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Abstract — A number of auditory models have been developed using diverging approaches, either physiological
or perceptual, but they share comparable stages of signal processing, as they are inspired by the same
constitutive parts of the auditory system. We compare eight monaural models that are openly accessible in
the Auditory Modelling Toolbox. We discuss the considerations required to make the model outputs compara-
ble to each other, as well as the results for the following model processing stages or their equivalents: Outer and
middle ear, cochlear filter bank, inner hair cell, auditory nerve synapse, cochlear nucleus, and inferior colliculus.
The discussion includes a list of recommendations for future applications of auditory models.

1 Introduction

Computational auditory models reflect our fundamental
knowledge about hearing processes and have been accumu-
lated during decades of research (e.g., [1]). Models are used
to derive conclusions, reproduce findings, and develop
future applications. Usually, models are built in stages that
reflect basic parts of the auditory system, such as cochlear
filtering, mechanoneural interface, and neural processing,
by applying signal-processing methods such as bandpass
filtering or envelope processing [2]. Models of monaural pro-
cessing often form a basis for binaural models (e.g., [3]) and
more complex models of auditory-based multimodal cogni-
tion (e.g., [4]). For this reason, combined with the increas-
ing popularity of reproducible research [5], it is not
surprising that there is an increasing number of auditory
models available as software packages (e.g., [6, 7]).

However, models must be used with caution because they
approximate auditory processes and are designed and evalu-
ated under a specific configuration for a specific set of input
sounds. While the evaluation conditions are selected to test
the main properties of the simulated stages, models may
provide different predictions when processing unseen sounds.
Combined with the wide and low-threshold availability of

*Corresponding author: ale.a.osses@gmail.com

model implementations, there is a chance of applying a
model outside its specific signal or parameter range. Thus,
studies comparing models’ properties and configurations
are important to model users. For example, Saremi et al.
[12] compared seven models of cochlear filtering with respect
to various parameters describing the nonlinear filtering pro-
cess of an active cochlea, and Lopez-Poveda [13] compared
eight models of the auditory periphery based on the repro-
duction of auditory-nerve properties. Other related studies
focus on a specific application (e.g., [10, 11, 14-17]) or pro-
vide an introduction to modelling frameworks [18, 19].

In the current study, we compare various monaural
auditory models that approximate subcortical neural pro-
cessing. For this comparison, we use model configurations
that reduce the heterogeneity across model outputs, indi-
cating advantages and disadvantages of these configuration
choices. These configurations are evaluated using the same
set of sound stimuli across models. The selected set of stim-
uli illustrates critical model properties that can be used as a
guideline for the choice of a specific model. These properties
include fast and slow temporal aspects, i.e., temporal fine
structure and temporal envelope, that are evaluated for a
wide range of presentation levels.

We selected a number of auditory models that met two
main criteria. First, the selected models describe the
auditory path beginning with the acoustic input up to
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which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
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Figure 1. Model families used in this study. The families are defined by the level of detail in simulating the cochlear processing and
are sorted by their complexity from left to right. a) Biophysical models using a nonlinear transmission line that contains resonating
stages coupled by the cochlear fluid; b) Phenomenological models using nonlinear filters dynamically controlled by an outer-hair-cell
(OHC) model; ¢) Functional effective models using linear filters, optionally combined with static nonlinear filters.

subcortical neural stages, in the cochlear nucleus (brain-
stem) and the inferior colliculus (midbrain). Consideration
of these stages extends previous comparisons of auditory
periphery models [12, 13]. Second, the model implementa-
tions are publicly available and validated to simulate psy-
choacoustic performance and/or physiological properties.
We use the implementations available in the Auditory
Modelling Toolbox (AMT) [8, 9, 20].

