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Abstract

We study the ground state of the Gross Pitaevskii energy in a strip, with
a phase imprinting condition, motivated by recent experiments on matter
waves solitons. We prove that when the width of the strip is small, the
ground state is a one dimensional soliton. On the other hand, when the
width is large, the ground state is a solitonic vortex. We provide an explicit
expression for the limiting phase of the solitonic vortex as the size of the strip
is large: it has the same behaviour as the soliton in the infinite direction and
decays exponentially due to the geometry of the strip, instead of algebraically
as vortices in the whole space.

1. Introduction

The instability of solitons is a phenomenon which has been widely studied
both from a mathematical and a physical point of view. A soliton is a one
dimensional solitary wave propagating at constant velocity. The simplest
situation is actually the case of zero velocity. Solitons have been observed in
a large variety of nonlinear media [1, 2]. The instability has been investigated
in nonlinear optics, crystals, and more recently in ultra cold atomic vapors
and polaritons. However a full characterization of the instability of solitons
is still missing.
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1.1. Physical motivation
Ultra cold atoms can be controlled at will and therefore allow to study

collective behaviours. They are described by a wave function whose phase
plays the role of orientation in magnetization. A characteristic feature is
the observation of defects [3]. The simplest defects in cold atoms are dark
solitons which are solitary waves that maintain their shape; they correspond
to an envelope having a density dip with a π phase shift across its density
minimum. Other types of defects are vortices or vortex rings in which the
order parameter winds around a hole or a closed loop where the density
vanishes. The study of solitons [4, 5, 6], traveling waves [7, 8, 9, 10, 11]
and vortex rings [12] in the whole space has been at the center of many
mathematical works.

Matter waves dark solitons can be created in experiments by means of
various methods [13]: phase imprinting, density engineering, quantum state
engineering which is a combination of the previous two, matter wave interfer-
ence and dragging an obstacle through a condensate. Several experimental
groups attempted to study solitons by imposing a phase shift in an elon-
gated condensate for respectively bosonic atoms, rubidium [14] and sodium
[15, 16] and for fermionic atoms (lithium) [17, 18, 19]. From the first picture,
they thought they had observed solitons [15, 17]. Further investigations were
needed to fully understand the phenomena: in the case of lithium, they re-
alized it was not a soliton but thought it was a vortex ring [18], until [19]
argued that in fact it was a single straight vortex called solitonic vortex; in
sodium it was also confirmed it was not a soliton but a solitonic vortex [16].

A solitonic vortex is a vortex in a channel whose transverse size is much
smaller than its length and has the same asymptotic phase profile as a soliton
in the transverse direction. Indeed, by virtue of the transverse boundaries,
the solitonic vortex is exponentially localized in the longitudinal direction on
the length scale of the transverse dimension. This is a remarkable property
since the energy density of isolated vortices or of vortex-antivortex pairs
decays algebrically in the absence of boundaries [5, 7, 8, 20]. Moreover, in
the absence of boundaries, vortex-antivortex solutions do not exhibit any
phase difference at infinity. Mathematically, as we will see, the exponential
localisation and the phase difference between the two ends of the channel
result from the infinite and periodic structure of image vortices. In a finite
channel, because the vortex loses its long-range nature beyond the transverse
length scale, this has justified the name ”solitonic vortex” introduced in
[21, 22, 23].
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In the experiments, it may be that the solitonic vortex is due to the decay
of a soliton after what is called a snake instability. It was observed that the
soliton is stable only at sufficiently low particles number or high aspect ratio
[22]. The mode associated with snake instability is the solitonic vortex [21].
The metaphor of snake instability has been used to refer to the bending of
the solitonic wave front and the decay of the soliton into closed loops of
vortices. In a series of studies, Komineas et al [22, 24, 25, 26] analyze how
the soliton bifurcates according to the channel length. In some intermediate
cases, the soliton initially deforms to become a pair of vortex-antivortex or
a vortex ring in 3d. This structure eventually decays into a stable solitonic
vortex. The numerics reveal that the vortex-antivortex pair or vortex ring is
unstable, but it is sufficiently long lived to be observed both in the numerics
and the experiments.

