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Abstract

3D interactions diagrams for symmetrically Reinforced Concrete (RC) square sec-

tions with various reinforcement ratios are constructed using 3D non-linear finite

element simulations. The interaction diagrams are expressed in terms of general-

ized forces (axial force, bending moment and shear force) and allow to identify

two characteristic states: the first characteristic state corresponds to the elastic

limit of the reinforcement bars (while concrete exhibits a non-linear behavior) and

the second characteristic state to the peak values of the generalized forces general-

ized displacements curves. Firstly, 3D non-linear finite element simulations of RC

cantilever - type columns are presented and validated with experimental results.

∗Corresponding author.
Email address: Androniki-Anna.Doulgeroglou@ec-nantes.fr (Androniki-Anna
Doulgeroglou)

Preprint submitted to Engineering Structures March 15, 2022



Numerical interaction envelopes are then derived and analytical convex expres-

sions are provided. Finally, a comparison with existing interaction diagrams from

the literature is proposed.

Keywords: interaction diagrams; reinforced concrete.

1. Introduction

Interaction diagrams are functions that define the acceptable combinations of gen-

eralized forces’ components (e.g. moment, shear force and axial force) of a struc-

tural member. Of particular interest in Reinforced Concrete (RC) design they are

often constructed using limit analysis. To characterize the combination of axial

force and bending moment limit states, in the Eurocode [1] a suitable set of ad-

missible loadings, is identified for a given RC structure and a convex hull of them

is constructed adopting the so-called lower bound approach. More specifically,

steel is described by an elastic perfectly plastic constitutive law, symmetric in

traction and compression, while concrete has zero tension resistance and follows

a parabolic curve in compression. A rectangular distribution of the normal stress

is assumed, multiplied by a correction factor. Eurocode [1] provides also interac-

tion diagrams for biaxial bending and axial loading and for shear force and torsion

but not for axial force, shear force and bending moment.

In the framework of limit analysis the upper bound approach is also frequently

used which provides an upper bound of a combination of the limit loadings, see

e.g. [2]. The definition of limit loading in this case is based on a global energetic

criterion which compares the power dissipated along a plastic process to the power
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of external forces. It is typically used introducing kinematically admissible veloc-

ity fields exhibiting a jump through the body which is therefore separated into two

blocks having a relative motion one with respect to the other. If a kinematic admis-

sible mechanism can be found for which the work of the external loads exceeds

the internal work, then the structure collapses and the load computed on the basis

of the assumed mechanism is greater than or equal to the true failure load. The

limit load is determined by searching for the least upper bound for loads inducing

collapse. In literature, this method is used to study failure of beams and plates.

Koechlin [3] introduced a global failure criterion for RC beams considering cou-

pled loading of axial force and bending moment. This criterion was extended to

plates by accounting for combination of membrane forces and bending moments.

In a subsequent work, Koechlin [4] derived a failure criterion for beams submitted

to a combination of axial force, shear force and bending moment.

It is possible to construct interaction diagrams by numerical methods or com-

bining analytical and numerical methods. Elachachi [5] used a multi-fiber beam

finite element model to reproduce the bending moment - axial force interaction

diagram for a reinforced concrete structure (for zero shear force) and constructed

the moment - shear force diagram for zero axial force.

Vecchio and Collins [6] combined analytical and numerical approaches. The

analytical framework is based on the Modified Compression Field Theory (MCFT),

formulated for in-plane stress conditions [7] that relates average stress to average

strains in a cracked RC element, satisfying compatibility and equilibrium require-

ments. The authors present interaction diagrams for shear force and bending mo-
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ment for different axial loads and interaction diagrams for shear force and axial

force.

Rahal [8] proposed a simplification of the MCFT assuming a parabolic stress-

strain relationship for concrete in compression and provided a graphical method

to compute the ultimate shear strength of members. In a subsequent work [9], the

author extended the method to beams under combined shear, bending and axial

load.

Nguyen [10] constructed interaction diagrams for the following loading com-

binations: bending moment and torsion, bending moment and shear force, coupled

shear force - bending moment - torsion. The author developed a 3D multi-fiber

beam element that takes into account warping. The cross-section is divided into

three zones (named 1D, 2D and 3D) according to the direction of transversal re-

inforcement and the stress state.

Carpinteri et al. [11] studied the influence of size scale effects on the moment

- axial force interaction diagrams using a numerical step-by-step approach based

on the integrated Cohesive/Overlapping Crack Model. Constitutive modeling of

concrete is different in compression (Overlapping Crack Model with fictitious in-

terpenetration) and tension (Cohesive Crack Model with fictitious crack). Stress-

displacement relationships are adopted for the post-peak behavior to avoid scale

dependency.

In the following, we present 3D interactions diagrams for symmetrically re-

inforced concrete square sections constructed using 3D non-linear finite element

calculations without adopting any kinematic assumptions and that take into con-
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sideration an accurate description of the constitutive modeling of the materials

and stress redistributions . The contribution of this work relies on estimating the

ultimate resistance of a RC section which is different than the Ultimate Limit State

(ULS) found in the design codes. The interaction diagrams are expressed in terms

of generalized forces (axial force, bending moment and shear force). Another ad-

vantage of the numerical simulations is that access is provided to any intermidiate

state of the response during loading and thus they allow to identify two charac-

teristic states: the first characteristic state corresponds to the elastic limit of the

reinforcement bars (while concrete exhibits a non-linear behavior) and the second

characteristic state to the peak values of the generalized forces generalized dis-

placements curves. The purpose of the identification of these characteristic states

is to use them in a future work for the development of a macro-element for rein-

forced concrete beam and columns, in the light of what has been already done for

example for shallow foundations ([12], [13], [14]) and piles ([15], [16], [17]).

