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Introduction

Interaction diagrams are functions that define the acceptable combinations of generalized forces' components (e.g. moment, shear force and axial force) of a structural member. Of particular interest in Reinforced Concrete (RC) design they are often constructed using limit analysis. To characterize the combination of axial force and bending moment limit states, in the Eurocode [START_REF]Eurocode, Eurocode 2: Design of concrete structures: Part 1-1: General rules and rules for buildings[END_REF] a suitable set of admissible loadings, is identified for a given RC structure and a convex hull of them is constructed adopting the so-called lower bound approach. More specifically, steel is described by an elastic perfectly plastic constitutive law, symmetric in traction and compression, while concrete has zero tension resistance and follows a parabolic curve in compression. A rectangular distribution of the normal stress is assumed, multiplied by a correction factor. Eurocode [START_REF]Eurocode, Eurocode 2: Design of concrete structures: Part 1-1: General rules and rules for buildings[END_REF] provides also interaction diagrams for biaxial bending and axial loading and for shear force and torsion but not for axial force, shear force and bending moment.

In the framework of limit analysis the upper bound approach is also frequently used which provides an upper bound of a combination of the limit loadings, see e.g. [START_REF] Salenc ¸on | Calcul à la rupture et analyse limite[END_REF]. The definition of limit loading in this case is based on a global energetic criterion which compares the power dissipated along a plastic process to the power of external forces. It is typically used introducing kinematically admissible velocity fields exhibiting a jump through the body which is therefore separated into two blocks having a relative motion one with respect to the other. If a kinematic admissible mechanism can be found for which the work of the external loads exceeds the internal work, then the structure collapses and the load computed on the basis of the assumed mechanism is greater than or equal to the true failure load. The limit load is determined by searching for the least upper bound for loads inducing collapse. In literature, this method is used to study failure of beams and plates.

Koechlin [START_REF] Koechlin | Modèle de comportement membrane-flexion et critère de perforation pour l'analyse de structures minces en béton armé sous choc mou[END_REF] introduced a global failure criterion for RC beams considering coupled loading of axial force and bending moment. This criterion was extended to plates by accounting for combination of membrane forces and bending moments.

In a subsequent work, Koechlin [START_REF] Koechlin | Failure criterion for reinforced concrete beams and plates subjected to membrane force, bending and shear[END_REF] derived a failure criterion for beams submitted to a combination of axial force, shear force and bending moment.

It is possible to construct interaction diagrams by numerical methods or combining analytical and numerical methods. Elachachi [START_REF] Elachachi | Sur l'elaboration d'une methode simplifiee d'analyse des structures de genie civil par macro-elements adaptes aux constructions composites et endommageables[END_REF] used a multi-fiber beam finite element model to reproduce the bending moment -axial force interaction diagram for a reinforced concrete structure (for zero shear force) and constructed the moment -shear force diagram for zero axial force.

Vecchio and Collins [START_REF] Vecchio | Predicting the response of reinforced concrete beams subjected to shear using modified compression field theory[END_REF] combined analytical and numerical approaches. The analytical framework is based on the Modified Compression Field Theory (MCFT), formulated for in-plane stress conditions [START_REF] Vecchio | The modified compression-field theory for reinforced concrete elements subjected to shear[END_REF] that relates average stress to average strains in a cracked RC element, satisfying compatibility and equilibrium requirements. The authors present interaction diagrams for shear force and bending mo-ment for different axial loads and interaction diagrams for shear force and axial force.

Rahal [START_REF] Rahal | Shear strength of reinforced concrete: Part 1-membrane elements subjected to pure shear[END_REF] proposed a simplification of the MCFT assuming a parabolic stressstrain relationship for concrete in compression and provided a graphical method to compute the ultimate shear strength of members. In a subsequent work [START_REF] Rahal | Shear strength of reinforced concrete: Part ii-beams subjected to shear, bending moment, and axial load[END_REF], the author extended the method to beams under combined shear, bending and axial load.

Nguyen [START_REF] Nguyen | Development of an enhanced finite element model for reinforced concrete memebers subjected to combined shear-bending-torsion actions[END_REF] constructed interaction diagrams for the following loading combinations: bending moment and torsion, bending moment and shear force, coupled shear force -bending moment -torsion. The author developed a 3D multi-fiber beam element that takes into account warping. The cross-section is divided into three zones (named 1D, 2D and 3D) according to the direction of transversal reinforcement and the stress state.

Carpinteri et al. [START_REF] Carpinteri | Size-scale effects on interaction diagrams for reinforced concrete columns[END_REF] studied the influence of size scale effects on the moment -axial force interaction diagrams using a numerical step-by-step approach based on the integrated Cohesive/Overlapping Crack Model. Constitutive modeling of concrete is different in compression (Overlapping Crack Model with fictitious interpenetration) and tension (Cohesive Crack Model with fictitious crack). Stressdisplacement relationships are adopted for the post-peak behavior to avoid scale dependency.