From a mathematical point of view, Rousset and Tzvetkov, [27], Theorem
3.3, have proved the transverse instability of solitons in the whole space. Nev-
ertheless, nothing is known about the mode of destabilization and whether it
turns into a solitonic vortex or a pair of vortices in dimension 2, or a vortex
ring in dimension 3. Nothing has been analyzed in a strip yet.

1.2. Main result

The aim of this paper is to determine the ground state of the Gross
Pitaevskii energy when both a phase imprinting condition and a reduction of
density are imposed. In particular, we want to discriminate the cases where
the soliton can be a stable minimizer. We will restrict to static solutions,
that is for a zero velocity. In the following, we will set the problem in two
dimensions.

Let Ωd = R × (−d, d) be a strip. We will consider the width d as a
parameter. Let u(x, y) be a minimizer of

Ed(u) =

∫
Ωd

(
1

2
|∇u(x, y)|2 +

1

4
(1− |u(x, y)|2)2

)
dx dy, (1)

under the conditions

ū(x, y) = u(−x, y) and u(−x,−y) = −u(x, y). (2)

Here the bar denotes the complex conjugate. The first equation corresponds
to what is called the phase imprinting process: one half of the domain is
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exposed to a blue detuned laser beam that causes a phase shift of the order
parameter [21, 22]. The second condition corresponds to the fact the density
is depleted at a desired location [28], here the origin. In order to impose the
fact that the wave function vanishes at the origin, we have decided to impose
imparity of the wave function.

These two conditions are equivalent to

Re u(−x, y) = Re u(x, y), Im u(−x, y) = −Im u(x, y), (3)

Re u(x,−y) = −Re u(x, y), Im u(x,−y) = Im u(x, y). (4)

Because of the finite energy condition, |u| tends to 1 at infinity, and by the
parity, imparity conditions, in fact we will show that the behaviour at infinity
is

lim
x→−∞

u(x, y) = −i and lim
x→+∞

u(x, y) = i, (5)

for either u or ū.
Any ground state is a solution of

−∆u+ u(1− |u|2) = 0 (6)

with the conditions (2)-(5) and ∂u/∂n = 0 on y = ±d. There are special
solutions to this equation:

• solitons which are independent of y and are thus one dimensional solu-
tions, i tanh(x/

√
2),

• solitonic vortices which have a zero at the origin and a degree 1.

We are going to prove that these solutions characterize the ground states.

Theorem 1. There exists a minimizer u of (1) under the conditions (2). The
behaviour at infinity is given by (5) either for u or ū. If d is sufficiently small,
the minimizer is independent of y and is the soliton solution i tanh(x/

√
2).

If d is sufficiently large, any minimizer has a vortex of degree +1 or −1.
Taking the complex conjugate if necessary, we may assume the vortex has
degree +1. If ud(x, y) denotes such a minimizer in Ωd = R× (−d, d), and if
we let

vd(x, y) = ud(dx, dy), (7)

then vd, defined in Ω1, has the following behaviour:
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• the map vd converges as d→ +∞, in C1(K) for any compact subset K
of Ω̄1 \ {0}, to the map eiϕ0, where

ϕ0 = arctan
sinh(πx

2d
)

sin(πy
2d

)
. (8)

• as d→ +∞,

Ed(ud) = π log d+ γ − π log
π

4
+ o(1). (9)

where the constant γ is defined in [29] as

γ = lim
r→+∞

(E1(u0, B(0, r))− π log r) ,

where u0 is the unique radial solution of −∆u = u(1 − |u|2) in R2 of
degree +1.

Note that it is equivalent to use the width d as a parameter or to put a
coefficient 1/d2 in front of the term (1 − |u|2)2 using the change of function
(7).