The article is structured as follows: section 2 presents the adopted 3D con-

stitutive models for concrete and steel; in section 3 the 3D finite element model

is validated with reference to the experimental results of a RC cantilever - type

column submitted to complex loading [18]. After establishing the criteria for the

two characteristic states, numerical interaction envelopes for a specific RC sec-

tion are derived in section 4 and this procedure is repeated for the construction

of numerical interaction envelopes for symmetrically reinforced concrete square

sections with different reinforcement ratios in section 5. Analytical convex ex-

pressions of these surfaces are finally introduced in section 6 and a comparison
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with interaction diagrams form the Eurocode [1] is proposed in section 6.6.

2. Constitutive models

2.1 Concrete

Concrete behavior is described by the 3D constitutive model developed by

Faria et al. [19]. The model follows the damage mechanics framework and is

coupled with plasticity to consider inelastic permanent strains in compression.

The 3D (effective) stress tensor is defined by:

σ̄(ε,ε p) = D0 : (ε − ε
p) (1)

where D0 is the fourth-order isotropic linear elastic constitutive matrix, ε is the

strain tensor and ε p is the plastic strain tensor. Stress contributions due to tension

or compression are expressed by spliting the effective stress tensor into tensile σ̄+

and compressive σ̄− components:

σ̄
+ = ∑

i
⟨σ̄i⟩pi ⊗ pi (2)

σ̄
− = σ̄ − σ̄

+ (3)

where σ̄i is the ith principal stress, pi is the unit vector corresponding to the ith

principal direction, ⟨·⟩ are the Macaulay brackets and indices (+) and (−) corre-

spond to positive and negative entities.

Even though it does not account for permanent strains during tension, the
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model is able to reproduce the differences in the behavior in tension and com-

pression using two scalar damage variables which are assumed to correspond to

independent processes. Two damage criteria are considered:

τ̄
+ =

√
σ̄+ : D−1

0 : σ̄+ (4)

τ̄
− =

√√
3

3
KI1 +

√
2J2 (5)

where τ̄+ and τ̄− are the tensile and compressive equivalent stress respectively,

I1 and J2 are the first invariant of the compressive stress tensor and the second

invariant of the deviatoric compressive stress tensor respectively and K is a ma-

terial parameter conceived to fit the ratio of 2D and 1D compressive strengths

σc,2D/σc,1D in experimentally observed values (1.16-1.2). The model accounts

for the increase of concrete strength when biaxial or triaxial compressive loading

conditions are considered.

The unilateral effect, also known as stiffness recovery, takes place as the load

changes sign and results in tensile cracks’ closure and gradual compressive stiff-

ness recovery. This model takes into account the unilateral effect in a simplified

way (no permanent strains during traction unloading and no progressive stiffness

recovery).

The evolution laws for the damage variables in tension and in compression are

given by:

d+ = G+(r+) = 1−
r+0
r+

eA+(1−r+/r+0 ) (6)
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d− = G−(r−) = 1−
r−0
r−

(1−A−)−A−eB−(1−r−/r−0 ) (7)

where r+ and r− are the current damage thresholds, r+0 and r−0 are the elastic

thresholds, A+ controls the softening response in tension and A− and B− define

the non-linear part of the response in compression.

The plastic strain tensor rate in compression is given by:

ε̇
p = βEH(ḋ−)

⟨σ̄ : ε̇⟩
σ̄ : σ̄

D−1
0 : σ̄ (8)

where β ≥ 0 is a material parameter which controls the rate intensity of plastic

deformation and H is the Heaviside function. The consideration of plastic strains

during compression and of the unilateral effect makes the constitutive law appro-

priate for cyclic loading.

Mesh objectivity (in tension but not in compression) is taken into account via

an energy type approach [20] that requires that the tension softening branch (pa-

rameter A+) is calibrated according to the tensile fracture energy and a geometrical

characteristic length:

A+ =

(
G f E

lch( f+0 )2 −
1
2

)−1

≥ 0 (9)

where G f is the tensile fracture energy, E is the Young’s modulus, f+0 is the tensile

elastic limit, lch is a geometrical characteristic length computed as 3
√

∆V with ∆V

the finite element volume in 3D simulations. Although this approach is not able to

regularize the results in the local level, results in terms of forces and displacements
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are less sensitive to the finite element mesh discretization [21].

Fig. 1 depicts the constitutive model during a 1D tension-compression cyclic

test, while Fig. 2 the comparison with the biaxial plane stress experiments of [22].

From the latter, it can be seen that the constitutive law reproduces satisfactorily

the biaxial strength of concrete and this for all biaxial loading conditions.

Fig. 1. Cyclic behavior during 1D cyclic test.

2.2 Steel

The classical 3D Von Mises elastoplastic law is considered for the reinforce-

ment bars. A linear kinematic hardening is adopted to capture the Bauschinger

effect observed during cyclic loading.
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Fig. 2. Comparison of the numerical and experimental biaxial strength of concrete
normalized by the uniaxial concrete compressive strength fc [22].

