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Continuing invariant solutions towards the turbulent flow

A new mathematical framework is proposed for characterizing the coherent motion of fluctuations around a mean turbulent channel flow. We search for statistically invariant coherent solutions of the unsteady Reynolds-averaged Navier-Stokes equations written in a perturbative form with respect to the turbulent mean flow, using a suitable approximation of the Reynolds stress tensor. This is achieved by setting up a continuation procedure of known solutions of the perturbative Navier-Stokes equations, based on the continuous increase of the turbulent eddy viscosity towards its turbulent value. The recovered solutions, being sustained only in the presence of the Reynolds stress tensor, are representative of the statistically coherent motion of turbulent flows. For small friction Reynolds number and/or domain size, the statistically invariant motion is almost identical to the corresponding invariant solution of the Navier-Stokes equations. Whereas, for sufficiently large friction number and/or domain size, it considerably departs from the starting invariant solution of the Navier-Stokes equations, presenting spatial structures, main wavelengths and scaling very close to those characterizing both large-and small-scale motion of turbulent channel flows.

This article is part of the theme issue 'Mathematical problems in physical fluid dynamics (part 2)'.

Introduction

Understanding the dynamics of wall-bounded turbulent flows is a formidable challenge yet to be fully achieved, since turbulence is a complex phenomenon appearing in a variety of states and patterns which compete with the laminar state [START_REF] Barkley | The rise of fully turbulent flow[END_REF]. In order to derive low-order models of the turbulent dynamics, one should focus on the coherent part of the turbulent motion [START_REF] Panton | Overview of the self-sustaining mechanisms of wall turbulence[END_REF], which is known to contribute much more to the momentum of the flow than the chaotic fluctuations at small scales. The most typical example of coherent motion in turbulent flows are the streaks, which have been first recognized by Kline et al. [START_REF] Kline | The structure of turbulent boundary layer flows[END_REF] as 'surprisingly well-organized spatially and temporally dependent motions'. These elongated structures are continuously generated by the lift-up mechanism [START_REF] Landahl | A note on an algebraic instability of inviscid parallel shear flows[END_REF] within the selfsustained cycle theorized in the nineties [START_REF] Hamilton | Regeneration mechanisms of near-wall turbulence structures[END_REF][START_REF] Waleffe | On a self-sustaining process in shear flows[END_REF]. Although this self-sustained process was initially observed in the inner layer region [START_REF] Hamilton | Regeneration mechanisms of near-wall turbulence structures[END_REF][START_REF] Waleffe | On a self-sustaining process in shear flows[END_REF][START_REF] Jiménez | The autonomous cycle of near-wall turbulence[END_REF], a growing body of evidence has recently indicated that equivalent, mutually independent regeneration cycles are active in the logarithmic and outer regions as well [START_REF] Hwang | Amplification of coherent streaks in the turbulent Couette flow: an input-output analysis at low Reynolds number[END_REF][START_REF] Hwang | Self-sustained process at large scales in turbulent channel flow[END_REF][START_REF] Hwang | Self-sustained processes in the logarithmic layer of turbulent channel flows[END_REF][START_REF] Hwang | Statistical structure of self-sustaining attached eddies in turbulent channel flow[END_REF][START_REF] Hwang | Inner-outer interactions of large-scale structures in turbulent channel flow[END_REF][START_REF] Cossu | Self-sustaining processes at all scales in wall-bounded turbulent shear flows[END_REF], giving rise to large-and very-large-scale motion [START_REF] Kovasznay | Large-scale motion in the intermittent region of a turbulent boundary layer[END_REF][START_REF] Komminaho | Very large structures in plane turbulent Couette flow[END_REF][START_REF] Kim | Very large-scale motion in the outer layer[END_REF][START_REF] Del Alamo | Spectra of the very large anisotropic scales in turbulent channels[END_REF][START_REF] Hutchins | Evidence of very long meandering features in the logarithmic region of turbulent boundary layers[END_REF]. The statistical and dynamical features of these self-sustaining motions associated with streaks and quasi-streamwise vortices at different scales are consistent with Townsend's attached eddy hypothesis [START_REF] Townsend | The structure of turbulent shear flow[END_REF]. Moreover, the same three fundamental mechanisms that compose the regeneration cycle of wall turbulence have been found to sustain several invariant solutions of the Navier-Stokes equations in the form of equilibria, travelling waves or (relative) periodic orbits [START_REF] Nagata | Three-dimensional finite-amplitude solutions in plane Couette flow: bifurcation from infinity[END_REF][START_REF] Waleffe | Three-dimensional states in plane shear flow[END_REF][START_REF] Kawahara | Periodic motion embedded in plane Couette turbulence: regeneration cycle and burst[END_REF][START_REF] Waleffe | Exact coherent structures in channel flow[END_REF][START_REF] Faisst | Travelling waves in pipe flow[END_REF][START_REF] Hof | Experimental observation of nonlinear traveling waves in turbulent pipe flow[END_REF][START_REF] Wedin | Exact coherent structures in pipe flow: travelling wave solutions[END_REF][START_REF] Eckhardt | Turbulence transition of pipe flow[END_REF][START_REF] Duguet | Relative periodic orbits in transitional pipe flow[END_REF][START_REF] Gibson | Equilibrium and traveling-wave solutions of plane Couette flow[END_REF][START_REF] Schneider | Snakes and ladders: localized solutions of plane Couette flow[END_REF][START_REF] Willis | Revealing the state space of turbulent pipe flow by symmetry