The first part of the Theorem is proved using the Maximum Principle
in narrow domains which provides uniqueness. For the second part, we in-
troduce the stream function w0, which is such that ϕ0 is its imaginary part,
and the exponential of the harmonic conjugate of ϕ0 is its modulus. More
precisely, h0 = log |w0|, where

w0(z) = i tanh
(π

4
z
)

(10)

and h0 is the harmonic conjugate of ϕ0. Once the functions for the strip are
computed, the proof follows the main ideas of the analysis of vortices in the
seminal book by Bethuel, Brezis, Helein [29] and the analysis of vortex balls
by Sandier [30] and Jerrard [31].

1.3. Further questions

Let us point out that without the second condition (2), there is a mini-
mizing sequence whose energy tends to 0, namely, for large h, the functions
uh(x) = e

iπx
2h which are defined in (−h, h) and extended by i and −i outside.

Therefore, to have the existence of a minimizer, we have to impose extra
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conditions, and in particular one corresponding to a density depletion in the
experiments. We have chosen imparity of the wave functions but probably
other conditions compatible with H1 functions and density depletion could
be sought.

As d is increased, the soliton loses stability. A further question would be
to analyze the eigenfunctions of the linearized operator around the soliton so-
lution, and in particular understand whether the first direction of instability
is around a vortex/antivortex solution.

Related issues include the study of minimizers of the energy in the product
spaces Rn ×Mk, where Mk is a compact Riemannian manifold under an L2

constraint. It is proved in [32] that when the L2 norm of the solution is
sufficiently small, then the ground states coincide with the corresponding
Rn ground states, that is in our case, the soliton for a small torus. They
also prove that above a critical mass the ground states have nontrivial Mk

dependence.
The problem studied in this paper corresponds to what is known as zero

velocity. Further works could be performed by minimizing the energy with
fixed velocity or minimizing the energy with fixed momentum. The analysis
of periodic solutions in the torus has been the topic of a very nice recent paper
[11], where according to the size of the period, a mountain pass solution is
constructed. Such methods could probably be generalized here in the case of
the strip.

In the experimental papers [33] and [34], in a one dimensional channel of
polariton superfluids, the soliton breaks into arrays of vortex-antivortex. The
mathematical analysis is probably similar though the equation there includes
a forcing term and a dissipation term. The stationary one dimensional solu-
tions have been studied in [35] and the analysis of the the solitonic vortices
in this context is an interesting open question.

2. Proof of Theorem 1

2.1. Existence of a minimizer and asymptotic properties

Using the soliton a a comparison function, we find that the minimal
energy is finite and is bounded above by a constant times d. From any
minimizing sequence, we may extract a subsequence which converges weakly
in H1

loc to a limiting u which satisfies the symmetry assumptions and therefore
is a minimizer of (1) under conditions (2). It also satisfies Neumann boundary
conditions on the lines {y = ±d}.
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From the energy minimality, |u|∞ ≤ 1 in the strip and by elliptic regu-
larity, the gradient of u is uniformly bounded in the strip, and tends to 0 as
x → ±∞. This first implies that |u| → 1 as x → +∞: indeed, the gradient
bound implies that if |u(z)| < 1− η for some η > 0, then |u| < 1− η/2 on a
ball of radius rη > 0, and therefore the energy of u on such a ball is bounded
below by some cη > 0. This cannot happen for arbitrarily large z since the
energy is finite. Hence |u(x, y)| → 1 as x→ +∞.

Moreover, since the gradient tends to 0 in the infinite direction, we have
that, as x→ ±∞, ‖u(x, ·)− u(x, 0)‖L∞(−d,d) → 0. But conditions (2) imply
that u(x, 0) is purely imaginary. Since |u(x, 0)| tends to 1 as x → ±∞, it
follows that for any x such that |x| is large enough depending on η > 0, we
have that |u(x, y)− i| < η or |u(x, y) + i| < η. Therefore u(x, y) converges to
either i or −i as x → ±∞ and, using (2) again, that is u(x, y) = ū(−x, y),
the limits are opposite of one another.