Based on our inclusion criteria, some models are
excluded from the comparison, e.g., models that have only
been evaluated at the level of cochlear filtering, such as
models based on Hopf bifurcation [21] and the model of
asymmetric resonators with fast-acting compression [22].
Other cochlear models, such as the Gammatone filter bank
[23], the dual-resonance nonlinear model [24], the chirp filter
bank [25] and the transmission-line model from [26], are
included as modules in the selected models. We further
excluded models whose structure did not contain one or
more of the relevant processing stages that we evaluated
in this study (Stages 3-6 in Fig. 2). Two models that
entered this category are the power spectrum models,
EPSM [27] (no stages 3-5) and GPSM [10, 11] (no stage
5). Lastly, we did not include models focusing on specific
psychoacoustic metrics [28-30], despite the fact that such
models are often based on comparable auditory stages as
those described in this study.

For the sake of simplicity, our analyses are focused on
the comparison across models rather than on a comparison
with experimental data. Nevertheless, we provide experi-
mental references to the simulations that are illustrated
throughout this paper. Additionally, to encourage repro-
ducible research in auditory modelling, all our paper figures
can be retrieved using AMT 1.1, including (raw) waveform
representations of intermediate model outputs.

The paper is structured as follows: In Section 2 we pro-
vide a brief description of the processing stages in the
selected auditory models. Their specific configurations are
described in Section 3. The model comparison is presented
in Section 4 and contains a description of the set of test
stimuli as well as a detailed numerical description of the
simulation results. Section 5 starts with a list of applications
of the evaluated models, including some general considera-
tions for the application of auditory models in further mod-
elling work. Note that although the detailed analysis in

Section 4 is relevant for model users who are interested in
a transparent and accurate description of the illustrated
model outputs, readers who are only interested in a bigger
picture, as it is covered elsewhere (e.g., [1, 2, 13]), may wish
to go directly to Sections 5 and 6.

2 Models

We define three model families, classified by their objec-
tives [40], which translate into three different levels of detail
in simulating the cochlear processing, as schematised in
Figure 1. The selected models are listed in Table 1 and
are labelled throughout this paper by the last name of the
first author and the year of the corresponding publication.
This naming system directly reflects the corresponding
model functions implemented in AMT 1.1 [8].

We define the family of biophysical models (Fig. 1a) that
use a transmission line consisting of many resonant stages
coupled by the cochlear fluid. Biophysical models aim at
exploring how the properties of the system emerge from
biological-level mechanisms, needing a fine-grained descrip-
tion at this level. The biophysical models are represented
by verhulst2015 [34] and its extended version,
verhulst2018 [35] (model version 1.2 [41, 42]). We
further define phenomenological models which primarily
predict physiological properties of the system, using a more
abstract level of detail than the biophysical models. The
phenomenological models considered here rely on dynami-
cally adapted bandpass-filtering stages combined with
nonlinear mappings (Fig. 1b) and are represented by
zilany2014 [32] and its extended version bruce2018
[36], both combined with the same-frequency inhibition-
excitation (SFIE) stages for subcortical processing [43]. Fur-
ther approximation is given by functional-effective models
[44], which target the simulation of behavioural (percep-
tual) performance rather than the direct simulation of
neural representations. These models usually approximate
the cochlear processing by using static bandpass filtering
with an optional nonlinear mapping (Fig. 1c). The linear
effective models are represented by daul997 [31] and
osses2021 [39] and the nonlinear effective models are rep-
resented by king2019 [37] and relanoiborra2019
[38]. Given that for each model a similar level of approxima-
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Table 1. List of selected models. The model labels used in this
study correspond with the model functions in AMT 1.1.

Label Reference
daul99? Dau et al. (1997) [31]
zilany2014 Zilany et al. (2014) [32] and
Carney et al. (2015) [33]
verhulst2015 Verhulst et al. (2015) [34]
verhulst2018 Verhulst et al. (2018) [35]
bruce2018 Bruce et al. (2018) [36] and
Carney et al. (2015) [33]
king2019 King et al. (2019) [37]
relanoiborra2019 Relafio-Iborra et al. (2019) [38]
osses2021 Osses and Kohlrausch (2021) [39]

tion has been generally used in the design of subsequent
model stages, we use the defined categories to reflect the
nature of the entire model. The defined categories are not
meant to represent a hard boundary for model classifica-
tion. Hence, we do not discard the existence of other more-
or less-detailed models than the selected biophysical and
effective models, respectively.

