
n∑

k=1

log (CardZk)

)

and

ordB(X) = lim sup
ϵ→0

log log(Nϵn(Z))

log(ϵ−1
n )

lim sup
n→+∞

1

n logC
log

(
n∑

k=1

log (CardZk)

)
.

This concludes the proof of the corollary.

Finally we provide the remaining:

Proof of Lemma 4.4. Note that for any n ≥ 1 and for any z ∈ Z :

B(z, ϵn) = {w ∈ Z : w1 = z1, . . . , wn = zn} .

Thus:

µ(B(z, ϵn)) =

n∏
k=1

n−1
k .

This shows the first equality, it remains to show that Nϵn(Z) =
∏n

k=1 nk . Let us consider
{
z1, . . . , zN

}
a set of minimal cardinality such that:

Z =

N⋃
j=1

B(zj , ϵn) .

For 1 ≤ j ≤ N , denote zj = (zjk)k≥1, thus we have the following:

Fact 4.5. The map:
ϕ : i ∈ {1, . . . , N} 7→ (zi1, . . . , z

i
n) ∈ Z1 × · · · × Zn .

is a bijection.

33



Proof. We first start by showing ϕ injective. Let us assume that there exists i ̸= j such that ϕ(i) = ϕ(j),

then it holdsB(zi, ϵn) = B(zj , ϵn). It follows that there exists a covering of Z byN −1 balls with radius

ϵn, which contradicts the assumption on minimality of N . Thus ϕ is injective. We now show that ϕ is

also surjective. Consider α ∈ Z1 × · · · × ZN . Since Zk is not empty for any k ≥ 1, there exists z ∈ Z

such that for any 1 ≤ k ≤ n it holds zk = αk . Then there exists i ∈ {1, . . . , N} such that z ∈ B(zi, ϵn).

Thus ϕ(i) = α which gives us the surjectivity.

From there since ϕ is a bijection, we have:

Nϵn(Z) = N = CardZ1 × · · · × ZN =

N∏
k=1

nk. .

Such examples of products of groups allow to exhibit compact metric spaces with arbitrary high order:

Example 4.6. For any α ≥ β > 0, there exists compact metric probability space (Z, δ, µ) such that for any
z ∈ Z :

β = ordlocµ(z) = ordHZ = ordQµ = ordBZ

and
α = ordlocµ(z) = ordPZ = ordQµ = ordBZ .

In particular with α > β we obtain examples of metric spaces with finite order such that the Hausdorff

and packing orders do not coincide. Moreover, for a countable dense subset F of X , it holds ordHF =

ordPF = 0 and ordBF = β < α = ordBF . It follows that none of the inequalities of Theorem A for

the case of order in a equality in the general case. Moreover, using disjoint unions of such spaces allows

to produce examples of metric spaces where either of the strict equality can happen between any pair of

scales that are not compared in Fig. 1.

Proof. Let (uk)k≥0 be the sequence defined by:

uk =

{
⌊exp(exp(β · k))⌋ if c2j ≤ k < c2j+1

⌊exp(exp(α · k))⌋ if c2j+1 ≤ k < c2j+2

where c = ⌊α
β ⌋+ 1. We denote Z :=

∏
n≥1 Z/ukZ endowed with the metric δ defined by:

δ(z, w) := exp(− inf {n ≥ 1 : zn ̸= wn})

for z = (zn)n≥1 and w = (wn)n≥1 in Z . Let us denote λn = 1
n log

∑n
k=1 log uk . Thus by Corollary 4.3:

ordHZ = ordBZ = lim inf
n→+∞

λn

and

ordPZ = ordBZ = lim sup
n→+∞

λn .
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It remains to show that λ− := lim infn→+∞ λn = β and λ+ := lim supn→+∞ λn = α in order to show

that (Z, δ) satisfies the sought properties. First notice that exp(exp(β ·n)) ≤ un ≤ exp(exp(α ·n)). Thus
λ− ≥ β and λ+ ≤ α. Denote nj = c2j+1

:

λnj
≥ 1

n
log log(unj

) = α .

Thus, taking j → +∞ leads to λ+ ≥ α. Moreover, denotemj = c2j+1 − 1. We have the following:

Lemma 4.7. For any j ≥ 1 and for any 1 ≤ k ≤ mj , it holds:

uk < umj .

Proof. If c2j ≤ k ≤ mj , then uk = exp(exp(β · k)) ≤ exp(exp(β · mj)) = umj . Otherwise, we have

k < c2j , and then uk < exp(exp(α · c2j)) < exp(exp(β · c2j+1)) = umj , since α < β · c.

From the above lemma, we have:

λmj ≤ 1

mj
logmj log(umj ) −−−−→

j→+∞
β ,

and so λ− ≤ β which concludes the proof of the proposition.

4.2 Functional spaces

Metric spaces studied here are sub-spaces of differentiable spaces on compact subset ofRd
for d a positive

integer. We denote by ∥ · ∥Ck the Ck
-uniform norm on Ck([0, 1]d,R):

∥f∥Ck := sup
0≤j≤k

∥Djf∥∞ .