Remark 1. Let us point out that because of (2) we have u(0, 0) = 0, therefore
the energy minimum is not zero. Mathematically, the imparity condition
(the second condition in (2)), can be viewed as a way to exclude an energy
minimum of zero. It is an open question to choose a space of minimization
including the first condition of (2) with limits i and −i at plus and minus
infinity, and such that u vanishes somewhere.

2.2. Uniqueness for small d

As a first step, we want to prove that when d is small, the minimizer is
purely imaginary, that is u1 = Re u ≡ 0. We have, in the strip,

−∆u1 + u1(|u|2 − 1) = 0, (11)

together with Neumann boundary conditions on the lines {y = ±d}. Because
of (3)-(4), u1(x, 0) has to be both odd and even so that we have u1(x, 0) = 0.
From the Neumann boundary conditions, we have ∂yu1(x,±d) = 0.

We define ũ1(x, y) = u1(x, y) for y ∈ (0, d) and ũ1(x, y) = u1(x, d− y) for
y ∈ [d, 2d). It follows that ũ1 is a solution of (11) on the strip R × (0, 2d)
such that ũ1 = 0 on the boundary y = 0 and y = 2d.

We know that ũ1 tends to 0 at infinity since u tends to ±i. Moreover, it
follows from the equation, as proved in [36], that |u| ≤ 1. Therefore, ũ1 is
a solution of −∆ũ1 + c(x)ũ1 = 0 with c(x) uniformly bounded. For d small
enough, the Maximum Principle in narrow domains [37, 38, 39] applies and
implies that ũ1 cannot reach a positive maximum or a negative minimum in
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R× (0, 2d): the proof consists in writing the equation satisfied by w = ũ1/g
where g = cos(αy) where α = π/(8d) is chosen such that its square is bigger
than the L∞ bound of c(x). We have

−∆w − 2
∇g
g
· ∇w + (α2 + c(x))w = 0.

Since ∂w/∂n is zero on the boundary and w tends to zero at infinity, and
satisfies an equation for which the Maximum Principle holds, w cannot reach
a positive maximum or a negative minimum and is identically zero. Therefore
ũ1 is identically zero and u is purely imaginary.

Knowing that the solution is purely imaginary, its energy on each line
{y} × R can be bounded below by that of the soliton i tanh(x/

√
2), which

minimizes the energy among purely imaginary competitors satisfying the
boundary conditions. Integrating with respect to y, we deduce that the
energy of u is bounded below by 2d times the energy of the soliton, and is
bounded above by the same quantity since u is a minimizer. It follows that
∂yu is identically zero, and that the restriction of u to any horizontal line is
a (possibly translated) soliton. Since ∂yu = 0, the translation is independent
of y, and since u(0, 0) = 0, hence u is the soliton.

2.3. Upper bound for the energy of a vortex for large d and introduction of
the solitonic vortex

We now focus on the asymptotics of minimizers of Ed for large d. We
begin by computing an upper-bound for the minimal energy, for which a
matching lower-bound will be proven below.

To prove the upper bound, we construct a test function which is an ap-
proximate solution with a vortex at the origin. A first natural test function
is u(z) = iz if |z| ≤ 1 and u(z) = iz/|z| if |z| > 1. It is not difficult to check
that this yields the correct upper-bound but only up to a O(1) term. Indeed,
the integral on the strip, outside the unit disk is, in polar coordinates,∫ d

r=1

∫ π
2

−π
2

1

r2
r dr dθ +

∫ +∞

r=d

∫ arcsin(d/r)

− arcsin(d/r)

1

r2
r dr dθ.

The inner integral is equivalent to 2d/r2 as r → +∞, hence is convergent,
but this does not provide the optimal constant.