reduction[END_REF][START_REF] Deguchi | The emergence of localized vortex-wave interaction states in plane Couette flow[END_REF][START_REF] Gibson | Spanwise-localized solutions of planar shear flows[END_REF][START_REF] Zammert | Streamwise and doubly-localised periodic orbits in plane Poiseuille flow[END_REF][START_REF] Park | Exact coherent states and connections to turbulent dynamics in minimal channel flow[END_REF][START_REF] Barnett | Streamwise localization of traveling wave solutions in channel flow[END_REF][START_REF] Budanur | Relative periodic orbits form the backbone of turbulent pipe flow[END_REF], which compose the chaotic saddle sustaining transient turbulence [START_REF] Hopf | A mathematical example displaying features of turbulence[END_REF]. Typical coherent structures populating transitional and turbulent flows, such as streaks and streamwise vortices, have been successfully captured by these fully nonlinear, dynamically unstable solutions of the Navier-Stokes equations which populate state space and support turbulent dynamics with their entangled stable and unstable manifolds. Trajectories in the state space may approach one of these solutions, remain in their neighbourhood for a finite time before being pushed away along one of the unstable directions to approach other solutions through heteroclinic orbits [START_REF] Farano | Computing heteroclinic orbits using adjoint-based methods[END_REF], resulting in a chaotic walk in the state space. Many efforts have been done for deriving low-order models based on these invariant solutions, allowing one to accurately describe the statistical properties of a turbulent flow [START_REF] Cvitanović | Recurrent flows: the clockwork behind turbulence[END_REF]. Recently, Chandler & Kerswell [START_REF] Chandler | Invariant recurrent solutions embedded in a turbulent twodimensional Kolmogorov flow[END_REF] successfully applied the periodic orbit theory to the case of a two-dimensional Kolmogorov flow at a moderate Reynolds number. However, a low-order model of a fully developed three-dimensional turbulent flow is yet to be achieved, and would probably require the discovery of many new invariant solutions at sufficiently high Reynolds number. Unfortunately, the computation of such invariant solutions at large Reynolds number is a hard challenge, due to the multiple bifurcations they typically undergo. In the case of fully turbulent flows at high friction Reynolds number, a valuable approach for computing invariant solutions is resorting to large-eddy simulations (LES), as proposed by Hwang & Cossu [START_REF] Hwang | Self-sustained process at large scales in turbulent channel flow[END_REF][START_REF] Hwang | Self-sustained processes in the logarithmic layer of turbulent channel flows[END_REF]. In particular, choosing filtering widths larger than those typically used for reproducing results of direct numerical simulations (DNS), allows one to filter out a large range of scales that could not be resolved within the chosen numerical grid. This approach, relying on 'overfiltered' LES, with the Smagorinsky constant C s controlling the strength of the filtering, is well suited for investigating the self-sustained nature of coherent large-scale motion, as done at first for the channel [START_REF] Hwang | Self-sustained process at large scales in turbulent channel flow[END_REF][START_REF] Hwang | Self-sustained processes in the logarithmic layer of turbulent channel flows[END_REF] and Couette [START_REF] Rawat | On the self-sustained nature of large-scale motions in turbulent Couette flow[END_REF][START_REF] Rawat | Travelling-wave solutions bifurcating from relative periodic orbits in plane Poiseuille flow[END_REF] flows at relatively low Reynolds numbers and for the channel and asymptotic suction boundary layer flow at large friction Reynolds numbers [START_REF] Hwang | Invariant solutions of minimal large-scale structures in turbulent channel flow for re τ up to 1000[END_REF][START_REF] Azimi | Self-sustained large-scale motions in the asymptotic suction boundary layer[END_REF]. Recent studies [START_REF] Hwang | Self-sustained process at large scales in turbulent channel flow[END_REF][START_REF] Hwang | Self-sustained processes in the logarithmic layer of turbulent channel flows[END_REF][START_REF] Rawat | Travelling-wave solutions bifurcating from relative periodic orbits in plane Poiseuille flow[END_REF] have demonstrated that both large-scale and log-layer coherent motions can be self-sustained, since they survive in both channel and Couette flow, when smaller-scale active motions are artificially quenched and replaced by purely dissipative structures. However, this overfiltered approach does not allow one to investigate the nature of the energy transfer between coherent structures of different scales. Despite the motion at large scales can be sustained even when the wall cycle is quenched, in high-Reynolds-number turbulent flows multiple and non-trivial interactions exist between coherent structures at different scales [START_REF] Cimarelli | Cascades and wall-normal fluxes in turbulent channel flows[END_REF][START_REF] Cho | Scale interactions and spectral energy transfer in channel flow[END_REF]. Very recent works [START_REF] Doohan | Minimal multi-scale dynamics of near-wall turbulence[END_REF] have shown that wall-normal energy is transferred from large to small scales inducing energy production at the wall via the Orr mechanism, while a non-negligible amount of energy is transferred from small to large scales [START_REF] Cho | Scale interactions and spectral energy transfer in channel flow[END_REF], possibly due to small-scale sinuous streak instability [START_REF] Doohan | Minimal multi-scale dynamics of near-wall turbulence[END_REF]. Thus, coherent structures at different scales are intimately connected by direct and inverse cascade mechanisms by which energy is transmitted scale-by-scale among different regions of the flow [START_REF] Cimarelli | Cascades and wall-normal fluxes in turbulent channel flows[END_REF].