The selected monaural models share common stages of
signal processing, as indicated in the schematic diagrams
of Figure 2, with some stages even using the same (digital)
implementation. Each model stage mimics, with greater or
lesser detail, underlying hearing processes along the ascend-
ing auditory pathway. The thick vertical lines in Figure 2
indicate the intermediate model outputs which are the basis
for our evaluation. Note that these stages are, conceptually
speaking, independent of each other. However, because of
nonlinear interactions between them, the processing
performed by these stages is not commutative and thus
requires a step-by-step approach.

2.1 Outer ear

The listener’s head, torso, and pinna filter incoming
sounds. The ear-canal resonance further emphasises fre-
quencies around 3000 Hz [45]. These effects can be
accounted for by filtering the sound with a head-related
transfer function (HRTF) (e.g., [46]) or by applying a head-
phone-to-tympanic-membrane transfer function, as used in
relanoiborra2019 and osses2021. The other six
selected models that do not include an outer-ear filter,
implicitly assume that either the outer ear does not intro-
duce a significant effect in the subsequent sound processing
chain, or that the sounds are presented near the tympanic
membrane, as is the case for a sound presentation using
in-ear earphones.

2.2 Middle ear

Six of the eight evaluated models include a stage of
middle-ear filtering. The transfer functions of the middle-
ear filters used in these models are shown in Figure 3.
The transfer functions in verhulst2015 and
verhulst2018 approximate the middle-ear forward pres-
sure gain (“M1” in [47]). The humanised zilany2014

and bruce2018 models use a linear middle-ear filter
[48, 49] that approximates the forward-pressure measure-
ments from [50, 51]. The middle-ear filters in
relanoiborra2019 and osses2021 are those designed
to represent stapes velocity near the oval window of the
cochlea [24, 52]. These models use the same filter implemen-
tation, but the filter in osses2021 includes a gain factor
to provide a 0-dB amplitude in the frequency range of the
passband and a fixed group-delay compensation.

Middle-ear filtering not only introduces a bandpass
characteristic to the incoming signal (Fig. 3), but also
affects the operating range of cochlear compression in
models relying on nonlinear cochlear processing, i.e.,
verhulst2015, verhulst2018, zilany2014,
brucel018, and relanoiborral019. The passband
gains of the middle-ear filters are indicated in Table 2 and
range between —66.9 dB (relanoiborra2019) and
+24 dB (verhulst2015). In nonlinear models, lower
and higher passband gains vary the actual input level to
the filter bank, shifting the onset of cochlear compression
to higher and lower knee points, respectively.

2.3 Cochlear filtering

A cochlear filter bank performs a spectral analysis of
incoming signals to simulate the mechanical oscillations of
the basilar membrane (BM) and organ of Corti at different
points along the cochlea. The BM and organ of Corti are
thought to have multiple modes of vibration which could
drive the transduction currents of the IHCs depending on
their amplitudes. The cochlear filtering stages in the
evaluated models all aim to describe the filtering properties
of the main mode(s) of vibration that explain the frequency-
tuning curves of AN fibres. Some of the models include
further components aimed at capturing the filtering beha-
viour of additional modes of BM and/or organ of Corti
vibration to better explain the level-dependent nonlinear
filtering of the cochlea. All the included cochlear filtering
stages produce a set of N time-domain signals, for N simu-
lated characteristic frequencies (CFs). Each cochlear section
is assumed to either have relatively sharp frequency tuning
(Eq. (1), [53]) or broader tuning (Eq. (2), [54]). For CFs
expressed in Hz:

Qrrs = 12.7 - (CF /1000)"?, (1)
Qurs = CF /[24.7 - (4.37- CF /1000 4+ 1)].  (2)

