Bogdan Chornomaz 
  
Bogdan Chornomaz On 
  
Ssp=rc 2022 Conjecture 
  
ON SSP=RC CONJECTURE

We discuss a conjecture that a finite lattice satisfies Sauer-Shelah-Perles inequality (is SSP) iff it is relatively complemented (RC). It is straightforward to prove that SSP implies RC and it is the other direction that is problematic. Our main advance in this direction is that a subset in an RC lattice, whose order-ideal of non-shattered elements has at most three minimal elements, satisfies the SSP inequality, that is, shatters at least as many elements as it has.

Introduction

The Sauer-Shelah-Perles (SSP) lemma [START_REF] Sauer | On the density of families of sets[END_REF][START_REF] Shelah | A combinatorial problem; stability and order for models and theories in infinitary languages[END_REF] was developed in the context of the Vapnik-Chervonenkis (VC) dimension. Recalling the corresponding terminology, let X be a finite set (we only consider finite sets, finite lattices, and so on) and F ⊆ 2 X . We say that F shatters Y ⊆ X iff for all Z ⊆ Y there is F ∈ F such that Y ∩ F = Z. The family of sets shattered by F is denoted by Str(F), and the size of the maximal set in Str(F) is called the VC-dimension of F. The original statement of the SSP lemma is then as follows Lemma 1 (SSP lemma, originally). If F ⊆ 2 X , |X| = n, has VC dimension at most d then

|F| ≤ n 0 + • • • + n d .
The form of the lemma that we will be dealing with is a generalization due to Pajor [START_REF] Pajor | Sous-espaces l n 1 des espaces de Banach[END_REF], from which Lemma 1 easily follows.

Lemma 2 (SSP). For any F ⊆ 2 X it holds |F| ≤ | Str(F)|.

Unsurprisingly, most applications of the lemma are in connection with VC dimension or its generalizations. The work of Vapnik and Chervonenkis [START_REF] Vapnik | The uniform convergence of frequencies of the appearance of events to their probabilities[END_REF] lies in the area of probability and statistics, and this direction remains active through, for example, applications to machine learning [START_REF] Blumer | Learnability and the Vapnik-Chervonenkis dimension[END_REF]. Shelah [START_REF] Shelah | A combinatorial problem; stability and order for models and theories in infinitary languages[END_REF] used a similar concept in model theory in the definition of theories with NIP (No Independence Property), and Sauer [START_REF] Sauer | On the density of families of sets[END_REF] used it in addressing a combinatorial problem by Erdős. Apart from those areas of application, VC dimension has been used in convex geometry [START_REF] Vershynin | Integer cells in convex sets[END_REF], computational complexity [START_REF] Alon | Sign rank versus Vapnik-Chervonenkis dimension[END_REF][START_REF] Hatami | Teaching dimension, VC dimension, and critical sets in Latin squares[END_REF][START_REF] Kremer | On randomized one-round communication complexity[END_REF], graph theory [START_REF] Cesa | A graph-theoretic generalization of the Sauer-Shelah lemma[END_REF], matrices with forbidden configurations [START_REF] Anstee | General forbidden configuration theorems[END_REF][START_REF] Anstee | Two refinements of the bound of Sauer, Perles and Shelah, and of Vapnik and Chervonenkis[END_REF], and formal context analysis [START_REF] Albano | Why concept lattices are large[END_REF].

A separate line of inquiry that deals with the SSP lemma itself rather than with VC dimension is the study of shattering-extremal set families, that is, families shattering the same number of sets as they have [START_REF] Bollobás | Reverse kleitman inequalities[END_REF][START_REF] Bollobás | Defect Sauer results[END_REF]. This approach has been applied to studying sample compression schemes [START_REF] Moran | Labeled compression schemes for extremal classes[END_REF], isometric embeddings of graphs [START_REF] Greco | Embeddings and the trace of finite sets[END_REF], convex geometries and meet-distributive lattices [START_REF] Chornomaz | Convex geometries are extremal for the generalized Sauer-Shelah bound[END_REF], hyperplane arrangements [START_REF] Gärtner | Vapnik-Chervonenkis dimension and (pseudo-) hyperplane arrangements[END_REF], and graph orientations [START_REF] Kozma | Shattering, graph orientations, and connectivity[END_REF]. We also mention the use of Gröbner bases in a fast algorithm for recognizing shattering-extremal classes [START_REF] Rónyai | Some combinatorial applications of gröbner bases[END_REF].

The definition of shattering can be easily reformulated in terms of lattices, namely, for a lattice L and F ⊆ L, F shatters y ∈ L iff for all z ≤ y there is f ∈ F such that y ∧ f = z. Again, Str(F ) ⊆ L is the set of all elements shattered by F . It is trivial to show that Str(F ) is an order-ideal. We say that a lattice L satisfies the SSP property if the conclusion of Lemma 2 holds for it; that is, if |F | ≤ | Str(F )| for every F ⊆ L.

Lemma 2 thus states that every boolean lattice is SSP. Apart from those, all lattices L with nonvanishing Möbius function satisfy SSP (we say that L has NMF). This includes, for example, all geometric (atomic and semimodular) lattices. The NMF condition is due to Babai and Frankl [START_REF] Frankl | Linear algebra methods in combinatorics[END_REF] and, although neat, it will not play a role in this paper. We refer the reader to either [START_REF] Cambie | A Sauer-Shelah-Perles lemma for lattices[END_REF] or [START_REF] Frankl | Linear algebra methods in combinatorics[END_REF] for the corresponding definition and result. On the other hand, the SSP property implies that the lattice is relatively complemented (we say that L is RC). The proof of this was given in [START_REF] Cambie | A Sauer-Shelah-Perles lemma for lattices[END_REF]. It is rather trivial and thus is omitted.

Lemma 3 (SSP ⇒RC). If a lattice satisfies SSP then it is RC.

Let us now recall the definition of an RC lattice. The smallest and the largest element in a lattice L are denoted by 0 L and 1 L respectively. If the lattice in question is clear, we will drop the underscripts and write simply 0 and 1. We say that x ∈ L is a complement of y ∈ L if x ∧ y = 0 and x ∨ y = 1. L is complemented iff every element in L has a complement and it is relatively complemented iff every interval in L is a complemented lattice. That is, L is relatively complemented iff for all x ≤ y ≤ z there is w in [x, z] = {u ∈ L | x ≤ u ≤ z} such that y ∧ w = x and y ∨ w = z. An alternative structural characterization of RC lattices by Björner [START_REF] Björner | On complements in lattices of finite length[END_REF] is immensely helpful in dealing with them.

Lemma 4 (Björner). A finite lattice is RC if and only if it does not contain a 3-element interval, that is, there are no two elements x < y such that there is a unique z satisfying x < z < y.

Here are some related results; again, we refer to [START_REF] Cambie | A Sauer-Shelah-Perles lemma for lattices[END_REF]:

• NMF condition is not necessary for SSP, that is, there are lattices whose Möbius function is zero on some intervals, which satisfy the SSP property; • A lattice L, which is not a 3-element interval itself, whose Möbius function is nonvanishing except for on [0, 1] interval, satisfies SSP; • NMF, SSP, and RC classes are closed under direct products. In particular, this implies that there are SSP lattices with Möbius function vanishing almost everywhere; • NMF and RC classes are closed under taking duals, we do not know if that is the case for SSP lattices. We were not able so far to construct an RC lattice that fails to be SSP, hence the conjecture:

Conjecture 1 (SSP=RC). A lattice is SSP if and only if it is RC.

In view of Lemma 3, it is sufficient to show that SSP inequality holds in any RC lattice.

The original proof of the SSP lemma is by inductive argument [START_REF] Sauer | On the density of families of sets[END_REF]. A related but slightly different approach is by shifting [START_REF] Bollobás | Defect Sauer results[END_REF][START_REF] Frankl | Shadows and shifting[END_REF], which turned out to be useful, for example, in dealing with Erdős matching conjecture [START_REF] Erdős | A problem on independent r-tuples[END_REF][START_REF] Erdős | Intersection theorems for systems op finite sets[END_REF][START_REF] Frankl | Proof of the erdős matching conjecture in a new range[END_REF]. A completely different proof is by using the dimensionality argument in linear algebra [START_REF] Frankl | On the number of sets in a null t-design[END_REF], the aforementioned NMF condition is one step away from it. Apart from generalizing the SSP condition to certain lattices, similar methods were used to generalize Frankl-Wilson and Ray-Chaudhuri-Wilson theorems about uniform set families with a small number of possible intersections to the lattice setup [START_REF] Noga Alon | Multilinear polynomials and Frankl-Ray-Chaudhuri-Wilson type intersection theorems[END_REF].

Despite our best efforts, neither of these three approaches seems to be applicable to RC lattices. Similarly, the available information about RC lattices, except for the characterization of Björner, shed little light on the SSP=RC conjecture. Of a tangential interest was a result of Dilworth [START_REF] Rp Dilworth | The structure of relatively complemented lattices[END_REF], which enables us to restrict our attention to simple RC lattices. We thus needed to develop an original direction of attack on the conjecture. The following theorem is the main result of this paper, its statement is indicative of our approach.

Theorem 1. In an RC lattice L every set F , whose antichain of minimal nonshattered elements has at most three elements, satisfies SSP inequality, that is,

|F | ≤ | Str(F )|.
We never prove Theorem 1 explicitly. Instead, it is a direct consequence of the following results, whose order also outlines our plan of attack on the SSP=RC conjecture in general:

• Lemma 5 in Section 2 shows that SSP ω ⇒ SSP, where SSP ω is a certain relaxation of SSP that has the advantage of being iterative. That is, SSP ω is a union of conditions SSP k , for k ∈ N. The somewhat specific statement of Theorem 1 comes from the fact that it effectively translates RC ⇒ SSP 3 statement to a "normal" language; • Lemma 7 in Section 3 that proves Theorem 1 in case the antichain of minimal non-shattered elements has at most two elements; • Theorem 2 in Section 4 that gives a sufficient condition for the SSP k condition in terms of RC graphs. We still call the corresponding condition SSP k ; • Finally, Theorem 4, stated in Section 11 and proven in Sections 11 and 12, proves SSP 3 for RC graphs.

This also outlines the structure of the paper on which we will now elaborate. Our approach involves two relaxations of the SSP property. The first one, SSP ω , which is a union of SSP k conditions for k ∈ N, is in terms of antichain systems and is given in Section 2. This is a proper relaxation, that is, although SSP ω implies SSP, we have not been able to prove the implication in the opposite direction. Despite that, it feels that the gap between SSP and SSP ω is relatively narrow, and we would expect that they either hold or fail for RC lattices together. This relaxation proves to be helpful, as in Theorem 1 we show that RC implies SSP 1 and SSP 2 : The first one is straight from the definition, and the second involves a simple but handy property of RC lattices (Lemma 6), whose formulation is motivated by SSP k setup. We also note that SSP 1 was already proven in [START_REF] Cambie | A Sauer-Shelah-Perles lemma for lattices[END_REF].

The second relaxation in Section 4 is in terms of RC graphs. It relaxes each of SSP k , and the corresponding property is still called SSP k , but for graphs. Again, SSP k for graphs implies SSP k for RC lattices. Although we do not consider this relaxation to be tight, it turns out to be useful. Namely, we can use it to prove the graph version of SSP 3 . This turns out to be rather complicated. Almost all the remaining part of the paper, that is, Sections 5 to 12, is dedicated to this goal; in a way, the RC graphs reformulation itself was designed to address SSP 3 . Out of these sections, let us single out Sections 8 and 9: They deal with a simple case of RC graphs that are called RC graphs with trivial closures. Although the latter are not important for the main proof, and in principal these two sections can be omitted, we chose to include them for illustrative purposes. In particular, Theorem 3 in Section 9, which proves SSP 3 for the RC graphs with trivial closures, serves as a template for Theorem 4, which proves SSP 3 in full generality.

Finally, in the concluding Section 13, we show that SSP 5 for graphs does not hold by constructing a counterexample, that is, an RC 5 -graph that fails to be SSP. As noted, we do not consider the relaxation from SSP k to graph SSP k tight, in particular, our modest attempts to use this counterexample to construct an RC lattice breaking SSP 5 have not been successful. This does not mean that the graph constructions cannot be used for proving SSP k for k ≥ 5: By design, RC graphs abstract some properties of RC lattices, and the list of properties included in the definition was compiled in attempts to prove SSP 3 . In particular, a large chunk of them was added to deal with another "counterexample" in Example 3. However, the counterexample in Section 13 is very simple, in particular, it has trivial closures. Moreover, in the same section we outline how counterexamples like that can be constructed for larger k. All in all, even if SSP 5 for RC lattices holds, it feels that it would be hard to come up with extra properties naturally expressible in the RC graph setup that would rule out this counterexample.

Let us finish this introduction by outlining a potentially interesting application of the SSP property for lattices. It is known that greedoids are a natural extension of both matroids and antimatroids [START_REF] Björner | Homotopy properties of greedoids[END_REF][START_REF] Korte | Greedoids[END_REF]. Both these classes are related, although in different ways, to shattering-extremal families in SSP lattices. The lattices of flats of matroids are precisely geometric lattices, which are NMF, and hence SSP. At the same time, antimatroids can be characterized as precisely union-closed shattering-extremal subfamilies of sets [START_REF] Chornomaz | Convex geometries are extremal for the generalized Sauer-Shelah bound[END_REF]. Thus, both matroids and antimatroids can be considered subclasses of join-subsemilattices of SSP lattices, hinting at a possible connection between SSP lattices, shattering-extremality, and greedoids. Some sketchy results about RC lattices, submodular functions, and greedoids can be found in [START_REF] Wild | On rank functions of lattices[END_REF].

Antichain reformulation

Let us fix a finite index set I. An I-antichain system E, which we typically call simply I-system, over a lattice L is a pair of mappings, E = (X E , Y E ), X E , Y E : I → L, such that X E is one-to-one and its image is an antichain in L, and for any i ∈ I it holds y i ≤ x i , where x i = X E (i) and y i = Y E (i). Note that Y E is not assumed to be one-to-one. Alternatively, we will often define E as an I-set (that is, a set indexed by I) of pairs in L × L, E = {(x i , y i ) | i ∈ I}. The size of E is the size of I, |E| = |I|. Additionally, for E thus defined, for every i ∈ I we denote

C i = {u ∈ L | u ∧ x i = Y i } and S i = [x i ) = {u ∈ L | u ≥ x i }, and C(E) = i∈I C x and S(E) = i∈I S i .
We say that a system E is SSP if |S(E)| ≤ |C(E)|. For an integer k, we say that L satisfies SSP k if any system E over L of size at most k is SSP, and we say that L satisfies SSP ω if L satisfies SSP k for all k. As the name suggests, there is a connection between SSP and SSP ω , namely Lemma 5 (SSP ω ⇒ SSP). If a lattice satisfies SSP k then every set in it whose antichain of minimal non-shattered elements has at most k elements shatters at least as many elements as it has.

In particular, if a lattice satisfies SSP ω then it satisfies SSP.

Proof. Let L be a finite lattice satisfying SSP k ; let us take F ⊆ L and let S F = L -Str(L) be a set of elements non-shattered by F . As Str(L) is an order-ideal, S F is an order-filter, and hence

S F = [X F ) = {u ∈ L | u ≥ x for some x ∈ X F },
where X F is an antichain of minimal elements of S F . For every x ∈ X there is y x ≤ x such that x is non-shattered by F through y x , that is, there is no u ∈ F such that x ∧ u = y x . Fixing y x for every x ∈ X defines an

X-system E = {(x, y x ) | x ∈ X}}. Now, assuming |X F | ≤ k, SSP k implies |S(E)| ≤ |C(E)|. Note that S(E) = [X) = L -Str(F )
, and consequently Str(F ) = L -S(E). Also, as for no u ∈ F and no x ∈ X it can happen that x ∧ u = y x , we have F ⊆ L -C(E), and consequently

L -F ⊇ C(E). Then |F | = |L| -|L -F | ≤ |L| -|C(E)| ≤ |L| -|S(E)| = |L -S(E)| = | Str(F )|.
In view of Lemma 3 and Lemma 5, in order to establish that SSP=RC it is sufficient to prove that RC⇒ SSP ω .

Systems of sizes 1 and 2

Let L be an RC lattice, for x ≤ y ≤ z ∈ L we define C(x, y, z) ⊆ L as a (nonempty) set of complements of y in [x, z]. We also assume that L comes equipped with a complementation function c : {x, y, z ∈ L 3 | x ≤ y ≤ z} → L, such that c(x, y, z) ∈ C(x, y, z). Note that for a fixed x and y, the function c(x, y, •) is one-toone. Indeed, if c(x, y, z 1 ) = c(x, y, z 2 ) = u then z 1 = z 2 = u ∨ y. Similarly, c(•, y, z) is one-to-one. We now prove an intermediate structural lemma about RC lattices. Lemma 6. Let L be an RC lattice. Then for arbitrary x a , v, x b ∈ L there are elements v -and v

+ , v -≤ v ≤ v + such that v -∨ x a = v ∨ x a = v + ∨ x a , v -∧ x b = v ∧ x b = v + ∧ x b , and 
v + ∨ x b ≥ x a , v -∧ x a ≤ x b .
The statement is illustrated in Figure 1 below.