In order to be more precise, we construct a test function with a vortex of
degree one satisfying Neumann boundary conditions. This can be obtained
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by superimposing the known solution for a vortex without boundaries with
those of image vortices. This provides a condition of no normal flow to the
boundary for the gradient of the phase. While a single straight wall requires
a single image vortex, the two parallel walls of the channel generate a doubly
infinite array of image vortices. The problem can be solved on the complex
plane by introducing the meromorphic function w having zeros (resp. poles)
at the location of vortices of degree +1 (resp. −1) [40, 41, 23]. Then the
phase is the argument of w and the harmonic conjugate of the phase is the
logarithm of its modulus. The advantage of considering the latter is that it
has the same gradient energy as the phase but is single valued.

The solution w for the strip with a vortex at z0 is given in [40] for a strip
(0, H) and is

sinh
(
π

2H
(z − z0)

)
sinh

(
π

2H
(z − z̄0)

) .
It is found using a conformal mapping between the strip and the disc. Map-
ping the interval (0, H) to (−d, d) yields for the strip Ωd with a vortex of
degree +1 at z = ia

wa(z) =
sinh

(
π
4d

(z − ia)
)

sinh
(
π
4d

(z + ia+ 2id)
) = i

sinh
(
π
4d

(z − ia)
)

cosh
(
π
4d

(z + ia)
) , (12)

so that, if a = 0,

w0(z) = i tanh
(πz

4d

)
. (13)

The function w is plotted in Figure 1, and we see that it behaves as a soliton
far away from the core. The phase S of a function −i log α+iβ

γ+iδ
is such that

tanS = βγ−αδ
αγ+βγ

so that the phase ϕa is given from (12) by

tanϕa(x, y) =
sinh(πx

2d
) cos(πa

2d
)

sin(πy
2d

)− cosh(πx
2d

) sin(πa
2d

)
. (14)

This formula yields that the phase difference between x = −∞ and x = +∞
is related to the location of the vortex and is

π − πa
d
.

So in order to have a phase difference of π (between −i and i), the vortex
has to be at the origin, that is a = 0. Then, the phase ϕ0 and its harmonic
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Figure 1: The function w0 for a vortex at the origin.

conjugate h0 are defined by

tanϕ0(x, y) =
sinh(πx

2d
)

sin(πy
4d

)
and (15)

h0(x, y) = log

∣∣∣∣tanh(
π(x+ iy)

2d
)

∣∣∣∣ =
1

2
log

∣∣∣∣cosh(πx
2d

)− cos(πy
2d

)

cosh(πx
2d

) + cos(πy
2d

)

∣∣∣∣ . (16)

The test function u is now obtained as follows : first, we let u(x, y) =
v(x/d, y/d), so that v is defined in Ω1 instead of Ωd. We let ε = 1/d and
choose ρ > 0 which will be eventually chosen small, but large compared to
ε. We have, as noted earlier,

Ed(u) = Fε(v) :=
1

2

∫
Ω1

|∇v|2 +
1

4ε2

(
1− |v|2

)2
. (17)

In Dρ = Ω1 \Bρ, we define v in agreement with the discussion above, that
is v = eiϕ0 , where ϕ0 is defined in (15), with d chosen equal to 1. We thus
have, in Dρ,

|∇v|2 = |∇ϕ0|2 = |∇h0|2.

To compute the energy of v in Dρ, we first note that the potential term
in (17) vanishes since |v| = 1 there, and then we integrate by parts as in [29]
to find that ∫

Dρ

|∇v|2 =

∫
Dρ

|∇h0|2 =

∫
∂Bρ

h0∂νh0,
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where ν is the normal to the boundary pointing toward the center of the ball,
and where we have used the fact, easily deduced from (16), that h0 = 0 on
∂Ω1. Note also that, still from (13), the derivative of h0 with respect to x
tends to 0 at infinity exponentially fast so that there are no boundary terms
at infinity.

From (13) we have, for small ρ,

w0(ρeiθ) = i
π

4
ρeiθ

(
1 +O(ρ2)

)
.

Therefore, as ρ→ 0,

h0(ρeiθ) ' log(
πρ

4
), ∂νh0(ρeiθ) ' −1

ρ
.