In the following, we present 3D interactions diagrams for symmetrically reinforced concrete square sections constructed using 3D non-linear finite element calculations without adopting any kinematic assumptions and that take into con-sideration an accurate description of the constitutive modeling of the materials and stress redistributions . The contribution of this work relies on estimating the ultimate resistance of a RC section which is different than the Ultimate Limit State (ULS) found in the design codes. The interaction diagrams are expressed in terms of generalized forces (axial force, bending moment and shear force). Another advantage of the numerical simulations is that access is provided to any intermidiate state of the response during loading and thus they allow to identify two characteristic states: the first characteristic state corresponds to the elastic limit of the reinforcement bars (while concrete exhibits a non-linear behavior) and the second characteristic state to the peak values of the generalized forces generalized displacements curves. The purpose of the identification of these characteristic states is to use them in a future work for the development of a macro-element for reinforced concrete beam and columns, in the light of what has been already done for example for shallow foundations ( [START_REF] Nova | Settlements of shallow foundations on sand[END_REF], [START_REF] Grange | A macro-element to simulate 3d soilstructure interaction considering plasticity and uplift[END_REF], [START_REF] Cremer | Elaboration of a ssi macro-element with uplift of shallow foundation[END_REF]) and piles ( [START_REF] Li | Numerical study of the 3d failure envelope of a single pile in sand[END_REF], [START_REF] Li | A hypoplastic macroelement for single vertical piles in sand subject to three-dimensional loading conditions[END_REF], [START_REF] Li | A hypoplastic macroelement formulation for single batter piles in sand[END_REF]).

The article is structured as follows: section 2 presents the adopted 3D constitutive models for concrete and steel; in section 3 the 3D finite element model is validated with reference to the experimental results of a RC cantilever -type column submitted to complex loading [START_REF] Bousias | Load-path effects in column biaxial bending with axial force[END_REF]. After establishing the criteria for the two characteristic states, numerical interaction envelopes for a specific RC section are derived in section 4 and this procedure is repeated for the construction of numerical interaction envelopes for symmetrically reinforced concrete square sections with different reinforcement ratios in section 5. Analytical convex expressions of these surfaces are finally introduced in section 6 and a comparison with interaction diagrams form the Eurocode [START_REF]Eurocode, Eurocode 2: Design of concrete structures: Part 1-1: General rules and rules for buildings[END_REF] is proposed in section 6.6.

Constitutive models

Concrete

Concrete behavior is described by the 3D constitutive model developed by Faria et al. [START_REF] Faria | A strain-based plastic viscous-damage model for massive concrete structures[END_REF]. The model follows the damage mechanics framework and is coupled with plasticity to consider inelastic permanent strains in compression.

The 3D (effective) stress tensor is defined by:

σ (ε, ε p ) = D 0 : (ε -ε p ) (1) 
where D 0 is the fourth-order isotropic linear elastic constitutive matrix, ε is the strain tensor and ε p is the plastic strain tensor. Stress contributions due to tension or compression are expressed by spliting the effective stress tensor into tensile σ + and compressive σcomponents:

σ + = ∑ i ⟨ σi ⟩p i ⊗ p i (2) 
σ -= σ -σ + ( 3 
)
where σi is the i th principal stress, p i is the unit vector corresponding to the i th principal direction, ⟨•⟩ are the Macaulay brackets and indices (+) and (-) correspond to positive and negative entities.

Even though it does not account for permanent strains during tension, the model is able to reproduce the differences in the behavior in tension and compression using two scalar damage variables which are assumed to correspond to independent processes. Two damage criteria are considered:

τ+ = σ + : D -1 0 : σ + (4) τ-= √ 3 3 KI 1 + 2J 2 (5) 
where τ+ and τare the tensile and compressive equivalent stress respectively, The unilateral effect, also known as stiffness recovery, takes place as the load changes sign and results in tensile cracks' closure and gradual compressive stiffness recovery. This model takes into account the unilateral effect in a simplified way (no permanent strains during traction unloading and no progressive stiffness recovery).

I
The evolution laws for the damage variables in tension and in compression are given by:

d + = G + (r + ) = 1 - r + 0 r + e A + (1-r + /r + 0 ) (6) 
d -= G -(r -) = 1 - r - 0 r -(1 -A -) -A -e B -(1-r -/r - 0 ) (7) 
where r + and r -are the current damage thresholds, r + 0 and r - 0 are the elastic thresholds, A + controls the softening response in tension and A -and B -define the non-linear part of the response in compression.