Proof. The statement about v -is dual to the one about v + , so we only need to prove the latter. Now, let v + be a maximal element satisfying

v + ∨ x a = v ∨ x a , v + ∧ x b = v ∧ x b and v + ≥ v. As v itself satisfies these conditions, such v + can be picked. We claim that v + ∨ x b ≥ x a . Indeed, let us pick v + ≤ w = c (v + , (v + ∨ x a ) ∧ (v + ∨ x b ), v + ∨ x a ). As v + ≤ w ≤ v + ∨ x a , by taking a join with x a we get w ∨ x a = v + ∨ x a = v ∨ x a . Also, w ∧ x b = w ∧ (v + ∨ x a ) ∧ x b ∧ (v + ∨ x b ) = (v + ∨ x a ) ∧ (v + ∨ x b ) ∧ w ∧ x b = v + ∧ x b = v ∧ x b . x b x b ∧ v x b ∨ v x a x a ∧ v x a ∨ v v v + v - x b ∨ v + x a ∧ v - Figure 1. Construction of elements v + and v -.
So, w satisfies the conditions on v + , and, by maximality of v + , w = v + . By the definition of w this implies (v

+ ∨ x a ) ∧ (v + ∨ x b ) = v + ∨ x a , which is equivalent to v + ∨ x b ≥ v + ∨ x a , implying v + ∨ x b ≥ x a . Lemma 7. If E is a system of size 1 or 2 then |S(E)| ≤ |C(E)|.
Proof. First, let |E| = 1, that is, E = {(x, y)} for some y ≤ x. Then, S E = S x = [x), and, as x ∧ c(y, x, u) = y for all u ≥ x, we get, {c(y, x, u)

| u ∈ S x } ⊆ C x . Thus, c(y, x, •) is an injective mapping from S E = S x to C E = C x , proving |S(E)| ≤ |C(E)|. Now, let |E| = 2
, and let I = {a, b}, that is, E = {(x a , y a ), (x b , y b )}, for an incomparable pair x a , x b and for some

y a ≤ x a , y b ≤ x b . Let α : S a → L, β : S b -S a → C b be defined as β(u) = c(y b , x b , u), α(u) = v = c(y a , x a , u), if v / ∈ β[S b -S a ]; v + , otherwise , 
where v + = v + (v, x a , x b ) is an element provided by Lemma 6, for which v + ≥ v, v + ∨ x a = v ∨ x a = u, v + ∧ x b = v ∧ x b and v + ∨ x b ≥ x a . Note that we use v + in case when v ∈ β[S b -S a ], that is, when v = c(y b , x b , u ) for some u ∈ S b -S a . But then v + ∧ x b = v ∧ x b = y b , in particular, v + ∈ C b . As in the |E| = 1 case, β is injective to C b . By the previous paragraph, α(u) also maps to C = C a ∪ C b , and x a ∨ α(u) = u, which proves that α is injective. We claim that α[S a ] is disjoint from β[S b -S a ]. Indeed, if w = α(u 1 ) = β(u 2 ) then w = v + for some v ∈ β[S b -S a ]. But then u 2 = w ∨ x b = v + ∨ x b ≥ x a , which is impossible, as u 2 ∈ S b -S a .
We note that the construction of α and β has some level of arbitrariness, we could have just as well taken α : S a -S b → C a , β : S b → L, and fix the values of β on elements mapped to α[S a -S b ]. An informal reason for that is that Lemma 6 allows a fair amount of symmetry; for X E = {x a , x b } it can be equally applied to either x a , v, x b or to x b , v, x a , producing different fixes of the mappings. This phenomenon only intensifies for bigger systems: for |E| = 3 the number of potential applications is 6, and so on. We will try to make the best use of it with graph constructions in Section 4.

Before that, let us formulate another simple structural result that we are going to use. Lemma 8. Let L be an RC lattice. And suppose x a , x b , v, z, and

z + ∈ L are such that v ∨ x b = z ≥ x a , and z + ≥ z. Then there is v + ≥ v such that v + ∧ x a = v ∧ x a and v + ∨ x b = z + . x a x b xa∧v =xa∧v + v v + z = x b ∨ v z + = x b ∨ v + Figure 2.
An illustration for Lemma 8.

Proof. Let v + = c(v, z, z + ). Then v + ≥ v. Also, as z ≥ x a , v + ∧ x a = v + ∧ z ∧ x a = v ∧ x a . And v + ∨ x b = v + ∨ v ∨ x b = v + ∨ z = z + .
The argument is illustrated in Figure 2 below.

Graph constructions

The idea of this section is to forget almost everything about an RC lattice L, including the fact that it is RC and that it is a lattice, and leave only the properties established in Lemma 6 and Lemma 8, but then milk them for all their worth. For this, we will need to establish a lot of terminology, so before that, let us give a brief overview of our approach. We are going to represent the information about the system over an RC lattice L as a bipartite graph G L with black and white vertices, representing the elements of S and C respectively; moreover, if an element in L belongs to both S and C, it will produce two vertices (one black and one white) in G L . The edges colored with i ∈ I correspond to joins of the elements from C with x i . Moreover, we will introduce black and white types, which we will use to track, first, whether for an element u ∈ S ∪ C, it holds u ∨ x a ≥ x b , for a, b ∈ I, and second, whether for u ∈ C it holds u ∧ x a = y a , that is, whether u ∈ C a , for a ∈ A. Then it turns out that many valuable properties of systems over RC lattices, in particular the aforementioned lemmas, can be effectively reformulated and effectively dealt with, in terms of such graphs.

In the context of graph constructions, we will typically call the elements of the index set I letters. Also, we will typically drop the curly brackets when referring to the subsets of I, that is, for I = {a, b, c}, we typically write bc instead of {b, c}. Most of the upcoming definitions are over I, that is, imply a fixed index set.

We define a closure type C over I as an intersection closed family of subsets of I, in particular, we consider I to be an intersection of an empty set of subsets, and thus I ∈ C. It is well known that any such family uniquely corresponds to a closure operator, that is, to an increasing, monotonous, and idempotent operator c : 2 I → 2 I . Given C, the corresponding operator c is constructed by putting c(I) to be a unique minimal set in C above I, and, in the other direction, given c, C is just the image, or, alternatively, the set of the fixed points of c.

Yet another way of defining an intersection closed family is by the set of implications. Formally, an implication is an ordered pair (P, Q), denoted P → Q, for P, Q ⊆ I, where P is called the premise, and Q the consequence of the implication. Then I ⊆ I admits an implication P → Q if P ⊆ I implies Q ⊆ I. A family C ⊆ 2 I admits an implication if every set in C admits it. Then for a family F of implications, the family C F of all sets admitting F, that is, admitting every implication in F, is intersection-closed and contains I. For all practical purposes, it is typically enough to consider only certain classes of implications, in particular, we will only use the implications

P → Q with |Q| = 1. Then, if F = F(C) is a family of all such implications admitting C, then C = C(F(C)).
Thus, for a closure type C we will write both I ∈ C, for I ⊆ I, and P → Q ∈ C, where the latter denotes the fact that C admits P → Q. Note that admitting certain implications prohibits C from containing certain sets, for example, a → b ∈ C and a ∈ C are incompatible. Note that the top, that is, the largest element in C is always I. However, C also has a unique bottom, that is, the smallest element, which can be different for different closure types. We consider the set of all closure types to be partially ordered by inverse inclusion, that is,

C 1 ≤ C 2 if C 1 ⊇ C 2 .
This partial order on closure-types is a lattice, with the intersection as join and the union followed by adding all possible intersections as meet. Thus, the maximal closure type is {I}, and the minimal is 2 I . Let us also note that

C 1 ≤ C 2 implies that C 2 admits all implications that C 1 does, that is, F(C 1 ) ⊆ F(C 2 ).
Now, we define an extended black type simply as a closure-type C, such that ∅ / ∈ C. The latter is equivalent to saying that the bottom of C is nonempty. And we define an extended white type T as a closure-type C T , such that ∅ ∈ C T , together with a subset K T ⊆ I of capital letters of T .

As the names suggest, together with extended black and white types, we will have black and white types, which only carry partial information about their counterparts, but are easier to deal with. So, a black type T is a nonempty subset of I. For an extended black type T , its black type T = T (T ) is the bottom of T . And a white type T over I is a preorder A T ⊂ I × I (that is, a reflexive and transitive relation) on I, called the set of arrows of T , together with a nonempty subset K T ⊆ I of capitalized letters of T . For an extended white type T , its white type T = T (T ) has the same set of capitalized letters, and A T is defined as the set of the implications with one-element premise and consequence, which C T admits, treated as a relation on I × I, formally,

A T = {(a, b) | a → b ∈ C T }.
Complying with the notation for implications, we denote the elements of A T by a → b instead of (a, b). We need to elaborate that thus defined A T is reflexive and transitive. Indeed, for any a ∈ I and any I ∈ C T , a ∈ T implies a ∈ T , hence T admits a → a, and hence a → a ∈ A T for all a ∈ I and A T is reflexive. For the transitivity, suppose a → b, b → c ∈ A T , that is, any I ∈ C T admits a → b and b → c. But then either a / ∈ I, and hence I admits a → c, or a ∈ I, but then b ∈ I, and then c ∈ I, and hence again I admits a → c. Thus, C T admits a → c, proving the transitivity of A T .

Let us separately note that neither the black nor the white types do not carry all the information about their extended types. This is rather obvious for black types, as, say, a black type a can correspond to any extended black type (which is just a closure type) with bottom a. For example, the extended type here can be {a, abc}, or {a, ab, ac, abc}, or something in between (where I is implied to be abc). This is, however, also true for white types. Clearly, a white type T shares with its extended type T the set of capitalized letters, so the information is lost when going from C T to A T . For example, A T = {a → a, b → b, c → c} might be obtained from C T = 2 I , or from C T = {∅, a, b, c, abc}. While in the first case C T admits only trivial implications, that is, only implications of the form I → I, in the second case C T also admits ab → c, ac → b, and bc → a. These, however, have premises of size two, which are not captured by A T .

Let us now introduce the order on black and white types, both extended and not, and show how they are related to each other. The extended black types are closure types, and the order on them remains the same. Black types are simply subsets of I and we order them by inclusion. Now, we claim that for extended black types T 1 and T 2 , with black types T 1 and T 2 respectively, T 1 ≤ T 2 implies T 1 ≤ T 2 . Indeed, T 1 ≤ T 2 implies T 1 ⊇ T 2 . Recall that T 2 is the bottom of T 2 , and hence T 2 ∈ T 2 ⊆ T 1 , and hence T 1 , which is the bottom of T 1 , is a subset (not necessarily proper) of T 2 .

For extended white types T 1 and T 2 , we say that

T 1 ≤ T 2 if C T 1 ≤ C T 2 and K T 1 ⊆ K T 2 .
The fact that this is a partial order is obvious. Also, for white types T 1 and T 2 we say that

T 1 ≤ T 2 if A T1 ⊆ A T2 and K T1 ⊆ K T2 . Recall that C T 1 ≤ C T 2 is equivalent to F(C T 1 ) ⊆ F(C T 2 ). But if T 1 and T 2 are the corresponding white types then A T1 = F(C T 1 ) ∩ {a → b | a, b ∈ I}. Hence, just like with black types, T 1 ≤ T 2 implies T 1 ≤ T 2 .
We also note that it will make sense for us to consider the white types (extended or not), to be preordered simply by their closure type (the set of arrows); we will not introduce a separate notation for that, as it can be indicated by saying that

C T 1 ≤ C T 2 (A T1 ⊆ A T2 ).
We will be dealing quite a lot with white types, so we are going to introduce additional notation for them. For a white type T , we say that a ∈ I is capitalized in T if a ∈ K T , and say that a is small in T otherwise. Notationwise, for a, b ∈ I we write

A ∈ T (A / ∈ T ) if a ∈ K T (a / ∈ K T ); a → b ∈ T if a → b ∈ A T ; a ↔ b ∈ T if a → b, b → a ∈ A T .
In line with it, we often define the white types using a similar but slightly extended notational convention that we explain by example. In the list below, A * T stands for the set of nontrivial arrows of A T , that is, A * T = A T -{a → a | a ∈ I}. So, let the white type T be defined as: The arrows are inferred similarly to the previous example, and T has no capital letters, which is allowed. This notation is not to be confused with an implication ab → c, which only makes sense for a closure type, but cannot be captured by the arrows of a white type.

A → b K T = A and A * T = {a → b}; a → B → c K T = B
Finally, for a white type T 1 defined as above and a white type T 2 , we often write

T 1 ∈ T 2 to denote T 1 ≤ T 2 . For example, A, B → c ∈ T indicate that K(T ) ⊇ {A, B} and A(T ) ⊇ {b → c}.
We now are going to define an RC graph. The definition is long, and will be interrupted for some comments and explanations. It contains points (G1)-(G11), and (E1)-(E3). So, an RC graph Γ over I is (G1) Γ is a bipartite graph with partitions C and S. We call vertices in C white, and in S black, and use similar rule when drawing these graphs. The set of all vertices of Γ is denoted by V = C S;

Note. When working with RC graphs, we typically use variables u, v, w for white vertices, x, y, z for black vertices, and a, b, c for letters of I.

(G2) All edges are unoriented and colored with letters from I; for a ∈ I we refer to an edge colored with a as to a-edge; (G3) Every white (black) vertex u has a white (black) extended type T (u) associated with it. The corresponding (non-extended) type of u is denoted τ (u), and if the color of u is clear, we will refer to T (u) and τ (u) simply as to the extended type and the type of u respectively;

For white vertices we will sometimes need to address particular elements of their types. Thus, for u ∈ C we write K(u) instead of K τ (u) or K T (u) , A(u) instead of A τ (u) , and C(u) instead of C T (u) . As for the latter, we also sometimes write C(x) as a synonym for T (x) for a black vertex x. Note that both C(u) and C(x) are closure-types, and so we call them closure-types of u and x respectively.

(G4) For every white vertex u and a ∈ I there is exactly one a-edge, adjacent to u, edges with different colors can be parallel. We denote by η a (u) a unique black vertex connected to u by an a-edge;

Sometimes we write η u (a) instead of η a (u), which is a matter of convenience. However, using η u has an advantage: Note that η u is a function from I to S, and we call a function like this a neighborhood. By (G4), setting the edges of Γ is equivalent to assigning a neighborhood to each of its white vertices. This approach will turn out to be useful later. (G5) The color of an edge adjacent to a black vertex x is contained in τ (x); (G6) For a white vertex u and a, I such that a ∈ I ⊆ I, I ∈ C(u) iff I ∈ C(η a (u)).

In particular, for a, b ∈ I, it holds a → b ∈ τ (u) iff b ∈ τ (η a (u)); Let us elaborate on how the first part of (G6) implies the second part. Suppose a → b ∈ τ (u), and let I = τ (η a (u)). Then I is the bottom of C(η a (u)), in particular, I ∈ C(η a (u)). By (G4), a ∈ I, and so I ∈ τ (u). But then a → b implies b ∈ I. In the other direction, suppose b ∈ τ (η a (u)). By (G4), a ∈ τ (η a (u)), and so ab ⊆ I, for any I ∈ C(η a (u)). But then for any I ∈ C(u) such that a ∈ I it holds b ∈ I, and so a → b ∈ C(u), and consequently a → b ∈ τ (u).

Let us note that (G6) means that for a white vertex u, its extended type (type) is defined by the extended types (types) of its neighbors, that is, the black vertices

{η i (u) | i ∈ I}.
(G7) Γ is equipped with a partial order on its vertices, such that u ≤ η a (u), and u ≤ v implies η a (u) ≤ η a (v), for any white vertices u and v and any a ∈ I. Moreover, x ≤ u for no black vertex x and white vertex u; (G8) For any (black or white) vertices u and v of Γ, u ≤ v implies C(u) ≤ C(v); We emphasize that (G8) is about the closure types, not the extended types. Practically, it means that for white vertices u and v, u ≤ v does not imply K(u) ⊆ K(v). Let us note that the definition of the closure structure only uses S, types of the vertices of S, and the order on S. Later we are going to use it in context of these relaxed conditions. (G10) For a black vertex x,

T (x) = {τ • c I (x) | I ⊆ I};
For a set I ⊆ I an I-path is a path such that all its edges have colors in I. In particular, we consider an empty path, that is, a path consisting of a single vertex, to be a ∅-path. For a finite sequence R = (r i ) n i=1 , r i ∈ I, an R-path is a path (e i ) n i=1

such that e i ∈ E ri . In both definitions neither edges nor vertices are assumed to be distinct. (G11) For black vertices x and y if there is an I-path between x and y then c I (x) = c I (y). In particular, if in this case I ⊆ τ (x) then τ (x) ⊇ τ (y), and if I ⊆ τ (x) = τ (y) then x = y. Indeed, if I ⊆ τ (x) then c I (y) = c I (x) = x, and then, by (C1), I ∪ τ (y) ⊆ τ (x), which implies τ (y) ⊆ τ (x). And if I ⊆ τ (x) = τ (y) then x = c I (x) = c I (y) = y.

While (G1)-(G11) outline the general structure of Γ and can be derived from a system in a lattice without the RC requirement, we will now add the extension properties (E1)-(E3), capturing the properties peculiar to RC case, in particular Lemma 6 and Lemma 8.