3. Structural model validation: a reinforced concrete column under com-

plex loading

In order to validate the 3D finite element model used in section 4 to construct

the interaction diagrams, the reinforced concrete cantilever - type columns, stud-

ied experimentally by Bousias et al. [18] under various loading combinations, are

simulated hereafter. During this campaign the researchers studied the behavior of

twelve identical columns under cyclic uniaxial or biaxial flexure with constant or

time varying axial load. The only test variable was the load path and the concrete

compressive strength.The specimens were similar to those tested by Gutierrez et

al. [23]. The geometry of the specimens is represented in Fig. 3.
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Fig. 3. RC columns: geometry, [23].

3D volumetric finite elements are used for the numerical simulations with the

code Cast3M [24]. All the components of the reinforced concrete column are dis-

cretized; concrete, longitudinal reinforcing steel bars and stirrups. Perfect bond-

ing is assumed between concrete and steel. The finite element mesh of each com-

ponent is constructed independently. Displacement compatibility of the different

components is ensured by forcing every point of the steel mesh to follow a lin-

ear combination of the nodal displacements of the concrete mesh. This approach

results into an additional structural stiffness, which in our case is proved to be

negligible (see Appendix A). A mesh of 10560 3D finite elements is adopted and

this choice is explained in further details in Appendix B. he Newton-Raphson
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Test Specimen f ′
c N/(Acf

′
c) Load Path

S6 25.7 0.10

S8 25.4 0.11

Table 1. RC columns: test specimens, compressive strength, applied axial load and
transversal load (schematically).

algorithm is adopted at the global level for the resolution of the non-linear system

of equations. The radial return algorithm and the backward-Euler scheme is used

for the integration of the constitutive law.

During the experimental campaign, the columns were built in a heavily rein-

forced foundation base. The numerical model is considered therefore fixed at the

bottom. The choice of 3D numerical models for concrete and steels allows con-

sidering complex indirect phenomena such as the confinement of concrete inside

the stirrups, which leads to an increased concrete strength.

The S6 and S8 tests are simulated hereafter. Loading is applied on the top of

the column in two steps; firstly, the axial compressive load is applied as a force

of negative sign in the z direction and it is equally distributed to all the nodes of

the section at the top. Secondly, the transversal load along x, y is applied as a

displacement homogeneous for all the nodes of the section at the top. The loading

program of S6 and S8 is presented in Table 1.

The parameters for the concrete constitutive law are listed in Table 2 and Ta-

ble 3 and for steel in Table 4. Calibration of the non-linear concrete response
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in compression is achieved by selecting two points of the curve representing the

uniaxial response in compression; point 1 (εc1,σc1) and point 2 (εc2,σc2). The

selected points vary for every test simulated resulting to different resistances in

compression according to the experimental values. The reference stress σcp and

strain εcp are used for the determination of the material parameter β as shown in

Eq. 10 [25]:

β =
(Eεcp −σcp) fcu

(Eεcp − fc0)(σcp + fcu)
(10)

As stated in section 2.1 β is a material parameter which controls the rate intensity

of plastic deformation. As the ratio σcp/εcp increases, β decreases and the perma-

nent plastic strains during unloading are less important. Conversely, as the ratio

σcp/εcp decreases, β increases and the permanent plastic strains during unloading

are more significant. When β tends to zero the model turns to a purely damage

model in compression and the coupling to plasticity vanishes.

Fig. 4 and Fig. 5 present the numerical simulation results of the S6 and S8

tests. After concrete cracking and during alternate loads, the global response is

mainly controlled by the reinforcement steel bars. The parameters for the steel

constitutive law have been taken as reported in the experimental campaign of

Bousias et al.(1995). The obtained prediction accuracy can be certainly improved

using a more advance 3D constitutive model istead of the classical 3D Von Mises

constitutive model with linear kinematic hardening. The purpose of the work be-

ing however the numerical computation of 3D interaction diagrams up to failure
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Parameter Description SI Unit Value
Eb Young Modulus GPa 15
νb Poisson’s ratio - 0.2
ft Elastic stress limit in tension MPa 2

G f Tensile fracture energy J/m2 100
lcar Characteristic length m 3√ jaco
fc0 Elastic stress limit in compression MPa -20

rt45 Biaxial ratio σc,2D/σc,1D in compression - 1.18
fcu Ultimate stress limit in compression MPa -35
εcu Ultimate strain in compression - -0.0035
σcp Reference stress in compression MPa -33
εcp Reference strain in compression - -0.0044
εc1 Strain of point 1 - -0.002
εc2 Strain of point 2 - -0.005

Table 2. RC columns: parameters for concrete (constant for all the tests).

Parameter σc1 σc2
Description Stress of point 1 Stress of point 2

SI Unit MPa MPa
S6 -23.6 -22.6
S8 -23 -22

Table 3. RC columns: parameters for concrete (varying for each test).

Parameter Description SI Unit Value
Ea Young Modulus GPa 180
νa Poisson’s ratio - 0.3
fy Elastic stress limit MPa 460

Ha Kinematic hardening modulus GPa 2.3

Table 4. RC columns: parameters for steel.
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and not the cyclic behavior, the level of accuracy, as far as the peak of the response

is concerned, is judged satisfactory; the 3D finite element model correctly repro-

duces the global behavior of the column in terms of forces - displacements and

this for all the loading combinations and tests.