A deeper understanding of the energetic bond connecting small-and large-scale structure in turbulent flows can be achieved by the computation of statistically invariant coherent states which characterize the multiple-scale, coherent part of the motion around the turbulent mean flow, without any filtering of small-scale structures. Towards this aim, this work provides a new mathematical framework for the computation of statistically invariant equilibria, travelling waves or (relative) periodic orbits characterizing the motion of turbulent fluctuations around the mean flow. This is achieved by seeking for statistically invariant coherent solutions of the unsteady Reynolds-averaged Navier-Stokes equations written in a perturbative form with respect to the turbulent mean flow, using a suitable approximation of the Reynolds stress tensor. Unlike the classical invariant solutions of the Navier-Stokes equations, these solutions are sustained only in the presence of the Reynolds stress tensor, being representative of the statistically coherent motion of turbulence. This set of equations has been found efficient for characterizing extreme events having an energy spectrum very similar to that of the fully turbulent flow [START_REF] Farano | Optimal bursts in turbulent channel flow[END_REF][START_REF] Farano | Nonlinear optimal large-scale structures in turbulent channel flow[END_REF]. We show in this paper that, continuing in this statistical framework known invariant solutions of the Navier-Stokes equations at high friction Reynolds numbers, statistically invariant motions containing both large-and small-scale coherent structures such as streaks and streamwise vortices are obtained, with main wavelengths corresponding to the typical ones recovered in turbulent flows. The paper is structured as follows. In §2, the problem formulation is provided. In §3, the continuation procedure allowing the computation of the statistically invariant solutions is described. Relevant results are discussed in §4, and conclusions are drawn in §5.

Problem formulation

The incompressible flow in a channel is governed by the Navier-Stokes equations, which describe the dynamics of the instantaneous state variables q = [u, p] T , where u(x, t) is the velocity field and p(x, t) is the pressure.

When studying the flow dynamics in the vicinity of the laminar state, the state variables can be decomposed as the sum of the laminar base flow Q = [U, 0, 0, P] T and a perturbation q = [u , v , w , p ], leading to the Perturbative Navier-Stokes (PNS) equations

∇ • u = 0 and ∂u ∂t = -(u • ∇)u -(u • ∇)U -(U • ∇)u -∇p + 1 Re ∇ 2 u , ⎫ ⎪ ⎬ ⎪ ⎭ (2.1)
where Re = 3U b /2(h/ν) is the Reynolds number, defined on the basis of the bulk velocity U b = 1 -1 U(y) dy (where 3U b /2 corresponds to the value at the centreline of the parabolic laminar flow with mean velocity U b ), the half channel height h and the kinematic viscosity ν. Several invariant solutions of these equations, such as (relative) equilibria or periodic orbits, have been computed in the past decades [START_REF] Nagata | Three-dimensional finite-amplitude solutions in plane Couette flow: bifurcation from infinity[END_REF][START_REF] Waleffe | Three-dimensional states in plane shear flow[END_REF][START_REF] Kawahara | Periodic motion embedded in plane Couette turbulence: regeneration cycle and burst[END_REF][START_REF] Waleffe | Exact coherent structures in channel flow[END_REF][START_REF] Faisst | Travelling waves in pipe flow[END_REF][START_REF] Hof | Experimental observation of nonlinear traveling waves in turbulent pipe flow[END_REF][START_REF] Wedin | Exact coherent structures in pipe flow: travelling wave solutions[END_REF][START_REF] Eckhardt | Turbulence transition of pipe flow[END_REF][START_REF] Duguet | Relative periodic orbits in transitional pipe flow[END_REF][START_REF] Gibson | Equilibrium and traveling-wave solutions of plane Couette flow[END_REF][START_REF] Schneider | Snakes and ladders: localized solutions of plane Couette flow[END_REF][START_REF] Willis | Revealing the state space of turbulent pipe flow by symmetry reduction[END_REF][START_REF] Deguchi | The emergence of localized vortex-wave interaction states in plane Couette flow[END_REF][START_REF] Gibson | Spanwise-localized solutions of planar shear flows[END_REF][START_REF] Zammert | Streamwise and doubly-localised periodic orbits in plane Poiseuille flow[END_REF][START_REF] Park | Exact coherent states and connections to turbulent dynamics in minimal channel flow[END_REF][START_REF] Barnett | Streamwise localization of traveling wave solutions in channel flow[END_REF][START_REF] Budanur | Relative periodic orbits form the backbone of turbulent pipe flow[END_REF].