The plastic strain tensor rate in compression is given by:

ε p = β EH( ḋ-) ⟨ σ : ε⟩ σ : σ D -1 0 : σ (8)
where β ≥ 0 is a material parameter which controls the rate intensity of plastic deformation and H is the Heaviside function. The consideration of plastic strains during compression and of the unilateral effect makes the constitutive law appropriate for cyclic loading.

Mesh objectivity (in tension but not in compression) is taken into account via an energy type approach [START_REF] Hillerborg | Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[END_REF] that requires that the tension softening branch (parameter A + ) is calibrated according to the tensile fracture energy and a geometrical characteristic length:

A + = G f E l ch ( f + 0 ) 2 - 1 2 -1 ≥ 0 (9)
where G f is the tensile fracture energy, E is the Young's modulus, f + 0 is the tensile elastic limit, l ch is a geometrical characteristic length computed as 3 √ ∆V with ∆V the finite element volume in 3D simulations. Although this approach is not able to regularize the results in the local level, results in terms of forces and displacements are less sensitive to the finite element mesh discretization [START_REF] Bažant | Crack band theory for fracture of concrete[END_REF]. From the latter, it can be seen that the constitutive law reproduces satisfactorily the biaxial strength of concrete and this for all biaxial loading conditions. 

Steel

The classical 3D Von Mises elastoplastic law is considered for the reinforcement bars. A linear kinematic hardening is adopted to capture the Bauschinger effect observed during cyclic loading. 

Structural model validation: a reinforced concrete column under complex loading

In order to validate the 3D finite element model used in section 4 to construct the interaction diagrams, the reinforced concrete cantilever -type columns, studied experimentally by Bousias et al. [START_REF] Bousias | Load-path effects in column biaxial bending with axial force[END_REF] under various loading combinations, are simulated hereafter. During this campaign the researchers studied the behavior of twelve identical columns under cyclic uniaxial or biaxial flexure with constant or time varying axial load. The only test variable was the load path and the concrete compressive strength.The specimens were similar to those tested by Gutierrez et al. [START_REF] Gutierrez | Experimental studies of loading rate effects on reinforced concrete columns[END_REF]. The geometry of the specimens is represented in Fig. 3. 3D volumetric finite elements are used for the numerical simulations with the code Cast3M [START_REF]Cast3M, Description of the finite element code cast3m[END_REF]. All the components of the reinforced concrete column are discretized; concrete, longitudinal reinforcing steel bars and stirrups. Perfect bonding is assumed between concrete and steel. The finite element mesh of each component is constructed independently. Displacement compatibility of the different components is ensured by forcing every point of the steel mesh to follow a linear combination of the nodal displacements of the concrete mesh. This approach results into an additional structural stiffness, which in our case is proved to be negligible (see Appendix A). A mesh of 10560 3D finite elements is adopted and this choice is explained in further details in Appendix B. he Newton-Raphson algorithm is adopted at the global level for the resolution of the non-linear system of equations. The radial return algorithm and the backward-Euler scheme is used for the integration of the constitutive law.

Test Specimen f ′ c N/(A c f ′ c ) Load Path S6 25 
During the experimental campaign, the columns were built in a heavily reinforced foundation base. The numerical model is considered therefore fixed at the bottom. The choice of 3D numerical models for concrete and steels allows considering complex indirect phenomena such as the confinement of concrete inside the stirrups, which leads to an increased concrete strength.

The S6 and S8 tests are simulated hereafter. Loading is applied on the top of the column in two steps; firstly, the axial compressive load is applied as a force of negative sign in the z direction and it is equally distributed to all the nodes of the section at the top. Secondly, the transversal load along x, y is applied as a displacement homogeneous for all the nodes of the section at the top. The loading program of S6 and S8 is presented in Table 1.

The parameters for the concrete constitutive law are listed in Table 2 and Table 3 and for steel in Table 4. Calibration of the non-linear concrete response in compression is achieved by selecting two points of the curve representing the uniaxial response in compression; point 1 (ε c1 ,σ c1 ) and point 2 (ε c2 ,σ c2 ). The selected points vary for every test simulated resulting to different resistances in compression according to the experimental values. The reference stress σ cp and strain ε cp are used for the determination of the material parameter β as shown in Eq. 10 [START_REF] Faria | Avaliac ¸ão do comportamento sísmico de barragens de betão através de um modelo de dano contínuo[END_REF]:

β = (Eε cp -σ cp ) f cu (Eε cp -f c0 )(σ cp + f cu ) (10) 
As stated in section 2.1 β is a material parameter which controls the rate intensity of plastic deformation. As the ratio σ cp /ε cp increases, β decreases and the permanent plastic strains during unloading are less important. Conversely, as the ratio σ cp /ε cp decreases, β increases and the permanent plastic strains during unloading are more significant. When β tends to zero the model turns to a purely damage model in compression and the coupling to plasticity vanishes.