It follows after some calculations that, for ρ small,

1

2

∫
Dρ

|∇h0|2 = −π log(
πρ

4
) + o(1). (18)

To define v inside Bρ, we note that, since h0 is the harmonic conjugate to ϕ0

and since ∂νh0 ' −1/ρ on ∂Bρ, the phase φ0 is close to θ + c as ρ → 0, for
some constant c. We may then define v in Bρ to be the minimizer of Fε in Bρ

with Dirichlet boundary condition ei(θ+c) on the boundary, modified slightly
to match the definition of v outside Bρ. Following [29], such a minimizer will
have energy γ + π log(ρ/ε) + o(1) if ε/ρ is small and thus, adding (18) we
find.

Ed(u) = Fε(v) = π log
ρ

ε
+ γ − π log

ρπ

4
+ o(1) = π log d+ γ − π log

π

4
+ o(1),

(19)
where o(1) is small if both ρ and ε/ρ are small. Both are true if d is large
and if we choose, for instance, ρ = 1/

√
d.

2.4. Lower bound and proof of Theorem 1 completed

Let ud be a minimizer for the energy on the strip Ωd. We have Ed(ud) ≤
Ed(u), where u was constructed in the previous section and satisfies (19).
We let as above ε = 1/d and vε(x, y) = ud(dx, dy). Then Ed(ud) = Fε(vε),
so that

Fε(vε) ≤ π log
1

ε
+ γ − π log

π

4
+ o(1). (20)

We use the following covering property, which can be deduced straight-
forwardly from ([30], [31]).
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Proposition 2. Assume vε satisfies (20) and that |v| tends to 1 as x→ ±∞.
Then, for any ε < r < 1, the strip Ω1 = R× (−1, 1) may be covered by closed
disjoints disks D1, . . . , Dk of total radius r, such that |vε| > 1/2 outside the
disks and such that the following lower bound holds on each disk:

Fε(vε, Di) ≥ π|ni|
(

log
r

ε
− C

)
. (21)

Here ni(r) is the degree of the mapping vε/|vε| from the circle ∂Di to the unit
circle, or zero if Di is not contained in the strip.

Note that, since vε(0, 0) = ud(0, 0) = 0, there is at least one disk and the
origin belongs to one of the disks.

For any fixed r > 0, comparing (20) with (21), we find that∑
i

|ni| ≤
log(1/ε) + C

log(r/ε)− C
.

It follows that
∑

i |ni| ≤ 1 if ε is small enough (corresponding to d large
enough), and then that there is at most one disk with nonzero degree, and
that, if it exists, its degree is either +1 or −1. We claim that

1. A disk, call it D0, such that the degree on ∂D0 = ±1 exists.
2. D0 must be the disk containing the origin.

To prove the second claim we argue by contradiction. If 0 6∈ D0, then D0

is disjoint from D1 = {−z | z ∈ D0}. But the energy of vε on D1 is the same
as its energy on D0, from (2), therefore the total energy of vε is at least twice
that on D0, which contradicts the upper bound if ε is small enough.

To prove the first claim we argue again by contradiction. Assume all
disks have degree zero, then choose a circle of radius t centered at the origin
and not intersecting the other disks — this is possible if r < 1. Then the
degree n of vε on {|z| = t} must be zero. This is impossible because n is odd:
Indeed, denoting by φ the phase of vε and θ the polar angle on the circle,
the conditions (2) mean that, modulo 2π, we have φ(π − θ) = −φ(θ) and
φ(θ + π) = φ(θ) + π. It follows that∫ 0

−π
φ′ =

∫ π

0

φ′,

∫ π

0

φ′ = π + 2kπ,

and therefore the integral of φ′ over the interval (0, 2π) belongs to 2π+4πZ or,
equivalently, the degree n is odd. We assume below without loss of generality
that the degree is +1