(E1) For a black vertex x and a ∈ τ (x), there is an a-edge from x to (a white vertex) u with A ∈ τ (u); In other words, (G5) and (E1) imply that the type of a black vertex is the set of colors of its adjacent edges. For a black vertex x and a ∈ τ (x), we denote by η a (x) the nonempty set of white vertices connected to x by an a-edge;

(E2) For a white vertex u and a, b ∈ I, if A ∈ τ (u) then there is a b-b-path from u to (a white vertex)

u + ≥ u such that A → b ∈ τ (u + ); (E3) Let a white vertex u be such that b → A ∈ τ (u),
x = η b (u), and x + be a black vertex such that x ≤ x + . Then there is a white vertex u + ≥ u such that b → A ∈ τ (u + ) and x + = η b (u + ). In particular, by taking a = b in (E3), we get a statement resembling (E1): For a black verices x ≤ x + such that a ∈ τ (x), τ (x + ), for any u connected to x by an a-edge such that A ∈ τ (u), there is u + ≥ u connected to x + by an a-edge such that A ∈ τ (u + ). This concludes the definition of an RC graph. Prior to giving an example of an RC graph and showing how RC graphs can be constructed from systems over RC lattices, let us bring to notice the apparent redundancy in this definition. First of all, all the information about the types (extended and not), except for capital letters of the white types, as well as the closure system, can be recovered solely from the edges of the graph. Indeed, (G6) enables us to restore the (extended) white types from the (extended) black types. As noted, (G5) and (E1) restore the black types from the edges, and (G10) restores the extended black types from the black types and the closure structure. Finally, the following proposition enables us to restore the closure structure from the edges and the black types.

Proposition 1. For an RC graph Γ and I ⊆ I let us define an I-component of Γ as a connected component of Γ after keeping only i-edges, for i ∈ I.

Then for x ∈ S and I ⊆ I, y = c I (x) is a unique black vertex in the same (I ∪ τ (x))-component of Γ as x, such that I ∪ τ (x) ⊆ τ (y). Moreover, for any a ∈ τ (x), there is an (I ∪ a)-path from x to y.

Proof. Let us take x ∈ S, a ∈ τ (x), and b ∈ I -τ (x). By (E1), there is u ∈ C such that A ∈ τ (u) and x = η a (u). By (E2) there is u + ≥ u such that A → b ∈ τ (u + ) and there is a b-b-path between u and u + . Then, by (G7), x + = η a (u + ) ≥ η a (u) = x. So, τ (x + ) ⊇ τ (x). Also, by (G6), A → b ∈ τ (u + ) implies b ∈ τ (x + ). Note also that there is an ab-path between x and x + . Repeating this process for every letter from I -τ (x) we will get a vertex y ≥ x such that τ (y) ⊇ τ (x) ∪ I and there is an (a ∪ I)-path between x and y. Note that if I ⊆ τ (x) then we can simply take y = x.

Clearly then, y is in the same (I ∪ τ (x))-component as x, and, by (G11), y = c I∪τ (x) (x). Using (C3) and (C2) the latter can be rewritten as y = c I∪τ (x) (x) = c I • c τ (x)-I (x) = c I (x). Finally, if there are black vertices y 1 and y 2 in the same (I ∪τ (x))-component as x, such that I ∪τ (x) ⊆ τ (y 1 ), τ (y 2 ), then y 1 = c I∪τ (x) (x) = y 2 , and thus such y is unique.

Corollary 1. Any connected component of Γ (which is the same as I-component), has a unique vertex t, called the top of this component, such that τ (t) = I. Additionally, t ≥ x for any black or white vertex x from this connected component. In case Γ is connected, we call t simply the top of Γ.

If the types and closures can be restored from the basic structure of an RC graph, why then put them into the definition? The first answer is that they directly correspond to the basic properties of the elements of an RC lattice from which the graph is abstracted. Moreover, the extension conditions, abstracting the properties essential to proving the SSP property, are much easier to formulate in terms of types. Another reason is that a little later we are going to relax the definition of an RC graph (thus defining a relaxed RC graph, or an RRC graph), and for the RRC graphs, the types and closures will no longer be derivable from the edges and have to be imposed externally. Let us now proceed with an example of an RC graph.

We introduce the following notation convention. For a black or white type T , whenever we name a, respectively, black or white vertex by T i , we assume that τ (T i ) ≥ T ; here i is an optional index used to further distinguish the vertices. If in this case τ (T i ) = T , we are saying that this naming is exact. By default, any naming of this kind used in the examples is exact.

Example 1. Figure 3 shows an example of an RC-graph Γ over I = abc. All names of the vertices are exact. The dotted arrows indicate the basis of the order on the white vertices of Γ, where by basis we understand a relation whose reflexive transitive closure is the corresponding order. Let us elaborate on this example. The properties (G1)-(G6) are either by construction or can be easily checked. In particular, the alignment of types, established by (G6), can be checked for types and can be used as a definition for extended white types based on the extended black types.

abc a 1 a 2 a 3 c 1 c 2 b AC 1 AC 2 B → Ac [AB] → c 1 [AB] → c 2 [BC] → a C → ab A → Bc
Proposition 1 can be used to define the closure structure and thus to satisfy (G9). For Γ from Example 1, the closure structure turns out to be extremely simple. Let us formulate this as separate property. We say that an RC graph Γ has trivial closures if the types of all its black vertices are either single-element or equal to I; note that the latter, by Corollary 1, implies that the vertex is the top of its component. The reason for the name is that if Γ has trivial closures then for every x ∈ S Γ and any a / ∈ τ (x), c a (x) = t, where t is the top vertex in the same connected component as x. In particular, the functions c I are completely defined as c I (x) = x if I ⊆ τ (x) and c I (x) = t otherwise. Similarly, by (G10), an extended type of any black vertex x is {τ (x), I}, which is just {I} whenever x is a top vertex.

As Γ is connected, it has a unique top vertex, which is abc; recall that by Corollary 1 this implies abc ≥ x for any black vertex x. Then the above argument uniquely defines the closure structure of Γ, and it is easy to check that the properties (G9)-(G11) are satisfied.

The order on the white vertices is given by its basis, for example,

[AB] → c 1 ≥ AC 1 , as [AB] → c 1 ≥ A → Bc and A → Bc ≥ AC 1 are
presented on the picture. If, like in this case, the order on the black vertices is not given, we wil asume that it is the minimal order implied by (C1) part of (G9), and by (G7), that it is a reflexive transitive closure of

{η a (u) ≤ η a (v) | u ≤ v ∈ C, a ∈ I}∪{x ≤ c I (x) | x ∈ S, I ⊆ I}.
Note that the second part does not tell anything other than x ≤ abc for any black vertex x. The first part, however, gives some nontrivial information, which has to be carefully collected. In this example, the nonobvious ordered pairs produced by this rule is

a 2 = η a (AC 2 ) ≤ η a (AC 1 ) = a 3 and c 2 = η c (AC 2 ) ≤ η c (AC 1 ) = c 1 .
Finally, as the order between the black and the white vertices is not given explicitly, we assume that u ≤ x whenever there are y, v, and a such that η a (v) = y ≤ x for u ≤ v. Then the nonobvios ordered pairs of this kind, that is, ordered pairs other than u ≤ abc and u ≤ η a (u), are AC 2 ≤ a 3 , c 1 . It can be now easily checked that (G7) and (G8) are indeed satisfied.

Finaly, the extension conditions need to be checked explicitly. (E1) is obvious, moreover, for all x ∈ S, except for the top vertex, the choice of the corresponding u is unique, and checking (E2) is also straightforward. Perhaps the least obvious condition is (E3), but it also might be checked explicitly. For example, for x = c 2 , u = AC 2 , and x + = c 1 , the corresponding u + is AC 1 . Note that if we relax the order on the white vertices, and, say, instead of AC 2 ≤ AC 1 would include into the basis AC 2 ≤ A → Bc and AC 2 ≤ C → ab, then all conditions except for (E3) will be satisfied.

We say that Γ is an RC k -graph, for k ≥ 1, if Γ is an RC graph over I with |I| = k, and we say that Γ is SSP if Theorem 2. Let L be an RC lattice and E = {(x i , y i ) | i ∈ I} be a system over L with index set I. Let us define Γ = Γ(L, E) as:

|C Γ | ≥ |S Γ |. Then Γ from Example 1 is an RC 3 -graph,
• S Γ and C Γ are disjoint copies of S E and C E . For z ∈ S E we denote by z s its copy in S Γ , similarly, for

u ∈ C E , u c is its copy in C Γ . Note that for v ∈ S E ∩ C E the vertices v s and v c are different; • For a ∈ I, there is an a-edge between z s ∈ S Γ and u c ∈ C Γ iff u ∨ x a = z; • For u1 c , u2 c ∈ C Γ , u1 c ≤ u2 c iff u1 ≤ u2, the orderings between u c ∈ C Γ
and z s ∈ S Γ , and between z1 s , z2 s ∈ S Γ are defined similarly. Note that for

z s ∈ S Γ and u c ∈ C Γ , z s ≤ u c even if z ≤ u; • For z s ∈ S Γ and I ⊆ I, c I (z s ) = z ∨ {x i | i ∈ I} s ; • For u c ∈ C Γ and a ∈ I, iff u ∧ x a = y a ;
• For a black vertex z s , its closure type (which is the same as its extended type), defined by implications, is

C(z s ) = C(F(z s )) for F(z s ) = I → a | I ⊆ I, a ∈ I, z ∨ {x i | i ∈ I} ≥ x a ,
and its type is

τ (z s ) = {a ∈ I | z ≥ x a }. Similarly, for a white vertex u c , its closure type is C(u c ) = C(F(u c )) for F(u c ) = I → a | I ⊆ I -∅, a ∈ I, u ∨ {x i | i ∈ I} ≥ x a ,
and the set of arrows A(u c ) of its type is

A(u c ) = {a → b | a, b ∈ I, u ∨ x a ≥ x b }.
Then thus defined Γ is an RC graph over I. Moreover,

|S Γ | = |S E | and |C Γ | = |C E |. In particular, Γ is SSP iff E is.
Proof. Big part of the proof deals with the closure types and their representation by implications, so prior to checking the conditions for Γ, let us prove the following: For z s ∈ S Γ , F(C(z s )) = F(z s ), and similarly for u c ∈ C Γ , F(C(u c )) = F(u c ). We are only going to prove the first one, as the proof of the second one is similar. Trivially, F(C(z s )) ⊇ F(z s ). In the other direction, let I be an arbitrary subset of I, and let

I = {a ∈ I | z ∨ {x i | i ∈ I} ≥ x a }. Obviously, I ⊇ I and I → a ∈ F(z s ) for all a ∈ I . We claim that I ∈ C(z s ). Indeed, for any J → a ∈ F(z s ), J ⊆ I implies x a ≤ z ∨ {x i | i ∈ J} ≤ z ∨ {x i | i ∈ I},
and hence a ∈ I and I admits J → a. But that means that I → b / ∈ F(C(z s )) for all b / ∈ I . The fact that I was chosen arbitrarily proves the inclusion in the other direction. We also note that, thus constructed, I is a closure of I, and that I can be alternatively defined as I = {a | I → a ∈ F(z s )}, and similarly for u c . Now, the conditions (G1), (G2), and (G4) are by construction; (G3) is also by construction, but we separately need to check that the closure type obeys the restriction required by black or extended white type, and that the explicit definitions of the type and the extended type align with each other. Indeed, for a black vertex z s let J = {a ∈ I | z ≥ x a }. Then ∅ → j ∈ C(z s ) for all j ∈ J, and also I → a / ∈ C(z s ) for all I ⊆ J and a / ∈ J. This implies that J = τ (z s ) is indeed the bottom of C(z s ), moreover, z s ∈ S E implies J = ∅, as required by the definition of the black type. Now, for a white vertex u c , notice that by definition C(u c ) contains no implications of the form ∅ → a, and so ∅ ∈ C(u c ). Also, by construction,

A(u c ) = {a → b | a, b ∈ I, a → b ∈ C(u c )},
and thus the type of u c corresponds to its extended type.

For (G5) it is enough to note that if an a-edge is adjacent to some z s then z = u ∨ x a for some u ∈ C E , and hence z ≥ x a and a ∈ τ (z s ). For (G6) let us take an arbitrary white vertex u c and a ∈ I, and let z s = η a (u c ), that is, z = u ∨ x a . Then, straight from the definition of F(u c ) and F(z s ), for any I ⊆ I such that a ∈ I and any b ∈ I it holds

I → b ∈ F(u c ) iff I → b ∈ F(z s ).
Recall that an intersection closed family is a set of fixed points of its coresponding closure operator, which, as we argued, is 

I → I = {b | I → b ∈ F(u c )},
I ∈ C(u c ) iff I ∈ C(z s ).
The conditions (G7), (G8), and (G9), establishing the order on the vertices and the closure structure, and relating the latter to the closure types, are obvious by construction. To prove (G10), let ∈ T (z s ) for any b / ∈ J. Thus, J ∈ T (z s ), finishing the proof of (G10). For (G11), note that if there is an I-path between any black vertices z1 s and z2 s , it easily implies z1

I ∈ T (z s ) and let z = z ∨ {x i | i ∈ I}, which means z s = c I (z s ). Then τ (z s ) ⊇ I. On the other hand, if τ (z s ) I then
∨ {x i | i ∈ I} ≥ z2, and consequitively z1 = z1 ∨ {x i | i ∈ I} = z2 ∨ {x i | i ∈ I} = z2 . But, by definition, z1 s = c I (z1) = z2 s = c I (z2).
Now, let us prove the extension conditions. For (E1), let z s be a black vertex such that a ∈ τ (z s ), then x a ≥ z and for u

= c(y a , x a , z) it holds u ∨ x a = z, that is, η a (u) = z, and u ∧ x a = y a , that is, A ∈ τ (u). For (E2), let us take a white vertex u c such that A ∈ τ (u c ), meaning u ∧ x a = y a . Let us take u + , guaranteed by Lemma 6, such that u + ≥ u, u + ∧ x a = u ∧ x a = y a , u + ∨ x b = u ∨ x b and u + ∨ x a ≥ x b . Then u + c ≥ u c , A → b ∈ τ (u + c ), and u c to (u ∨ x b ) s to u + c is a b-b-path from u c to u + c . Finally, (E3) is a direct counterpart of Lemma 8. Corollary 2. If every RC k -graph is SSP then every RC lattice satisfies SSP k .
We note that Lemma 6 can be strengthened, in a straightforward way, to enable a slightly more general version of (E2) (E2 * ) For a white vertex u and I ⊆ I and b ∈ I, if I ⊆ K(u) then there is a b-b-path from u to (a white vertex) u + ≥ u such that I ⊆ K(u + ) and C(u + ) admits an implication I → b. This property will not be used, so we do not include it in the definition of an RC graph and give it just for a reference. Let us also state a couple of additional conditions satisfied by RC graphs. Lemma 9. An RC graph satisfies (E4) and (E5), where Proof. (E5). Let Γ be the RC graph in question, and suppose x and y are black vertices of Γ, such that there is an (τ (x) ∩ τ (y))-path ρ between x and y. Then ρ is also a τ (x)-path, and hence by (G11) τ (x) ⊇ τ (y). Similarly, ρ is a τ (x)-path, so τ (y) ⊇ τ (x), and hence τ (x) = τ (y). But then, again by (G11), x = y, finishing the proof. 

(E4) For a white vertex u, a ↔ b ∈ τ (u) iff η a (u) = η b (u), that is, iff
a ∈ τ (u), that is, a ↔ b ∈ τ (u).

Some transformations of RC graphs

We will now give three simple considerations which would enable us, in context of proving SSP k , to restrict our attention to RC graphs satisfying some additional properties.

Lemma 10. Let Γ be an RC graph over I, and let Ω be a connected component of Γ (with the order on the vertices and the closure system respectively restricted to Ω). Then Ω is an RC graph over I.

Proof. The only nonobvious part of the lemma is that the closure system can be properly restricted to Ω, that is, that for I ⊆ I and a black vertex x ∈ Ω, c I (x) ∈ Ω. But this is a direct consequence of Proposition 1.

Lemma 11. Let Γ be an RC graph over I, let η be a neighborhood, that is, η : I → S, and let U ⊆ C = {u ∈ C | η u = η}; suppose also that U is nonempty. Let Γ be a graph obtained from Γ by removing U from C and adding a white vertex u in the following way:

• η u = η; • C(u ) = C(u), for all u ∈ U ; • K(u ) = {K(u) | u ∈ U };
• u ≤ u , and for v ∈ C S -U , v ≤ u iff v ≤ u for some u ∈ U , and v ≥ u iff v ≥ u for some u ∈ U ; • The order on the remaining vertices is modified by adding v ≤ x whenever there are u 1 , u 2 ∈ U such that v ≤ u 1 and u 2 ≤ x, for w ∈ C -U and x ∈ C S -U . Then Γ is an RC graph.

Proof. First of all, let us note that C(u 1 ) = C(u 2 ) for any u 1 , u 2 ∈ U is by (G6). Now, most of the properties of an RC graph trivially hold for Γ , except for those related to the order on vertices.

Let us prove that, thus modified, the order indeed remains partial order. Through the argument, by ≤ we denote the original order on Γ, and by ≤ its modification on Γ ; similarly, C is the set of white vertices of Γ , and S = S is the set of its black vertices. Trivially, ≤ is reflexive, and x ≤ w holds for no x ∈ S and w ∈ C . We thus need to check transitivity and antisymmetry.