Fig. 4 and Fig. 5 

Interaction diagrams for a symmetrically RC square section

For the construction of the interaction diagrams the validated numerical model of section 3 is adopted. The column is again considered fixed at the bottom and specific displacement loading combinations, described in section 4.2 are applied on its free top surface. Interaction diagrams are presented for different characteristic states, detailed hereafter.

Characteristic states

The interaction diagrams presented in this article are defined for the following two characteristic states:

• 1 st characteristic state: corresponds to the elastic domain of the reinforcement steel bars (identical in tension and compression) fixed to 460MPa.

• 2 nd characteristic state (termed hereafter 'failure'): corresponds to the peak values of the generalized forces-generalized displacement curves. More specifically, for the combined flexion to tension area, the failure criterion, is given in terms of maximum longitudinal steel strain equal to 7.5%, see also [START_REF]Eurocode, Eurocode 2: Design of concrete structures: Part 1-1: General rules and rules for buildings[END_REF]. For the combined flexion to compression region, failure is reached at the maximum axial force (absolute value). This choice is made because the imposition of a criterion in terms of concrete maximum compression stress leads to very conservative estimations, as the maximum axial force is reached after several material points have attained their ultimate resistance.

The driving idea behind the choice of those two characteristic states is that steel controls the behavior of the reinforced concrete composite section when tension is predominant, while in compression, concrete crushing is considered to limit the buckling risk.

Loading program

The displacement controlled loading program follows the swipe and radial tests commonly used in geotechnical engineering, see for example [START_REF] Faccioli | TRISEE: 3D site effects and soil-52 foundation interaction in earthquake and vibration risk evaluation[END_REF], [START_REF] Grange | A macro-element for a circular foundation to simulate 3d soil-structure interaction[END_REF]. The following loading conditions are applied:

• 1D loading: pure tension and pure compression in order to obtain the uniaxial section resistance (Fig. 6). • 2D loading: combined flexion with axial loading. The procedure is repeated in two ways; for the 2D swipe tests, an axial load is first applied followed by a flexure load (Fig. 7). The same procedure is repeated for different levels of axial loading. The axial load is applied similarly to the case of 1D loading, while the flexural load is applied as a linear distribution of axial displacments, see Fig. 7. For the radial displacemet controlled tests, the axial and flexural loads are applied simultaneously (Fig. 8) by keeping their ratio constant. The procedure is repeated for different ratios. The moment -axial force interaction diagram is obtained by both procedures and the results are compared to verify the influence of the loading path, which is found negligible. 

Results

The data obtained by numerical simulations correspond to the points of the elastic domain of the reinforcing steel (Fig. 10) and to the discrete failure points (Fig. 11) respectively. By the application of uniaxial, 2D and 3D loading conditions the moment -axial force -shear force interaction diagrams are produced and correspond to the inner section of the column, at 0.3m from the fixed edge. This section is found to be the most charged, is sufficiently far from the fixed edge (its distance from the fixed edge is greater than the largest cross-sectional dimension, following the Saint-Venant's Principle) and its planeness is verified. Numerical simulations of this member under pure flexion have also shown that after this length (0.3m) the results in terms of moment -curvature are homogeneous for all the sections. It is found that as the reinforcement ratio increases, the failure domain expands, but the form remains similar.

Analytical expressions of the interaction diagrams

Background

Analytical expressions for the interaction diagrams are very useful for the practitioners to efficiently design reinforced concrete sections. For a robust numerical implementation, these functions should be convex. Suryasentana et al. [START_REF] Suryasentana | A systematic framework for formulating convex failure envelopes in multiple loading dimensions[END_REF] proposed a systematic framework employing a restricted set of sum of square convex polynomials for the construction of convex and sufficiently regular functions with the following characteristics: continuity, differentiability with a continuous gradient and Hessian, absence of singularities in the function and in its derivatives and the fact that they always have real values. Odd degree polynomials are excluded because of their lack of convexity.

The coefficients of the analytical expression of the failure envelope are computed through a convex optimization problem which minimizes the objective function:

F = n ∑ i=1 ( f ( Xi data ) -1) 2 (11) 
subjected to constraint: Ȳ ⊤ ∇ 2 f ( X) Ȳ is sum of squares for all X, Ȳ ∈ domain of f , which guarantees that the Hessian ∇ 2 f ( X) of f is positive semi-definite. In Eq. 11 Xi data is a vector of a discrete failure loading combination points and n is the number of failure points.

