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a b s t r a c t

In the last decade, several studies have shown that facial attractiveness can be learned by machines.
In this paper, we address Facial Beauty Prediction from static images. The paper contains three main
contributions. First, we propose a two-branch architecture (REX-INCEP) based on merging the archi-
tecture of two already trained networks to deal with the complicated high-level features associated
with the FBP problem. Second, we introduce the use of a dynamic law to control the behaviour of
the following robust loss functions during training: ParamSmoothL1, Huber and Tukey. Third, we
propose an ensemble regression based on Convolutional Neural Networks (CNNs). In this ensemble,
we use both the basic networks and our proposed network (REX-INCEP). The proposed individual CNN
regressors are trained with different loss functions, namely MSE, dynamic ParamSmoothL1, dynamic
Huber and dynamic Tukey. Our approach is evaluated on the SCUT-FBP5500 database using the two
evaluation scenarios provided by the database creators: 60%–40% split and five-fold cross-validation.
In both evaluation scenarios, our approach outperforms the state of the art on several metrics. These
comparisons highlight the effectiveness of the proposed solutions for FBP. They also show that the
proposed dynamic robust losses lead to more flexible and accurate estimators.

© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

For centuries philosophers, artists, and scientists have tried to
iscover the mystery of beauty [1]. In fact, the beauty of the face
s gaining more and more interest due to the rapid development
f plastic surgery and cosmetic industry [2]. In recent years, facial
eauty estimation and classification has become an interesting
esearch topic in computer vision and machine learning due to
ts growing applications [3,4]. Applications for facial beauty es-
imation and prediction include: Cosmetic recommendations [5],
cheduling of aesthetic surgeries [6], facial beautification [7], and
ocial Networks Services (SNS) (such as Facebook, Instagram,
nd dating websites) [8]. In addition, automatic facial beauty
rediction (FBP) may find application when attractiveness is a
asic requirement, such as in advertising, magazine covers, and
creening applicants for certain jobs, such as entertainment and
odelling [6].
Despite the considerable progress in estimating and predicting

he beauty of faces, more labelled data is needed for training deep

∗ Corresponding author at: University of the Basque Country UPV/EHU, San
ebastian, Spain.

E-mail address: fadi.dornaika@ehu.eus (F. Dornaika).
ttps://doi.org/10.1016/j.knosys.2022.108246
950-7051/© 2022 The Authors. Published by Elsevier B.V. This is an open access a
c-nd/4.0/).
CNNs. To deal with the data limitation, some researchers used
active data augmentation. In addition, others used pre-trained
models trained on the ImageNet database [9]. These pre-trained
models are capable of extracting high-level features. In this pa-
per, we propose a system that exploits the diversity of learners.
We present two main proposals. First, we propose to combine
two different CNN architectures into a single architecture (called
the two-branch architecture) that is trained end-to-end. Second,
we propose to build an ensemble of regressions where the fi-
nal prediction is given by the average of all predictions. The
latter solution does not need to be trained on new validation
sets. More specifically, we propose ensemble regressions using
one-branch architectures (ResneXt-50 and Inception-v3) and our
proposed two-branch architecture (REX-INCEP) trained with dif-
ferent loss functions. Four loss functions are used in our approach,
namely MSE, dynamic ParamSmoothL1, dynamic Huber and dy-
namic Tukey. In summary, the main contributions of this paper
are as follows:

• We propose ParamSmoothL1 regression loss function
ParamSmoothL1. Moreover, we introduce a dynamic law
that changes the parameters of the robust loss function
during training. For this purpose, we use the cosine law
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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with the following robust loss functions: ParamSmoothL1,
Huber and Tukey. This can solve the problem of complexity
in finding the best loss function parameter.

• We propose two branches network (REX-INCEP) for face
beauty estimation based on ResneXt-50 and Inception-v3 ar-
chitectures. The main advantage of our REX-INCEP architec-
ture is its ability to learn FBP features at a high level by using
ResneXt and Inception blocks simultaneously, which proved
its efficiency compared to seven CNN architectures. More-
over, our REX-INCEP architecture provides the right trade-
off between the performance and the number of parameters
for facial beauty prediction.

• We propose an ensemble regression for facial beauty esti-
mation by merging the predicted scores of networks with
one branch networks (ResneXt-50 and Inception-v3) and
two branches network (REX-INCEP) trained with four loss
functions (MSE, dynamic ParamSmoothL1, dynamic Huber,
and dynamic Tukey). Although the individual regression
models are trained with the same fixed hyperparameters,
the resulting ensemble regression provides the most accu-
rate estimates compared to the individual models and to
state-of-the-art solutions. We have made our codes and pre-
processed faces publicly available using our face alignment
scheme at https://github.com/faresbougourzi/CNN-ER_for_
FBP. (Last accessed on November, 29th 2021)

This paper is organized as follows: Section 2 presents some re-
lated work on facial beauty prediction. In Section 3, we illustrate
the backbone CNN architectures used, the proposed approach,
and the proposed dynamic robust losses. Section 4 includes: the
description of the database and evaluation metrics used, the
experimental settings, and the 60%–40% split and five fold cross-
validation experiments. Section 4 is concluded by the comparison
with state-of-the-art methods. Finally, Section 5 concludes the
paper.

2. Related work

Image-based estimation of the beauty of faces is a new prob-
lem in computer vision. The first database that treats FBP as
a regression task is from 2015 [10]. The methods used in the
literature to predict and estimate facial beauty are either hand-
crafted methods [11–18] or deep learning methods [12,19–21].
The hand-crafted methods can be classified as geometry-based
or appearance-based methods [16]. In [15], P. Aarabi et al. de-
veloped an automatic facial beauty rating system based on the
relationships between facial features (face, eyes, eyebrows and
mouth) with the K-nearest neighbour algorithm to learn a beauty
mapping. D. Zhang et al. used tens of thousands of female and
male faces and assigned them to a human face shape subspace.
They then used a quantitative method to analyse the effect of
geometric facial features on human facial beauty using a simi-
larity transformation invariant shape distance measure. In [16],
H. Yan proposed a new CSOR (Cost-Sensitive Ordinal Regression)
to measure the importance of samples in different classes. They
applied their CSOR to four types of features, namely intensity,
LBP [22], SIFT [23], and LE [24]. L. Liang et al. [12] used geomet-
ric features (extracted 18-dimensional ratio features from faces)
and appearance features (40 Gabor feature maps) with shallow
predictors, which are linear regression (LR), Gaussian regression
(GR), and support vector regression (SVR). These methods were
tested using the SCUT-FBP5500 database.