(a) Loading history

(b) Force - displacement, X direction (c) Force - displacement, Y direction

Fig. 4. Test S6: Numerical vs. experimental results.
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(a) Loading history

(b) Force - displacement, X direction (c) Force - displacement, Y direction

Fig. 5. Test S8: Numerical vs. experimental results.
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4. Interaction diagrams for a symmetrically RC square section

For the construction of the interaction diagrams the validated numerical model

of section 3 is adopted. The column is again considered fixed at the bottom and

specific displacement loading combinations, described in section 4.2 are applied

on its free top surface. Interaction diagrams are presented for different character-

istic states, detailed hereafter.

4.1 Characteristic states

The interaction diagrams presented in this article are defined for the following

two characteristic states:

• 1st characteristic state: corresponds to the elastic domain of the reinforce-

ment steel bars (identical in tension and compression) fixed to 460MPa.

• 2nd characteristic state (termed hereafter ‘failure’): corresponds to the peak

values of the generalized forces-generalized displacement curves. More

specifically, for the combined flexion to tension area, the failure criterion,

is given in terms of maximum longitudinal steel strain equal to 7.5%, see

also [1]. For the combined flexion to compression region, failure is reached

at the maximum axial force (absolute value). This choice is made because

the imposition of a criterion in terms of concrete maximum compression

stress leads to very conservative estimations, as the maximum axial force is

reached after several material points have attained their ultimate resistance.
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The driving idea behind the choice of those two characteristic states is that

steel controls the behavior of the reinforced concrete composite section when ten-

sion is predominant, while in compression, concrete crushing is considered to

limit the buckling risk.

4.2 Loading program

The displacement controlled loading program follows the swipe and radial

tests commonly used in geotechnical engineering, see for example [26], [27]. The

following loading conditions are applied:

• 1D loading: pure tension and pure compression in order to obtain the uni-

axial section resistance (Fig. 6).

(a) tension displacement control

(b) compression displacement control

Fig. 6. Uniaxial loading.

• 2D loading: combined flexion with axial loading. The procedure is repeated

in two ways; for the 2D swipe tests, an axial load is first applied followed

by a flexure load (Fig. 7). The same procedure is repeated for different
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levels of axial loading. The axial load is applied similarly to the case of 1D

loading, while the flexural load is applied as a linear distribution of axial

displacments, see Fig. 7.

Fig. 7. 2D swipe test: I: axial loading, II: radial bending loading.

For the radial displacemet controlled tests, the axial and flexural loads are

applied simultaneously (Fig. 8) by keeping their ratio constant. The proce-

dure is repeated for different ratios. The moment - axial force interaction

diagram is obtained by both procedures and the results are compared to ver-

ify the influence of the loading path, which is found negligible.

Fig. 8. 2D radial test: coupled bending - axial loading.

• 3D loading: for different levels of axial loading, flexural and transversal

loads (controlled in displacements) are simultaneously applied in a radial

way (constant ratio), as presented in Fig. 9. Thus, the complete moment

– axial force – shear force diagram is obtained. Additional radial tests (all
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loads are applied simultaneously) are also performed to verify the influence

of the loading path. It is again found that the interaction diagrams are not

significantly affected by the loading path.

Fig. 9. 3D loading: I: axial loading, II: radial bending and shear loading by keeping
constant the ratio ubending

utransversal

4.3 Results

The data obtained by numerical simulations correspond to the points of the

elastic domain of the reinforcing steel (Fig. 10) and to the discrete failure points

(Fig. 11) respectively. By the application of uniaxial, 2D and 3D loading condi-

tions the moment - axial force - shear force interaction diagrams are produced and

correspond to the inner section of the column, at 0.3m from the fixed edge. This

section is found to be the most charged, is sufficiently far from the fixed edge (its

distance from the fixed edge is greater than the largest cross-sectional dimension,

following the Saint-Venant’s Principle) and its planeness is verified. Numerical

simulations of this member under pure flexion have also shown that after this

length (0.3m) the results in terms of moment - curvature are homogeneous for all

the sections.
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(a) 3D view

(b) View at the Shear Force-Bending
Moment plane

(c) View at the Bending Moment-Axial
Force plane

Fig. 10. 1st characteristic state (‘elastic domain’): Interaction diagram (discrete points)
obtained by numerical simulations.

5. Interaction diagrams for symmetrically reinforced concrete square sec-

tions with various reinforcement ratios

Interaction diagrams are numerically constructed for symmetrically reinforced

sections with different reinforcement ratios. The procedure folowed is the same
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(a) 3D view

(b) View at the Shear Force-Bending
Moment plane

(c) View at the Bending Moment-Axial
Force plane

Fig. 11. 2nd characteristic state (‘failure’): Interaction diagram (discrete points) obtained
by numerical simulations.

as in section 4. The numerical model and the constitutive model parameters are

the same as the ones in section 3. The only difference concerns the number of the

longitudinal steel bars and their diameter. In Fig. 12 interaction diagrams for the

2nd characteristic state of ‘failure’ are presented for sections M1, M2, M3 (initial

model) and M4 for which the reinforcement ratios are 1.01%, 2.01%, 2.57% and
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5.15% respectively.

Fig. 12. 2nd characteristic state (‘failure’): Interaction diagrams (discrete points) for
sections with different reinforcement ratios obtained by numerical simulations.

It is found that as the reinforcement ratio increases, the failure domain ex-

pands, but the form remains similar.

6. Analytical expressions of the interaction diagrams

6.1 Background

Analytical expressions for the interaction diagrams are very useful for the

practitioners to efficiently design reinforced concrete sections. For a robust nu-

merical implementation, these functions should be convex.