In this work, this procedure is adopted for the identification of the coefficients of the analytical expression and the sum of squares convex optimization problem is solved using YALMIP, a toolbox developed by Lofberg [START_REF] Lofberg | Yalmip: A toolbox for modeling and optimization in matlab[END_REF] in Matlab together with the SeDuMi semi-definite solver [START_REF] Sturm | Using sedumi 1.02, a matlab toolbox for optimization over symmetric cones[END_REF].

Computation of the analytical expression at failure (2 nd characteristic state)

The procedure to compute the analytical expressions of the interaction diagram for the limit loading has as follows:

At first, the data of the numerical simulations (section 5) are enriched in order to be used afterwards as input for the resolution of the sum of squares convex optimization problem. In particular, every set of data of the numerical simulations (for sections M1, M2, M3, M4) are introduced in the following homogeneous polynomial expression of degree 6 (found to provide a good fit) in order to obtain with a non-linear least squares method the coefficients of the polynomial expression for each RC section tested:

f 6 = 6 ∑ i, j,k=0 |i+ j+k|=6 a I(i, j,k) Ni M j V k -1 (12) 
This analytical expression, for which the coefficients are calculated, is not guaranteed to be convex. The next step is to use this analytical expression as a tool to obtain further data points, referred as 'interpolated points' from now on.

These interpolated points are used as input for the resolution of the sum of squares convex optimization problem [START_REF] Suryasentana | A systematic framework for formulating convex failure envelopes in multiple loading dimensions[END_REF]. More specifically, the interpolated points are standardized in a way that for uniaxial loading conditions their values are 1 (for the positive loading direction) and -1 (for the negative loading direction).

For every set of data (sections M1, M2, M3, M4) two distinct sum of squares convex failure envelopes of the standardized loading variables of degree 4 and 6 are then selected, for which the coefficients need to be identified (Eq. 13 -Eq. 12).

f 4 = 4 ∑ i, j,k=0 |i+ j+k|=4 a I(i, j,k) Ni M j V k -1 ( 13 
)
The coeffcients of all monomials containing a single loading variable are 1 as long as the uniaxial loading conditions are applied.

Finally, the objective function is minimized, subjected to the condition of positive semi-definite Hessian. Thus, the coefficients of all monomials are obtained for every set of data (sections M1, M2, M3, M4). The coefficients of the monomials for all the tested sections are presented in Tables 5-8 for the expression of degree 4 and in Tables 9-12 for the expression of degree 6. It can be clearly seen that the polynomial of degree 6 gives a better approximation of the failure envelope. In particular the sum of squares convex problem is solved for the RC section M3 with an overall precision of 1.1 e-6 for the polynomial of degree 4 and a precision of 9.4 e-10 for the polynomial of degree 6. The correponding figures for the sections M1, M2 and M4 can be found in Appendix C where one can observe that the conclusions are similar. Fig. 16 presents the failure envelope of degree 6 in the 3D space of the RC section M3.

a

Computation of the analytical expression of the domain of elasticity (1st characteristic state)

The procedure to compute the analytical expression of the interaction diagram for the 1 st characteristic state is different than the one of section 6.2. In particular, the interaction diagram for the 1 st characteristic state (Fig. 10) presents similar form to the one for the 2 nd characteristic state (Fig. 11) but the centers of the two surfaces are offset to each other. Thus, the proposed analytical expression for the 1 st characteristic state is the same as Eq. 12 but the standardized variables N, M, V for the 1 st characteristic state is given by Eq. 14 for which the coefficients of all monomials are already calculated and presented in Tables 9-12 for the RC sections M1, M2, M3 and M4. Eurocode without applying the security coefficients is also provided.

f 6 = 6 ∑ i, j,k=0 |i+ j+k|=6 a I(i, j,k) N -N0 N * i M -M0 M * j V -V0 V * k -1 (14) 
It can be observed that all surfaces obtained by finite element simulations and by the methodology described in Eurocode present similar forms. Furthermore, as expected, the surface obtained by Eurocode underestimates the points of failure.

More specifically, for the combined flexion to traction area the ultimate longitudinal strain of the steel bars is fixed to 7.5%, as stated before. This criterion allows for obtaining a less conservative interaction diagram, compared to the one provided by the methodology in Eurocode which (i) considers as an ultimate limit the point at which steel reaches its elastic limit in tension and (ii) ignores the tensile strength of concrete. The choice of such a less conservative criterion can be beneficial for applications in civil engineering as it can offer the option of a more economical design of reinforced concrete structures.

For the combined flexion to compression region, the numerically produced surface presents a good fit to the curve obtained by the method of Eurocode without application of security coefficients. 