In recent years, deep learning architectures have been widely
used to evaluate the beauty of faces. In [12], L. Liang et al. pre-
sented their face beauty database (SCUT-FBP5500) with two eval-
uation protocols (60%–40% split and 5-fold cross validation). They
 w

2

tested three CNN architectures (Alexnet [25], Resnet-18 [26] and
ResneXt-50 [27]). Their results show that the ResneXt-50 archi-
tecture outperformed the other two deep architectures (Alexnet
and Resnet-18). Moreover, the deep architectures performed bet-
ter than the hand-crafted features they used with different shal-
low regressors. K. Cao et al. used a residual-in-residual (RIR)
block to build a deeper network with multi-level skip connections
to produce better gradient transmission flow. In addition, they
used both channel-wise and space-wise attention mechanisms
to find the inherent correlation between feature maps. Their
approach was tested on the SCUT -FBP5500 [12] database and
showed good performance. In [21], L. Lin et al. propose an R3CNN
rchitecture consisting of two main components. The first com-
onent is a regression component that contains two identical
egression subnets that consistently map each face image to a
eauty value. The second component is a ranking component that
ses the Siamese network to learn a pairwise ranking to guide the
egression of the beauty prediction. Their architecture showed
romising results on SCUT-FBP [10] and the SCUT-FBP5500 [12]
atabases. In addition to supervised learning, semi-supervised
earning shows promising results for face beauty estimation [28,
9]. In [29], F. Dornaika et al. presented a multi-layered local dis-
riminant embedding algorithm that integrates feature selection
s the main step. Feature selection captures the most relevant and
iscriminative features of an input face image or face descriptor.

. Methodology

In this section, we will present the used CNN architectures and
ur proposed approach and the proposed dynamic robust losses.

.1. Backbone CNN architectures

Since deep learning architecture ‘‘Alexnet’’ [25] won the Ima-
eNet challenge in 2012, numerous CNN architectures have been
roposed. In our work, we will use two popular architectures
ResneXt-50 [27] and Inception-v3 [30]) as building blocks for
ur solution. It is worth noting that other backbone architec-
ures can also be used. In our proposal, we use the above pre-
rained models trained on the ImageNet challenge database [9].
o keep the paper self-contained, this section briefly introduces
he CNNs ResneXt-50 and Inception-v3, which were used as
ackbone architectures in our proposed solution.

esneXt-50 architecture. The architecture of ResneXt-50 is pre-
ented in [27], which is based on the ResneXt module (Fig. 1). The
esneXt module performs a series of transformations, each based
n a low-dimensional embedding and sharing the same topology.
he results of all transformations are combined by summation.

nception-v3 architecture. The Inception-v3 architecture is pre-
ented in [30], which is based on the Inception module presented
n [31]. The main idea of the inception architecture is to com-
ine different convolutional layers with different kernel sizes and
ooling layers in one inception module, as shown in Fig. 2.

.2. Our approach

Our global approach is shown in Fig. 3. The output score is
he average of multiple scores, which means that we use an
nsemble of multiple regression models. In our implementation,
e use six models. There are two main contributions in this
nsemble: (i) the deep network with two branches (REX-INCEP)
see Section 3.4) and (ii) the dynamic robust loss functions (see
ection 3.5).
The first two scores are predicted by the trained deep net-
orks ResneXt-50 and Inception-v3 using the MSE loss function

https://github.com/faresbougourzi/CNN-ER_for_FBP
https://github.com/faresbougourzi/CNN-ER_for_FBP
https://github.com/faresbougourzi/CNN-ER_for_FBP
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Fig. 1. A ResneXt Module with cardinality = 32, with roughly the same
complexity. A layer is shown as (# in channels, filter size, # out channels) [27].

Fig. 2. The Third Inception Module used in Inception-v3 architecture [30].

nd the dynamic Huber loss function, respectively. The remaining
our scores are estimated after training the proposed two-branch
eep network (REX-INCEP) using four loss functions: MSE, dy-
amic ParamSmoothL1, dynamic Huber, and dynamic Tukey. The
wo-branch deep network consists of ResneXt-50 and inception-
3, which are merged into a single architecture. As will be seen
n the experimental section, using the two contributions without
he ensemble results in performance that is better than that of
he state-of-the-art methods. Using the ensemble shown in Fig. 3
ill further improve the results.

.3. Face preprocessing

In the face preprocessing phase, we used the scheme proposed
n [32,33]. The process is shown in Fig. 4. There are three steps
o crop the face region from the raw face image. First, we use
he provided face features to align the eyes by performing a 2D
otation of the face based on the eye coordinates. After this 2D
otation of the image and the detected points, the three farthest
oints in the left, right and bottom directions are selected as
he three boundaries of the face. We denote the distance from
he lower boundary to the position of the eyes as d1. The upper
oundary of the face is set with a distance d2 from the eyes, which
s set as d2 = 0.6 d1. Finally, obtain the face ROI, by cropping
he face using the four boundaries and resizing the obtained
ox image to a fixed size that depends on the input size of the
orresponding network.

.4. Two branches architecture

In recent years, many successful deep architectures have been
roposed for many computer vision tasks.
3

To train two architectures simultaneously, we propose two
branches architecture to exploit the different capabilities of the
networks. Since FBP data is limited, we propose to exploit the
low-level and high-level feature extraction capability of two
powerful architectures simultaneously. Fig. 5 summarizes our
proposed architecture with two branches. The first and second
branches are the ResneXt-50 and Inception-v3 architectures, re-
spectively, with the decision levels removed. In our proposed
architecture with two branches, we added the layer FC1 that
maps the output of the ResneXt-50 branch (vector of dimension
2048) to 1024 neurons. Similarly, we added layer FC2, which
maps the output of the Inception-v3 branch (vector of dimension
2048) to 1024 neurons. FC1 and FC2 were concatenated into a
single vector FC, which is followed by the FC2 layer that performs
the regression. Note that the weights of both branches are the
weights of the pre-trained ResneXt-50 and Inception-v3 models
(trained on the ImageNet challenge database [9].), while the
FC1, FC2 and FC3 layers are randomly initialized. Our proposed
network with two branches is called REX-INCEP architecture. In
the training phase, we will fine-tune this architecture for FBP.

3.5. Loss functions: the use of dynamic robust losses

During convolutional network training, the loss function mea-
sures the error (the loss) between the ground truth and the
estimated values. The CNNs aim to minimize the loss based on
the gradients of the loss function used to update the weights of
the network. In this section, we will describe the loss functions
used in our experiments. We emphasize that three of them are
robust loss functions. We will also introduce a dynamic law that
adjusts the parameters of the robust losses during training. The
losses are computed for the batch size N , yi denotes the ground
truth score of the ith image, and ŷi denotes the estimated value
corresponding to the ith image.