The models verhulst2015 and verhulst2018 use a
transmission-line model fitted to otoacoustic estimates of
human cochlear filtering [26], whose outputs represent
BM velocity [34, 35], which provides the input to a model
stage that maps BM velocity to IHC stereociliar deflection.
In zilany2014 and bruce2018, the filtering is based
on a chirp filter bank [25, 55] tuned to a human cochlea
[48, 49, 56|, that contains two parallel processing paths of
static and outer-hair-cell (OHC) controlled filters (C2 and
C1 in [32]), representing BM and organ of Corti motion
that drive two separate IHC transduction functions
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Figure 2. Block diagrams of the selected auditory models. Vertical lines: Intermediate model outputs as the basis for the evaluation
in the corresponding sections. Blue: Type of hearing impairment that can be accounted for in the corresponding stage (see a brief

overview in Sect. 5.1).
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Figure 3. Amplitude spectra of the four middle-ear filters
used in six of the evaluated models. The lines were shifted
vertically to display their individual maximum at 0 dB. For
relanoiborra2019 and osses2021, the grey dashed line
shows the combined response of the outer- and middle-ear filters.
Literature: Figure 1A from [47] and Figure 3 from [51].

[65, 57]. The cochlear filters in these models are assumed to
be tuned according to equation (1)."

In daul997 and osses2021, the linear Gammatone
filter bank from [23] is used. King2019 uses the Gamma-
tone filter bank from [23] followed by a compressive stage
acting above a given knee point. In relanoiborra2019,
the cochlear processing is simulated by the dual-resonance

! The models verhulst2015 and verhulst2018 use an
updated version of equation (1): Qppg = 11.46 - (CF /1000)**
[34, 35]. This equation produces sharp tuning curves but with
slightly lower Q-factors compared to those given by equation (1),
with values between 6.8 (CF = 125 Hz) and 19.3
(CF = 8000 Hz).

nonlinear (DRNL) filter bank [24]. The cochlear filters
of these models are assumed to be tuned according to
equation (2).

2.4 Inner hair cell

The inner hair cells (IHCs) transform the mechanical
BM and organ of Corti oscillations into receptor potentials,
subsequently initiating neuronal discharges in the auditory
nerve (AN) [58]. In the most simple approach, the THC
processing can be simulated as an envelope extractor that
removes phase information for high stimulus frequencies,
implemented as a half-wave rectification followed by a
lowpass (LP) filter. This approach is used in daul997,
king2019, relanoiborra2019, and osses2021, in
which the LP filters have —3-dB cut-off frequencies
(foutoft) between 1000 and 2000 Hz. In zilany2014,
bruce2018, and verhulst2015, a nonlinear
transformation is applied to the output of the cochlear filter
bank, followed by a cascade of LP filters with f. ¢ of
3000 Hz (zilany2014 and bruce2018) and 1000 Hz
(verhulst2015). The resulting fosorr 0of each model
ranges between 642 Hz (verhulst2015) and 1000 Hz
(daul997, relanoiborrag2019, king2019), as indi-
cated in Table 2. In verhul st2018, a more sophisticated
THC model is used [59], that is implemented as a three-
channel non-spiking Hodgkin—Huxley type model, with
each of the channels representing mechanoelectrical and
(fast and slow) potassium-gated processing [35, 59].



Table 2. Model configurations and numeric results. Middle ear: Details of frequency response of the middle-ear filters. Cochlear filter bank: 40 dB and 100 dB refer to filter
characteristics between 160 and 8000 Hz in response to white noises of 40 and 100 dB SPL, respectively. IHC: Parameters and frequency response of the LP filter structures.
Subcortical processing: Theoretical and estimated BMF of the modulation filter with the closest BMF to 100 Hz and peak-to-peak amplitude of the simulated IC outputs in
response to 70-dB-peSPL clicks of positive (A) and negative (—A) (see Sect. 4.4 for more details). Performance: Time required to process a 1-s long stimulus using each of the
selected auditory models, between Stages 1 and 6 (Fig. 2). All f...o in this table were measured at the —3 dB points of the amplitude spectrum.