Conclusions

In this article a numerical methodology is presented on the construction of failure envelopes for given symmetrically RC square sections with various reinforcement ratios. Suitable constitutive models are first chosen for the description of the material behavior, both for concrete and steel. The choice of a 3D finite element modeling leads to more precise results as there are no kinematical assumptions as in classical beam finite element calculations. Finally, a methodogy is provided to derive analytical expressions of two characteristics states based on the numerical results.

Further investigating factors, such as steel strength, concrete compressive strength, consideration of non-perfect bonding between concrete and steel, ratio and posi- As stated in section 6.3, polynomial expressions of degree 6 ( f 6 ) give better approximations of the failure envelopes. For the RC section M1, the precision of the resolution of the sum of squares convex optimization problem is 5.9 e-7 for the polynomial of degree 4 ( f 4 ) and 5.1 e-9 for the polynomial of degree 6 ( f 6 ). 

  1 and J 2 are the first invariant of the compressive stress tensor and the second invariant of the deviatoric compressive stress tensor respectively and K is a material parameter conceived to fit the ratio of 2D and 1D compressive strengths σ c,2D /σ c,1D in experimentally observed values (1.16-1.2). The model accounts for the increase of concrete strength when biaxial or triaxial compressive loading conditions are considered.

Fig. 1

 1 Fig. 1 depicts the constitutive model during a 1D tension-compression cyclic test, while Fig. 2 the comparison with the biaxial plane stress experiments of [22].

Fig. 1 .

 1 Fig. 1. Cyclic behavior during 1D cyclic test.

Fig. 2 .

 2 Fig. 2. Comparison of the numerical and experimental biaxial strength of concrete normalized by the uniaxial concrete compressive strength f c [22].

Fig. 3 .

 3 Fig. 3. RC columns: geometry, [23].

  and not the cyclic behavior, the level of accuracy, as far as the peak of the response is concerned, is judged satisfactory; the 3D finite element model correctly reproduces the global behavior of the column in terms of forces -displacements and this for all the loading combinations and tests.

(a)Fig. 4 .Fig. 5 .

 45 Fig. 4. Test S6: Numerical vs. experimental results.

Fig. 6 .

 6 Fig. 6. Uniaxial loading.

Fig. 7 .

 7 Fig. 7. 2D swipe test: I: axial loading, II: radial bending loading.

Fig. 8 .

 8 Fig. 8. 2D radial test: coupled bending -axial loading.

Fig. 9 .

 9 Fig. 9. 3D loading: I: axial loading, II: radial bending and shear loading by keeping constant the ratio u bending u transversal

  Fig. 10. 1 st characteristic state ('elastic domain'): Interaction diagram (discrete points) obtained by numerical simulations.

5 .

 5 Fig. 11. 2 nd characteristic state ('failure'): Interaction diagram (discrete points) obtained by numerical simulations.

Fig. 12 .

 12 Fig. 12. 2 nd characteristic state ('failure'): Interaction diagrams (discrete points) for sections with different reinforcement ratios obtained by numerical simulations.

Fig. 13 .

 13 Fig. 13. M3 section: Moment -axial force interaction diagrams obtained by polynomials f 4 , f 6 compared to data by numerical simulations and interpolated points.

Fig. 14 .

 14 Fig. 14. M3 section: Moment -shear force interaction diagrams obtained by polynomials f 4 , f 6 compared to data by numerical simulations and interpolated points.

Fig. 15 .

 15 Fig. 15. M3 section: Axial force -shear force interaction diagrams obtained by polynomials f 4 , f 6 compared to data by numerical simulations and interpolated points.

Fig. 16 .

 16 Fig. 16. Failure envelope in 3D standardized space for the RC section M3.

Fig. 17 .

 17 Fig. 17. M3 section: 1 st and 2 nd characteristic states in 3D standardized space.

Fig. 18 .

 18 Fig. 18. Moment -axial force interaction diagram for M3 RC section. Comparison to the one obtained by the method in Eurocode with and without the appplication of the security coefficients.

  Fig. A.19. Beam mesh.

  Fig. B.21. Coarse mesh.

Fig. B. 23 .

 23 Fig. B.23. Test S1: comparison of the responses of the coarse and fine meshes with the experimental results.

Fig. C. 24 .

 24 Fig. C.24. M1 section: Moment -axial force interaction diagrams obtained by polynomials f 4 , f 6 compared to data by numerical simulations and interpolated points.

Fig. C. 25 .

 25 Fig. C.25. M1 section: Moment -shear force interaction diagrams obtained by polynomials f 4 , f 6 compared to data by numerical simulations and interpolated points.

Fig. C. 26 .

 26 Fig. C.26. M1 section: Axial force -shear force interaction diagrams obtained by polynomials f 4 , f 6 compared to data by numerical simulations and interpolated points.