3.5.1. L1 Loss function
L1 is one of the most commonly used loss functions. The most

important property of the L1 loss function is its robustness to
outliers. For N batch size, L1 loss function is defined by:

LL1 =
1
N

N∑
i=1

|yi − ŷi| (1)

3.5.2. Mean Squared Error (MSE) loss function
MSE is also known as L2 loss function, it is more sensitive to

outliers compared to L1. The MSE loss function should be used
hen the target data are normally distributed around a mean and
hen it is important to penalize outliers particularly heavily. For
predictions, the MSE loss function is defined by:

MSE =
1
N

N∑
i=1

(yi − ŷi)2 (2)

3.5.3. Dynamic parameterized SmoothL1 (ParamSmoothL1) loss func-
tion

The loss function SmoothL1 creates a criterion that uses a
quadratic term if the absolute element-wise error falls below 1,
and an L1 term otherwise. It is less sensitive to outliers than
the MSE loss function, and in some cases prevents exploding
gradients [34]. The SmoothL1 loss function of N images is defined
by:

LSmoothL1 =
1
N

N∑
zi (3)
i=1
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Fig. 4. Face Region of Interest. The left image is an original image from the database SCUT-FBP5500 [12]. The second image is the rotated face with its 86 detected
landmarks used to estimate the three face boundaries (right, left and bottom). These boundaries correspond to the three points ∗ marked in blue. The third image
hows how the upper boundary of the face is determined. It is located at a distance d2 = 0.6 d1 from the vertical position of the eyes. The fourth image shows the
ropped and rescaled face image with 224 pixels. Note that the distances D1 and D2 are constant for all cropped faces.
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Fig. 5. Our proposed two branches network REX-INCEP.

here N is the batch size and zi is given by:

i =

{
0.5 (yi − ŷi)2, if |yi − ŷi| < 1
|yi − ŷi| − 0.5, otherwise

(4)

Since the threshold may vary from one task to another, we pro-
posed a Parameterized SmoothL1 loss function defined as follows:

LPara_SmoothL1 =
1
N

N∑
i=1

zi (5)

where N is the batch size and zi is given by:

zi =

{
0.5 (yi − ŷi)2, if |yi − ŷi| ≤ α

|yi − ŷi| + 0.5α2
− α, otherwise

(6)

where α is tunable parameter. Our proposed dynamic robust
loss functions are based on the following observation. During the
training of ConvNets, the robust loss functions can be adjusted
as the training progresses. Namely, during training, the model
evolves and the outlier examples may vary. In the early stages
of training, the model is usually neither very stable nor accurate
4

enough to handle the outlier examples. Therefore, it is recom-
mended to use the quadratic function of loss. At the end of the
training, the model may be more or less accurate to deal with the
outliers. Therefore, it is recommended to use the robust loss func-
tion where the range of non-outlier errors is relatively small. This
means that the parameter of the robust loss function starts with
a maximum value and decreases monotonically as the training
progresses. From a practical point of view, it is extremely difficult
to know the best value for α in advance. However, the variation
interval [αmin, αmax] can be known in advance. Therefore, to make
he robust loss function more adaptive to the training progress,
e propose a dynamic parameter α. This parameter follows a
osine law as a function of the epoch number. The current value
f α is given by:

cur = αmin +
1
2
(αmax − αmin)

(
1 + cos (

ecur
ne

π )
)

(7)

where αcur is the value of α at the current epoch (ecur ). The latter
varies between 1 and the total number of epochs (ne). αmax and
αmin are the maximum and minimum of the α value. In this paper,
we denote the proposed dynamic Parameterized SmoothL1 by
dynamic ParamSmoothL1. Fig. 6 shows the values of α using the
proposed law (Eq. (7)) as a function of epoch number. Here αmax
nd αmin are fixed at 0.7 and 0.3, respectively. Our dynamic law
as inspired by the dynamic law used to control the learning rate

n stochastic gradient descent methods [35].

.5.4. Dynamic Huber loss function
Similar to ParamSmoothL1, Huber is another loss function that

s less sensitive to outliers in the data than the L2loss function L2.
or N training images, the Huber loss function is defined by [36]:

Huber =
1
N

N∑
i=1

zi (8)

where N is the batch size and zi is defined by:

zi =

{
0.5 (yi − ŷi)2, if |yi − ŷi| ≤ β

2 (9)

β |yi − ŷi| − 0.5β , otherwise
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Fig. 6. Dynamic ParamSmoothL1 with α that decreases from 0.7 to 0.3.

here β is a controlled parameter. Fig. 7, shows a visualization of
he Huber loss function with four β values (0.7, 0.5, 0.3 and 0.1)
nd L2 loss function.
Similar to the ParamSmoothL1 loss, we propose to use the

ynamic β given by the following the equation:

cur = βmin +
1
2
(βmax − βmin)

(
1 + cos (

ecur
ne

π )
)

(10)

here βcur is the value of β in the current epoch (ecur ), where ecur
ncreases from 1 to the total number of epochs (ne). βmax and βmin
re the maximum and minimum of the β value.

.5.5. Dynamic Tukey loss function
The Tukey loss function [37] has the property of suppressing

he influence of outliers during backpropagation by reducing the
agnitude of their gradient towards zero. Another interesting
roperty of this loss function is the soft constraints it imposes
etween inliers and outliers [38]. The Tukey loss function is
efined by:

Tukey =
1
N

N∑
i=1

zi (11)

here N is the batch size and zi is given by:

i =

{
c2
6 [1 − (1 − ( |yi−ŷi|

c )2)3], if |yi − ŷi| ≤ c
c2
6 , otherwise

(12)

here c is an adjustable parameter. Similar to ParamSmoothL1
nd Huber losses, we propose to use dynamic c during training

through the equation:

ccur = cmin +
1
2
(cmax − cmin)

(
1 + cos (

ecur
ne

π )
)

(13)

here ccur is the value of c at the current epoch (ecur ), where ecur
ncreases from 1 to the total number of epochs (ne). cmax and cmin
re the maximum and minimum of the c value.