Stage Model
Parameter daul997 zilany2014 verhulst2015 verhulst2018 bruce2018 king2019 relanoiborra2019 osses2021
Middle ear
Passband gain in Fig. 3 (dB) - —6.0 24.0 18.0 —6.0 - —66.9 0.00
Lower fouofr (Hz) - 577.6 601.0 601.1 577.6 - 474.8 474.8
Higher fouor (Hz) - 6061.9 2995.3 3993.1 6061.9 - 1230.2 1230.2
Cochlear filter bank
Reference gain in Figs. 4-5 (dB) -0.6 —44.1 —77.9 —101.9 —44.1 —43.9 26.9 -1.9
40 dB: Number of filters 34 51 59 52 51 34 36 34
40 dB: Average filter bandwidth 0.903 0.588 0.505 0.579 0.588 0.904 0.848 0.905
(ERB)
100 dB: Number of filters 34 20 12 15 20 33 27 34
100 dB: Average filter bandwidth 0.903 1.57 3.046 2.299 1.57 0.925 1.147 0.905
(ERB)
IHC
Number of filter sections 1 7 1 - 7 1 1 5
Order of each filter section 1 1 2 - 1 1 2 1
Jeut-ott Of each filter section (Hz) 1000 3000 1000 - 3000 1000 1000 2000
Jeut-otr Of the total filter structure 1000 966 642 - 966 1000 1000 771
()
Subcortical processing
Theoretical BMF (Hz) 77.2 85.4 82.4 82.4 85.4 94.0 77.2 77.2
Estimated BMF from Fig. 14a (Hz) 70 35 45 60 45 65 70 70
Unit of the amplitude MU spikes/s Y% wv spikes/s a.u. MU MU
Click of amplitude A 407.3 116.5 0.245 0.401 117.6 1.64 -107* 423.1 155.9
Click of amplitude —A 437.4 115.8 0.237 0.407 117.3 1.67-107* 408.9 157.3
Performance
Total time (s) 0.80 86.6 122.9 319.5 163.1 1.86 7.70 0.622
Number of cochlear channels 31 66 401 401 66 31 60 31

Time per channel (s) 0.026 1.31 0.306 0.797 2.47 0.060 0.128 0.020
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2.5 Auditory nerve

The transduction from IHC receptor potentials into pat-
terns of neural activity can be derived from the interaction
between the IHC and AN. Several AN synapse models have
been inspired by the three-store diffusion model [58], assum-
ing that the release of synaptic material is managed in three
storage compartments. For steady-sound inputs, this model
predicts a rapid neural firing shortly after the sound onset
with a decreasing rate towards a plateau discharge rate, a
phenomenon called adaptation (e.g., [60]).

The AN synapse models in verhulst2015,
verhulst2018, and zilany2014 are based on [58],
but zilany2014 further incorporates a power-law adap-
tation following the diffusion model from [32]. The synapse
model in bruce2018 uses a diffusion model based on [61]
to: (1) have limited release sites, and (2) come after the
power-law adaptation instead of before it [36]. The outputs
of these models simulate the firing of neurons having a
specific spontaneous rate of high-, medium-, and/or low-
spontaneous rates.

The effective models, on the other hand, rely on a more
coarse AN simulation, expressed in arbitrary units (a.u.). In
king2019, adaptation is simulated by applying a highpass
filter with a cut-off frequency of 3 Hz [37]. In daul997,
relanoiborra2019, and osses2021, adaptation is
simulated by so-called adaptation loops [44] that introduce
a nearly logarithmic compression to stationary input signals
and a linear transformation for fast signal fluctuations
(Appendix B in [39]). The arbitrary units of these trans-
formed outputs are named model units (MUs).