Fig. C. 27 .

 27 Fig. C.27. M2 section: Moment -axial force interaction diagrams obtained by polynomials f 4 , f 6 compared to data by numerical simulations and interpolated points.

Fig. C. 28 .

 28 Fig. C.28. M2 section: Moment -shear force interaction diagrams obtained by polynomials f 4 , f 6 compared to data by numerical simulations and interpolated points.

Fig. C. 29 .

 29 Fig. C.29. M2 section: Axial force -shear force interaction diagrams obtained by polynomials f 4 , f 6 compared to data by numerical simulations and interpolated points.

Fig. C. 30 .

 30 Fig. C.30. M4 section: Moment -axial force interaction diagrams obtained by polynomials f 4 , f 6 compared to data by numerical simulations and interpolated points.

Fig

  Fig. C.31. M4 section: Moment -shear force interaction diagrams obtained by polynomials f 4 , f 6 compared to data by numerical simulations and interpolated points.

Fig

  Fig. C.32. M4 section: Axial force -shear force interaction diagrams obtained by polynomials f 4 , f 6 compared to data by numerical simulations and interpolated points.

Fig. D. 34 .

 34 Fig. D.34. M2 section: 1 st and 2 nd characteristic states in 3D standardized space.

Fig. E. 37 .

 37 Fig. E.37. Moment -axial force interaction diagram for M2 RC section. Comparison to the one obtained by the method in Eurocode with and without the appplication of the security coefficients.

Fig. E. 38 .

 38 Fig. E.38. Moment -axial force interaction diagram for M4 RC section. Comparison to the one obtained by the method in Eurocode with and without the appplication of the security coefficients.

  

  

  

  

Table 1 .

 1 RC columns: test specimens, compressive strength, applied axial load and transversal load (schematically).

		.7	0.10
	S8	25.4	0.11

Table 2 .

 2 RC columns: parameters for concrete (constant for all the tests).

	Bousias et al.(1995). The obtained prediction accuracy can be certainly improved
	using a more advance 3D constitutive model istead of the classical 3D Von Mises
	constitutive model with linear kinematic hardening. The purpose of the work be-
	ing however the numerical computation of 3D interaction diagrams up to failure

present the numerical simulation results of the S6 and S8 tests. After concrete cracking and during alternate loads, the global response is mainly controlled by the reinforcement steel bars. The parameters for the steel constitutive law have been taken as reported in the experimental campaign of

Table 3 .

 3 RC columns: parameters for concrete (varying for each test).

	Parameter	Description	SI Unit Value
	E a	Young Modulus	GPa	180
	ν a	Poisson's ratio	-	0.3
	f y	Elastic stress limit	MPa	460
	H a	Kinematic hardening modulus	GPa	2.3

Table 4 .

 4 RC columns: parameters for steel.

Table 5 .

 5 M1 section: Coefficients of monomials for the failure envelope expression of degree 4.

	1	a 2	a 3	a 4	a 5
	1	0	5.7	0.01	1
	a 6	a 7	a 8	a 9	a 10
	0.01 -4.18 -0.01 -2.34 3.24
	a 11	a 12	a 13	a 14	a 15
	0.02 4.71 -0.01 -3.49	1
	a 1	a 2	a 3	a 4	a 5
	1	0	5.87	0	1
	a 6	a 7	a 8	a 9 a 10
	0.01 -5.26 -0.01 2.36 3.9
	a 11	a 12	a 13	a 14 a 15
	0.02 4.81 -0.02 -3.5	1

Table 6 .

 6 M2 section: Coefficients of monomials for the failure envelope expression of degree 4.

	a 1	a 2	a 3	a 4	a 5
	1	0	5.58 0.01	1
	a 6	a 7	a 8	a 9	a 10
	-0.01 -2.67 -0.03 -2.19 1.23
	a 11	a 12	a 13	a 14	a 15
	0.04 4.76 -0.01 -3.45	1

Table 7 .

 7 M3 section: Coefficients of monomials for the failure envelope expression of degree 4.

	a 1	a 2	a 3	a 4	a 5
	1	-0.01 5.88 0.02	1
	a 6	a 7	a 8	a 9	a 10
	0.01 -3.59 -0.06 -1.8 3.18
	a 11	a 12	a 13	a 14	a 15
	0.05 4.25 -0.03 -3.28	1

Table 8 .