Definition 4.8. For d ≥ 1 and k an integer, α ∈ [0, 1] let us define:

Fd,k,α :=
{
f ∈ Ck([0, 1]d, [−1, 1]) : ∥f∥Ck ≤ 1, and if α > 0, the map Dkf is α-Hölder with constant 1

}
.

In the case α > 0, for any x, y ∈ [0, 1]d:

∥Dkf(x)−Dkf(y)∥∞ ≤ ∥x− y∥α .

In particular,Fd,k,0
is the unit ball for theCk

-norm inCk([0, 1]d, [−1, 1]). Let us recall the asymptotic

given by Kolmogorov-Tikhomirov [KT93][Thm XV] on the covering number of (Fd,k,α, ∥ · ∥∞) , see

Theorem 1.10:

C1 · ϵ−
d

k+α ≥ logNϵ(Fd,k,α) ≥ C2 · ϵ−
d

k+α ,

where C1 > C2 > 0 are two constants depending on d, k and α. In order to prove Theorem E which

states that box, packing and Hausdorff scales of Fd,k,α
are all equal to

d
k+α , by Theorem B, it remains to

prove Lemma 1.11. The latter states:

ordHFd,k,α ≥ d

k + α
.
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Proof of Lemma 1.11. We first start with the case α > 0. The case α = 0 will be deduced from it. We

consider the following set:

Λ =
∏
n≥1

Λn .

where Λn = {−1, 0,+1}Rdn

and with R = ⌊5
1

k+α ⌋+ 1. We endow Λ with the metric δ defined by:

δ(λ, λ′) = ϵm ,

with m the minimal index such that the sequences λ and λ′
differ and with (ϵn)n≥0 is a decreasing se-

quence of positive real numbers such that
− log ϵn

n → Rk+α
when n → +∞. We can choose (ϵn)n≥1 such

that the following holds:

Lemma 4.9. There exists an embedding I : (Λ, δ) → (Fd,k,α, ∥ · ∥∞) such that for any λ, λ′ ∈ Λ it holds:

∥I(λ)− I(λ′)∥∞ ≥ 1

2
δ(λ, λ′) .

The above lemma allows to conclude the proof of Lemma 1.11. Indeed, since Λ is a product of finite

sets endowed with a product metric, and since log ϵn+1 ∼ log ϵn, by Corollary 4.3 it holds:

ordHΛ = lim inf
n→+∞

1

n logRk+α
log

 n∑
j=1

log CardΛj

 = lim inf
n→+∞

1

n logRk+α
log

 n∑
j=1

Rdj · log 3

 .

Now, for n ≥ 1 it holds:

1

n logRk+α
log

 n∑
j=1

Rdj · log 3

 =
log log 3 + log Rd(n+1)−R

R−1

logRk+α
−−−−−→
n→+∞

d

k + α
.

It comes ordHΛ = d
k+α . Now since by assumption on I in Lemma 4.9, it holds by Corollary 2.22:

ordHFd,k,α ≥ ordHΛ =
d

k + α
,

which concludes the proof of Lemma 1.11. It remains to show:

Proof of Lemma 4.9. Let us denote q := k + α and recall that R := ⌊5
1
q ⌋ + 1. We consider the following

map on R:
ϕ : t ∈ R 7→ (2t)q(2− 2t)q · 110<t<1 .

Note that the function ϕ has its support in [0, 1] and takes the value 1 at
1
2 . The kth derivative of ϕ is

non-constant. For f ∈ Fd,k,α
, let ∥f∥q be the infimum of the constants C > 0 such that for any x, y ∈ R:

∥Dkf(x)−Dkf(y)∥ ≤ C · ∥x− y∥α .

Note that ∥ · ∥q is a semi-norm on Fd,k,α
and moreover:

Fd,k,α =
{
f ∈ Fd,k,0 : ∥f∥q ≤ 1

}
.
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Observe that ∥ϕ∥q > 0. Let (xj)1≤j≤Rdn be an exhaustive sequence of the set:{(
i1
Rn

, . . . ,
id
Rn

)
: i1, . . . , id ∈ {0, . . . , Rn − 1}

}
.

For any λ = (λ1, . . . , λRdn) ∈ Λn = {−1, 0,+1}R
dn

we associate the following map:

fλ : x = (x1, . . . , xd) ∈ [0, 1]d 7→ ϵn ·
Rdn∑
j=1

λj · ϕ(Rn · ∥x− xj∥) ,

with

ϵn :=
6

π2 · n2 ·Rqn · ∥ϕ∥q
.

Let us denote Sn the set of such maps:

Sn = {fλ : λ ∈ Λn} .

The sequence (ϵn≥1) is chosen such as the following holds:

Lemma 4.10. The distance between fλ, fλ′ ∈ Sn is given by:

∥fλ − fλ′∥q =
6

π2 · n2
· ∥λ− λ′∥∞ and ∥fλ − fλ′∥∞ = ϵn · ∥λ− λ′∥∞ ,

where ∥λ− λ′∥∞ := sup
1≤i≤Rdn

|λi − λ′
i|.