2.6 Subcortical neural processing

AN firing patterns propagate to higher stages along the
auditory pathway, first through the auditory brainstem,
then towards more cortical regions [62]. On its way, AN
spiking is mapped onto fluctuation patterns by neurons
that are sensitive to the amplitude of low-frequency fluctu-
ations [63]. This fluctuation sensitivity has been approxi-
mated using various approaches. Our analyses focus on
model approximations of the modulation processing circuits
of the ventral cochlear nucleus (CN) and inferior colliculus
(IC) [43], as well as on different modulation-filter-bank vari-
ants [27, 31]. As a result, we exclude the analysis of other
subcortical structures such as those that play a particular
role in the binaural interaction between ears (e.g., the
dorsal cochlear nucleus and superior olive) [62, 64].

The modulation processing in the ventral CN and IC
can be simulated using the same-frequency inhibition-
excitation (SFIE) model, resulting in a widely tuned modu-
lation filter (Q-factor = 1) with a best-modulation fre-
quency (BMF) depending on the parameters of the model
[33, 43]. The SFIE model has already been used in combina-
tion with the biophysical and phenomenological models
described here. For example, zilany2014 has been com-
bined with the SFIE model using between one and three
modulation filters (e.g., [65]). Or, verhulst2015 and
verhulst2018 have used the SFIE model with one

modulation filter centred at a BMF of 82.4 Hz (see
Tab. 2) [35, 41]. Further, bruce2018 can be combined
with the SFIE model in the UR EAR 2020b toolbox [66].
Note that zilany2014, verhulst2015, and
verhulst2018 have used the output of their mean firing
rate generator—an output that can be conceptualised as
peri-stimulus time histograms (PSTHs) [67]—as an input
to the SFIE model. In bruce2018, because of the stochas-
tic processes in its spike generator, repeated processing of
the same stimulus is recommended to obtain a faithful
PSTH that can appropriately account for power-law adap-
tation properties (see Sect. 3 in [36]).

The effective models, on the other hand, approximate
the subcortical neural processing based on the modula-
tion-filter-bank  concept [27, 31]. In daul997,
king2019, relanoiborral019, and osses2021,
linear modulation filter banks are used, covering a range
of BMFs up to 1000 Hz. In daul997, twelve modulation
filters with a Q-factor of 2 and overlapped at their —3 dB
points are used. The same modulation filters are used in
relanoiborra2019 and osses2021, but an additional
150-Hz LP filter is applied [27, 68] and the number of filters
is limited so that the highest BMF is less than a quarter of
the corresponding CF [69]. In king2019, the filter bank is
used with a wider tuning (Q = 1, as suggested in [27, 70]),
using ten 50%-overlapped filters having a maximum BMF
of 120 Hz [37].

3 Model configuration

We evaluated the intermediate model outputs that are
indicated by thick vertical black lines in Figure 2. The eval-
uation points are located after the cochlear filter bank
(Stage 3), the THC processing stage (Stage 4), the AN
synapse stage or equivalent (Stage 5), and after the IC pro-
cessing stage or equivalent (Stage 6). Starting with the
default parameters of each model, we introduced small
adjustments to obtain the most comparable model outputs.
All comparisons can be reproduced with the function
exp_osses2022 from AMT 1.1 [8].

3.1 Level scaling

The same set of sound stimuli was used as input to all
models. The waveform amplitudes were assumed to repre-
sent sound pressure expressed in Pascals (Pa). The models
zilany2014, verhulst2015, verhulst2018,
bruce2018, and relanoiborral019 use this level
convention and did not require further level scaling. The
models daul997, king2019, and osses2021 interpret
sound pressures between —1 and 1 Pa as amplitudes in the
range £0.5, thus a factor of 0.5 (attenuation by 6 dB)
was applied to the generated stimuli to meet the level
convention of these models. For these latter models, which
include mostly level-independent stages, such calibration is
relevant because the adaptation loops (used in daul997,
osses2021, also extensible to relanoiborra2019)
include level-dependent scaling (Egs. (B1)-(B3) in [39]).
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In king2019, a calibrated knee point (default of 30 dB) is
used in its cochlear compression stage (Stage 3). All signal
levels are reported as root-mean-square (rms) values refer-
enced to 20 pPa, in dB sound pressure level (dB SPL).