For transitivity, let us take x, y, z ∈ Γ such that x ≤ y and y ≤ z, and prove that x ≤ z; we can easily assume that x, y, and z are pairwise distinct, as otherwise the statement is trivial. First, suppose u = x, which, in particular, means y, z ∈ C S -U . Then there is u 1 ∈ U such that u 1 ≤ y. Suppose that y ≤ z, which means that there is u 2 ∈ U such that y ≤ u 2 ≤ z. Then, for any a ∈ I, η(a) = η u1 (a) ≤ η y (a) ≤ η u2 (a) = η(a), hence η = η y , and so y ∈ U , which cannot happen. Then y ≤ z, but then, by transitivity of ≤, u 1 ≤ z, and hence x = u ≤ z. The case u = z is handled similarly. And if y = u , then x, z ∈ C S -U , and there are u 1 , u 2 ∈ U such that x ≤ u 1 and u 2 ≤ z. But then x ≤ z.

So we are left with the case x, y, z ∈ C S -U . If x ≤ y ≤ z then x ≤ z and consecutively x ≤ z. So either x ≤ y or y ≤ z. Note that if it is both then an argument similar to the one above shows y ∈ U . So let us assume x ≤ y and y ≤ z, the other case is similar. Then there are u 1 , u 2 ∈ U such that x ≤ u 1 and u 2 ≤ y. But from the latter u 2 ≤ z, and hence x ≤ z, finishing the proof of transitivity.

For the antisymmetry, assume that for some x = y it holds x ≤ y and y ≤ x. If x = u this implies u 1 ≤ y and y ≤ u 2 , for u 1 , u 2 ∈ U , which again implies y ∈ U , a contradiction; y = u case is similar. Then x, y ∈ C S -U . If x ≤ y and y ≤ x then similarly x, y ∈ U . So suppose x ≤ y and y ≤ x, that is, there is u 1 , u 2 ∈ U such that y ≤ u 1 and u 2 ≤ x. But then x ≤ u 1 and hence x ∈ U , a contradiction. This finishes the proof of antisymmetry. So, ≤ is indeed a partial order.

To finish the proof of (G7) we need to show that v ≤ w implies η a (v) ≤ η a (w). The proof is only nontrivial whenever v ≤ w.

If v = u then there is u ∈ U such that u ≤ w. But then η a (v) = η a (u) ≤ η a (w); the case u = w is similar. Now let us assume that there are u 1 , u 2 ∈ U such that v ≤ u 1 and u 2 ≤ w. Then η a (v) ≤ η a (u 1 ) = η a (u 2 ) ≤ η a (w), and so η a (v) ≤ η a (w).
The proof of (G8) is similar. Checking the remaining conditions, that is, (C1) in (G9), (G11), and (E1)-(E3) is straightforward.

Lemma 12 (No a → B). Let Γ be an RC graph over I. Then there is an RC graph Γ * , which differs from Γ only by the sets of capitalized letters of its white types, such that for any white vertex u in Γ * , its type T = τ (u) satisfies the following property

(T) If a → B ∈ T then A ∈ T .
Note. We assume that the type and the extended type of a white vertex share the set of capital letters, so if it is modified for one, it is automatically modified for another.

Proof. Let Γ be an RC graph, and Γ * its copy with the sets of capital letters of the white vertices changed as follows. For u in C Γ , the set of capital letters K * (u) of u in Γ * is defined as

K * (u) = {a ∈ I | there is b ∈ I s.t. a → B ∈ τ (u)}, in particular, K * (u) ⊇ K(u).
Now, we need to check that Γ * is indeed an RC graph, which, trivially, amounts to checking (E2) and (E3), and that the white types of Γ * do satisfy (T).

The white types of Γ * satisfy (T). Indeed, suppose a → B ∈ τ * (u), where τ * (u) is the type of u in Γ * . Then a → b ∈ τ (u) and there is c

∈ I such that b → C ∈ τ (u), leading to a → C ∈ τ (u) and A ∈ τ * (u).
Γ * satisfies (E2). Let u be a white vertex and a, b ∈ I are such that A ∈ τ * (u). Then there is c ∈ I such that a → C ∈ τ (u) and hence, by (E2) for Γ, there is a

b-b-path from u to u + ≥ u such that C → b ∈ τ (u + ). From the latter, a → C → b ∈ τ (u + ), and hence A → C → b ∈ τ * (u + ).
Γ * satisfies (E3). Let a white vertex u be such that b → A ∈ τ * (u), x = η b (u), and x + ≥ x. Then for some c ∈ I it holds b → a → C ∈ τ (u), and, by (E3) for Γ, there is

u + ≥ u such that x + = η b (u + ) and C ∈ τ (u + ). As u + ≥ u, b → a → C ∈ τ (u + ), and hence b → A ∈ τ * (u + ).
Corollary 3. If every connected RC k -graph sucht that (N) no two distinct white vertices have the same neighborhood, and (T) all white types satisfy (T), is SSP then every RC k -graph is SSP.

In view of Corollary 3, in the rest of the paper we will always assume that all RC graphs we consider are connected and satisfy (N) and (T). Let us note that Γ from Example 1 is an example of such RC graph.

Relaxed RC graphs and morphisms

We will now introduce several intermediary definitions, which will serve as a framework for proving SSP for RC 3 -graphs. Namely, we define a relaxed RC graph (RRC graph for short) F over I as follows:

(G1) F is a bipartite graph with partitions C and S of white and black vertices; (G2) All edges are unoriented and colored with letters from I; (G3 * ) Every black vertex has an extended black type and the corresponding black type associated with it. Every white vertex u has an associated set of capital letters K(u) ⊆ I; (G4 * ) For every white vertex u and a ∈ I, there is at most one a-edge, adjacent to u. We denote by η a (u) a unique black vertex connected to u by an a-edge, and write η a (u) = NA whenever there is no a-edge from u; (G5) The color of an edge adjacent to a black vertex x is contained in τ (x). As it can be seen, RRC graphs are, according to their naming, relaxed RC graphs, without closure types for white vertices, ordering, closure structure, extension conditions, and potentially lacking some edges. In particular, any RC graph is an RRC graph. For RRC graphs G and H, we define a weak homomorphism ϕ : G → H as a mapping of vertices of G such that ϕ :

C G → C H , ϕ : S G → S H , such that: • for any x ∈ S G it holds T (x) ≤ T (ϕ(x)); • for any u ∈ C G it holds K(u) ⊆ K(ϕ(x))
, and ϕ•η a (u) = η a •ϕ(u) whenever η a (u) = NA, for any a ∈ I. As the name suggests, we will also have homomorphisms of RC graphs, which will be more important to us, and thus will be elaborated upon more thoroughly.

We define a black set S over the index set I as a set, such that every black vertex x ∈ S has an extended black type T (x), and the corresponding black type τ (x), associated to it. Clearly, for an RRC graph F , S F with the corresponding types is a black set, which we call the black set of F . We denote by S the set of tuples S = {(x, a) | x ∈ S, a ∈ τ (x)}. Also, for a ∈ I, we define S a = {x ∈ S | a ∈ τ (x)} and S a = {(x, a) ∈ S}; with an abuse of notation we often identify S a and S a by an obvious bijection. Let us note, however, that the sets {S a | a ∈ I} are not disjoint, while {S a | a ∈ I} are, moreover S = {S a | a ∈ I}.

We define a homomorphism θ : G → H between the RRC graphs G and H sharing the same black set as a weak homomorphism between G and H, which is the identity on the black vertices. Obviously, θ then can be considered a mapping θ :

C G → C H such that for any u ∈ C G it holds K(u) ⊆ K(ϕ(x)), and ϕ • η a (u) = η a • ϕ(u)
whenever η a (u) = NA, for any a ∈ I.

Similarly, we define subgraphs and congruences, relating RRC graphs sharing the same black set. Namely, for RRC graphs G and H (such that S G = S H = S as black sets), we say that

G is a subgraph of H if C G ⊆ C H , if for any u ∈ C G it holds K G (u) ⊆ K H (u) and η G a (u) = η H a (u) whenever η G a (u) = NA, for any a ∈ I. In other words, G is a subgraph of H if the identity map from C G to C H is a homomorphism. Finally, an equivalence relation Θ on C G is a congruence if for any equivalence class [U ] of Θ, any u, v ∈ [U ], it holds η a (u) = NA, or η a (v) = NA, or η a (u) = η a (v)
, for any a ∈ I. Congruences are naturally ordered by inclusion (as relations), that is, for congruences Ω and Θ, Ω ≤ Θ if uΩv implies uΘv. However, some properties of the congruences of RRC graphs contrast with "normal" congruences of algebras. First, if Θ is a congruence and Ω ≤ Θ is an equivalence relation, then Ω is a congruence. Second, while intersection serves as a meet, in general, there is no join and the maximal element in the poset of the congruences of RRC graphs. Now, let us outline several standard properties of these objects.

Proposition 2 (First isomorphism theorem). Let F and G be RRC graphs (sharing a black set S). Then

• If θ : F → G is a homomorphism of F to G then the equivalence rela- tion ker θ on C F , defined by u ker θv iff θ(u) = θ(v), is a congruence of F , called a kernel of θ; • If Ω is a congruence of F then the quotient of F by Ω, denoted F/Ω, is an
RRC graph with the same black set as F , whose set of white vertices is the set of equivalence classes of Ω and for

[U ] ∈ Ω and a ∈ I, η a ([U ]) = η a (u) whenever there is u ∈ U such that η a (u) = NA and η a ([U ]) = NA otherwise, and K([U ]) = {K(u) | u ∈ U }; • If θ : F → G and Ω ≤ ker θ then θ/Ω : F/Ω → G is a homomorphism, defined as θ/Ω([U ]) = θ(u) for any u ∈ [U ]; • If θ : F → G then θ/ ker θ is an embedding (that is, a one-to-one homomor- phism) of F/ ker θ into G.
We define the size of Θ, denoted Θ , as the number of its equivalence classes.

Proposition 3. Let F , G and H be RRC graphs such that F is a subgraph of G, and let θ : G → H be a homomorphism of G to H. Let Θ = ker θ and let

Θ F = Θ ∩ C F × C F . Then Θ F is a congruence of F and Θ F ≤ |C H |.
In the next section, we will outline an approach toward proving RC 3 ⇒ SSP by constructing, based on an RC graph Γ, a certain RRC graph F , then arguing that there is a homomorphism of F to Γ, whose kernel is thus a congruence of F . It is then sufficient to prove that for any congruence Θ of F , Θ ≥ |S|. As congruences of RRC graphs will be of particular importance to us, let us elaborate on them a little. In particular, we are going to be interested in the minimal size of a congruence of F , which we denote by F .

Let us define a constraint over a black set S as a function η : I → S NA. Recall that for a white vertex u of an RRC graph G, the neighborhood η u of u was defined as η u (a) = η a (u), and is thus a constraint over S G . For a constraint η we say that η is exact if η(a) = NA for all a ∈ I, we say that a white vertex u is exact if η u is. For constraints η and ζ we say that η ≤ ζ if η(a) = NA or η(a) = ζ(a) for all a ∈ I. Thus, the set Con(S) of constraints over S is a poset, and exact constraints are its maximal elements.

Notice that for a white vertex x of an RRC graph F , and a white vertex u of F , the neighborhood η u encodes almost all information about u (except for K(u)). Moreover, the definition of congruence does not use K(u) and relies solely on the neighborhoods, but we can say even more. Formally, let con(F ) be a multiset of constraints over S of the constraints of white vertices of F . Let max(F ) be the antichain of maximal constraints of F . As F is a multiset, we need to clarify that max(F ) is the antichain of maximal elements of F , taken as a set, that is, in case F contains two or more identical maximal constraints, only one of them is included into max(F ). Although the fact that con(F ) is a multiset is a little cumbersome, it causes no substantial difficulties, so we will not elaborate on it.

A natural way of defining a partial order on antichains over a poset P is either by refinement or by dual refinement; here we are interested in the latter. Namely, for antichains Q and R over a poset P , we say that Q dually refines R, denoted

Q d R, iff for any q ∈ Q there is r ∈ R such that q ≤ P r. Equivalently, Q d R iff I(Q) ⊆ I(R)
, where I(Q) = {p ∈ P | p ≤ q for some q ∈ Q} is called an orderideal of Q. It is easy to show that dual-refinement is a partial order on the set of antichains over P .

The following easy lemma formalizes the fact that F essentially depends only on max(F ).

Lemma 13. Let F and G be RRC graphs over the same black set S. Then G ≤ F whenever max(G) d max(F ), and G = F whenever max(G) = max(F ).

In particular, let G be obtained from F by one of the following (1) Removing from C F a nonempty set U ⊆ C F for which there is a constraint η such that η u = η for all u ∈ U , and then adding a white vertex v such that η v = η; K(v) can be chosen arbitrarily, but we will assume that

K(v) = {K(u) | u ∈ U }.
In this case we say that U is contracted into u;

(2) Removing from C F a set U ⊆ C F such that there is a set V ⊆ C F , disjoint
from U , such that for any u ∈ U there is v ∈ v such that η u ≤ η v . In this case we say that U is eaten by V ; (3) Adding an a-edge between u ∈ C F and x ∈ S F whenever there is v

∈ C F is such that η v (a) = x and η u ≤ η v . Then F = G . Also, if G is a subgraph of F then G ≤ F .

Free RRC graphs

To keep our and the reader's sanity, starting from this section we will assume |I| = 3, unless specified otherwise. Some constructions can be generalized for different |I| in a straightforward manner, but doing so would require an unnecessary overcomplication. Moreover, we will assume that I = {a, b, c}. This leads to some confusion, as a, b, and c are the names we use for variables over I. In practice, however, these situations are perfectly distinguishable from context. and the white vertices is given by u ≤ z whenever there are v ≥ x, y ≤ z, and a such that η a (v) = y. Then ϕ respects this order, that is, y ≤ z implies φ(y) ≤ φ(z) for all black or white vertices y and z of F a,bc .

The naming for all black vertices in the picture is exact, that is,

τ (a) = a, τ (b 1 ) = τ (b 2 ) = τ (b 3 ) = b, τ (c 1 ) = τ (c 2 ) = τ (c 3 ) = c, τ (ab) = ab, τ (ac) = ac,
and τ (abc) = abc. The extended type of a black vertex is a minimal extended type compliant with its type, that is, T (a) = {I ⊆ I | a ∈ I}, and similarly for all black vertices. Finally, K(u) = A for every white vertex u.

The proof of Proposition 4 is a straightforward application of (E1) and (E2) properties of Γ: A is obtained from x by (E1), then A b and A c are obtained from A by (E2), and finally A b,c is obtained from A b , and A c,b from A c , again by (E2). Moreover, note that for I ⊆ I, if there is an I-path between the black vertices of F u,a,bc , then there is an I-path between their images in Γ. Proposition 1 then implies several things. Additionally, let us notice that F a,bc is parametrized with a, and bc = {b, c}, that is, F a,bc is the same as F a,cb . Moreover, as bc = I -a, F a,bc only depends on a, and ϕ x,a,bc only on a and x, and from now on we will call them F a and ϕ x,a respectively.

As was noted in the beginning of the section, Proposition 4, although correct for any I , is tailored for |I| = 3 case: it is effectively inapplicable for |I| ≤ 2, and for |I| ≥ 4 a more general statement can be made. In fact, for, say, |I| = 4, it is easy to guess what the graph F a,bcd and the corresponding properties of ϕ x,a,bcd : F a,bcd → Γ should be. Let us separately note that Proposition 4 is stated for "any pairwise distinct a, b, c ∈ I". This setup will be typical, and effectively means that, as variables, a, b, and c are some permutation of the letters a, b, c ∈ I. Then Proposition 4 can be interpreted as stated literally for the letters a, b, and c, and true up to any permutation of these letters.

The plan is now as follows. Having fixed the black set S of an RC graph Γ, we are going to construct an RRC graph, which "freely" admits Proposition 4 for any x ∈ S and any a ∈ τ (x), or, in other words, for any (x, a) ∈ S. Here by freely we mean that the images of all white vertices of F a,bc are different for all applications of Proposition 4. Let us note that this construction is contingent upon the images of black vertices, which we will need to fix. Some of them are fixed already by the closure structure of Γ, namely, we know that for ϕ = ϕ x,a,bc it holds ϕ(a) = x, ϕ(ab) = c b (x), ϕ(ac) = c c (x), and ϕ(abc) = c bc (x). And, to handle the images of b i and c i , for i = 1, 2, 3, we are going to introduce an arrow structure.

Formally, an arrow structure A over a black set S as Note. While the closure system is uniquely defined by Γ, there is a certain level of arbitrariness in the choice of A, which, in particular, we will utilize when enforcing additional properties on arrow structures in Lemma 16.

A = A 1 A 2 A 3 ,
• x a-b --→ ϕ x,a (b 1 ); • x a-c --→ ϕ x,a (c 1 ); • x a-b-c ----→ ϕ x,a (c 2 ); • x a-c-b ----→ ϕ x,a (b 2 ); • x a-b-c-b ------→ ϕ x,a (b 3 ); • x a-c-b-c ------→ ϕ x,

Proof.