. Performance evaluation

.1. Database and evaluation protocols

To evaluate the performance of our approach, we used the
atabase SCUT-FBP5500 [12]. It consists of 5500 frontal faces of
 u

5

ubjects with different attributes: Age (from 15 to 60), gender
male/female), and ethnicity (Asian/Caucasian). Each face image
as given a beauty score in the range [1–5] by 60 volunteers. In
ddition, each face image contains 86 facial features. Figs. 8(a),
(b), 8(d) and 8(c) show some face samples with their cor-
esponding beauty ratings. The creators of the SCUT-FBP5500
atabase provided two evaluation scenarios [12]. In the first
cenario, the data were split into a training split and a test split
60%–40%). In the second scenario, the data was split into 5 folds
o perform a five-fold cross-validation. In our analyses, we will
se both scenarios.

.2. Evaluation metrics

To evaluate the performance of each model, four evaluation
etrics are used, namely: mean absolute error (MAE), root mean
quare error (RMSE), Pearson correlation coefficient (PC) and the
error. Consider Y = (y1, y2, . . . , yn) the ground-truth scores
f the tested n images and Ŷ = (ŷ1, ŷ2, . . . , ŷn) as their corre-
ponding estimated scores. Where n represents the number of
ace images tested. The evaluation metrics are defined as follows:

ean Absolute Error (MAE): MAE is defined by:

AE =
1
n

n∑
i=1

|yi − ŷi| (14)

MAE is a scale-dependent accuracy measurement, i.e. MAE uses
the same scale as the data being measured.

Root Mean Square Error (RMSE): RMSE is defined by:

RMSE =
1
n

n∑
i=1

(yi − ŷi)2 (15)

he RMSE is another scale-dependent accuracy measure. Unlike
AE, the effect of any error on the RMSE is proportional to the
quared error; therefore, larger errors have a disproportionately
arge effect on the final RMSE. Consequently, the RMSE is sensitive
o outliers.

earson Correlation coefficient (PC): PC was developed by Karl
earson [39] and it is defined by:

C =

∑n
i=1 (yi − yi) (ŷi − ŷi)√∑n

i=1(yi − yi)2
√∑n

i=1(ŷi − ŷi)2
(16)

here yi and ŷi are the means of the ground-truth scores and the
stimated scores, respectively. PC has a value between +1 and -1,
t is a statistic that measures the linear correlation between two
ariables Y and Ŷ . A value of +1 means a completely positive
inear correlation, 0 means no linear correlation, and −1 means
completely negative linear correlation.

-error: ϵ-error is defined by:

-error =
1
n

n∑
i=1

(
1 − exp

(
(yi − ŷi)2

2 σ 2
i

))
(17)

here σi is the standard deviation of the scores of all raters
f image i. The value of the ϵ error is the accumulation of the
rrors of the individual images i based on the term ϵ-errori =

− exp ( (yi−ŷi)2

2 σ2
i

). When the absolute error of image i approaches

zero (i.e., yi = ŷi), ϵ-errori is zero. On the other hand, when the
bsolute error is large, ϵ-error takes into account the uncertainty
f the rate represented by σ 2

i . More precisely, the division by the
erm σ 2

i contributes less to the value of the ϵ error when the
ncertainty of the rate is large and vice versa.
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Fig. 7. Visualization of two loss functions: L2 and Huber with four β values (0.7, 0.5, 0.3 and 0.1).
r
l

Fig. 8. Facial beauty samples from the SCUT-FBP5500 database, (a) Female Asian
samples and the corresponding scores are (from left to right): 1.88, 3.00, 3.93,
and 4.28. (b) Male Asian samples and the corresponding scores are (from left
to right): 1.73, 2.48, 3.53, and 4.43. (c) Female Caucasian samples and the
corresponding scores are (from left to right): 1.93, 2.87, 3.63, and 4.7. (d) Male
Caucasian samples and the corresponding scores are (from left to right): 1.88,
2.67, 3.27, and 4.43.

4.3. Experimental setup

All experiments were performed on Pytorch [40] with an
NVIDIA Geforce GTX 1060 6 GB GPU. All networks are trained
for 40 epochs using Adam optimizer [41] and batch size of 15.
6

The initial learning rate is 1e−4 for 20 epochs, then the learning
ate decreases to 1e−5 for the next 10 epochs, and for the
ast 10 epochs the learning rate decreases to 1e−6. Active data
augmentation is performed by rotating the input face by an angle
between [−5, 5]. For all experiments, the reported results corre-
spond to the best PC of the test data during the training/testing
of the 40 epochs.

4.4. Experimental results on the 60%–40% split scenario

In this section, we limit the study to the provided 60%–40%
split.

4.4.1. Raw input vs the proposed face preprocessing
To investigate the effectiveness of our proposed face prepro-

cessing method, we used ResneXt-50 and Inception-v3 with loss
function MSE to train FBP on two input image scenarios (the
raw image and the cropped face with our preprocessing method).
The obtained results are summarized in Table 1. From these
results, it can be seen that our preprocessing scheme improves
the results for both ResneXt-50 and Inception-v3 architectures.
In other words, our proposed face alignment scheme can support
the training of CNN architectures by discarding the background
features and prioritizing the face features.

4.4.2. FBP using CNN architectures
In this section, we compare the performance of seven CNN ar-

chitectures (VGG-16 [42], Resnet-50 [44], Resnet-101 [44],
Resnet-152 [44], Wide-Resnet [43], Inception-v3 [30], ResneXt-
50 [27]) using the standard MSE loss function. The results are
summarized in Table 2. Based on these results, we can conclude
that Inception-v3 and ResneXt-50 perform the best compared
to the other CNN architectures. Moreover, these two CNN ar-
chitectures have a smaller number of parameters than VGG-
16, Resnet-101, Resnet-152, Wide-Resnet and similar to Resnet-
50, which proves the ability of Inception-v3 and ResneXt-50 to
learn high-level features for FBP with an intermediate number of
parameters.