Proof. For any x ∈ [0, 1]d, there exists at most one value j ∈
{
1, . . . , Rdn

}
such that ∥x − xj∥ < R−n

,

thus the maps x 7→ ϕ(∥x− xj∥ ·Rn) for 1 ≤ j ≤ Rdn
have disjoints supports. It comes then:

∥fλ−fλ′∥q = ϵn

∥∥∥∥∥∥
Rdn∑
i=1

|λi − λ′
i|ϕ(Rn∥ · −xi∥)

∥∥∥∥∥∥
q

= ϵn · sup
1≤i≤Rdn

|λi−λ′
i|·Rqn∥ϕ∥q =

6

π · n2
·∥λ−λ′∥∞ .

Now, for the C0
-norm, it holds:

∥fλ − fλ′∥∞ = ϵn

∥∥∥∥∥∥
Rdn∑
i=1

(λ− λ′) · ϕ(Rn∥ · −xi∥)

∥∥∥∥∥∥
∞

= ϵn · ∥λ− λ′∥∞ .

Note in particular that since 0 ∈ Sn, for any fλ ∈ Sn\ {0}, it holds:

∥fλ∥q =
6

π2 · n2
and ∥fλ∥∞ = ϵn .

We now embed

∏
n≥1 Sn into Fd,k,α

. For λ = (λn)n≥1 ∈ Λ we associate the formal series

∑
n≥1 fλn

where fλn ∈ Sn. Then we have the following:

Lemma 4.11. For any λ = (λn)n≥1 ∈ Λ the function series
∑

n≥1 fλn
converges in C0([0, 1]d, [−1, 1])

and moreover its limit lies in Fd,k,α.
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Proof. By Lemma 4.10, it holds: ∑
n≥1

∥fλn∥∞ ≤
∑
n≥1

ϵn < +∞ .

It comes that the series

∑
n≥1 fλn

is normally convergent, thus it is also point-wise convergent and more-

over the limit g is continuous. Now note that for any n ≥ 1 and for any 1 ≤ l ≤ k it holdsDlfλn(0) = 0,

thus by Taylor integral formula, it holds:

∥Dlfλn
∥∞ ≤ ∥Dkfλn

∥∞ .

Moreover, still by Lemma 4.10, it holds:∑
n≥1

∥fλn∥q ≤
∑
n≥1

6

π2n2
= 1 .

Now since Dkfλn
is

6
π2n2 - α-Hölder and Dkfλn

(0) = 0, for any n ≥ 1, it follows:∑
n≥1

∥fλn∥Ck ≤
∑
n≥1

6

π2n2
= 1 .

Thus the partial sums lie in Fd,k,α
and so does g as a limit of elements of Fd,k,α

, which is closed for the

C0
-norm.

By Lemma 4.11, the following map is well defined:

I : λ = (λn)n≥1 ∈ (Λ, δ) 7→ lim
n→+∞

∑
n≥1

fλn
∈ (Fd,k,α, ∥ · ∥∞) .

To conclude the proof, it remains to show that for any λ, λ′ ∈ Λ:

∥I(λ)− I(λ′)∥∞ ≥ 1
2δ(λ, λ

′) ,

Consider λ = (λn)n≥1, λ
′ = (λ′

n)n≥1 ∈ Λ. We denote k := inf{n ≥ 1 : xn ̸= yn}. Then it holds:

∥I(λ)− I(λ′)∥∞ =

∥∥∥∥∥∥
∑
n≥k

fλn
− fλ′

n

∥∥∥∥∥∥
∞

≥ ∥fλk
− fλ′

k
∥∞ −

∑
n>k

∥fλn
− fλ′

n
∥∞ .

Now by Lemma 4.10, it holds respectively:

∥fλk
− fλ′

k
∥∞ ≥ ϵk and

∑
n>k

∥fλn
− fλ′

n
∥∞ ≤ 2

∑
n>k

ϵn .

Now recall that ϵn = 6
π2n2Rqn for any n ≥ 1, then:∑

n>k

ϵn ≤
∑
n>k

ϵk ·R−q(n−k) = ϵk · 1

Rq − 1
.

Now since Rq ≥ 5, it holds then 1
Rq−1 ≤ 1

4 and it follows:

∥I(λ)− I(λ′)∥∞ ≥ 1
2ϵk .

Now since ϵk = δ(λ, λ′) by definition of δ, the sought result comes.
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This concludes the proof of Lemma 1.11 for the case α > 0. It remains to deduce the case α = 0

from that previous one. For any β > 0, it holds Fd,k,β ⊂ Fd,k,0
. From there since Hausdorff scales are

non decreasing for inclusion, it holds then ordHFd,k,0 ≥ ordHFd,k,β ≥ d
k+β . Since we can take β > 0

arbitrary small, it indeed holds ordHFd,k,0 ≥ d
k .
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