23



Suryasentana et al. [28] proposed a systematic framework employing a re-

stricted set of sum of square convex polynomials for the construction of convex

and sufficiently regular functions with the following characteristics: continuity,

differentiability with a continuous gradient and Hessian, absence of singularities

in the function and in its derivatives and the fact that they always have real val-

ues. Odd degree polynomials are excluded because of their lack of convexity.

The coefficients of the analytical expression of the failure envelope are computed

through a convex optimization problem which minimizes the objective function:

F =
n

∑
i=1

( f (X̄i
data

)−1)2 (11)

subjected to constraint: Ȳ⊤∇2 f (X̄)Ȳ is sum of squares for all X̄ , Ȳ ∈ domain of

f , which guarantees that the Hessian ∇2 f (X̄) of f is positive semi-definite. In

Eq. 11 X̄i
data is a vector of a discrete failure loading combination points and n is

the number of failure points.

In this work, this procedure is adopted for the identification of the coefficients

of the analytical expression and the sum of squares convex optimization problem

is solved using YALMIP, a toolbox developed by Lofberg [29] in Matlab together

with the SeDuMi semi-definite solver [30].

6.2 Computation of the analytical expression at failure (2nd characteristic state)

The procedure to compute the analytical expressions of the interaction dia-

gram for the limit loading has as follows:

At first, the data of the numerical simulations (section 5) are enriched in order
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to be used afterwards as input for the resolution of the sum of squares convex opti-

mization problem. In particular, every set of data of the numerical simulations (for

sections M1, M2, M3, M4) are introduced in the following homogeneous polyno-

mial expression of degree 6 (found to provide a good fit) in order to obtain with a

non-linear least squares method the coefficients of the polynomial expression for

each RC section tested:

f6 =
6

∑
i, j,k=0

|i+ j+k|=6

aI(i, j,k)N̄
iM̄ jV̄ k −1 (12)

This analytical expression, for which the coefficients are calculated, is not

guaranteed to be convex. The next step is to use this analytical expression as a

tool to obtain further data points, referred as ‘interpolated points’ from now on.

These interpolated points are used as input for the resolution of the sum of squares

convex optimization problem [28]. More specifically, the interpolated points are

standardized in a way that for uniaxial loading conditions their values are 1 (for

the positive loading direction) and -1 (for the negative loading direction).

For every set of data (sections M1, M2, M3, M4) two distinct sum of squares

convex failure envelopes of the standardized loading variables of degree 4 and 6

are then selected, for which the coefficients need to be identified (Eq. 13 - Eq. 12).

f4 =
4

∑
i, j,k=0

|i+ j+k|=4

aI(i, j,k)N̄
iM̄ jV̄ k −1 (13)

The coeffcients of all monomials containing a single loading variable are 1 as
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long as the uniaxial loading conditions are applied.

Finally, the objective function is minimized, subjected to the condition of pos-

itive semi-definite Hessian. Thus, the coefficients of all monomials are obtained

for every set of data (sections M1, M2, M3, M4). The coefficients of the mono-

mials for all the tested sections are presented in Tables 5- 8 for the expression of

degree 4 and in Tables 9- 12 for the expression of degree 6.

a1 a2 a3 a4 a5

1 0 5.7 0.01 1
a6 a7 a8 a9 a10

0.01 -4.18 -0.01 -2.34 3.24
a11 a12 a13 a14 a15
0.02 4.71 -0.01 -3.49 1

Table 5. M1 section: Coefficients of monomials for the failure envelope expression of
degree 4.

a1 a2 a3 a4 a5

1 0 5.87 0 1
a6 a7 a8 a9 a10

0.01 -5.26 -0.01 2.36 3.9
a11 a12 a13 a14 a15
0.02 4.81 -0.02 -3.5 1

Table 6. M2 section: Coefficients of monomials for the failure envelope expression of
degree 4.
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a1 a2 a3 a4 a5

1 0 5.58 0.01 1
a6 a7 a8 a9 a10

-0.01 -2.67 -0.03 -2.19 1.23
a11 a12 a13 a14 a15
0.04 4.76 -0.01 -3.45 1

Table 7. M3 section: Coefficients of monomials for the failure envelope expression of
degree 4.

a1 a2 a3 a4 a5

1 -0.01 5.88 0.02 1
a6 a7 a8 a9 a10

0.01 -3.59 -0.06 -1.8 3.18
a11 a12 a13 a14 a15
0.05 4.25 -0.03 -3.28 1

Table 8. M4 section: Coefficients of monomials for the failure envelope expression of
degree 4.

a1 a2 a3 a4 a5 a6 a7

1 0 13.22 0.05 10.07 0.02 1
a8 a9 a10 a11 a12 a13 a14

0.01 -9.44 -0.04 -10.43 -0.04 -3.39 6.79
a15 a16 a17 a18 a19 a20 a21

-0.04 25.72 0.08 10.89 0.01 -17.33 -0.11
a22 a23 a24 a25 a26 a27 a28

-15.40 4.56 0.07 12.65 -0.02 -5.5 1

Table 9. M1 section: Coefficients of monomials for the failure envelope expression of
degree 6.
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a1 a2 a3 a4 a5 a6 a7

1 0 14.03 0.03 12.26 0.02 1
a8 a9 a10 a11 a12 a13 a14

0.01 -12.73 0 -17.97 -0.06 -3.34 8.29
a15 a16 a17 a18 a19 a20 a21

-0.05 35.83 0.13 11.09 0 -22.46 -0.18
a22 a23 a24 a25 a26 a27 a28

15.42 5.56 0.1 12.69 -0.02 -5.51 1

Table 10. M2 section: Coefficients of monomials for the failure envelope expression of
degree 6.