A is an arrow strucuture by construction, and (AC1) and (AC2) are easy reformulation of some properties from Corollary 4. Indeed, if We will only deal with arrow structures arising as in Lemma 14, and thus we will consider (AC1) and (AC2) as a part of a definition of a structure. Now, for a given structure (C, A) we are going to construct the free graph F C,A of (C, A). The construction is as follows:

x a-b --→ y then c b (x) = c a • ϕ x,a (b 1 ) = c a (y). And z c-a --→ x and z c-b --→ y imply c b (x) = c b • ϕ z,c (a 1 ) = c a • ϕ z,c (b 1 ) = c a (y). And for (AC2), b ∈ τ (y) = τ • ϕ x,a (c 1 ) implies y = ϕ x,a (c 1 ) = ϕ x,a (c 2 ),
(F1) F C,A is an RRC graph with the black set S = S C = S A . Moreover, By construction, C and A capture the images of the black vertices of F a (and of F b and F c , obtained from it by the permutations of letters) by the homomorphisms from Φ, fixed in Lemma 14. Also, the white vertices u s1 , u s2 , and u s3 of F C,A correspond to the white vertices of the corresponding RRC graphs. Thus, the following lemma is nonsurprising.

C F = C 1 C 2 C 3 ,
Lemma 15. Let Γ be an RC graph. Let (C, A) be the structure of Γ, where A = A(Φ) is constructed as in Lemma 14. Let F = F C,A be the free graph of (C, A). Then there is a homomorphism θ : F → Γ.

Note. We do not claim that θ completely restores Γ, neither in the sense of correctly restoring the capital letters of white types, nor in restoring all white vertices (that is, θ is not necessarily onto). 

Example for |I| = 3 with trivial closures

In this and the next sections, we will consider a subcase of |I| = 3 case when the RC graph Γ has trivial closures. Recall that, assuming the connectedness of Γ, it means that all black vertices of Γ have single-element types, except for its unique top whose type is I. As I = abc we denote the top by abc.

In principle, we do not need to consider this subcase separately, as it falls under the general |I| = 3 case, and the proof of RC 3 ⇒ SSP does not rely on it. However, it is very illustrative. If Γ has trivial closures, the proof that it satisfies SSP becomes much easier, emphasizing the main line of reasoning without overburdening the reader with technical details. Moreover, we can then use a simplified version of arrow structures and free graphs, and thus we will be able to give illustrations for these constructions; in the general situation, the free graph becomes too bulky to even draw it. Because of the optional nature of these two sections, we will allow ourselves some level of sketchiness.

So, for the purpose of this section, we only need the simplified arrow structure A, which only contains arrows of degree 1, constructed as in Lemma 14. The (AC1) condition becomes trivial, as x a-b --→ y in case of trivial closures implies c b (x) = c a (y) = abc. Also, (AC2) cannot be formulated, as we do not have degree-2 arrows; however, for the analog of the free graph, we will use some proxy of (AC2) condition. Now, the simplified free graph F C,A is defined similarly to the free graph, but without stage-3 vertices. Additionally, the definition of stage-2 vertices is relaxed as follows (F3.2*) For u = u s2 (x, a, b), the b-edge of u goes to y such that x a-b --→ y, that is, to y = η b • u s1 (x, a) and the a-edge of u goes to c b (x). We call the a and b-edges of u ordinary. Moreover, if for c ∈ I -a, b it holds x a-c --→ abc, then there is the c-edge from u to abc, and this edge is called special; otherwise, there is no c edge from u. The construction of the special edges is a relaxed version of the omitted (AC2) condition; it is illustrated in Figure 5 Now, we claim that one of the possible simplified arrow structures for the RC graph Γ from Figure 3 (which has trivial closures), provided by Lemma 14, is as in Figure 6 below. Recall that the construction of A is contingent upon the choice of the mappings Φ, and, as far as we only need arrows of degree one, we only care about the choice of ϕ x,a (A), for (x, a) ∈ S; the fact that it is a morphism implies that ϕ x,a (b 1 ) = η b • ϕ x,a (A), and ϕ x,a (c 1 ) = η c • ϕ x,a (A), and this is enough to restore the arrows of degree one. Now, ϕ x,a (A) should be an a-neighbor of x whose type contains A. For all x = abc this choice is unique, for example, Finally, in Figure 8 we show the image of F into Γ under the morphism θ from Lemma 15, that is, the RRC graph F/Θ for Θ = ker θ.

A proof of |I| = 3 case with trivial closures

Theorem 3. Let Γ be an RC 3 -graph with trivial closures. Then Γ is SSP.

Proof. Let Γ be an RC 3 -graph with trivial closures. Recall that we assume that Γ is connected, its top is denoted by abc, and also that the white types of Γ satisfy (T). Let S = S Γ , and let A = A Γ be any arrow structure on S. We are going to prove that for the simplified free graph F = F C,A , F ≥ |S|, that is, for any congruence Θ of F it holds Θ ≥ |S|. In the process, we will modify F in the ways covered by Lemma 13; we will keep calling the modified graph F , and use the fact that F is not changed by the modification.

We define a triangle as three vertices a ∈ S -abc, for a ∈ I, such that a a-b --→ b, for all a, b ∈ I, a = b. Notice that we have explicitly excluded the top vertex, so in this case τ (a) = a, in particular, the vertices of a triangle are pairwise distinct. --→ c. Additionally, we require that a, b, and c do not form a triangle. We call the set {a, b} the base, and c the tip of the pyramid; notice that the tip of a pyramid can be abc. We separately notice that we consider a pair a and b to be non-ordered, that is, an ab-pyramid is the same as ba-pyramid. An easy but helpful observation is that all triangles and pyramid bases are disjoint from each other.

Let t be the number of triangles, p the number of pyramids, and s the number of the singletons in S -abc not in the triangles or pyramid bases, which we call singletons. Then the total number of vertices in S is 3t + 2p + s + 1.

For the purpose of this proof, we will exclude stage-1 vertices of abc from the set of stage-1 vertices, and will call them stage-1t. Now, let us contract (as per Lemma 13) stage-1 vertices of every triangle and every pyramid base; we still call these new vertices stage-1 and index them by the corresponding triangles and pyramids. Each singleton already has just one stage-1 vertex, which will now be indexed by this singleton. Let us denote the set of all stage-1 vertices after contractions ST1. Then |ST1| = r + p + s, moreover, all vertices in ST1 are exact and cannot be contracted with each other. That is, their neighborhoods form an antichain in Con(S). --→ a. Additionally, let us notice that in this case a stage-2 vertex v = u s2 (c, c, b) is special, and its constraint η v is defined as η v (a) = η v (c) = abc, and η v (b) = b; in particular, η u ≤ η v . Then, by Lemma 13, we can add a c-edge between u and abc, that is, put η u (c) = abc. Notice that even if u = u s2 (a, a, b) had a special c-edge, this edge would go to abc, and hence adding it would simply leave u as it is. The point of this change is that after it u is no longer eaten by u s2 (c, c), and, consequently, not eaten by any vertex from ST1. This construction is illustrated in Figure 9 below.

Let us call an equivalence class of Θ containing vertices of ST1 an ST1-equivalence class, and similarly for PST2-equivalence classes. Because no vertex in PST2 is eaten by ST1, and because all vertices of ST1 are exact, the sets of ST1 and PST2equivalence classes are disjoint. Also, no two ST1-vertices can be in one equivalence class, so there are exactly t + p + s ST1-equivalence classes. The next observation is crucial in addressing PST2-vertices. As long as we are only sketching the approach, the proof is omitted. A PST2-equivalence class cannot contain more than two vertices from PST2. Thus, there are at least (6t + 2p)/2 = 3r + p PST2-equivalence classes, and consecutively, there are at least (t + p + s) + (3t + p) = 4t + 2p + s equivalence classes which are either ST1 or PST2. Now, if Γ is not SSP, we have

+ 2p + s ≤ Θ * ≤ Θ ≤ |C Γ | < |S| = 3t + 2p + s + 1
where F * is a subgraph of F containing only ST1 and PST2 vertices, and Θ * is the restriction of Θ on F * . Although the above inequality admits the possibility that |C| is strictly smaller than |S| (by at most one), it can only happen under very specific conditions. Immediately, we can infer • A has no triangles; • All PST2-equivalence classes contain exactly two PST2-vertices; • All vertices not from ST1 or PST2 are either eaten by stage-1 vertices, or can be put into PST2-equivalence classes. This includes non-principal stage-2 vertices of non-top vertices and stage-1t vertices. We can assume that stage-2 vertices of abc are eaten by stage-1t vertices.

After that, the proof can be finished by several easy claims

• All ST1 and PST2 equivalence classes have at most one edge to abc;

• No arrow in A goes to abc (this includes arrows from abc);

• There are no pyramids. As a consequence, there are no PST2-equivalence classes.

Finally, as there are no PST2-classes, and as no arrow of an ST1-class goes to abc, there is no equivalence class of Θ which can contain u s1 (abc, a, b), a contradiction.

Additional properties of structures

This and the next two sections are dedicated to proving RC 3 ⇒ SSP in full generality. Here, in particular, we elaborate on some strengthening of Proposition 4, and consecutively of Lemma 14. The statements are tailored for the main proof and thus might look strange. We will briefly discuss the parallel between the proof of the general case with Theorem 3 at the beginning of the next section.

We say that, in the setup of Proposition 4, ϕ = ϕ x,a is maximal if

• ϕ(A) is chosen to be maximal, with respect to first, the order of Γ, and second, to the preorder of white vertices according to the order of their closure types, a-neighbor of x with A in its type. That is, there is no aneighbor u of x such that A ∈ τ (u) and either ϕ(A) < u or C(ϕ(A)) < C(u);

We note that ϕ(A) < u implies C(ϕ(A)) ≤ C(u) so such maximal vertex can always be chosen.

• Similarly, ϕ = ϕ x,a is type-maximal if

• ϕ(A) is chosen to be maximal with respect to the arrows of the type of white vertices a-neighbor of x with A in its type. That is, there is no a-neighbor u of x such that A ∈ τ (u) and A(ϕ(A)) A(u),

and similarly for the choices of ϕ(A b ) and ϕ(A b,c ). Let us note that ϕ is maximal implies ϕ is type-maximal, but not the other way round. For the most part of the proof we will use type-maximality, however, in the second part of the proof of the main theorem in Section 12, we will have to use both maximality itself and the difference between maximality and type-maximality. We also note that even with the requirement of maximality, the choice of ϕ(A) is, in general, not unique. As all ϕ ∈ Φ from which A = A(Φ) is constructed in Lemma 14 can indeed be chosen to be type-maximal, we will assume that A satisfies (AC3)-(AC5) on top of (AC1) and (AC2). Now we are going to prove the RC 3 ⇒ SSP case in general, and, as an attentive reader could have noticed, it is split into (two) parts, with this section covering the first one. The proof of the first part goes along the same lines as Theorem 3: The argument is concentrated on an arbitrary congruence Θ of a free graph and ends roughly with an analog (much more complicated) of 4t + 2p + s ≤ 3t + 2p + s + 1 inequality, which proves that Θ can be smaller than |S| by at most one. In Theorem 3 that was almost it, the structural properties imposed by such a tight bound were enough to finish the proof in several steps, staying inside the same setup.

The first part of the proof of a general case will follow the same pattern, which will end up with a similar inequality, proving that Θ ≥ |S| -1. However, it will not be enough, and for a good reason. We will give a "counterexample", that is, a connected graph Γ, which satisfies all the conditions of an RC graph, except for (E3). As it can be noticed, the construction of the free graph and a congruence over it does not rely on this last condition, and thus this construction alone is not enough to finish the proof. We will thus need to go back to Γ, carry over some consequences of it being almost SSP, and use (E3) in it. This second part of the proof will be done in the next section.

Throughout the proof, for the sake of self-sufficiency, we will not be emphasizing the parallel with the trivial closures case, so let us note a few things at the beginning. Triangles and pyramids will still be of primary importance for us, however, they are now defined on S rather than on S: In trivial closures case we were able to ignore this difference by identifying all vertices in S -abc with their counterparts in S. With this in mind, stage-1 vertices are dealt with in essentially the same way as before.

Similarly, we will define principal stage-2 vertices. Here, however, we will have to make some changes, in particular, the number of principal stage-2 vertices produced by triangles will, in general, drop to four. Additionally, we will need to address the principal stage-2 vertices eaten by stage-1 ones. We will be able to compensate them using stage-3 vertices and the extra properties of arrow structure, enforced by Lemma 16.

Theorem 4. Let Γ be an RC 3 -graph. Then Γ is SSP.

Proof (part 1). Let Γ be an RC 3 -graph, and suppose Γ is not SSP, that is, |C| < |S|. As argued, we can assume that Γ is connected and satisfies (T) and (N). Let Φ be chosen as in Lemma 16, that is, such that every ϕ ∈ Φ is type-maximal, and let A = A(Φ), which implies that A satisfies (AC1)-(AC5). Let F = F C,A be the free graph, θ = θ(Φ) be the morphism of F into Γ, and Θ be the kernel of θ.

We will write S -abc to denote S -{(abc, a), (abc, b), (abc, c)}. We define a triangle as three elements (a, a) ∈ S -abc, for a ∈ I = abc, called the corners of the triangle, such that a We now exclude stage-1 vertices produced by (abc, a), for a ∈ I, from the set of stage-1 elements, and call them stage-1t. Let us note that (N) implies that the stage-1 vertices of every triangle and every pyramid base are mapped to the same white vertex of Γ. That is, for, say, a triangle (a, a), (b, b) and (c, c), it holds

θ • u s1 (a, a) = θ • u s1 (b, b) = θ • u s1 (c, c
), and similarly for the pyramids. Now, let us contract these vertices, that is, form a congruence Ω of F whose non-trivial classes combine the stage-1 vertices of triangles and pyramids, and factor F , θ, and Θ by Ω. We will still call the corresponding objects F , θ, and Θ; additionally, we will sometimes refer to F before contraction, which we will now denote by F * . We still use u s1 (a, a) notation for the stage-1 vertices, but now if (a, a) and (b, b) are corners of a triangle or a pyramid base then u s1 (a, a) = u s1 (b, b). Note that after factoring by Ω all stage-1 vertices are exact and cannot be contracted with each other, that is, their neighborhoods form an antichain.

Let us now further classify triangles and pyramids. The classification is symbolically depicted in Figure 13 and Figure 14 and formally defined below. In this classification, we assume a, b, and c to be pairwise distinct letters from I; recall that, alternatively, we can consider them literally the letters of I and then treat each case as defined up to the permutation of these letters. The TPS-classification naturally carries over to the classification of principal stage-2 vertices. They are already drawn in Figure 13 for triangles, and in Figure 14 for pyramids, the singletons do not produce any principal vertices. However, we will now elaborate on it to add information about QP and non-QP vertices.

Note that there can be two principal stage-2 vertices from a given (b, b), but this can only happen if (b, b) is a corner of a triangle, moreover, (b, b) should either be one of the corners of a T1-triangle or the (c, c) corner of a T2-triangle. We also note that (QP) is applicable only when the two principal stage Before that, let us note that we still consider a QP vertex to be principal. This decision is rather arbitrary: for the first part of the proof we will be mostly interested in the number of non-QP vertices, but for the second part we will need to address QP vertices separately, so we keep track of both of them. We will write simply QP vertex instead of principal stage-2 QP vertex, and similarly for non-QP.

Naively, it looks like with (QP) in place, it might happen that all corners of the triangles with types of size one will produce just one non-QP stage-2 vertex and, consequently, that both T1 and T2-triangles can produce just three of them. However, we will now show that a T1-triangle produces at least four, and T2-triangle precisely four non-QP vertices. In particular, it means that (QP) is effectively inapplicable to (T2). This, together with the upcoming formal statement and the argument, is illustrated in Figure 15 Recall that, by the construction of F , all stage-2 vertices are exact. However, we will mostly be interested in their non-exact ordinary parts. Formally, for a stage-2 vertex u = u s2 (a, a, b) we define the ordinary part η * u of u as a constraint such that η

* u (b) = η u (b) = b, for b such that a a-b --→ b, η * u (a) = η u (a) = c b (a), and η * u (c) = NA for c ∈ abc -ab. Trivially, η * u ≤ η u .
The following statement is obvious by construction.

The ordinary parts of the principal stage-2 vertices are incomparable, that is, they form an antichain. Let us note that this, in general, cannot be said about the principal stage-2 vertices themselves or about the ordinary parts of non-principal stage-2 vertices.

We say that a principal stage-2 vertex u = u s2 (a, a, b) is eaten by a stage-1 vertex v = u s1 (d, d), for some d ∈ I, if η u = η v ; here, as usual, we assume c ∈ I -ab and use d to emphasize the fact that, in general, d can be a, or b, or c. Note that, by (N), this implies θ(u) = θ(v), that is, u and v are in the same class of Θ. Additionally, as after factoring by Ω the neighborhoods of all stage-1 vertices are incomparable, u can be eaten by at most one stage-1 vertex. Thus, if additionally u is eaten by w = u s1 (e, e) then, although in general (d, d) = (e, e), it holds v = u s1 (d, d) = u s1 (e, e) = w. We also note that it only happens if (d, d) and (e, e) are either corners of a triangle or a base of a pyramid.

We now will classify the cases in which a principal stage-2 vertex can be eaten by a stage-1 vertex.