12



The rest of the lower bound follows the well-known line of arguments
found in [29]. Comparing again (20) and (21), we find that for any choice
of r, the energy of vε outside a disk of radius smaller than r which contains
the origin remains bounded as ε → 0. Therefore, modulo a subsequence,
vε converges outside the origin (weakly in H1

loc(Ω1 \ {0} to be precise) to a
map v0 which must be of constant modulus 1, must be harmonic, and must
satisfy a Neumann boundary condition on ∂Ω1. These properties follow from
the energy bound satisfied by vε and the fact that it is a minimizer, hence a
critical point, of Fε. The degree condition above further implies that in fact
v0 is the canonical harmonic map in Ω1 with Neumann boundary conditions
and a single singularity of degree +1. We deduce that v0 = eiϕ0 is exactly
as above. The fact that the convergence holds in fact in C1 norm, locally in
Ω̄1 \ {0} is proved in [29], Theorem VI.1.

Then, for any fixed ρ > 0, we have

lim inf
ε→0

Fε(vε, Dρ) ≥
1

2

∫
Dρ

|∇ϕ0|2 = −π log(
πρ

4
) + oρ(1),

where oρ(1) denotes a quantity which tends to 0 when ρ→ 0.
On the other hand, since vε converges to eiϕ0 on ∂Bρ, its energy in Bρ

is bounded below by that of the minimizer of Fε on Bρ with boundary data
eiϕ0 , which is equal to that of the minimizer with boundary condition eiθ, up
to a oρ(1) error. Thus

lim inf
ε→0

Fε(vε, Bρ) ≥ γ + π log
ρ

ε
+ oρ(1).

Adding the two lower bounds we find

Fε(vε) ≥ π log
1

ε
+ γ − π log(

π

4
),

which matches (20) as ε→ 0 and thus concludes the proof of Theorem 1.

3. Computation of the renormalized energy of a vortex-antivortex
pair

We have seen that for d small, the ground state is a soliton, and for
d large, a solitonic vortex. In addition to the minimizers described above,
and as we mentioned in introduction, experimental evidence and numerical
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simulations indicate that in the case of intermediate d, the soliton solution
destabilizes into a vortex-antivortex pair. It is not clear how to prove the
existence of such solutions, or wether they are the solution of some variational
problem. However we are going to provide some computations for a vortex-
antivortex solution. A rigorous proof might follow the so-called “gluing”
approach initiated in [42] for Ginzburg-Landau vortices or from the Moutain
Pass solutions of [10].

Proposition 3. When d is large, there is a test function with a vortex at
(0, d/2) and an anti-vortex at (0,−d/2) whose energy is asymptotically

2π log d− 2π log(
π

2
) + 2π log(sin

πa

d
) + 2γ + o(1). (22)

We compute the energy of an approximate solution ua in Ωd = R×(−d, d),
having a vortex located at p+ = (0, a) and an antivortex at p− = (0,−a).
The assumption is that d is large compared to the size of the vortex core, and
that the distance between vortices as well as their distance to the boundary
is also large with respect to the size of the core. Denoting by ρ the core size,
this means that

ρ� a and ρ� d− a. (23)

We approximate ua outside B(p+, ρ)∪B(p−, ρ) by a map of modulus one,
i.e. we set ua = eiϕa there, with ϕa denoting the phase, defined only modulo
2π. Then the energy density for ua reduces to |∇ϕa|2 and therefore, since we
are looking for an energy minimizing solution with fixed vortices, we assume
ϕa is harmonic. Under the assumption (23), the energy inside the core may
be assumed to be independent of the precise vortex location and is for two
vortices

2γ + 2π log(ρ) + o(1). (24)

Therefore we will now consider the energy outside the core as a function of
a.

The harmonic conjugate function to ϕa, call it ha, is single-valued. Since
ϕa satisfies a Neumann condition on ∂Ωd, the function ha satisfies a Dirichlet
condition. In principle ha could take two different values on the top and
bottom boundary, but this would give an infinite energy. Therefore the value
is the same and ha solves the following equation:{

∆ha = 2π(δp+ − δp−) in Ωd

ha = 0 on ∂Ωd

(25)
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Figure 2: The function W for a vortex/antivortex pair.