a1 a2 a3 a4 a5 a6 a7

1 0.02 12.56 0.02 9.41 0.02 1
a8 a9 a10 a11 a12 a13 a14

-0.02 -9.38 -0.01 -6.44 -0.06 -3.27 5.34
a15 a16 a17 a18 a19 a20 a21

-0.03 10.68 0.09 11.17 0 -4.31 -0.11
a22 a23 a24 a25 a26 a27 a28

-15.26 0.48 0.06 12.56 -0.01 -5.44 1

Table 11. M3 section: Coefficients of monomials for the failure envelope expression of
degree 6.

6.3 Comparison of different analytical expressions at failure (2nd characteristic

state)

In order to choose the analytical expression of the failure envelope for a given

reinforced concrete section, in the following Figs. 13, 14, 15 we present 2D sec-

tions of the failure envelope in the moment - axial force, shear force - moment and

shear force - axial force planes, together with the data obtained by the numerical

simulations and the interpolated data for the RC section M3.
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a1 a2 a3 a4 a5 a6 a7

1 0 11.76 0.09 8.58 0.03 1
a8 a9 a10 a11 a12 a13 a14
0 -10.18 -0.15 -2.36 -0.08 -2.11 7.74
a15 a16 a17 a18 a19 a20 a21
0.04 16.67 0.14 8.54 -0.02 -12.25 -0.18
a22 a23 a24 a25 a26 a27 a28

-12.57 3.68 0.1 11.07 -0.02 -5.14 1

Table 12. M4 section: Coefficients of monomials for the failure envelope expression of
degree 6.

(a) V̄ =0 (b) V̄ =0.4 (c) V̄ =-0.5

Fig. 13. M3 section: Moment - axial force interaction diagrams obtained by polynomials
f4, f6 compared to data by numerical simulations and interpolated points.

(a) N̄=0 (b) N̄=0.1 (c) N̄=-0.4

Fig. 14. M3 section: Moment - shear force interaction diagrams obtained by
polynomials f4, f6 compared to data by numerical simulations and interpolated points.
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(a) M̄=0 (b) M̄=0.4 (c) M̄=-0.2

Fig. 15. M3 section: Axial force - shear force interaction diagrams obtained by
polynomials f4, f6 compared to data by numerical simulations and interpolated points.

It can be clearly seen that the polynomial of degree 6 gives a better approxima-

tion of the failure envelope. In particular the sum of squares convex optimization

problem is solved for the RC section M3 with an overall precision of 1.1e−6 for

the polynomial of degree 4 and a precision of 9.4e−10 for the polynomial of de-

gree 6. The correponding figures for the sections M1, M2 and M4 can be found

in Appendix C where one can observe that the conclusions are similar. Fig. 16

presents the failure envelope of degree 6 in the 3D space of the RC section M3.

6.4 Computation of the analytical expression of the domain of elasticity (1st

characteristic state)

The procedure to compute the analytical expression of the interaction diagram

for the 1st characteristic state is different than the one of section 6.2. In particular,

the interaction diagram for the 1st characteristic state (Fig. 10) presents similar

form to the one for the 2nd characteristic state (Fig. 11) but the centers of the two

surfaces are offset to each other. Thus, the proposed analytical expression for the

1st characteristic state is the same as Eq. 12 but the standardized variables N̄, M̄, V̄
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Fig. 16. Failure envelope in 3D standardized space for the RC section M3.

are replaced by N̄−N̄0
N̄∗ , M̄−M̄0

M̄∗ , V̄−V̄0
V̄ ∗ respectively in order to modify the center and

the radii of the ellipsoid of the 2nd characteristic state. The analytical expression

for the 1st characteristic state is given by Eq. 14 for which the coefficients of

all monomials are already calculated and presented in Tables 9- 12 for the RC

sections M1, M2, M3 and M4.

f6 =

6

∑
i, j,k=0

|i+ j+k|=6

aI(i, j,k)

(
N̄ − N̄0

N̄∗

)i(M̄− M̄0

M̄∗

) j(V̄ −V̄0

V̄ ∗

)k

−1 (14)
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Each set of data points that correspond to the 1st characteristic state (Fig. 10) are

subsequenlty introduced in Eq. 14. The center (N̄0, M̄0, V̄0) and the radii (N̄∗, M̄∗,

V̄ ∗) of the ellipsoid corresponding to the 1st characteristic state are calculated by

the resolution of a non-linear least squares optimization problem. The obtained

values for the RC sections M1, M2, M3 and M4 are presented in Table 13. Fig. 17

presents both characteristic states of degree 6 in the 3D space for the RC section

M3. The correponding figures for the sections M1, M2 and M4 can be found in

Appendix D.

RC section N̄0 M̄0 V̄0 N̄∗ M̄∗ V̄ ∗

M1 -0.0117 0.0000 -0.0003 0.7435 0.6096 0.6366
M2 -0.0346 0.0000 -0.0002 0.7783 0.8598 0.9427
M3 -0.1101 0.0001 0.0000 0.7590 0.8236 0.8517
M4 -0.0505 0.0001 0.0000 0.7658 0.8751 0.9514

Table 13. Center and radii of the ellipsoid corresponding to the 1st characteristic state.