Given the observed efficiency of the Inception-v3 and ResneXt-
50 architectures in both performance and number of trainable
parameters (Table 2), we propose to combine these two CNN
architectures (REX-INCEP). From Table 2, we conclude that our
proposed REX-INCEP achieves better performance than all CNN
architectures. Moreover, the number of trainable parameters of
our proposed REX-INCEP is similar to Resnet-101, Resnet-152 and
Wide-Resnet and less than VGG-16. These advantages prove the
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Table 1
Face beauty prediction using ResneXt-50 and Inception-v3 networks with MSE loss function and
two input image scenarios (The raw image and the detected face with our preprocessing scheme).
CNN architecture Pre-processing PC ↑ MAE ↓ RMSE ↓ ϵ-error ↓

ResneXt-50 Raw image 0.9119 0.2126 0.2845 0.0853
ResneXt-50 Face detection 0.9146 0.2092 0.2763 0.0802
Inception-v3 Raw image 0.9108 0.2150 0.2831 0.0873
Inception-v3 Face detection 0.9112 0.2147 0.2814 0.0833
Table 2
Comparison between seven CNN architectures (VGG-16, Resnet-50, Resnet-101, Resnet-152, Wide-
Resnet, Inception-v3 and ResneXt-50) and our proposed REX-INCEP approach for Facial Beauty
Prediction with MSE loss function.
CNN architecture PC ↑ MAE ↓ RMSE ↓ ϵ-error ↓ N of params

VGG-16 [42] 0.9025 0.2229 0.2932 0.0891 134 M
Wide-Resnet [43] 0.9066 0.2176 0.2889 0.0851 66 M
Resnet-50 [44] 0.9087 0.2155 0.2850 0.0849 23 M
Resnet-152 [44] 0.9069 0.2182 0.2880 0.0860 58 M
Resnet-101 [44] 0.9095 0.2157 0.2852 0.0848 44 M
Inception-v3 [30] 0.9139 0.2125 0.2779 0.0819 25 M
ResneXt-50 [27] 0.9146 0.2092 0.2763 0.0802 22 M
REX-INCEP (Our architecture) 0.9159 0.2071 0.2739 0.0790 52 M
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efficiency of our proposed REX-INCEP for FBP compared to CNN
architectures.

As shown in Fig. 5, our proposed REX-INCEP has two branches.
n the first branch, our proposed REX-INCEP architecture is able
o learn high-level features for FBP by using a combination of
plitting, transformation and aggregation mechanisms through
he ResneXt block. In the second branch, our proposed REX-INCEP
rchitecture is able to learn high-level features for FBP by combin-
ng different convolutional layers with different kernel sizes and
ooling layers through the Inception blocks. The main advantage
f our REX-INCEP architecture is its ability to learn high-level
BP features using ResneXt and Inception blocks simultaneously,
hich proved its efficiency compared to seven CNN architectures.
rom the results in Table 2, we conclude that our REX-INCEP
rchitecture provides the right tradeoff between the performance
nd the number of parameters for facial beauty prediction.

.4.3. Dynamic vs fixed loss parameter
In this section, we compare the performance of Face Beauty

rediction with dynamic and fixed loss functions. In this set of
xperiments, we choose a CNN architecture and a parametric
obust loss function. We then compare the performance of two
ariants of this parametric robust loss function: (i) a loss function
hat assumes a fixed parameter, and (ii) a loss function that
ssumes a dynamic parameter using the cosine law. Specifically,
e use the ResneXt-50 network and the following parametric

oss functions: ParamSmoothL1, Huber and Tukey loss functions.
o provide a fair comparison, the interval of parameter variation
ssociated with the dynamic scheme is also used by the fixed
arameter loss function. This is achieved by repeating the training
nd testing with several fixed values from the same interval.
We compare the performance obtained with the dynamic

cheme with the average performance associated with the
panned fixed values within this interval. Table 3 summarizes the
esults obtained. For the loss of ParamSmoothL1, the interval of
is fixed to [0.7–0.3]. The fixed parameter scheme spans the fol-

owing values {0.7, 0.6, 0.5, 0.4, 0.3}. Based on the results of the
oss function ParamSmoothL1, we can see that the performance
f the dynamic scheme is better than the average performance
btained with the fixed loss. Similar to ParamSmoothL1, the
ynamic Huber loss function with a β parameter in the interval
0.7–0.3] achieved better performance than the mean perfor-
ance obtained by the fixed β values {0.7, 0.6, 0.5, 0.4, 0.3}. For
ukey loss, the interval of parameter c was set to [2-1.5] and the

ixed c values are {2, 1.7, 1.5}. Similar to ParamSmoothL1 and the

7

uber loss function, the dynamic Tukey loss provided better per-
ormance than the Tukey loss with a fixed c value. Moreover, the
ynamic Tukey loss function adopting the [2-1] achieved better
erformance than the dynamic Tukey loss function adopting the
nterval [2-1.5]. In our approach, the intervals for the α, β and c
arameters of the three loss functions are [0.7–0.3] [0.7–0.3] and
2-1], respectively.

.4.4. Two branches vs one branch using five loss functions
In this section, we compare the performance of single-branch

etworks (ResneXt-50 and Inception-v3) and that of the proposed
wo branches network (REX-INCEP). Table 4 shows the perfor-
ances obtained with the ResneXt-50 network when five loss

unctions were used. From the results, it can be seen that the
oss function MSE gives the best performance. Table 5 contains
he results for the Inception-v3 network when five loss functions
ere used. From these results, we can conclude that the dynamic
uber loss function gives the best performance.
Table 6 shows the results of our proposed two branches

etwork (REX-INCEP) when four loss functions (MSE, dynamic
aramSmoothL1, dynamic Huber and dynamic Tukey losses) are
sed. Among the results obtained, dynamic ParamSmoothL1
chieved the best performance. Moreover, for a given loss func-
ion, the performance of the two-branch solution was better than
hat of the one-branch solution. The exception is the dynamic
uber loss. However, this difference in performance is very small.
omparing the results of one-branch networks and two-branch
etworks, we find that the two-branch network achieves high
erformance for all loss functions, with ParamSmoothL1 being the
est. In contrast, the one-branch networks achieved competitive
erformance only for the MSE loss with the ResneXt-50 network
nd the dynamic Huber loss with the Inception-v3 network. This
roves the effectiveness of the proposed REX-INCEP network,
hich effectively fuses and transforms the features generated by
ach architecture.

.4.5. CNN ensemble
To increase the performance of FBP, we will use an ensemble

f trained CNN architectures and use different loss functions.
n this scenario, the final score is set to the average of the
acial beauty scores provided by different models. In this group
f experiments, six models are adopted: the two trained net-
orks with one branch and the best loss functions (ResneXt-
0 with MSE and Inception-v3 with dynamic Huber) and four
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Table 3
Comparison between dynamic and fixed parameters of loss functions ParamSmoothL1, Huber and
Tukey using ResneXt-50 network.
Loss function Parameter PC ↑ MAE ↓ RMSE ↓ ϵ-error ↓

α = 0.7 0.9122 0.2127 0.2799 0.0814
α = 0.6 0.9141 0.2098 0.2772 0.0803

ParamSmoothL1 α = 0.5 0.9132 0.2110 0.2780 0.0815
α = 0.4 0.9101 0.2146 0.2825 0.0833
α = 0.3 0.9116 0.2150 0.2810 0.0831
Mean 0.9123 0.2126 0.2797 0.0819
dynamic α (0.7–0.3) 0.9140 0.2104 0.2777 0.0805
β = 0.7 0.9126 0.2114 0.2796 0.0812
β = 0.6 0.9130 0.2107 0.2780 0.0804