Figure 3: The gradient of the phase for a vortex, antivortex pair.
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Note that the exact equation inside the vortex cores is unimportant for this
calculation, since we wish to compute the energy away from the cores. This
is why we introduce δ-functions.

There is an explicit formula for ha that corresponds to single vortex in
a double interval. We can in fact deduce it from (12): the meromorphic
function corresponding to a vortex of degree +1 at ia and a vortex of degree
−1 at −ia is wa/w−a, hence ha(x, y) = log |W (x+ iy)|, where

W (x+ iy) =
sinh

(
π
2d
x
)

cos
(
π
2d

(y − a)
)

+ i cosh
(
π
2d
x
)

sin
(
π
2d

(y − a)
)

sinh
(
π
2d
x
)

cos
(
π
2d

(y + a)
)

+ i cosh
(
π
2d
x
)

sin
(
π
2d

(y + a)
) ,

which may also be written as

W (z) =
sinh

(
π
2d

(z − ia)
)

sinh
(
π
2d

(z + ia)
) . (26)

The function W is plotted in Figure 2. Let us point out that the function W
is the same as the one for a single vortex in a with 4d replaced by 2d, which
is consistent with the image vortices. The gradient of the phase is plotted in
Figure 3.

To compute the energy outside the core we integrate by parts as in [29]
to find, writing

Dρ = Ωd \ (B(p+, ρ) ∪B(p−, ρ)) ,

that ∫
Dρ

|∇ha|2 =

∫
∂B(p+,ρ)

ha∂νha +

∫
∂B(p−,ρ)

ha∂νha,

where ν is the normal to the boundary point toward the center of the ball.
Note that ha tends to 0 at infinity and its derivative with respect to x tends
to 0, so that there are no terms at infinity. From (26) we have, for small r,

W (ia+ reiθ) = i
π

2d
reiθ

(
sin

πa

d

)−1

+O(r2),

W (−ia+ reiθ)−1 = −i π
2d
reiθ

(
sin

πa

d

)−1

+O(r2).

Therefore,

ha(ia+ reiθ) = log(
πρ

2d
)− log(sin

πa

d
)
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and on ∂B(p+, ρ), ∂νha/∂ν = 1/ρ. It follows after some calculations that,
for ρ small,

1

2

∫
Dρ

|∇ha|2 = −2π log(
πρ

2d
) + 2π log(sin

πa

d
) + o(1). (27)

Let us point out that in the small ρ approximation, this energy has a max-
imum for a = d/2, but on the other hand if we want to have the same
structure as the soliton, that the limits are ±i at ±∞, the only value of a
is a = d/2. Indeed the formula for the phase is the same as (14) with d
replaced by d/2 and a replaced by d/2 − a. Note that in the whole space,
the vortex anti-vortex solution does not have a phase difference between two
infinite directions.

We recollect (24) and (27) to find (22).
We see that when d is large, (22) provides a higher energy than (9), but it

may be that for intermediate d, the vortex anti-vortex solution is the ground
state.

Acknowledgements: The authors would like to thank Frédéric Chevy for
discussions on the physics of solitons and solitonic vortices. This project was
supported by the grant CNRS-Prime TraDisQ1D.

References

[1] T. Dauxois, M. Peyrard, Physics of solitons, Cambridge University
Press, 2006.

[2] A. C. Newell, Solitons in mathematics and physics, SIAM, 1985.

[3] F. Chevy, Solitons with a twist, Physics 7 (2014) 82.

[4] P. Gravejat, D. Smets, Asymptotic stability of the black soliton for the
Gross–Pitaevskii equation, Proceedings of the London Mathematical
Society 111 (2015) 305–353.

[5] F. Bethuel, P. Gravejat, D. Smets, Asymptotic stability in the energy
space for dark solitons of the Gross-Pitaevskii equation, Ann. Sci. Éc.
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