Conversely, when studying the dynamics of coherent structures characterizing the turbulent flow, it can be appropriate to move the point of view in the vicinity of the turbulent mean flow. This is achieved by using a Reynolds decomposition approach similar to that used by Eitel-Amor et al. [START_REF] Eitel-Amor | Hairpin vortices in turbulent boundary layers[END_REF] and Farano et al. [START_REF] Farano | Optimal bursts in turbulent channel flow[END_REF], where the flow vector is expressed as the sum of a mean flow Q = [U, P] T = [U, 0, 0, P] T (where • denotes long-time and space averaging along the streamwise and spanwise directions) and a fluctuation q = [ ũ, p] T , comprising the coherent and incoherent part of the perturbations of the mean flow. Time-and space-averaging along the wall-parallel directions the Navier-Stokes equations, and subtracting these averaged equations from the Navier-Stokes equations leads to the perturbative Reynolds-averaged Navier-Stokes (PRANS) equations, which describe in a statistical way the nonlinear evolution of fluctuations of the mean turbulent flow as

∇ • ũ = 0 and ∂ ũ ∂t = -( ũ • ∇) ũ -( ũ • ∇)U -(U • ∇) ũ -∇p + 1 Re ∇ 2 ũ + ∇ • ũ ũ, ⎫ ⎪ ⎬ ⎪ ⎭ (2.2)
where the term ũ ũ is the Reynolds stress tensor τ . Note that steady solutions of the PRANS equations, as well as the mean flow itself, are sustained by the Reynolds stress term, which is in turn sustained by the coherent and incoherent part of the fluctuations. The mean velocity profile for channel flow is well approximated by the analytical expression proposed by Reynolds & Tiedermann [START_REF] Reynolds | Stability of turbulent channel flow, with application to Malkus's theory[END_REF] dU

+ dy = - Re τ y ν + T (y) , (2.3) 
Re τ = u τ h/ν being the friction Reynolds number based on the friction velocity u τ = √ τ w /ρ, where τ w is the wall shear stress, and ν + T = ν T /ν is the ratio between the total viscosity ν T = ν + ν t and the kinematic viscosity ν, ν t being the turbulent eddy viscosity. The total eddy viscosity is modelled using Cess analytic approximation [START_REF] Cess | A survey of the literature on heat transfer in turbulent tube flow[END_REF], as assumed in previous works [START_REF] Reynolds | The mechanics of an organized wave in turbulent shear flow. part 3. Theoretical models and comparisons with experiments[END_REF][START_REF] Alamo | Linear energy amplification in turbulent channels[END_REF][START_REF] Hwang | Mesolayer of attached eddies in turbulent channel flow[END_REF]. Since this mean velocity profile is not solution of the Navier-Stokes equations, in order to close the problem, the divergence of the Reynolds stress tensor τ in equation (2.2) needs to be modelled. A common way to write this term is using the Boussinesq's Eddy Viscosity hypothesis τ ij = -ũi ũj = ν t S ij [START_REF] Pope | Turbulent flows[END_REF], where S is the shear stress tensor. Considering a fully developed channel flow whose statistics are averaged in the streamwise and spanwise direction, the divergence of the Reynolds stress tensor has only two non-zero components, i.e. dτ 12 (y)/dy and dτ 22 (y)/dy (note that the latter term cannot be incorporated in the pressure term since the other isotropic components have derivative equal to zero). The former term is approximated using the above mentioned eddy viscosity hypothesis, while the latter is modelled by using the rescaling proposed by Chen et al. [START_REF] Chen | Quantifying wall turbulence via a symmetry approach. Part 2. Reynolds stresses[END_REF], as ũ ṽ = -ν t dU dy and ṽ ṽ+ = ũ ṽ+ l

+ 22 l + 12 2 , (2.4) 
l + 12 , l + 22 being the Reynolds stress lengths defined as

l + i2 = c i2 y + (i+2)/2 ⎛ ⎝ 1 + y + y + sub 4 ⎞ ⎠ 1/8 ⎛ ⎝ 1 + y + y + buf 4 ⎞ ⎠ -(1+i)/4 1 -r 4 4(1 -r) 1 + r corei2 r 2 i/4 , (2.5) 
where i = 1, 2, r = 1y is the distance from the centreline, y + sub = 9.7 is the sublayer thickness, y + buf = 41 is the buffer layer thickness, r core12 = 0.27 and r core22 = 0.3 are the central core layers, and the parameters c 12 , c 22 are function of these quantities (see [START_REF] Chen | Quantifying wall turbulence via a symmetry approach. Part 2. Reynolds stresses[END_REF] for further details). This analytical formulation has been validated by comparing the mean turbulent flow and the Reynolds stress tensor components with those obtained by DNS at Re = 3300 (Re τ = 180) [START_REF] Kim | Turbulence statistics in fully developed channel flow at low Reynolds number[END_REF] and at Re = 12 450 (Re τ = 590) [START_REF] Moser | Direct numerical simulation of turbulent channel flow up to re τ = 590[END_REF]. The results obtained are computed in this range of Reynolds numbers, for which turbulence is fully developed (not spatially patterned) and both the mean flow and the Reynolds stress are accurately described by the chosen analytical approximation.