6.5 Summary of the steps for the calculation of the analytical expressions of the

two characteristic states

The general procedure for the derivation of the analytical expressions of the

two characteristic states is briefly summarized in th following steps:

• enrichment of the data points of the 2nd characteristic state from the numer-

ical simulations

• standardization of the enriched data points of the 2nd characteristic state
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Fig. 17. M3 section: 1st and 2nd characteristic states in 3D standardized space.

• resolution of the sum of squares convex optimization problem for the chosen

homogeneous polynomial expressions in order to obtain the coefficients of

all monomials

• standardization of the data points of the 1st characteristic state from the

numerical simulations; these data are used as input in the next step

• computation of the analytical expression of the 1st characteristic state using

the same expression of the 2nd characteristic state by changing the center

and the radii of the ellipsoid
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6.6 Comparison with existing interaction diagrams from the Eurocode

For the 2D swipe tests, in the moment - axial force space, a comparison of the

failure surface (obtained by numerical simulations) to the one obtained by apply-

ing the methodology found in Eurocode is provided in Fig. 18 for the RC section

M3. The correponding figures for the sections M1, M2 and M4 can be found in

Appendix E. At each Figure, the surface obtained by the method described in

Eurocode without applying the security coefficients is also provided.

It can be observed that all surfaces obtained by finite element simulations and

by the methodology described in Eurocode present similar forms. Furthermore, as

expected, the surface obtained by Eurocode underestimates the points of failure.

More specifically, for the combined flexion to traction area the ultimate longitudi-

nal strain of the steel bars is fixed to 7.5%, as stated before. This criterion allows

for obtaining a less conservative interaction diagram, compared to the one pro-

vided by the methodology in Eurocode which (i) considers as an ultimate limit

the point at which steel reaches its elastic limit in tension and (ii) ignores the ten-

sile strength of concrete. The choice of such a less conservative criterion can be

beneficial for applications in civil engineering as it can offer the option of a more

economical design of reinforced concrete structures.

For the combined flexion to compression region, the numerically produced

surface presents a good fit to the curve obtained by the method of Eurocode with-

out application of security coefficients.
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Fig. 18. Moment - axial force interaction diagram for M3 RC section. Comparison to
the one obtained by the method in Eurocode with and without the appplication of the
security coefficients.

7. Conclusions

In this article a numerical methodology is presented on the construction of

failure envelopes for given symmetrically RC square sections with various rein-

forcement ratios. Suitable constitutive models are first chosen for the description

of the material behavior, both for concrete and steel. The choice of a 3D finite

element modeling leads to more precise results as there are no kinematical as-

sumptions as in classical beam finite element calculations. Finally, a methodogy

is provided to derive analytical expressions of two characteristics states based on

the numerical results.

Further investigating factors, such as steel strength, concrete compressive strength,

consideration of non-perfect bonding between concrete and steel, ratio and posi-
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tion of the longitudinal and transversal reinforcement, section geometry and shape

should be examined in order to provide more complete research results. The 3D

calculations being however extremely costly, as more than 1428000 core hours of

computational time were necessary to obtain the presented interaction diagrams

(the calculations took place using the supercomputer Liger of the Centrale Nantes

SuperComputing Center. Liger is a BULL/Atos DLC720 cluster of 252 compute

nodes and 14 visualization nodes with 24 cores per node and a total compute

memory of 36608GB.), this can be the scope of future work.
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Appendix A. About the additional stiffness

The chosen mesh discretization results to an additional stiffness. To verify

the influence of this additional stiffness on the global response, two finite element

models are built for a comparative study of a reinforced concrete beam under
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(a) section of the beam (b) complete 3D mesh

Fig. A.19. Beam mesh.

flexion. The dimensions of the beam are 0.2m/0.2m/2m. Four reinforcing steel

bars of a diameter of 10mm are symmetrically distributed in the beam section.

Transversal reinforcing steel stirrups of of a diameter of 10mm are distributed

every 100mm in the length of the beam. The concrete cover is taken equal to

20mm. The first finite element model (AS) is constructed by imposing dislpace-

ment compatibility between steel and concrete meshes. The second finite element

model (NC) is constructed in a way that every single node of different elements

coincides with the nodes of the other elements. Therefore, for geometrical conve-

nience the steel bars are modelled by a rectangular section. The mesh of the beam

is presented in Fig. A.19.

The beam is considered fixed on its edge and on the other edge a displacement

controlled flexural load is applied as a linear distribution of axial diplacements,

varying according to the distance of each node from the centroid of the section.

The global response in terms of moment - rotation is obtained for both cases and

is shown in Fig. A.20. It is found that the influence of the additional stiffness of
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the first type of modeling (AS) on the global response of the beam can be ignored.

Fig. A.20. Comparison of global responses; AS: modeling technique providing an
additional stiffness and NC: modeling technique where the nodes of different
components coincide

Appendix B. Comparison of different meshes

In order to optimize computational time, a comparison between the numerical

results obtained with different mesh refinements with reference to the experimen-

tal data is shown hereafter (S1 test). The loading program of S1 is presented in

Table B.14. The parameters for the concrete constitutive law are listed in Table 2

and Table B.15 and for steel in Table 4. Two meshes of 10560 (Fig. B.21) and

31560 (Fig. B.22) 3D finite elements are adopted. At the section, the finite el-

ement size is 0.025m for the coarse mesh and 0.0125m for the fine mesh. The

two meshes provide similar results as shown in Fig. B.23. All calculations are
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Test Specimen f ′
c N/(Acf

′
c) Load Path

S1 29.0 0.12

Table B.14. Test specimen S1, compressive strength, applied axial load and transversal
load (schematically).

therefore conducted with the coarse mesh.