Let a, b, and c be pairwise distinct letters of I, a 

----→ c it holds a -b b -a c -b c -a a -b -c a b c ab
Here u is eaten by u s1 (c, c). This case implies τ (a) = a, τ (b) = b, and τ (c) = c or bc; in particular, a, b, c, and ab are pairwise distinct. Additionally, in F * if u is eaten by v say by (K1) then there cannot be w = v such that u is eaten by w also by (K1), and similarly for (K2) and (K3). In F , that is, after contraction by Ω, it means that if u is eaten by (K1) by v = u s1 (d, d) and by w = u s1 (e, e) then (d, d) = (e, e).

Also, (K1) and (K3) are not compatible with (K2), that is, in F * u cannot be eaten by v by (K1) and by w by (K2), and similarly for (K3) and (K2). The cases (K1) and (K3) are compatible and this situation is described below Let us elaborate on the terminology we are going to use. We will say principal vertex to denote a principal stage-2 or principal stage-3 vertex, QP vertex to denote a principal stage-2 QP vertex, and non-QP to denote a principal stage-2 non-QP or principal stage-3 vertex.

The ordinary parts of the principal stage-3 vertices are incomparable between themselves and with the ordinary parts of the principal stage-2 vertices. That is, the ordinary parts of principal vertices form an antichain. The fact that the ordinary parts of principal stage-3 vertices are incomparable with the ordinary parts of principal stage-2 vertices follows from the fact that in (K3) (c, c) is a singleton, and thus does not have principal stage-2 vertices from it. And they are incomparable among themselves because in (K3) a is uniquely restored from c, c, and a as Let, in the setup of (K3) with (c, c) being a singleton, u = u s3 (a, a, b, c) be the corresponding principal stage-3 vertex from (c, c). Then, unless the following condition holds, u is not eaten by any stage-1 vertex. Finally, τ (c) = c or bc by the setup of (K3) and (c, c) being a singleton is a prerequisite for u being principal.

Note. As a matter of fact, it can be shown that (K4) also implies τ (c) = c, but it involves another maximality argument in the spirit of Lemma 16, so we will not prove it.

The cases (K1)-(K4) address how a principal vertex is eaten by a stage-1 vertex. Now we need to flip this construction and classify the cases when a stage-1 vertex eats one (or several) principal vertices. As a preliminary step, let us state the following.

For (c, c) ∈ S there cannot be a principal stage-2 vertex together with a principal stage-3 vertex from (c, c); similarly, there cannot be more than one principal stage-3 vertex from (c, c).

Proof. If not, then there is at least one principal stage-3 vertex from (c, c), that is, c is c from (K3) case and (c, c) is a singleton. Let us call a, b, and ab from (K3) a 1 , b 1 , and ab 1 respectively. Then Let us make a remark that (K1)-(K4) effectively describes a relation between principal vertices that are eaten and stage-1 vertices of F * that eat them. Here principal stage-2 vertices are parametrized with principal arrows and principal stage-3 vertices by (K3)-cases in which (c, c) is a singleton. The natural way to parametrize stage-1 vertices of F * is by the elements of S -abc, that is, (a, a) naturally corresponds to u s1 (a, a). We find it instructive, even if a little excessive, to redraw the cases (K1)-(K4) with renamed letters concentrating on the stage-1 vertex that eats the corresponding principal vertex. This is shown in Figure 17, the cases are formally renamed to (L1)-(L4). We say that (a, a) ∈ S -abc is dominating if u s1 (a, a) eats at least one principal vertex, which is equivalent to saying that it falls under one (or more) of (L1)-(L4) cases. In the picture, the dominating element in each case is emphasized and the mapping in square brackets indicates the renaming of letters used to get this case from (K1)-(K4).

Note that the additional conditions from the original (K1)-(K4) cases, although not indicated explicitly, are also assumed to hold. In particular, in (L1), (L2), and (L4) τ (ab) = ab, in (L3) τ (a) = a or ab; (ab, a) in (L2) and (b, b) and (ab, a) in (L4) are singletons, and so on.

The cases (L1)-(L4) are not self-compatible, that is, for (ab, a) ∈ S -abc and u = u s1 (ab, a), u cannot eat by (L1) more than one distinct principal stage-2 or stage-3 vertices, and similarly for (L2)-(L4).

Proof. This is obvious from (L1)-(L4) cases description. For example, assuming the setup of (L1), if u = u s1 (ab, a) eats some v by (L1) (potentially after some permutation of letters) then v is principal stage-2 vertex, v = u s2 (d, d, e), and v is from (e, e) such that d permutation. However, this can be ruled out by examining the types of the vertices involved in (L3) and noting that the a-b-arrow from (a, a) goes to a vertex b with a type of size one (that is, b), and the a-c-arrow to a vertex with a type of size two.

It is, however, easy to see that some of the (L1)-(L4) cases can happen simultaneously. In fact, the following is obvious from the diagrams in Figure 17.

Out of (L1)-(L4) cases, (L1) and (L2) are compatible, that is, an element (a, a) can be dominating by both (L1) and (L2). Also, (L1) and (L3) are compatible, and all other cases are incompatible with each other. Moreover, if u is dominating by both (L1) and (L2) then the same variables a, b, and c are used in both cases, and similarly for (L1) and (L3). (L3) is incompatible with (L2) and (L4) just by examining the types of vertices to which the arrows from (a, a) go. (L4) is incompatible with (L1) and (L2) because (b, b) in (L4) is a singleton.

Just as we did with (K1+3), let us now draw the diagrams of (L1+2) and (L1+3) cases. Figure 18 Additionally, in (M3), (M4), and (M5) cases, both principal stage-2 vertices eaten by u s1 (ab, a) are from a corner of a T1-triangle, and in (M5) case, one of them is QP.

We call this M-classification.

vertices, and hence (a, a) is either a corner of a T1-triangle, or the (c, c) corner of a T2-triangle (which has to be transformed into (a, a) by [a → c, c → a] or [a → b, b → c, c → a] permutation). However, the latter case implies, by the argument illustrated in Figure 15, that η u (b) = η v (c) = abc, and thus ab = abc. Thus, the vertices u and v are from (a, a) and the first of them is QP while the second is not. Now we will count the number of vertices in S and a lower bound on Θ . The latter so far is based exclusively on the number of ST1 equivalence classes and on the lower bound on the number of PST2 equivalence classes. Moreover, for the latter we will not count the QP vertices. Recall that S -abc is divided into disjoint triangles, bases of pyramids, and singletons, which are further classified into T1 and T2-triangles, P1-P5-pyramids, and S1 and S2-singletons. Let t1 be the number of T1-triangles, and t2, p1, . . . , p5, s1, and s2 are defined by analogy. To obtain |S| we will now assign the weight 1 to all elements (a, a) for τ (a) = a, and 1/2 to all elements (ab, a) for τ (ab) = ab. Summing up all those weights over S -abc would then give us |S -abc|, and we get |S| by adding 1 to this quantity. And to compute this weighted sum, we utilize the TPS-classification. For example, a P5-pyramid contains the elements (ac, a) and (b, b) in its base, and so it contributes 3/2 to the sum. For the remaining cases, all coefficients are computed in a straightforward way, yielding

|S| = 3t1 + 2t2 + 2p1 + 3 2 p2 + p3 + p4 + 3 2 p5 + s1 + 1 2 s2 + 1.
Also, as argued, the number of stage-1 vertices, which we denote by st1, is precisely the total number of triangles, pyramids, and singletons. Thus

st1 = t1 + t2 + p1 + p2 + p3 + p4 + p5 + s1 + s2.
Let us also compute the total number of non-QP vertices pst2. Again, it uses the TPS-classification and also the fact that T1-trianles produce at least 4, and T2-triangles precisely 4 non-QP vertices. Then pst2 ≥ 4t1 + 4t2 + 2p1 + 2p2 + 2p3 + 2p5.

To count the number of principal stage-3 vertices and the number of non-QP vertices eaten by stage-1 vertices we need to use M-classification. For this we say that s1 = s1.m1 + s1.m0, where s1.m1 is the number of S1-singletons falling under (M1) and s1.m0 is the number of non-dominating S1-singletons. Similarly, s2 = s2.m3 + s2.m5 + s2.m6 + s2.m0. For a P2-pyramid, let us note that its (b, b) corner falls under (M2) iff (ac, a) falls under (M6), and otherwise both corners are non-dominating; thus p2 = p2.m2m6 + p2.m0. Similarly, for a P3-pyramid either both of its corners fall under (M4), or (M6), or both are non-dominating, and hence p3 = p3.m4m4 + p3.m6m6 + p3.m0. All the remaining objects from TPS-classification do not fall under M-classification.

Then the number pst3 of principal stage-3 vertices is pst3 = s1.m1 + s2.m3, and the number epst23 of non-QP vertices eaten by stage-1 vertices is epst23 = s1.m1 + 2s2.m3 + s2.m5 + s2.m6 + p2.m2m6 + 2p3.m4m4 + p3.m6m6.

Notice that non-QP assumption is used to put s2.m5 with a coefficient 1: although (M5) element eats two principal vertices, only one of them is non-QP. Also note that although each corner of a P2 or P3-pyramid can eat a vertex, both corners eat the same vertex, which explains why p2.m2m6 and p3.m6m6 are taken with coefficient 1 and p3.m4m4 with coefficient 2. Now,observe that, as argued, the number of PST2 equivalence classes is at least

1 2 (pst2 + pst3 -epst23). So, |S| > Θ ≥ st1 + 1 2 (pst2 + pst3 -epst23), which is better rewritten as |S| -1 ≥ st1 + 1 2 (pst2 + pst3 -epst23), and yields 3t1+2t2 + 2p1 + 3 2 p2 + p3 + p4 + 3 2 p5 + s1 + 1 2 s2 ≥t1 + t2 + p1 + p2 + p3 + p4 + p5 + s1 + s2 + 1 2 4t1 + 4t2 + 2p1 + 2p2 + 2p3 + 2p5 + s1.m1 + s2.m3 -s1.m1 -2s2.m3 -s2.m5 -s2.m6 -p2.m2m6 -2p3.m4m4 -p3.m6m6 .
With some arithmetics we get

0 ≥ t2 + 1 2 (p2 -p2.m2m6) + p3 -p3.m4m4 - 1 2 p3.m6m6 + 1 2 p5 + 1 2 (s2 -s2.m3 -s2.m5 -s2.m6) = t2 + 1 2 p2.m0 + p3.m0 + 1 2 p3.m6m6 + 1 2 p5 + 1 2 s2.m0.
As we can see, even if the right-hand side is zero and the inequality holds it implies that Θ is at least |S| -1, but to prove that actually Θ ≥ |S| we will need to put some extra efforts. So, if Θ = |S| -1 then, by the RHS being zero • There are no T2-triangles and P5-pyramids; • Any P2-pyramid eats a principal stage-2 vertex and any P3-pyramid eats two principal stage-2 vertices; • All S2-singletons fall under one of (M3), (M5), or (M6) cases.

Additionally, several inequalities that we used should become equalities, in particular

• Any T1-triangle is either (T1.1) or (T1.2), that is, it produces exactly four non-QP vertices; • Any PST2 equivalence class contains exactly two non-QP vertices;

• Any QP vertex is either eaten by an (M5) dominating element or is a third principal vertex in a PST-2 class; • Any (not necessarily principal) stage-2, stage-3, or stage-1t vertex is either eaten by some stage-1 vertex or by some PST2 class.

This finishes the first part of the proof.

12. The proof of |I| = 3 case, part 2

Prior to proceeding with the second part of the proof of Theorem 4, let us take a look at the following example Example 3. The graph Γ in Figure 20 is "almost" an RC graph, that is, it satisfies all the conditions of RC graph except for (E3). It can be noticed that in terms of TPS-classification, each petal of Γ contains a T1.1-triangle and a vertex like ab, which technically constitutes two S2-singletons (ab, a) and (ab, b). It can be further noticed that those singletons correspond to s2.m5 case.

As usual, all naming is assumed to be exact. The order (or its basis) is not shown, but again, it can be easily guessed. Namely,

ABC 1 ≤ B → A → c ≤ [AB] → c and ABC 1 ≤ B → C → a ≤ [BC]
→ a, and similarly for the remaining white vertices. This gives a basis for the order on the white vertices and the order on the black vertices is inferred from this. In particular, b 2 , b 3 ≤ b 1 . Now we can see the problem: The extended black type of ABC 1 is {∅, a, b, c, ac, abc}. As a 3 ≥ a 1 , by (E3) there should be an a-neighbor u of a 3 such that A ∈ τ (u) and u ≥ ABC 1 . As C(a 3 ) = {a, abc}, ab, ac / ∈ C(u). This, together with C(u) ≥ C(ABC 1 ), implies C(u) ≥ {∅, a, b, c, abc}. In particular, u = ABC 3 and, as there are no other candidates for u, (E3) is not satisfied. As we were saying in the foreword for Section 11, the construction of free graphs and congruences over them does not use (E3), and consequently, this counterexample cannot be dealt with by examining Θ alone without going back to Γ.

abc bc a 3 b 3 c 3 A → B → c A → C → b ABC 3 [BC] → a
Proof (part 2). So, Θ = |S| -1. Note, however, that as Γ is assumed to be non-SSP, then Θ ≤ |C| < |S|, and hence Θ = |C|, that is, θ is onto. That is, all white vertices of Γ are completely restored from the congruence. In particular, each white vertex u in Γ is obtained from either ST1 or PST2 class, and we will call them ST1 and PST2 vertices respectively; we call the preimage of u under θ a class of u.

In Γ there is no white vertex u such that all edges of u go to abc, that is, η a (u) = η b (u) = η c (u) = abc. Indeed, whether u is ST1 or PST2 vertex, at least one of the edges would go to a black vertex other than abc.

There is no black vertex a ∈ S -abc such that a a-b --→ abc and a a-c --→ abc. In particular, there is no white ST1 vertex with two edges going to abc. Suppose not, and let u = θ • u s1 (a, a). Then A ∈ τ (u) and η b (u) = η c (u) = abc. But then [bc] → A ∈ τ (u), and, applying (E2) to u we will get a vertex v ≥ u such that [ABC] ∈ τ (v). But then all edges of v go to abc, a contradiction.

This implies that if a white vertex u has two edges to abc then u is PST2. Moreover, the two principal stage-2 vertices u So far, throughout the proof, we assumed Φ, and consecutively A, θ, and Θ, to be fixed. We also assumed that each ϕ ∈ Φ is type-maximal. Now, we are going to suppose that on top of that, each ϕ ∈ Φ is maximal. As maximality implies type-maximality, everything we have proven so far holds.

Assuming each ϕ ∈ Φ is maximal, there are no T1.1-triangles.

Through the proof, we keep the notation similar to Example 3 so that the latter can be used as an illustration.

Proof. Suppose not, and let (a 1 , a), (b 1 , b), and (c 1 , c) be the corners of such triangle. Moreover, without losing generality, we assume that this triangle is exactly as in Figure 15, that is, c b (a 1 ) = c a (b 1 ) = c c (b 1 ) = c b (c 1 ) = abc, and c c (a 1 ) = c a (c 1 ) = ac with τ (ac) = ac.

Let us now consider a QP vertex v 1 = u s2 (c, c, a). As noted, it is either eaten by an (M5) dominating element, or is a third vertex in a PST2 equivalence class. In both situation it is in the same class as the second principal stage-2 vertex from (a, a), that is, as

v 2 = (b, b, a). Let ABC 1 = θ • u s2 (a 1 , a) = θ • u s2 (b 1 , b) = θ • u s2 (c 1 , c) and B → A → c = θ(v 1 ) = θ(v 2 ). Then B → A → c ∈ τ (B → A → c); similarly, ABC ∈ τ (ABC 1 )
, which motivates the naming. Notice also that C(ABC 1 ) = {∅, a, b, c, ac, abc}.

From the fact that all homomorphisms from Φ respect the order of F a from Proposition 4 it follows that ABC 1 ≤ B → A → c. Also, by (E2), there is a vertex As an immediate corollary, we have: In Γ there is no white vertex u such that at least two edges of u go to abc.

[AB] → c ≥ B → A → c. Then c 2 = η c ([AB] → c) ≥ c 1 = η c (B → A → c). But
ABC 2 = θ • u s2 (a 2 , a) = θ • u s2 (b 2 , b) = θ • u s2 (c 2 , c). Then C(ABC 2 ) = {∅, a, b, c, ab, abc}, in particular, ab ∈ C(a 2 ), C(b 2 ) and ABC 2 ≥ ABC 1 . Now, let us use (E3) in Γ. Namely, as η c (ABC 1 ) = c 1 ≤ c 2 , there is C 2 ≥ ABC 1 such that η c (C 2 ) = c 2 . Then, C(C 2 ) ≥ C(ABC 1 ) = {∅,
Note that the last statement is about Γ, not Φ: All that we need for it is to have some maximal Φ, which we can do. But, as long as in Γ there are no white vertices with two edges to abc, we can prove the absence of T1.1-triangles without the requirement of maximality of Φ; we still assume that Φ is type-maximal.

There are no T1.1-triangles. In the proof of this statement with the assumption of maximality we have shown the existence of a white vertex [AB] → c in Γ, which had two edges to abc. As there is no such vertex in Γ, and as that part only used type-maximality of Φ, the proof is concluded.

The remaining part of the proof is more or less tedious but straightforward case elimination.