Huber β = 0.5 0.9144 0.2111 0.2770 0.0808
β = 0.4 0.9124 0.2122 0.2783 0.0839
β = 0.3 0.9110 0.2155 0.2811 0.0845
Mean 0.9127 0.2122 0.2788 0.0822
dynamic β (0.7–0.3) 0.9141 0.2116 0.2777 0.0814
c = 2.0 0.9128 0.2155 0.2810 0.0837
c = 1.7 0.9116 0.2133 0.2805 0.0821

Tukey c = 1.5 0.9126 0.2129 0.2808 0.0824
Mean 0.9123 0.2139 0.2808 0.0827
dynamic c (2–1.5) 0.9127 0.2120 0.2801 0.0819
dynamic c (2–1) 0.9133 0.2100 0.2780 0.0802
Table 4
Facial Beauty Prediction using ResneXt-50 Network with five loss functions (L1 , MSE, dynamic
ParamSmoothL1, dynamic Huber and dynamic Tukey losses).
Loss function PC ↑ MAE ↓ RMSE ↓ ϵ-error ↓

L1 0.9126 0.2113 0.2783 0.0810
MSE 0.9146 0.2092 0.2763 0.0802
Dyn. ParamSmoothL1 (0.7–0.3) 0.9140 0.2104 0.2777 0.0805
Dyn. Huber (0.7–0.3) 0.9141 0.2116 0.2777 0.0814
Dyn. Tukey (2–1) 0.9133 0.2100 0.2780 0.0802
Table 5
Facial Beauty Prediction using Inception-v3 Network with five loss functions (L1 , MSE, dynamic
SmoothL1, dynamic Huber and dynamic Tukey).
Loss function PC ↑ L1 ↓ RMSE ↓ ϵ-error ↓

L1 0.9103 0.2152 0.2832 0.0848
MSE 0.9112 0.2147 0.2814 0.0833
Dyn. ParamSmoothL1 (0.7–0.3) 0.9118 0.2129 0.2805 0.0836
Dyn. Huber (0.7–0.3) 0.9139 0.2125 0.2779 0.0819
Dyn. Tukey (2–1) 0.9124 0.2138 0.2794 0.0802
Table 6
Facial Beauty Prediction using the proposed two branches Network (REX-INCEP) with four loss
functions (MSE, dynamic ParamSmoothL1, dynamic Huber and dynamic Tukey losses).
Loss function PC ↑ MAE ↓ RMSE ↓ ϵ-error ↓

MSE 0.9159 0.2071 0.2739 0.0790
Dyn. ParamSmoothL1 (0.7–0.3) 0.9165 0.2065 0.2736 0.0789
Dyn. Huber (0.7–0.3) 0.9138 0.2113 0.2785 0.0818
Dyn. Tukey (2–1) 0.9149 0.2105 0.2766 0.0806
trained two branches networks with four loss functions (REX-
INCEP with MSE, dynamic ParamSmoothL1, dynamic Huber and
dynamic Tukey). The solution based on the six models is called
CNN Ensemble Regression (CNN-ER) and the fusion scheme refers
to the averaging of the predicted scores from more than one
model. For each model, we selected the final model after training
it with 40 epochs. The results are summarized in Table 7. This
table presents three different ensemble solutions. According to
the results depicted in this table, we find the mean scores of the
models with two branches perform better than the mean scores
of the models with one branch. Moreover, the mean scores of the
models with one and two branches (all six models) outperformed
the mean scores of the models with one and two branches.
We also note that the mean scores of the one branch networks
perform better than one and two branches networks (Tables 4,

5, and 6). This proves the effectiveness of our proposed CNN

8

ensemble method. It is worth noting that the individual models
were trained only on the training set with a fixed number of
epochs (40 epochs).

4.5. Experimental results using the five fold cross-validation scenario

In this section, we will use the provided five folds to perform
the cross-validation experiments. Table 8 contains the results
obtained with each fold, as well as the average over the five
folds using the networks with one branch (ResneXt-50 with MSE
loss function and Inception-v3 with dynamic Huber loss function)
and four networks with two branches (REX-INCEP with MSE,
dynamic ParamSmoothL1, dynamic Huber and dynamic Tukey
loss function). It is worth noting that the presented result for each

fold corresponds to the best result obtained by PC over the test



F. Bougourzi, F. Dornaika and A. Taleb-Ahmed Knowledge-Based Systems 242 (2022) 108246

f
a
t
b
h
d
r

S
c
t
C
o

Table 7
Facial Beauty Prediction using the proposed CNN ensemble of different trained models on 60%–40%
data split.
Fusion scheme PC ↑ MAE ↓ RMSE ↓ ϵ-error ↓

One branch (Mixture 2 models) 0.9190 0.2054 0.2705 0.0777
Two branches (Mixture 4 models) 0.9194 0.2043 0.2699 0.0771
CNN-ER (Mixture 6 models) 0.9207 0.2032 0.2683 0.0764
Table 8
Five-fold cross-validation of facial beauty prediction using networks with one
branch (ResneXt-50 with MSE loss and Inception-v3 with dynamic Huber loss)
and two branches (REX-INCEP with MSE, dynamic ParamSmoothL1, dynamic
Huber and dynamic Tukey losses).
Architecture Fold PC ↑ MAE ↓ RMSE ↓ ϵ-error ↓

Fold 1 0.9149 0.2142 0.2779 0.0799
Inception-v3 Fold 2 0.9138 0.2074 0.2791 0.0798
with dynamic Fold 3 0.9203 0.2122 0.2801 0.0800
Huber loss Fold 4 0.9226 0.2072 0.2684 0.0783
function Fold 5 0.9202 0.2056 0.2706 0.0777

Mean 0.9184 0.2093 0.2752 0.0791
Fold 1 0.9176 0.2072 0.2744 0.0765

ResneXt-50 Fold 2 0.9114 0.2163 0.2865 0.0845
with MSE loss Fold 3 0.9204 0.2106 0.2759 0.0783
function Fold 4 0.9228 0.2066 0.2686 0.0767

Fold 5 0.9204 0.2053 0.2702 0.0760
Mean 0.9185 0.2092 0.2751 0.0784
Fold 1 0.9190 0.2081 0.2722 0.0772