 8 M4 section: Coefficients of monomials for the failure envelope expression of degree 4.

	a 1	a 2	a 3	a 4	a 5	a 6	a 7
	1	0	13.22 0.05 10.07 0.02	1
	a 8	a 9	a 10	a 11	a 12	a 13	a 14
	0.01	-9.44 -0.04 -10.43 -0.04 -3.39 6.79
	a 15	a 16	a 17	a 18	a 19	a 20	a 21
	-0.04 25.72 0.08 10.89 0.01 -17.33 -0.11
	a 22	a 23	a 24	a 25	a 26	a 27	a 28
	-15.40 4.56 0.07 12.65 -0.02	-5.5	1

Table 9 .

 9 M1 section: Coefficients of monomials for the failure envelope expression of degree 6.

	a 1	a 2	a 3	a 4	a 5	a 6	a 7
	1	0	14.03 0.03 12.26 0.02	1
	a 8	a 9	a 10	a 11	a 12	a 13	a 14
	0.01 -12.73	0	-17.97 -0.06 -3.34 8.29
	a 15	a 16	a 17	a 18	a 19	a 20	a 21
	-0.05 35.83 0.13 11.09	0	-22.46 -0.18
	a 22	a 23	a 24	a 25	a 26	a 27	a 28
	15.42 5.56	0.1	12.69 -0.02 -5.51	1

Table 10 .

 10 M2 section: Coefficients of monomials for the failure envelope expression of degree 6.

	a 1	a 2	a 3	a 4	a 5	a 6	a 7
	1	0.02 12.56 0.02 9.41 0.02	1
	a 8	a 9	a 10	a 11	a 12	a 13	a 14
	-0.02 -9.38 -0.01 -6.44 -0.06 -3.27 5.34
	a 15	a 16	a 17	a 18	a 19	a 20	a 21
	-0.03 10.68 0.09 11.17	0	-4.31 -0.11
	a 22	a 23	a 24	a 25	a 26	a 27	a 28
	-15.26 0.48 0.06 12.56 -0.01 -5.44	1

Table 11 .

 11 M3 section: Coefficients of monomials for the failure envelope expression of degree 6.In order to choose the analytical expression of the failure envelope for a given reinforced concrete section, in the following Figs. 13, 14, 15 we present 2D sections of the failure envelope in the moment -axial force, shear force -moment and shear force -axial force planes, together with the data obtained by the numerical simulations and the interpolated data for the RC section M3.

	6.3 Comparison of different analytical expressions at failure (2 nd characteristic
	state)

Table 12 .

 12 M4 section: Coefficients of monomials for the failure envelope expression of degree 6.

Table B .

 B [START_REF] Cremer | Elaboration of a ssi macro-element with uplift of shallow foundation[END_REF]. Test specimen S1, compressive strength, applied axial load and transversal load (schematically).

	Parameter	σ c1	σ c2
	Description Stress of point 1 Stress of point 2
	SI Unit	MPa	MPa
	S1	-25.4	-24.4

therefore conducted with the coarse mesh. Table B.15. RC columns: parameters for concrete (varying for each test).
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Each set of data points that correspond to the 1 st characteristic state (Fig. 10) are subsequenlty introduced in Eq. 14. The center ( N0 , M0 , V0 ) and the radii ( N * , M * , V * ) of the ellipsoid corresponding to the 1 st characteristic state are calculated by the resolution of a non-linear least squares optimization problem. The obtained values for the RC sections M1, M2, M3 and M4 are presented in Table 13. Fig. 17 presents both characteristic states of degree 6 in the 3D space for the RC section 6.5 Summary of the steps for the calculation of the analytical expressions of the two characteristic states

The general procedure for the derivation of the analytical expressions of the two characteristic states is briefly summarized in th following steps:

• enrichment of the data points of the 2 nd characteristic state from the numerical simulations

• standardization of the enriched data points of the 2 nd characteristic state tion of the longitudinal and transversal reinforcement, section geometry and shape should be examined in order to provide more complete research results. The 3D calculations being however extremely costly, as more than 1428000 core hours of computational time were necessary to obtain the presented interaction diagrams (the calculations took place using the supercomputer Liger of the Centrale Nantes SuperComputing Center. Liger is a BULL/Atos DLC720 cluster of 252 compute nodes and 14 visualization nodes with 24 cores per node and a total compute memory of 36608GB.), this can be the scope of future work.

Appendix A. About the additional stiffness

The chosen mesh discretization results to an additional stiffness. To verify the influence of this additional stiffness on the global response, two finite element models are built for a comparative study of a reinforced concrete beam under the first type of modeling (AS) on the global response of the beam can be ignored. 

Appendix B. Comparison of different meshes

In order to optimize computational time, a comparison between the numerical results obtained with different mesh refinements with reference to the experimental data is shown hereafter (S1 test). The loading program of S1 is presented in Table B.14. The parameters for the concrete constitutive law are listed in Table 2 and Table B.15 and for steel in Table 4. Two meshes of 10560 (Fig