There is no white vertex u in Γ such that a → B ∈ τ (u); note that as Γ satisfies (T), a → B ∈ τ (u) is equivalent to A → B ∈ τ (u). This implies that there are no arrows from a to x such that a ∈ τ (x), that is, a There is no (ab, a) ∈ S -abc which is dominating by (L2) or by (L4). In particular, (M5) does not happen. This is by observing that both (L2) and (L4) cases involve an arrow to abc.

There are no P4-pyramids. Because a P4-pyramid involves a ab a-b --→ ab arrow. There are no PST2 classes with three principal vertices. Consecutively, there are no triangles, no QP vertices, and no two principal vertices from the same element of S -abc. Moreover, there are no (L1+3), (M3), or (M4) cases and no P3-pyramids.

Proof. Recall that otherwise such class contains two stage-2 vertices from the same corner of a triangle, such that one of them is QP and the other is not. Without losing generality, suppose those vertices are u Let v ∈ C Γ be obtained by (E2) applied to u . Then B → ac ∈ τ (v ) and η a (v ) = a 1 . In particular, as τ (u ) = τ (v ), u = v . As there is no principal vertex from (a 1 , a), v is ST1. But A / ∈ τ (v ) and C / ∈ τ (v ), so the stage-1 vertex in the class of v should be u s1 (abc, b), which is impossible as the latter is stage-1t.

There are no pyramids. As a consequence, there are no principal vertices, and hence no S2-singletons and no PST2 vertices. This is an easy corollary from the previous statement: Indeed, it implies that there should be two principal vertices from the tip of a pyramid, but we have already proven that it cannot happen.

Finally, let u ∈ Γ be obtained by applying (E1) to abc and a. That is, η a (u ) = abc and A → bc ∈ τ (u ). In particular, this implies B / ∈ τ (u ) and C / ∈ τ (u ). Then u cannot be an ST1 vertex because the only stage-1 vertex in its class can be u s1 (abc, a), but the latter is not stage-1, but stage-1t. But u also cannot be a PST2 vertex because we do not have them.

This contradiction concludes the proof of Theorem 4.

13. For RC graphs, RC 5 is not SSP. Now we are going to give an example of an RC 5 -graph Γ 5 that is not SSP, moreover, Γ 5 has trivial closures. Note that this might point in two opposite directions: It might be the case that a graph counterexample to SSP = RC might indeed be lifted to a counterexample for the main conjecture. It also can be that our RC graphs fail to capture some essential properties of RC lattices, and thus we need to add extra conditions, or perhaps ditch the graph constructions whatsoever.

Although we might just go ahead and define Γ 5 explicitly, we will take a small detour and explain how free graphs and arrow structures can be used to come up with such counterexamples. So, let us fix I = k, where k = {1, . . . , k}, let us put the base set over I to be S = I {I}, |S| = |I|+1, that is, for I = 3, S = {1, 2, 3, 123}. For u ∈ S we put τ (u) = u. Notice that S has trivial closures. Now, let A be a simplified arrow structure over S defined as A = {i i-j --→ j | i = j ∈ I}; recall that a simplified arrow structure only contains arrows of degree 1, and we will also ignore the arrows from the top vertex. Still, we can construct a simplified free graph for A and straight away collapse all stage-1 vertices into one. After this, we need to combine stage-2 vertices into equivalence classes of Θ, trying to minimize Θ. The resulting RRC graph F/Θ will have 1 + p white vertices, where p is the number of equivalence classes of stage-2 vertices. Our goal is then to minimize p, or at least to make it less than k. While the clique covering number can be hard to compute in general, it can be checked that the second part of Question 1 can be answered positively, starting with k = 5. For the sake of compliance with the previous convention on the naming of the vertices of I, let us rename 1-5 to a-e. In this case, there is a following clique covering of size 4: This covering can be transformed, in a straightforward way, to the congruence Θ. Of course, we have no guarantees that F/Θ can be made into an RC graph. However, given a particular choice of the clique covering it can be checked manually. In particular, Figure 22 below shows an RC graph corresponding to the covering described above; the naming of the vertices is exact.

The order on the vertices of Γ 5 can be easily guessed, with abcde being the top and ABCDE the bottom, and the order on the remaining vertices induced by the edges of Γ 5 , that is, [CDE] → ab ≤ a, b, and so on. Then it is easy to check that Γ 5 is indeed an RC graph; on to of it, it even satisfies the unproven (E2 * ) condition. 

  and A * T = {a → b, a → c, b → c}. Here A T is obtained as a reflexive transitive closure of the arrows a → b and b → c, indicated in the notation; [Abc] → d K T = A and A * T = {a → b, b → a, a → c, c → a, b → c, c → b, a → d, b → d, c → d}. The [Abc] part of the notation indicates, apart from the fact that A ∈ K T , that a, b, and c are in the same equivalence class induced by the preorder A T ; a → BC → d K T = BC and A * T = {a → b, a → c, a → d, b → d, c → d}. Arrows from a and to d are applicable to both b and c, but the fact that b and c are not in square brackets indicate that they are not in the equivalence class induced by A T , and hence there are no arrows between them; A → b, C K T = AC and A * T = {a → b}. Comma indicates that this type is obtained as a join (in the poset of white types, which turns out to be a lattice) of A → b and C; ab → c K T = ∅ and A * T = {a → b, b → c}.

  (G9) Γ is equipped with a closure structure C, defined below; We define a closure structure C over the set of S of black vertices of Γ as a family of functions {c I : S → S | I ⊆ I}, such that (C1) For x ∈ S and I ⊆ I, x ≤ c I (x) and I ∪ τ (x) ⊆ τ (c I (x)); (C2) For I ⊆ τ (x), c I (x) = x, in particular, c I • c I (x) = c I (x) and c ∅ (x) = x, for all x ∈ S; (C3) c I • c J (x) = c J • c I (x) = c I∪J (x), for all I, J ⊆ I, and x ∈ S.

Figure 3 .

 3 Figure 3. An RC graph Γ.

  and, as |C Γ | = 8 and |S Γ | = 7, it is SSP. Let us now show how RC graphs are constructed from the systems over RC lattices.

  and similarly for z s . But then, for I such that a ∈ I, I = {b | I → b ∈ F(u c )} iff I = {b | I → b ∈ F(z s )}, and hence

  there is some b ∈ τ (z )-I and, by the definition of z and T (z s ), this implies I → b ∈ T (z s ), and hence I / ∈ T (z s ), a contradiction. This proves T (z s ) ⊆ {τ • c I (z s ) | I ⊆ I}. In the other direction, let us take an arbitrary I ⊆ I and let as before z = z∨ {x i | i ∈ I}, implying z s = c I (z s ), and let J = τ (z s ). But then trivially z = z∨ {x i | i ∈ J} and J → b /

  a and b-edges of u go to the same black vertex; (E5) If black vertices x and y are connected by τ (x) ∩ τ (y)-path, then x = y.

(

  E4, ⇒). For a white vertex u with a ↔ b ∈ τ (u), let e a and e b be a and b-edges of u, and let x a = η a (u) and x b = η b (u). As a → a and a → b ∈ τ (u) (the first one by the reflexivity of A τ (u) ), by (G6) we have a, b ∈ τ (x a ); similarly, a, b ∈ τ (x b ), so a, b ∈ τ (x a ) ∩ τ (x b ). But then (e a , e b ) is an {a, b}-path between x a and x b , so, by (E5), x a = x b . (E4, ⇐). If, for a, b ∈ I a and b-edges of a white vertex u go to a same black vertex x then, by (G5), a, b ∈ τ (x). But then by (G6) a → b, b →

Proposition 4 .Figure 4 .

 44 Figure 4. The graph F a,bc .

Corollary 4 .

 4 In the setup of Proposition 4 • c b (x) = c a (ϕ(b 1 )) = ϕ(ab), c c (x) = c a (ϕ(c 1 )) = ϕ(ac); • c bc (x) = c c (ϕ(ab)) = c b (ϕ(ac)) = ϕ(abc); the latter can be trivially extended to c ac (ϕ(b 1 )) = ϕ(abc), and similarly for the remianing black vertices; • c b (ϕ(c i )) = c c (ϕ(b j )), for all i, j = 1, 2, 3; • Combined with b 1 ≤ b 2 , b 3 the latter trivially implies that if c ∈ τ • ϕ(b 1 ) then ϕ(b 1 ) = ϕ(b 2 ) = ϕ(b 3 ), and similarly for b ∈ τ • ϕ(c 1 ). It can be noted that b 1 ≤ b 2 , b 3 , c 1 ≤ c 2 , c 3 are induced by η a (u) ≤ η a (v) whenever u ≤ v rule, and a, b 1 ≤ ab, a, c 1 ≤ ac, and z ≤ abc comply with c b (ϕ(a)) = c a (ϕ(b 1 )) = ϕ(ab) and similar properties, relating ϕ to the closure structure of Γ.

  where A 1 is a set of tuples of the form (x, a, b, y), for x, y ∈ S, a ∈ τ (x), b ∈ I -a, and b ∈ τ (y); A 2 is a set of tuples (x, a, b, c, y), for x, y ∈ S, a ∈ τ (x), b ∈ I -a, c ∈ I -ab, and c ∈ τ (y), and A 3 is a set of tuples (x, a, b, c, b, y), for x, y ∈ S, a ∈ τ (x), b ∈ I -a, c ∈ I -a, b, and b ∈ τ (y). A tuple (x, a, b, y) is called an a-b-arrow from x to y, denoted x a-b --→ y; similarly, (x, a, b, c, y) is called an a-b-carrow from x to y, denoted x a-b-c ----→ y, and (x, a, b, c, b, y) an a-b-c-b-arrow from x to y, denoted x a-b-c-b ------→ y. Moreover, for any x ∈ S, and all a = b ∈ I, such that a ∈ τ (x), there is exactly one a-b-arrow from x. Similarly, for all pairwise distinct a, b, c ∈ I and a ∈ τ (x) there is exactly one a-b-c and exactly one a-b-c-b-arrow from x. Arrows from A 1 , A 2 , and A 3 are called degree 1, degree 2, and degree 3 respectively. If the arrow structure in question is clear, we will write x a-b --→ y instead of x a-b --→ y ∈ A, and similarly for degree 2 and 3 arrows. Also, y a-b ←--x means x a-b --→ y, and similarly for the other arrows (note that the letters above the arrow are not swapped). Note that x a-b --→ y automatically implies a = b, and similarly x a-b-c ----→ y or x a-b-c-b ------→ y implies a, b, and c are pairwise distinct. As x a-b --→ y implies a ∈ τ (x), b ∈ τ (y), this arrow can be considered a tuple ((x, a), (y, b)) of elements of S, which will be denoted by (x, a) → (y, b); there is no similar notation for degree 2 and 3 arrows. We define a structure over a black set S as a tuple (C, A) of a closure structure C and an arrow structure A over S. Lemma 14 (Structure of a graph). For an RC graph Γ, let S = S Γ and let us fix Φ = {ϕ x,a | (x, a) ∈ S}, where ϕ x,a is some homomorphism from Proposition 4. Let us define an arrow structure A = A(Φ) on S as:

  a (c 3 ). Then A is an arrow structure, moreover (AC1) If x a-b --→ y, or there is z such that x c-a ←--z c-b --→ y, then c b (x) = c a (y). In particular, if in this case a ∈ τ (y) then c b (x) = y and τ (x) ⊆ τ (y), and similarly, if b ∈ τ (x) then x = c a (y) and τ (y) ⊆ τ (x); Note. The first case, x a-b --→ y, implies a = b. The second case, z c-a --→ x and z c-b --→ y, implies that a = c and b = c. Although in the latter case a = b is not forbidden, it implies that x = y and, by (C2), that c a (x) = c b (x) = x. So the second case becomes trivial unless a, b, and c are pairwise distinct. (AC2) If x a-c --→ y, and b ∈ τ (y), then x a-b-c ----→ y.

  Note that for the second case for (AC1) we use the mapping ϕ z,c : F c,ab → Γ, where F c,ab is obtained from F a,bc by a permutation [a → c, b → a, c → b] (or, alternatively, [a → c, b → b, c → a]), which converts b 1 into a 1 , and c 1 into b 1 , and transforms the mapping ϕ correspondingly.

  where white vertices from C 1 , C 2 , and C 3 are called stage-1, stage-2, and stage-3 vertices respectively; (F2) Stage-1 vertices are parametrized by all pairs (a, a) ∈ S, and denoted u s1 (a, a). Stage-2 vertices are parametrized by all tuples (a, a) ∈ S, and b ∈ I -a, and denoted u s2 (a, a, b). Finally, stage-3 vertices are parametrized by all tuples (a, a) ∈ S, b ∈ I -a, and c ∈ I -a -b, and denoted u s3 (a, a, b, c). Additionally, K(u s1 (a, a)) = K(u s2 (a, a, b)) = K(u s3 (a, a, b, c)) = a; (F3.1) For u = u s1 (a, a), the a-edge of u goes to a, and, for b ∈ I -a, the b-edge of u goes to b such that a a-b --→ b; (F3.2) For u = u s2 (a, a, b), the b-edge of u goes to b such that a a-b --→ b, that is, to b = η b • u s1 (a, a), the a-edge of u goes to c b (a), and for c ∈ I -a -b, the c-edge of u goes to c such that a a-b-c ----→ c. We call a and b-edges of u ordinary and its c-edge special ; (F3.3) For u = u s3 (a, a, b, c), the c-edge of u goes to c such that a a-b-c ----→ c, that is, to c = η c • u s2 (a, a, b), the a-edge of u goes to c bc (a) = abc, and the b-edge of u goes to b such that a a-b-c-b ------→ b. Similarly, a and c-edges of u are called ordinary and its b-edge special. Further on, every time we use the notation u s1 (x, a), u s2 (x, a, b), or u s3 (x, a, b, c) we will automaticaly assume that (x, a) ∈ S, and a, b, and c are pairwise distinct. For u = u s2 (a, a, b), by definition, η b (u) = b and η a (u) = ab, for ab = c a (b) = c b (a) and b such that a a-b --→ b . We thus say that u is a stage-2 vertex from (b, b) to (ab, a). Similarly, for u = u s3 (a, a, b, c) we say that u is from (c, c) to (abc, a), where c is such that a a-b-c ----→ c. This notation emphasizes the main role of the ordinary edges of stage-2 and stage-3 vertices.

Proof.

  The statement is obvious by putting, for (x, a) ∈ S and ϕ = ϕ x,a ∈ Φ, θ(u s1 (x, a)) = ϕ(A), θ(u s2 (x, a, b)) = ϕ(A b ), and θ(u s3 (x, a, b, c)) = ϕ(A b,c ); respectively, by permuting b and c, θ(u s2 (x, a, c)) = ϕ(A c ), and θ(u s3 (x, a, c, b)) = ϕ(A c,b ).

Figure 5 .

 5 Figure 5. An illustration for the special edges of stage-2 vertices.

  ϕ b,b (B) = A → Bc; recall that the domain of ϕ b,b is F b , obtained from F a by a permutation [a → b, b → c, c → a], and thus A in F a becomes B in F b . Putting ϕ abc,a (A) = A → Bc, ϕ abc,b (B) = [BC] → a, and ϕ abc,c (C) = C → ab gives precisely the arrows from Figure 6. Now, the free graph F = F C,A is shown in Figure 7 below. Stage-1 vertices are drawn in white, ordinary stage-2 vertices in yellow, and special stage-2 in red.

Figure 6 .

 6 Figure 6. A simplified arrow structure A for the RC graph Γ from Figure 3.

Figure 7 .Figure 8 .

 78 Figure 7. The simplified free graph F of the simplified arrow structure A from Figure 6.

Figure 9 .

 9 Figure 9. An ilustration for (D3.1) argument. The dashed arrows indicate the arrows from A, and the white types are tentatively taken from the corresponding images in Γ.

  Having ϕ(A) (and, consecutively, ϕ(b 1 ) and ϕ(c 1 )) fixed, ϕ(A b ) is chosen as a maximal b-neighbor of b 1 such that ϕ(A) ≤ ϕ(A b ) and A → b ∈ τ (ϕ(A b )), and similarly for the choice of ϕ(A c ); • Having ϕ(A b ) fixed, ϕ(A b,c ) is chosen as a maximal c-neighbor of c 1 such that ϕ(A b ) ≤ ϕ(A b,c ) and A → bc ∈ τ (ϕ(A b,c )), and similarly for the choice of ϕ(A c,b ).

Lemma 16 .

 16 If in Lemma 14 in the construction ofA = A(Φ) every ϕ ∈ Φ is type-b, c ∈ τ (b).Proof. (AC3). Suppose not, and let u = ϕ a,a (A) and v = ϕ ab,b (B). Then η u = η v and hence, by (N), u = v. Then, by (E2), there is a b-b-path from u to u + such that A → b ∈ τ (u) and u + ≥ u. In particular, A(u + ) ⊇ A(u), and so A ↔ b ∈ τ (u + ), and, by (E4), η a (u + ) = η b (u + ) = ab; note also that from the fact that τ (u + ) satisfies (T) it follows that B ∈ τ(u + ), that is, [AB] ≤ τ (u + ). Now, v = u, A(u) ⊆ A(u + ), and B ∈ τ (u + ) imply, by the type-maximality of ϕ ab,b , that u + = v. But then a = η a (v) = η a (u + ) = ab. This argument is illustrated in Figure10below, the dashed arrow indicate the change of choice of ϕ ab,b (B) due to type-maximality.

Figure 10 .Figure 11 .

 1011 Figure 10. An illustration for (AC3) argument.

Figure 12 .