Continuation from the PNS to the PRANS framework

Statistically invariant travelling waves solutions of the PRANS equations are sought for by continuation of known invariant solutions of the PNS equations. In particular, as sketched in figure 1, a homotopy procedure is used for continuously passing from equations (2.1) to (2.2), which have an almost identical structure, except for the steady flow used as reference and for the presence of the Reynolds stress tensor. Since these quantities depend directly on the turbulent eddy viscosity, the continuation is performed by continuously increasing this quantity from zero to its characteristic turbulent value expressed by the Cess model [START_REF] Cess | A survey of the literature on heat transfer in turbulent tube flow[END_REF]. Towards this purpose, we define an effective turbulent eddy viscosity, ν t , where is a real positive number in the range [0, 1], and ν t is expressed as with η = η + 1 defined in the domain [0, 2], κ = 0.426 and A = 25.4, as assumed in previous works [START_REF] Alamo | Linear energy amplification in turbulent channels[END_REF][START_REF] Hwang | Mesolayer of attached eddies in turbulent channel flow[END_REF][START_REF] Pujals | A note on optimal transient growth in turbulent channel flows[END_REF]. Continuation from the PNS to the PRANS equations is achieved by increasing the coefficient from 0 to 1, and using the effective turbulent eddy viscosity ν t in the analytical expression of the Reynolds stress tensor components τ 11 , τ 12 in equation (2.4) and in the mean flow profile in equation (2.3), where ν + T = 1 + ν t /ν. The procedure consists in selecting a known travelling wave solution of the Navier-Stokes equations, subtracting the laminar flow solution for defining the corresponding perturbation, which is a travelling wave solution of equations (2.1), and continuing it in using the following equations:

ν t = ν 2 1 + κ 2 Re 2 τ 9 (2 η -η2 ) 2 (3 -4 η + 2 η2 ) 2 1 -exp (| η -1| -1)Re τ A 2 1 2 - 1 2 . ( 3 
∇ • ũ = 0 -C ∂ ũ ∂x = -( ũ • ∇) ũ -( ũ • ∇)U -(U • ∇) ũ -∇p + 1 Re ∇ 2 ũ -∇ • ν t S(U) U(y) = 1 - Re 2 τ y Re(1 + (ν t /ν)) dy, 0, 0 T , ⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ (3.2)
where C is the phase velocity of the Galilean frame in which the solution is steady. When = 0, Re 2 τ = 2Re and one recovers U = 1y 2 = U, the Reynolds stress tensor components being null. In this limit, equations (3.2) coincide with the PNS equations (2.1) and consequently ũ coincides with u . When = 1, one gets the turbulent expression of ν t given in equation (3.1), so that the turbulent mean velocity profile and the Reynolds stress tensor components in equations (2.4) are obtained. Note that, similarly to a homotopy procedure, the solutions obtained for =]0, 1[ have no physical sense. Moreover, for = 1, ũ can have a non-zero mean, since U represents the mean flow only in turbulent conditions, which are achieved only for = 1. The whole procedure, which is sketched in figure 1, is implemented within the open-source software Channelflow (channelflow.ch) [START_REF] Gibson | In preparation[END_REF].

Continuation from the PNS to the PRANS equations is performed enforcing a constant volume flux and consequently fixing the bulk velocity. Thus, while increases from 0 to 1, the friction Reynolds number grows from the laminar (Re L τ ) towards the turbulent (Re T τ ) value as

Re τ = (1 -)Re L τ + Re T τ = [(1 -)u L τ + u T τ ] h ν , (3.3) 
where u L τ = 3U b ν/h is the friction velocity of the laminar flow and u T τ is the friction velocity of the turbulent flow, which, using Dean's approximation for the skin friction in fully turbulent flow [START_REF] Dean | Reynolds number dependence of skin friction and other bulk flow variables in two-dimensional rectangular duct flow[END_REF], can be expressed as

u T τ = 0.073 2 U 2 b 2U b h ν -0.025 . (3.4)