REX-INCEP Fold 2 0.9172 0.2068 0.2755 0.0783
with MSE loss Fold 3 0.9212 0.2085 0.2748 0.0783
function Fold 4 0.9252 0.2045 0.2654 0.0767

Fold 5 0.9213 0.2049 0.2691 0.0756
Mean 0.9208 0.2066 0.2714 0.0772
Fold 1 0.9202 0.2070 0.2718 0.0763

REX-INCEP Fold 2 0.9167 0.2056 0.2766 0.0774
with dynamic Fold 3 0.9206 0.2095 0.2763 0.0780
ParamSmoothL1 Fold 4 0.9253 0.2053 0.2634 0.0759
loss function Fold 5 0.9238 0.2011 0.2639 0.0742

Mean 0.9213 0.2057 0.2704 0.0764
Fold 1 0.9196 0.2078 0.2722 0.0767

REX-INCEP Fold 2 0.9167 0.2033 0.2742 0.0771
with dynamic Fold 3 0.9238 0.2084 0.2717 0.0775
Huber loss Fold 4 0.9282 0.1992 0.2605 0.0720
function Fold 5 0.9227 0.2041 0.2666 0.0755

Mean 0.9222 0.2046 0.2690 0.0758
Fold 1 0.9178 0.2079 0.2738 0.0766

REX-INCEP Fold 2 0.9166 0.2082 0.2782 0.0790
with dynamic Fold 3 0.9222 0.2089 0.2722 0.0773
Tukey loss Fold 4 0.9242 0.2036 0.2648 0.0755
function Fold 5 0.9205 0.2076 0.2702 0.0770

Mean 0.9203 0.2072 0.2718 0.0771

data during the training of 40 epochs. The cross-validation results
can provide a better comparison between the networks and the
loss functions. Comparing the networks, we can find that the
trained networks with two branches outperform the networks
with one branch. This is consistent with the conclusion found in
the 60%–40% split scenario.

Moreover, we can observe that ResneXt-50 with the MSE loss
unction and Inception-v3 with the dynamic Huber loss function
chieve similar results. Based on the results obtained with the
wo branch solutions, we can conclude that the dynamic Hu-
er loss function achieves the best performance. On the other
and, the dynamic loss function ParamSmoothL1 outperforms the
ynamic loss functions Tukey and MSE, which obtained similar
esults.

Table 9 shows the performances achieved by CNN ensembles.
imilar to the ensemble experiments in the previous scenario, we
onsider an ensemble of one branch networks, an ensemble of
wo branch networks, and the mixture ensemble of all networks.
omparing the results of the 8 and 9, we can make the following
bservations:
9

Table 9
Five folds cross-validation of Facial Beauty Prediction using the proposed CNN
ensemble of different trained models.
Fusion scheme Fold PC ↑ MAE ↓ RMSE ↓ ϵ-error ↓

Fold 1 0.9205 0.2065 0.2703 0.0753
Fold 2 0.9170 0.2060 0.2763 0.0788

One branch Fold 3 0.9245 0.2029 0.2691 0.0745
(2 models) Fold 4 0.9263 0.2015 0.2630 0.0747

Fold 5 0.9234 0.2010 0.2652 0.0736
Mean 0.9223 0.2036 0.2688 0.0754
Fold 1 0.9223 0.2035 0.2683 0.0743
Fold 2 0.9202 0.2018 0.2713 0.0757

Two branches Fold 3 0.9252 0.2053 0.2698 0.0751
(4 models) Fold 4 0.9289 0.1995 0.2586 0.0730

Fold 5 0.9253 0.1994 0.2622 0.0725
Mean 0.9244 0.2019 0.2660 0.0741
Fold 1 0.9232 0.2026 0.2667 0.0735
Fold 2 0.9204 0.2016 0.2710 0.0756

CNN-ER Fold 3 0.9264 0.2029 0.2675 0.0738
(Mixture Fold 4 0.9292 0.1990 0.2583 0.0727
6 models) Fold 5 0.9257 0.1984 0.2615 0.0720

Mean 0.9250 0.2009 0.2650 0.0735

Table 10
Comparison with the state-of-the-arts methods using the 60%–40% split.
Method PC ↑ MAE ↓ RMSE ↓

LR [12] 0.5948 0.4289 0.5531
GR [12] 0.6738 0.3914 0.5085
SVR [12] 0.6668 0.3898 0.5132

Alexnet [12] 0.8298 0.2938 0.3819
Resnet-18 [12] 0.8513 0.2818 0.3703
ResneXt-50 [12] 0.8777 0.2518 0.3325

CNN with SCA [19] 0.8780 0.2517 0.3320

Dynamic ParamSmoothL1* (Ours) 0.9165 0.2065 0.2736
CNN-ER (Ours) 0.9207 0.2032 0.2683

Dynamic ParamSmoothL* is our REX-INCEP network that was trained using the
dynamic ParamSmoothL1 loss function.

• From the results of the one-branch ensemble, it can be
seen that the fusion scheme outperforms the individual one-
branch networks (ResneXt-50 with MSE loss function and
Inception-v3 with dynamic Huber loss function).

• For the two-branch ensemble results, the fusion scheme
outperforms all the results obtained by the single two-
branch networks (REX-INCEP with MSE, dynamic
ParamSmoothL1, dynamic Huber and dynamic Tukey loss
functions).

• From the results of the mixture ensemble (all six models),
it is clear that the fusion scheme outperforms not only the
one- and two-branch networks, but also their fused models.

The above observations prove the effectiveness of the pro-
posed fusion scheme. This also shows the efficiency of using two
branch networks with different loss functions.

4.6. Comparison with state-of-the-art methods

In this section, we compare our proposed methods with the
state-of-the-art methods in both scenarios: 60%–40% split and
five-fold cross-validation.