Parameter σc1 σc2
Description Stress of point 1 Stress of point 2

SI Unit MPa MPa
S1 -25.4 -24.4

Table B.15. RC columns: parameters for concrete (varying for each test).

(a) section of the
column

(b) section of the
column (c) 3D mesh

Fig. B.21. Coarse mesh.

Appendix C. Comparison of different analytical expressions at failure (2nd

characteristic state) for the RC sections M1, M2 and M4

2D sections of the failure envelope in the moment - axial force, shear force -

moment and shear force - axial force planes, together with the data obtained by
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(a) section of the
column

(b) section of the
column (c) 3D mesh

Fig. B.22. Fine mesh.

Fig. B.23. Test S1: comparison of the responses of the coarse and fine meshes with the
experimental results.

the numerical simulations and the interpolated data for the RC section M1 are

presented in Figs. C.24, C.25, C.26, for the section M2 in Figs. C.27, C.28, C.29

and for the section M4 in Figs. C.30, C.31, C.32.

As stated in section 6.3, polynomial expressions of degree 6 ( f6) give better

approximations of the failure envelopes. For the RC section M1, the precision of

the resolution of the sum of squares convex optimization problem is 5.9e−7 for

the polynomial of degree 4 ( f4) and 5.1e−9 for the polynomial of degree 6 ( f6).
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For the RC section M2, the precision is 1.1e−6 for the polynomial of degree 4 and

5.1e−10 for the polynomial of degree 6 and for the RC section M4, the precision

is 1.2e−7 for the polynomial of degree 4 and 5.8e−10 for the polynomial of

degree 6.
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(a) V̄ =0 (b) V̄ =0.4 (c) V̄ =-0.5

Fig. C.24. M1 section: Moment - axial force interaction diagrams obtained by
polynomials f4, f6 compared to data by numerical simulations and interpolated points.

(a) N̄=0 (b) N̄=0.1 (c) N̄=-0.4

Fig. C.25. M1 section: Moment - shear force interaction diagrams obtained by
polynomials f4, f6 compared to data by numerical simulations and interpolated points.

(a) M̄=0 (b) M̄=0.4 (c) M̄=-0.2

Fig. C.26. M1 section: Axial force - shear force interaction diagrams obtained by
polynomials f4, f6 compared to data by numerical simulations and interpolated points.
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(a) V̄ =0 (b) V̄ =0.4 (c) V̄ =-0.5

Fig. C.27. M2 section: Moment - axial force interaction diagrams obtained by
polynomials f4, f6 compared to data by numerical simulations and interpolated points.

(a) N̄=0 (b) N̄=0.1 (c) N̄=-0.4

Fig. C.28. M2 section: Moment - shear force interaction diagrams obtained by
polynomials f4, f6 compared to data by numerical simulations and interpolated points.

(a) M̄=0 (b) M̄=0.4 (c) M̄=-0.2

Fig. C.29. M2 section: Axial force - shear force interaction diagrams obtained by
polynomials f4, f6 compared to data by numerical simulations and interpolated points.
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(a) V̄ =0 (b) V̄ =0.4 (c) V̄ =-0.5

Fig. C.30. M4 section: Moment - axial force interaction diagrams obtained by
polynomials f4, f6 compared to data by numerical simulations and interpolated points.

(a) N̄=0 (b) N̄=0.1 (c) N̄-=0.4

Fig. C.31. M4 section: Moment - shear force interaction diagrams obtained by
polynomials f4, f6 compared to data by numerical simulations and interpolated points.

(a) M̄=0 (b) M̄=0.4 (c) M̄=-0.2

Fig. C.32. M4 section: Axial force - shear force interaction diagrams obtained by
polynomials f4, f6 compared to data by numerical simulations and interpolated points.
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Appendix D. 1st and 2nd characteristic state in 3D standardized space for

the RC sections M1, M2 and M4

In this Appendix both characteristic states of degree 6 in the standardized 3D

space for the sections M1, M2 and M4 are presented in Fig. D.33, Fig. D.34 and

Fig. D.35 respectively.

Fig. D.33. M1 section: 1st and 2nd characteristic states in 3D standardized space.
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Fig. D.34. M2 section: 1st and 2nd characteristic states in 3D standardized space.
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Fig. D.35. M4 section: 1st and 2nd characteristic states in 3D standardized space.
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Appendix E. Comparison with existing interaction diagrams from the Eu-

rocode for the RC sections M1, M2 and M4

In this Appendix comparisons of the failure surfaces (obtained by numerical

simulations) to the ones obtained by applying the methodology found in Eurocode

are presented for the RC sections M1, M2 and M4 in Fig. E.36, Fig. E.37 and

Fig. E.38 respectively.

Fig. E.36. Moment - axial force interaction diagram for M1 RC section. Comparison to
the one obtained by the method in Eurocode with and without the appplication of the
security coefficients.
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Fig. E.37. Moment - axial force interaction diagram for M2 RC section. Comparison to
the one obtained by the method in Eurocode with and without the appplication of the
security coefficients.

Fig. E.38. Moment - axial force interaction diagram for M4 RC section. Comparison to
the one obtained by the method in Eurocode with and without the appplication of the
security coefficients.
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