Results

As a first attempt aiming at validating the approach, we take as a starting point for the continuation procedure the travelling wave solution TW2 obtained by Gibson & Brandt [START_REF] Gibson | Spanwise-localized solutions of planar shear flows[END_REF] in a small domain at low Reynolds number. This invariant solution of the NS equations is computed at Re = 2300 in a domain of extension 2π × 2 × π , with 32 × 97 × 64 points in the streamwise (x), wall-normal (y) and spanwise (z) direction, respectively. As shown in figure 2a, the TW2 solution is continued with respect to the Reynolds number up to Re = 3800, which is sufficiently high for displaying featureless (not patterned) turbulence. As shown in figure 3a, the TW2 solution at this value of Re consists of two layers of counter-rotating vortices and slightly modulated streaks along the lower wall, and one layer of counter-rotating vortices along the upper wall (not shown). This solution is continued to the PRANS formulation by increasing the eddy viscosity as explained in section (3). Continuation is performed at fixed Reynolds number Re = 3800, enforcing a constant volume flux. The variation of the streamwise velocity norm during this continuation procedure is shown in figure 2b. After an initial drop, the streamwise velocity norm increases with , reaching for = 1 a value about 60% larger with respect to its initial value. Moreover, when = 1, the friction Reynolds number reaches Re τ = 134.521, and the statistically invariant solution TW2 T , shown in figure 3b, is obtained. Note that this friction Reynolds number is rather low for a fully developed turbulent flow, we thus expect the solution to slightly change when continued towards the PRANS framework. Comparing this statistically steady solution with the starting travelling wave, one can observe that the quasi-streamwise vortices (blue and red isosurfaces) are almost unchanged, while strong differences can be noticed on the velocity streaks, which are less fragmented, more streamwise-aligned and shifted towards the wall. This shift of the streaks towards the wall can presumably be due to the wall-normal variation of the eddy viscosity used in the PRANS equations. As discussed in [START_REF] Hwang | Mesolayer of attached eddies in turbulent channel flow[END_REF], since in the near-wall region and lower part of the logarithmic region, the eddy viscosity grows linearly with y, coherent structures are allowed to reach larger amplitudes, so they protrude towards the wall. Whereas, they weaken in the upper part of the logarithmic region and outer region, due to the large value of ν t . Moreover, the streaks considerably increase their size in the spanwise direction, and show a peculiar triangular shape. This peculiar shape compares very well with the streaky mean flow obtained by optimally forcing a turbulent channel flow, while the vortical structures remember closely the most energetic DMD mode recovered on top of this streaky flow [START_REF] De Giovanetti | Streak instability in turbulent channel flow: the seeding mechanism of large-scale motions[END_REF]. The streaks reach down towards the wall, where they are almost streamwise aligned, while they present some wiggles close to the streamwise vortices. Moreover, their structures becomes almost identical on the two walls, despite in the upper wall much weaker vortices are found (not shown). These unexpected differences with respect to the starting TW2 solution might arise from the fact that, when continuing the PNS equations (2.1) towards the PRANS ones (2.2), invariant perturbations of the laminar base flow transform into statistically coherent fluctuations of the mean flow. Thus, the observed structural change of the travelling wave solution can be simply due to the change of reference from the base to the mean flow, rather than to an intrinsic modification of the coherent motion. An answer to this important point can be found by directly comparing (a) ( b) The difference between these two flow field is found to be of O(10 -4 ), three orders of magnitude smaller than the perturbation maximum amplitude, thus validating our procedure at such a low friction Reynolds, for which the dynamics of fluctuations of the mean flow should not strongly differ to that of perturbations of the base flow after a mere change of reference.
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Once our approach has been validated, we attempt to increase the friction Reynolds number for reaching values typical of fully turbulent flows. First, we tried to continue the TW2 T solution further in Re, but the convergence of higher-Re solutions was very slow and time-consuming. Conjecturing that the domain might be too small for capturing statistically steady coherent structures typical of higher-Reynolds number flows, we have continued TW2 T in the streamwise direction up to L x = 9.54, while keeping U b fixed. This solution, provided in figure 4a, is very similar to that previously shown, showing coherent, large-scale streaks with smaller vortices on top of them. One can again note the strong similarity of this solution with the main energetic structures found in a forced DNS of turbulent channel flow [START_REF] De Giovanetti | Streak instability in turbulent channel flow: the seeding mechanism of large-scale motions[END_REF]. However, this solution is again characterized by a rather low Re τ = 134.5, thus the difference between the relative instantaneous flow fields, shown in figure 4b, is again very small. This TW is then continued in Reynolds number up to Re = 5945, corresponding to Re τ = 199.0, which is only slightly higher than that Motivated by these results, we have chosen a new starting point of the continuation procedure, namely, a spanwise-localized travelling wave solution called TW2 -1 [START_REF] Gibson | Spanwise-localized solutions of planar shear flows[END_REF], whose similarity to flow structures characterizing the near-wall cycle has been reported in the literature. This travelling wave solution, which has been obtained by continuation of TW2 after windowing on a larger spanwise domain [START_REF] Gibson | Spanwise-localized solutions of planar shear flows[END_REF], is similar in structure to TW2, although being mostly concentrated towards one wall. We have first obtained the TW2 -1 solution at Re = 3300 in the domain of size 2π × 2 × 6π , with 32 × 97 × 324 points in the streamwise, wall-normal and spanwise direction, respectively. The TW2 -1 solution is continued at first with respect to the bulk velocity, in order to increase its friction Reynolds number. The resulting travelling wave is shown in figure 5a for Re = 3300. This spanwise-localized solution consists of slightly modulated streaks flanked by streamwise-inclined vortices, which are weaker on the upper wall, where only one streaks pair is observed, and stronger on the bottom wall, where two pairs of streaks are recovered.