 12 Figure 12. An argument for (AC5) case.

  b, for all a, b ∈ abc, a = b. While it can be the case that a = b for a = b, when considered as elements of S, the tuples (a, a) for a ∈ abc are pairwise distinct. Similarly, for a, b ∈ abc, a = b, we define an ab-pyramid as three elements (a, a), (b, b) ∈ S -abc, and (c, c) ∈ S, where c is a remaining third letter from abc -ab, such that a c, and b b-c --→ c. Additionally, we require that (a, a), (b, b), and (c, c) do not form a triangle. We call the set {(a, a), (b, b)} a base of the pyramid, and (c, c) its tip. All triangles and pyramid bases are obviously disjoint from each other. All elements in S -abc not in a triangle or the base of a pyramid are called singletons.

Figure 13 .Figure 14 .

 1314 Figure 13. Classification of triangles. The labels on the arrows are omitted whenever they are unambiguous. Additionally, the picture shows principal stage-2 vertices produced by the given triangle.

  -2 vertices from (b, b) has their ordinary non-b edges going to black vertices x and y with |τ (x)| = 2 and y = abc; in this case, x is QP and y is non-QP. For example, if for (b, b) corner in a T1-triangle it holds c b (a) = abc and τ (c b (c)) = bc then u s2 (c, c, b) is QP. However, if τ (c b (a)) = ab and τ (c b (c)) = bc then both u s2 (a, a, b) and u s2 (c, c, b) are non-QP.

Figure 15 .

 15 Figure 15. Principal stage-2 vertices of triangles. In (T1), crosses show the QP vertices.

  b be a principal arrow, and u = u s2 (a, a, b) be the corresponding principal stage-2 vertex from (b, b). Then, unless one of the following conditions holds, u is not eaten by any stage-1 vertex. (K1) For ab = c a (b) = c b (a), τ (ab) = ab, and a unique c such that a Here u is eaten by u s1 (ab, a). This case implies τ (a) = a and τ (b) = b, in particular, a, b, and ab are pairwise distinct; (K2) For abc = c a (b) = c b (a) and bc = c c (b) such that τ (bc) = bc it holds Here u is eaten by u s1 (bc, c). This case implies τ (a) = a or ac, τ (b) = b or bc, and (bc, c) is a singleton; the vertices a, b, bc, and abc are pairwise distinct, except for the possibility of b = bc that happens iff τ (b) = bc; (K3) For ab = c a (b) = c b (a), τ (ab) = ab, and a unique c such that a a-b-c

(

  K1+3) For ab = c a (b) = c b (a), τ (ab) = ab, and a unique c such that a Here u is eaten by u s1 (ab, a) = u s1 (c, c). This case implies τ (a) = a, τ (b) = b, and τ (c) = c or bc, in particular, a, b, c, and ab are pairwise distinct. Also, in this case ab and c are either the corners of a P2-pyramid (in case τ (c) = c) or of a P3-pyramid (in case τ (c) = bc). Finally, if it is (K1) or (K3), but not (K1+3), then the elements (ab, a) in the first case and (c, c) are singletons. Let us note that a a-b --→ b being principal also implies a a-c --→ c and b b-c --→ c arrows for some c ∈ S, which are not shown on the pictures.

Proof.Figure 16 .

 16 Figure 16. A principal stage-3 vertex.

  a, where b is a unique letter from abc -ac. Finally, let us address how a principal stage-3 vertex can be eaten by a stage-1 vertex.

(

  K4) For bc = c b (c) it holds a -b b -a c -b c -a a -b -c b -c b -a a -b -c -Here u is eaten by u s1 (bc, b). This case implies τ (bc) = bc and (bc, b) is a singleton. Additionally, τ (c) = c or bc and (c, c) is a singleton.Proof. As before, if u is eaten by a stage-1 vertex v, then v is either i) u s1 (c, c), or ii) u s1 (abc, a), or iii) u s1 (b 1 , b) for a unique b 1 such that a a-b-c-b ------→ b 1 . The case i) is impossible,as η a (u s1 (c, c)) = ab = abc. The case ii) is impossible because abc produces no stage-1 vertex. In case iii), c b-c ←--b 1 b-a --→ abc, and, by (AC5), b, c ∈ τ (b 1 ). Also, a / ∈ τ (b 1 ) as then b 1 = abc. So, τ (b 1 ) = bc and hence we call it bc. Then c b-c ←--bc implies, by (AC1), bc = c b (c). Now, to prove that (bc, b) is a singleton, notice that the arrow bc b-a --→ abc is not principal by definition, and if bc b-c --→ c is principal then c c-b --→ bc, but as c c-b --→ b then b = bc. But τ (b) = b and τ (bc) = bc, a contradiction.

1 ,a 2 c ab 2 ,

 12 where τ (b 1 ) = b, and the principal stage-3 vertex from (c, c) is u 1 = u s3 (a 1 , a, b, c). As (c, c) is a singleton there is no principal stage-2 vertex from it. Recall that η * u1 is the ordinary part of u 1 and η * u1 (c) = c, η * u1 (a) = abc, and η * u1 (b) = NA. Suppose now that there is some other principal stage-3 vertex u 2 from (c, c). As the ordinary parts of principal stage-3 vertices are incomparable, it follows that η * u2 (c) = c, η * u2 (b) = abc, η * u2 (a) = NA, and u 2 = x u3 (b 2 , b, a, c) for some b 2 , a 2 , and ab 2 such that b -a a -b c -a c -b b -a -c b 2 and τ (ab 2 ) = ab. But then b 1 = ab 2 and hence τ (b 1 ) = ab, a contradiction.

τττFigure 17 .

 17 Figure 17. Dominating elements.

ττFigure 18 .

 18 Figure 18. Two scenarios for an element to be dominating by two cases: by (L1) and (L2), and by (L1) and (L3).

Figure 20 .

 20 Figure 20. An non-SSP graph Γ satisfying all conditions of an RC graph, except for (E3).

  1 and u 2 in the class of u go from the same (b, b), which can only happen if (b, b) is a (b, b)-corner of a T1.1-triangle; recall that we have proven that there are no T2-triangles. Then u 1 = u s2 (a, a, b) and u 2 = u s2 (c, c, b), where (a, a) and (c, c) are other two corners of this triangle. Note that it is exactly what happens in Example 3.

  , as both a and b-edges of [AB] → c go to abc, by what was argued earlier, [AB] → c is PST2, moreover, in its class there are two principal stage-2 vertices from (c 2 , c), and (c 2 , c) is a T1.1-triangle after either [b → c, c → b] or [a → b, b → c, c → a] permutation. Let us call the remaining two corners of this triangle a 2 and c 2 , and let

  a, b, c, ac, abc}, which, by the definition of closure type, means C(C 2 ) ⊆ {∅, a, b, c, ac, abc}. Also, as c a (c 2 )) = abc, ac / ∈ C(c 2 ), and consequently, ac / ∈ C(C 2 ). So C(C 2 ) ≥ {∅, a, b, c, abc} > C(ABC 2 ). Now, note that as a 2 , b 2 , and c 2 form a triangle implies c 2 c-a --→ a 2 and c 2 c-b--→ b 2 , that is, for ϕ c,c from Proposition 4 it holds ϕ c,c (C) = u ∈ C Γ such that η a (u) = a 1 , η b (u) = b 1 , and η c (u) = c 1 (here C is from F c ). By (N) this implies ϕ c,c (C) = ABC 2 .However, recall that in Lemma 16 ϕ c,c is chosen to be maximal, where the maximality is also by closure types. But this contradicts the fact that C 2 is a c-neighbor of c 2 whose closure type is strictly greater than the one of ABC 2 .

  -→ x, or a a-b-c-b------→ x imply a / ∈ τ (x). In particular, there are no arrows to abc. If not, then (E2) implies there is v ≥ u such that [AB] ∈ τ (v). Applying (E3) once again we get a white vertex w ≥ v such that [AB] → c ∈ τ (w). But then both a and b-edges of w go to abc. Regarding the statement about the arrows, for x such that a∈ τ (x) a a-b --→ x implies that b → A ∈ τ • θ(u s1 (a, a)), a a-b-c ----→ x that c → A → b ∈ τ • θ(u s2 (a,a, b)), and a a-b-c-b ------→ x that [AB] → c ∈ τ • θ(u s3 (a, a, b, c)).

  1 = u s2 (a, a, b) and u 2 = u s2 (c, c, b), where u 1 is from (b, b) to (ab, a), for τ (ab) = ab, and u 2 is from (b, b) to (abc, c). But then C → A → b ∈ τ (u) where u = θ(u 1 ) = θ(u 2 ). So, QP vertices cannot be eaten, and thus there are no such vertices, which means there are no triangles. As in (L1+3) case the two eaten principal stage-2 In (L3), τ (a) = a. In particular, every S2-singleton eats a principal vertex by (L1), in every base (ac, c) and (b, b) of a P2-pyramid, (ac, c) eats a principal vertex by (L1) and (b, b) by (L3), and every stage-3 principal vertex is from an S1-singleton. Suppose in (L3) τ (a) = ab, and hence we call it ab. Then the fact that u = u s1 (ab, a) eats v = u s2 (c, c, b) implies that for w = θ(u) = θ(v), AC → b ∈ τ (w). This implies that either τ (w) = AC → b or τ (w) = AC → B; hovewer, both are impossible, a contradiction. Let (b, b) be either a corner of a P1-pyramid, or the (b, b) corner of a P2-pyramid, or the (ac, a) corner of a P2-pyramid after [a → b, b → a] permutation. Let (c, c) be the tip of this pyramid. Let u = u s2 (b, b, c), note that u is non-principal and is from (c, c) to (bc, b) where bc = c c (b) = c b (c), in particular, τ (bc) = bc or bc = abc. Then there is a principal vertex from (c, c) to (bc, b).This argument is illustrated in Figure21below.

Figure 21 .

 21 Figure 21. An illustration for the argument.

  The free graph F has k * (k-1) principal stage-2 vertices x s2 (a, a, b), for a = b ∈ I, which we will denote by (a, b), all those stage-2 vertices are ordinary. Additionally, η (a,b) (a) = t, η (a,b) (b) = b, and η (a,b) (c) = NA otherwise. Thus, elements (a 1 , b 1 ) and (a 2 , b 2 ) are compatible, that is, they can be in one equivalence class, iff b 1 = a 2 and b 2 = a 1 . Let now T be a graph of the compatibility relation, with V T = {(a, b) | a = b ∈ I} and E T = {(a 1 , b 1 ), (a 2 , b 2 ) | b 1 = a 2 , b 2 = a 1 }. Then p is a clique covering number of T , that is the minimal number of cliques sufficient to cover all vertices of T . We thus are interested in the following question Question 1. For k ≥ 2 let T k be a graph with V T = {(a, b) | a = b ∈ k} andE T = {(a 1 , b 1 ), (a 2 , b 2 ) | b 1 = a 2 , b 2 = a 1 }.What is the clique covering number of T k ? In particular, can it be less than k?

•

  (c, a), (c, b), (d, a), (d, b), (e, a), and (e, b); • (b, a), (b, c), (b, d), (e, c), and (e, d); • (a, b), (a, c), (a, e), (d, c), and (d, e); • (a, d), (b, e), (c, d), and (c, e).

Figure 22 .

 22 Figure 22. A non-SSP RC 5 -graph.

Prior to the proof, which is just a tally of the classifications we already have, let us give an example of (M4) case that we find illustrative.

Example 2. Figure 19 illustrates (M4) case, that is, a situation when (ab, a) is dominating by (L1) and (L3) and is a corner of a P2-pyramid. Recall that u s1 (ab, a) = u s1 (bc, c) in F implies that the second corner of the pyramid eats the same stage-2 vertices. Here, the stage-2 vertices being eaten are v = u s2 (a, a, b) and w = u s2 (c, c, b); as noted, both of them are from the same corner, which is (b, b), of a T1-triangle. Note, however, that while (ab, a) eats v by (L1) and w by (L3), for (bc, c) it is the other way round: it eats v by (L3) and w by (L1). Now, notice that (M3) and (M4) effectively say that if (ab, a) is dominating by (L1) and (L3), and it is not an S2-singleton, then it is a corner of a P3-pyramid. Why is that? Naively, simply by observing that τ (ab) = ab, we can suggest several options: Apart from being an S2-singleton, after a corresponding permutation ab can be ab from (T2), ac from (P2), one of the corners of (P3), ab from (P4), or ac from (P5).

First of all, we can rule out (T2) case by observing that if some principal vertex u is eaten by a corner of a triangle, then it is eaten by all three corners of this triangle. But from (K1)-(K4) classification it follows that u can be eaten by at most two distinct stage-1 vertices in F * . Note that by this argument, a corner of a triangle cannot be dominating. Now, if (ab, a) is in the base of a pyramid, then the second corner of this pyramid, which we denote by (de, d), eats the same vertices as (ab, a). Thus, (de, d) is dominating either by (L1+2), or by (L1+3). In both cases, |τ (de)| = 2, in particular this cannot be a P2 or P5-pyramid. Finally, in (L1 + 3) case both arrows from (ab, a) go to a vertex different from ab, that is, de = ab, so a P4-pyramid is also ruled out. Thus, (ab, a) is indeed a corner of a P3-pyramid.

Proof (of M-classification). The cases (M1)-(M6) are clearly disjoint and cover all possibilities of (L1)-(L4) classification, with (M1) and (M2) corresponding to τ (a) = a, (M3) and (M4) corresponding to (L1+3), (M5) to (L1+2), and (M6) covering all remaining options. The (M4) case, particularly that (ab, b) is a corner of a P3-pyramid, has already been explained in Example 2. Now we only need to address the TPS-part in (M2) and in (M6) cases.

First, suppose τ (a) = a, (a, a) is dominating only by (L3), and (a, a) is not an S1singleton. We then need to prove that (a, a) is a (b, b) corner of a P2-pyramid, that is, rule out the possibilities of it being a corner of a P1-pyramid, or the (b, b)-corner of a P5-pyramid. Assuming that (a, a) is a corner of a P1-pyramid, by examining the types we infer that (b, b) from the setup of (L3) is another corner of this pyramid and (bc, c) is its tip. But then b b-c --→ bc, and hence bc = c, a contradiction. And P5-pyramid case can be ruled out by observing that both degree-1 arrows from the (b, b)-corner go to the same vertex ac with a type of size two, which is not the case with (a, a) in (L3). This proves the TPS-classification of (a, a) in (M2). Now, suppose τ (ab) = ab and (ab, a) is dominating only by one of (L1)-(L4). To prove that we then fall under (M6) we need to rule out the possibility for ab to be either ab in (P4) or ac in (P5) after [b → c, c → b] permutation; note that by the argument in Example 2 (ab, a) cannot be a corner of a triangle, which rules out (T2). However, both (P4) and (P5) cases can be ruled out by observing that in Let us call an equivalence class of Θ containing vertices of ST1, that is, stage-1 vertices after contraction, an ST1 equivalence class. And let us call an equivalence class containing at least one principal vertex which cannot be eaten by a stage-1 vertex (that is, not falling under one of (K1)-(K4) cases) a PST2 equivalence class. Obviously, the sets of ST1 and PST2 classes are disjoint. Now, let us prove the following A PST2-equivalence class cannot contain more than three principal vertices. Moreover, if it contains three, then at least one of them is QP, and one of the remaining two is non-QP from the same vertex.

Note that this effectively states that if we choose to count only the non-QP vertices, then a PST2-class cannot contain more than two of them.

Proof. The fact that an equivalence class [U ] cannot contain more than three principal vertices is obvious from the fact that their ordinary parts are incomparable. Now, suppose [U ] contains exactly three of them, and call them u, v, and w. Recall As η * u , η * v , and η * w are incomparable, it then follows that for pairwise distinct letters a, b, c, η

for pairwise distinct a, b, and c ∈ S. It is easy to see that the relation there is I ⊆ I such that c I (x) = y is a partial order on S, which we denote by . As any two vertices out of a, b, c are comparable by this order, it follows that they are linearly ordered and, without losing generality, let a b c. Now, the fact that a, b, and c are pairwise distinct together with the properties of a closure structure implies τ (a) = a, τ (b) = ab, and τ (c) = abc. We thus call these vertices a, ab, and abc.

Then u and v are principal vertices from (a, a). But then, as we have proven, neither of them can be a pincipal stage-3. Thus, both of them are principal stage-2 vertices have to come from a corner of a triangle, it cannot happen, and so there are no (M3) and (M4) cases. This implies there are no P3-pyramids, as each of them should eat at least two vertices, which cannot happen as both (L1+2) and (L1+3) cases have been ruled out.

Thus, except for singletons, we can only have P1 and P2-pyramids. Moreover, in both cases the type of its tip c is c, as c has both incoming a Hence u is a type-maximal a-neighbor of ab such that A ∈ τ (u). Similarly, u is a type-maximal c-neighbor of bc such that C ∈ τ (u). Let us then pick a type-maximal Φ such that ϕ ab,a (A) = ϕ bc,c (C) = u, but otherwise arbitrary. Then in A = A(Φ ) it holds ab → a -cbc, bc → a -cab, ab → a -bb, and bc → c -bb. That is, (ab, a) and (bc, c) are the base of a P3-pyramid, a contradiction. We note that in this proof we utilize the fact that Φ only needs to be typemaximal. As a corollary, we have