3.2 Cochlear filtering

The phenomenological and effective models can be set
to simulate responses at any CF. However, because of the
nature of the transmission-line structure, the selected bio-
physical models have a discrete tonotopy that translates
into a discrete set of available CF's.

The models verhulst2015 and verhulst2018
were set to 401 cochlear sections spaced at Az =
0.068 mm with tonotopic distances z, ranging between
= 3.74 mm and 249, = 30.9 mm, that are related to
CF's between CF; = 12010 Hz and CF,y, = 113 Hz, accord-
ing to the base-to-apex mapping [71],

CF,, :AO . (10—a~xn/1()0()) —A4- k, (3)

where z, (in mm) can be obtained as z; + Az - (n — 1),
and A = 165.4188 Hz, ¢ = 61.765 1/m, k = 0.85, and
Ay = 20682 Hz. Note that when reporting results, we indi-
cate the cochlear section number n and its corresponding
CF,.

The cochlear-filtering parameters of zilany2014 and
bruce2018 were those adapted to a human cochlea [48,
49]. Moreover, in order to analyse separately the effects of
cochlear filtering and IHC processing in zilany2014,
the Cl1- and C2-path outputs from the chirp filter bank
were added and analysed before the IHC nonlinear mapping
was applied. This analysis follows a similar rationale as
analysing the main output of the DRNL filter bank in
relanoiborra2019 (see Fig. 3a from [24]).

Finally, in king2019, we used a compression factor of
0.3 for all simulated CFs, which is different from the one-
channel (on-CF) compression used in [37, 72].

3.3 Inner hair cell and auditory nerve

Default parameters were used for the IHC and AN
stages of the evaluated effective models. However, the
biophysical and phenomenological models require the choice
of parameters to simulate a population of AN fibres. For
each CF we simulated 20 fibres, having either high-
(HSR), medium- (MSR), or low-spontaneous rates
(LSR), distributed in a 0.6-0.2-0.2 ratio [73, 74], resulting
in a 12-4-4 configuration (HSR-MSR-LSR). Note that
for verhulst2015 and verhulst2018, this deviates
from the standard 13-3-3 configuration [34, 35]. For
verhulst2015 and verhulst2018, the spontaneous
rates of each fibre type were 68.5, 10, and 1 spikes/s for
HSR, MSR, and LSR, respectively, as used in human-tuned
simulations [35]. For zilany2014, the spontaneous rates
of each fibre type were 100, 4, and 0.1 spikes/s and for
bruce2018 were 70, 4, and 0.1 spikes/s for HSR, MSR,
and LSR, respectively. We further disabled the random
fractional noise generators in zilany2014 and

bruce2018 [75], and the random spontaneous rates in
bruce2018 (“std” from Tab. I in [36] was set to zero).
With this configuration, the mean-rate synapse outputs of
verhulst2015, verhulst2018, zilany2014, and
bruce2018 are deterministic. For this reason, to obtain
population responses, we simulated the AN processing of
each type of neuron only once and then weighted them
by factors of 0.6, 0.2, and 0.2 for HSR, MSR, and LSR
fibres, respectively. In contrast, the PSTH outputs that
are reported for zilany2014 and bruce2018 are not
deterministic, requiring the simulation of each AN fibre
for each CF. Therefore, PSTH population responses were
obtained by counting the average number of spikes in time
windows of 0.5 ms across 100 repetitions of the correspond-
ing stimuli.

3.4 Subcortical neural processing

The default configuration of the model stages of subcor-
tical processing (Stage 6, Fig. 2) differs in the number of
modulation filters (from 1 to 12) and in their tuning across
models. In our study, we use only one modulation filter tar-
geting a BMF of approximately 80 Hz (see “Theoretical
BME” in Tab. 2) using a Q-factor of approximately 1 for
zilany2014, verhulst2015b, verhulst2018,
bruce2018, and king2019, and a Q-factor of 2 for
daul997, relanoiborral2019, and osses2021.