This TW2 -1 solution is then continued to the PRANS equations varying the parameter from 0 to 1, at fixed Re = 3300 and U b . Figure 5b their size in the spanwise direction, reaching a width which appears to be close to that typical of large-scale motion, λ z ≈ 1.5h [START_REF] Lee | Spatial organization of large-and very-large-scale motions in a turbulent channel flow[END_REF]. For reaching higher values of Re τ , continuation with respect to Re of TW2 -1 is performed, keeping U b fixed. The variation of the norm of the streamwise velocity of TW2 -1 during the Re-continuation is found in figure 6a, showing a continuous increase of this quantity, while the wall-normal velocity considerably decreases with Re (not shown). Several solutions at increasing values of Re have been then continued in towards the PRANS framework, as shown in figure 6b. Figure 7a,c,e provides the TW2 -T solutions at different values of the Reynolds number up to 6500 (corresponding to Re τ = 380.03). The whole structure of the travelling wave remains similar to that recovered at Re = 3300, although the streaks become stronger while the counter-rotating vortices slightly weaken. More importantly, as shown in figure 7b,d,f, the difference between the instantaneous flow fields of the corresponding TW solutions of the PNS and PRANS equations consistently increases, now reaching the same order of magnitude of the perturbation itself. This means that the structural modifications of TW2 -1 T with respect to TW2 -1 at high Re τ , do not depend only on the change of reference from the laminar base flow to the mean turbulent flow, but to an intrinsic difference in the coherent disturbances dynamics. Figure 7b,d,f shows a cross-section of the low-and high-speed streaks of TW2-1 (black and white lines) at different Reynolds numbers, together with the difference between the instantaneous flow fields of TW2 -1 and TW2 -1 T at the same values of Re (shaded contours). One can note that the largest modifications are observed on the lateral low-speed streaks, which increase their spanwise size and move towards the wall, and on the high-speed ones at the wall, which appear to be change their spanwise size too (not shown). However, while the streamwise velocity is modified in a large part of the domain, the counter-rotating vortices change exclusively in a very narrow zone between the low-and high-speed streaks. The result of these modification is a consistent increase of the spanwise size of most of the streaks, which reach a length comparable to the channel half-height, typical of large scale motion [START_REF] Hwang | Statistical structure of self-sustaining attached eddies in turbulent channel flow[END_REF][START_REF] Del Alamo | Spectra of the very large anisotropic scales in turbulent channels[END_REF][START_REF] Lee | Spatial organization of large-and very-large-scale motions in a turbulent channel flow[END_REF]. A smallersize streak is observed as well, having spanwise size O(100) (in inner units), close to that typical of wall streaks. However, this smaller-scale coherent structure does not appear directly linked to the wall cycle, since, as shown in figure 8a, its streamwise-averaged velocity profile extracted at z = 9 and scaled with respect to the inner units, appears not to be independent of Re τ , as one would expect for wall-cycle related structures. In particular, its peak scales approximately with Re 1/2 τ , as one would expect for large-scale structures [START_REF] Hwang | Mesolayer of attached eddies in turbulent channel flow[END_REF]. It is worth to note that the same scaling with respect to Re τ characterizes the lateral large-scale streaks, whose inner-scaled velocity profiles are shown in figure 9a. However, comparing figures 8b and 9b, one can also note that, while the lateral streaks present a robust outer scaling, confirming their large-scale nature, for the smallscale central streak the velocity profiles at different Re τ do not collapse at large values of y. Thus, the small-scale central streak cannot directly be related with the wall cycle, but neither to the large-scale structures, probably being linked to the secondary motion induced by the vortical structures placed at the centre of the domain. These counter rotating vortices placed in the region between the large-scale streaks, reaching much higher distances from the wall, remember the typical vortical structures recovered in large-scale motion (also called bulges).

A quantitative analysis of the main spanwise wavelengths of TW2 -1 T has been carried out by computing the premultiplied energy spectra of the streamwise, wall-normal and spanwise velocities of this solution at Re = 4500 (corresponding to Re τ = 275.47), which are shown in figure 10a,b,c, respectively. Concerning the streamwise velocity, the lowest-wavenumber peak (k + z = 0.00127 or k z = 0.35 in outer units) corresponds to the size of the TW envelope, being close to the spanwise domain size. Two other peaks are recovered for k + z = 0.0065 and k + z = 0.0155, corresponding to wavelengths λ z = 3.5 and λ z = 1.47 in outer units, respectively, lying in the range of the typical spanwise size of large-scale motion (reported to be λ z = 1 -3 in outer units). A higher-frequency, weaker peak is found for k + z = 0.047, corresponding to λ + z = 135, which is rather close to the typical spanwise size of wall-streaks. Whereas, the wall-normal and spanwise spectra are both characterized by one peak only, at k + z = 0.048 (corresponding to λ + z = 130.08) and k + z = 0.026 (λ + z = 235.32), respectively. Notice that these wavelengths are much lower than the dominant ones of the streamwise velocity spectra, being closer to those typical of the wall cycle. Very similar spectra are recovered at Re = 5500 and Re = 6500 (corresponding to Re τ = 328. [START_REF] Park | Exact coherent states and connections to turbulent dynamics in minimal channel flow[END_REF] and Re τ = 380.03, respectively), indicating that the structure of TW2 -1 T remains robust when the Reynolds number increases. Moreover, it is interesting to evaluate the scaling of the relevant structures of these solutions with respect to those of the single self-sustaining attached eddy [START_REF] Hwang | Statistical structure of self-sustaining attached eddies in turbulent channel flow[END_REF], which is composed of a long streaky motion reaching the near-wall region, self-similar along y = 0.1λ z and a shorter vortical structure carrying all the velocity components, self-similar along y = 0.5 -0.7λ z . A similar scaling is found in the TW2 -1 T solution, with the two dominant peaks in the streamwise velocity spectrum having y ≈ 0.1 -0.15λ z while a scaling of y ≈ 0.58λ z , y ≈ λ z is found in the spanwise and wall-normal spectra, respectively. The statistically steady solution presented here, composed of large streaky structures and short vortical ones carrying all velocity components, is thus similar in shape and wavelengths to the self-sustaining structures of the attached eddy theory [START_REF] Hwang | Statistical structure of self-sustaining attached eddies in turbulent channel flow[END_REF]. However, in this solution, large-and small-scale structures are not torn apart, but tied together in a non-trivial way, representing one potential first brick for the development of a low-order model of turbulence dynamics.