Table 10 shows a comparison between our method and the
state-of-the-art methods using the 60%–40% split. The compari-
son shows that our approach (CNN-ER) outperforms the state-
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Table 11
Comparison with the State-of-the-Arts methods using the five-fold cross-validation scenario.
PC ↑ 1 2 3 4 5 Mean

Alexnet [12] 0.8667 0.8645 0.8615 0.8678 0.8566 0.8634
Resnet-18 [12] 0.8847 0.8792 0.8929 0.8932 0.9004 0.8900
ResneXt-50 [12] 0.8985 0.8932 0.9016 0.899 0.9064 0.8997
CNN with SCA [19] 0.8990 0.8939 0.9020 0.8999 0.9067 0.9003
PI-CNN [45]a – – – – – 0.8978
CNN + LDL [46]a – – – – – 0.9031
ResNet-18 based AaNet [20] – – – – – 0.9055
ResneXt-50-R3CNN [21] 0.9143 0.9066 0.9136 0.9146 0.9217 0.9142

Dynamic ParamSmoothL1* (Ours) 0.9202 0.9167 0.9206 0.9253 0.9238 0.9213
CNN-ER (Ours) 0.9232 0.9204 0.9264 0.9292 0.9257 0.9250
MAE ↓ 1 2 3 4 5 Mean

Alexnet [12] 0.2633 0.2605 0.2681 0.2609 0.2728 0.2651
Resnet-18 [12] 0.2480 0.2459 0.243 0.2383 0.2383 0.2419
ResneXt-50 [12] 0.2306 0.2285 0.226 0.2349 0.2258 0.2291
CNN with SCA [19] 0.2300 0.2284 0.2257 0.2345 0.2251 0.2287
PI-CNN [45]a – – – – – 0.2267
CNN + LDL [46]a – – – – – 0.2201
ResNet-18 based AaNet [20] – – – – – 0.2236
ResneXt-50-R3CNN [21] 0.2109 0.2152 0.2126 0.2130 0.2085 0.2120

Dynamic ParamSmoothL1* (Ours) 0.2070 0.2056 0.2095 0.2053 0.2011 0.2057
CNN-ER (Ours) 0.2026 0.2016 0.2029 0.1990 0.1984 0.2009
RMSE ↓ 1 2 3 4 5 Mean

Alexnet [12] 0.3408 0.3449 0.3538 0.3438 0.3576 0.3481
Resnet-18 [12] 0.3258 0.3286 0.3184 0.3107 0.2994 0.3166
ResneXt-50 [12] 0.3025 0.3084 0.3016 0.3044 0.2918 0.3017
CNN with SCA [19] 0.3020 0.3081 0.3013 0.3039 0.2916 0.3014
PI-CNN [45]a – – – – – 0.3016
CNN + LDL [46]a – – – – – 0.2940
ResNet-18 based AaNet [20] – – – – – 0.2954
ResneXt-50-R3CNN [21] 0.2767 0.2895 0.2837 0.2804 0.2701 0.2800

Dynamic ParamSmoothL1* (Ours) 0.2718 0.2766 0.2763 0.2634 0.2639 0.2704
CNN-ER (Ours) 0.2667 0.2710 0.2675 0.2583 0.2615 0.2650

aThe authors of [21] used ResNeXt-50 as a backbone network to re-implement the [45,46] methods on the newly created
SCUT-FBP5500 dataset.
Dynamic ParamSmoothL* is our REX-INCEP network trained with the dynamic loss function ParamSmoothL1.
of-the-art methods in the three evaluation metrics (PC, MAE
and RMSE). In addition to CNN-ER, we compare the results of
the proposed two branches network (REX-INCEP) trained with
the proposed dynamic loss function ParamSmoothL1 with the
state-of-the-art methods. This comparison shows that the pro-
posed REX-INCEP with the dynamic ParamSmoothL1 loss function
performs better than the state-of-the-art methods in the three
evaluation metrics (PC, MAE and RMSE). This proves that the
superiority of our approach over the state-of-the-art methods is
not only due to the ensemble of models, but both the proposed
two branches network and the dynamic loss functions play a
crucial role in achieving such performance.

Table 11 shows a comparison between our method and state-
of-the-art methods using the five-fold cross-validation experi-
ments and their average. Three evaluation metrics (PC, MAE and
RMSE) are used for this comparison. The comparison shows that
our approach performs better than the state-of-the-art methods,
both in terms of average performance and performance of indi-
vidual folds for all the evaluation metrics used. Similar to the
comparison for the 60%–40% split, the proposed REX-INCEP with
the dynamic loss function ParamSmoothL1 is shown to perform
better than the state-of-the-art methods in all three evaluations.

metrics (PC, MAE and RMSE). This confirms that both the
proposed two branches network and the dynamic loss functions
play a crucial role in outperforming the state-of-the-art meth-
ods. The comparisons of the two scenarios (60%–40% split and
five fold cross-validation) demonstrate the efficiency of our pro-
posed approach. This tends to confirm that both the proposed
two branches network and the dynamic loss functions played
a crucial role in outperforming the State-of-the-Art methods.
10
The comparisons of both scenarios (60%–40% split and five folds
cross-validation) prove the efficiency of our proposed approach.

5. Conclusion

In this paper, we address the evaluation of the beauty of
faces in facial images using Deep Learning. First, we propose a
two-branch architecture (REX-INCEP) based on merging the ar-
chitecture of two already trained networks. Second, we introduce
a dynamic law to control the behaviour of the robust regression
loss functions during training, making the robust losses adaptive
and dynamic. Third, we propose an ensemble regression based on
Convolutional Neural Networks (CNN-ER).

In the ensemble method, the CNNs ResneXt-50, Inception-v3
and the proposed REX-INCEP architectures are used. The latter is
a two branches CNN architecture that combines the ResneXt-50
and Inception-v3 architectures through FC layers. The main ad-
vantage of our REX-INCEP architecture is the ability to learn high-
level FBP features simultaneously with ResneXt and Inception
blocks.

In addition to using CNN architectures, several loss func-
tions are used, namely MSE and the proposed dynamic
ParamSmoothL1, dynamic Huber and dynamic Tukey. For the
dynamic loss functions (ParamSmoothL1, Huber and Tukey), a
cosine law is proposed to reduce the robust loss parameter during
training. The dynamic schemes have been shown to be very
efficient, both in terms of performance and in avoiding the grid
search for the best value, which has a high computational cost.

Our approach CNN-ER averages the predictions of six mod-
els, namely: the two trained one-branch networks (ResneXt-50
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ith MSE loss function and Inception-v3 with dynamic Huber
oss function) and four trained two-branch networks with four
oss functions (REX-INCEP with MSE, dynamic ParamSmoothL1,
ynamic Huber and dynamic Tukey). The obtained results show
he superiority of the proposed REX-INCEP over ResneXt-50 and
nception-v3 networks. Moreover, the proposed approach (CNN-
R) outperforms not only single and two branches networks but
lso their fused models. The proposed architecture REX-INCEP
nd CNN-ER outperformed many CNN baselines as well as many
ublished state-of-the-art solutions. This superior performance
as achieved in the two evaluation protocols related to the SCUT-
BP5500 dataset: 60%–40% and five cross-validations using the
hree evaluation metrics (PC, MAE and RMSE).

We have also found that using the proposed dynamic robust
oss functions generally leads to better estimates. In addition, we
ound that the best loss function may depend on the data used
nd the CNN architecture.
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