Conclusion

In this work, we propose a new mathematical framework for characterizing the coherent motion of turbulent fluctuations around the mean flow in a turbulent channel, using a statistical point of view. In particular, we search for statistically invariant coherent solutions of the unsteady Reynolds-averaged Navier-Stokes equations written in a perturbative form with respect to the turbulent mean flow, using a suitable approximation of the Reynolds stress tensor. For doing so, we set up a continuation procedure of known invariant solutions of the perturbative Navier-Stokes equations, based on the continuous increase of the eddy viscosity towards its turbulent value. The recovered solutions are sustained only in the presence of the Reynolds stress, thus being representative of the coherent motion of turbulent flows. The travelling wave TW2 has been first used as a starting point of the continuation procedure, and continued to the turbulent framework up to friction Reynolds number Re τ ≈ 134.52. Although structural changes are found in the solution, when resorting to instantaneous quantities the statistically invariant motion results to be only marginally different to the corresponding invariant solution of the Navier-Stokes equations. This was expected, since turbulence is not fully sustained at such low values of the friction Reynolds number, so that the dynamics of statistically coherent motion of fully turbulent flows remains close to that of transient turbulence and transition. However, by taking the spanwise-localized solution TW2 -1 as a new starting point, and continuing it to the statistically turbulent framework at sufficiently large friction number (Re τ ≈ 380.03), the statistically invariant motion considerably departs from the starting solution. This solution is characterized by large-scale and small-scale streaks reaching the wall, accompanied by rather small vortical structures further from the wall. These structures, as well as the main wavelengths and scaling of this statistically invariant solution are very close to those typical of the coherent motion in turbulent channel flows. In particular, the dominant wavelengths of the streamwise velocity premultiplied energy spectrum correspond to the typical spanwise size of large-scale structures (1.5 -3.5 times the half channel height) and are characterized by a scaling y ≈ 0.1 -0.15λ z , consistent with the attached eddy hypothesis. Whereas, spanwise lengths typical of the wall cycle and a scaling of y ≈ 0.58λ z , y ≈ λ z are found in the spanwise and wall-normal spectra, respectively. Thus, the statistically steady solution presented here, constituted by large streaky structures and short vortical ones carrying all velocity components, is similar in shape and wavelengths to the self-sustaining structures of the attached eddy theory [START_REF] Hwang | Statistical structure of self-sustaining attached eddies in turbulent channel flow[END_REF], although composed by large-and small-scale structures tied together in a non-trivial way. This statistically invariant solution may potentially represent one brick for the development of a low-order model of turbulence dynamics. It should be remarked that the comparison of the main wavelengths and scalings of this statistically invariant solution with those of the attached eddy has been limited to the spanwise direction, since the present solution has been obtained in a rather small streamwise domain. Future work will aim at continuing this or other solutions towards larger streamwise domains, as well as towards much higher friction Reynolds numbers. Moreover, new statistically invariant solutions might be obtained using as a starting point filtered snapshots of the turbulent flows, instead of continuing known invariant solutions of the Navier-Stokes equations. Finally, statistically periodic solutions can be recovered as well, providing relevant information about the temporal dynamics of the coherent part of the fluctuations in the considered statistical framework.

This might be a considerable step forward towards the development of reduced-order models of flows.
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 1 Figure 1. Schematic visualization of the continuation procedure from the Perturbative Navier-Stokes equations ( = 0) to the Perturbative Unsteady Reynolds-averaged Navier-Stokes equations ( = 1).
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 2 Figure 2. Continuation diagram of the streamwise velocity norm of TW2 with respect to Re (a) for = 0, and with respect to for Re = 3800 (b).
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 3 Figure 3. Invariant TW2 solution for = 0 (a) and = 1 (b) for Re = 3800: isosurfaces of negative streamwise velocity ((a) u = -0.11, (b) ũ = -0.15, light grey in the printed version, yellow online) and Q-criterion (Q = 0.1) coloured by the streamwise vorticity (dark grey in the printed version; red for positive, blue for negative online). (a) = 0, (b) = 1. (Online version in colour.)
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 45 Figure 4. (a) Statistically steady travelling wave solution TW2 T , for Re = 3800 and L x = 9.544: isosurfaces of negative streamwise velocity (ũ = -0.15, light grey in the printed version, yellow online) and Q-criterion (Q = 0.08) coloured by the streamwise vorticity (dark grey in the printed version, red for positive, blue for negative online). (b) Difference of the instantaneous flow fields of TW2 and TW2 T (shaded contours) and streamwise velocity perturbation associated with the travelling wave solution TW2 (black line for negative, white line for positive) for Re = 3800 and L x = 9.544.(a) ũ, (b) u TW2 Tu TW2 . (Online version in colour.)
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 678 Figure 6. Continuation diagram for the travelling wave solution TW2 -1 versus Re for U bulk = 1: norm of the streamwise velocity (a) and of the wall-normal velocity (b). (Online version in colour.)

Figure 9 .

 9 Figure 9. Streamwise-averaged velocity profile of the TW2 -1 T extracted at the z location where the lateral large-scale streaks present their maximum value, scaled in inner and outer units. (Online version in colour.)
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 10 Figure 10. Premultiplied one-dimensional spanwise spectra of the streamwise (a), wall-normal (b) and spanwise velocity (c) of TW2 -1 T at Re = 4500. (a) k z E uu (k z ), (b) k z E vv (k z ), (c) k z E ww (k z ). (Online version in colour.)
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