For the biophysical and phenomenological models, we
used the SFIE model [33, 43] using two different configura-
tions. The SFIE model [43] integrated in verhulst2015
and verhulst2018 has CN parameters with excitatory
and inhibitory time constants of 7., = 0.5 ms and
Tinn = 2 ms, a delay D = 1 ms, and a strength of inhibition
of S= 0.6. The IC stage uses Te. = 0.5 ms, 73, = 2 ms [35],
D = 2 ms, and S = 1.5 [43], achieving a BMF of 82.4 Hz.

For zilany2014 and bruce2018, the SFIE model is
a separate stage [33], implemented as carney2015 in
AMT 1.1, where either the mean-rate (zilany2014) or
the PSTH outputs (bruce2018) are used as inputs. In
our analysis, we only used the output of the band-enhanced
IC cell, which corresponds to the SFIE model from [43]. The
CN parameters were identical to those for the biophysical
models. The IC parameters were 7T, = 1.11 ms,
Tinn = 1.67 ms, D = 1.1 ms, and S = 0.9, achieving a
BMF of 83.9 Hz [33]. Note the different inhibition strength
S between models. In the biophysical models, the IC output
is dominated by inhibitory responses (S > 1) whereas in the
phenomenological models the IC output is dominated by
excitatory responses (S < 1).

4 Evaluation

In this section we analyse the outputs of the eight
selected auditory models in a number of test conditions,
whose results are presented in Figures 4-15. We aimed at
a comparison across models and thus, for the sake of clarity,
we refrained from a direct comparison to ground-truth
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Figure 4. Filter bank responses to pure tones at 500 Hz and 4000 Hz (top two rows) and spectral magnitudes of single-channel
responses to white noises (bottom two rows) for sounds of 40-, 70-, or 100-dB SPL (bottom-to-top coloured curves, respectively). In
the first two rows, the responses represent excitation patterns at the simulated CFs. The coloured markers indicate the amplitudes at
the (off-frequency) CFs one ERB y below (grey) and one ERB y above (yellow or orange) the on-frequency CF (502 or 4013 Hz). These
markers are highlighted using the same colours in Figure 5. In the third and fourth rows, the average FFT response of two cochlear-
filters (CF's of 502 Hz or 4013 Hz) in response to six 500-ms white noise sections are shown in grey, and the corresponding smoothed
responses are shown in colour. This type of responses was used to assess the quality factors of Figure 6. The dashed black lines indicate
the corresponding —3-dB filter bandwidths. All responses were shifted vertically by the reference gains given in Table 2 (see the text
for details). Literature: Figure 1A from [76], Figure 2C-E from [77], and Figure 2 from [12].

references from physiological data. However, such a com-
parison is important and interesting. For this reason, we
provide references where similar experimental and/or simu-
lation analyses have been presented. These references are
indicated as “Literature” in the caption of the corresponding
figure. Alternatively, the outputs of the biophysical and
phenomenological models may be considered as referential
because they have been primarily developed to reflect
physiological (human or animal) responses to sounds. This
latter assumption always requires a careful consideration,
especially when translating findings from animal to human

physiology.

4.1 Cochlear filtering

Sound processing in the cochlea depends not only on the
frequency but also on the level of the input stimulus [7§].
The amplitude of the BM vibration displacement increases
for higher levels, following an amplitude growth that com-
prises linear and compressive regimes [79]. We illustrate this
level dependency for a set of pure tones and white noises.
The pure tones had frequencies of 500 or 4000 Hz, with a
duration of 100 ms. The white noise was generated as a
fixed 3-s long waveform with a flat spectrum between

20 and 20000 Hz. All sounds were gated on and off with a
10-ms raised-cosine ramp and had levels of 40, 70, and
100 dB SPL. The obtained responses are shown in Figure 4,
which were vertically shifted by the gains indicated
in Table 2. These gains were derived for each model
using the 1000-Hz pure tone of 100 dB SPL as a reference.
The frequency responses were level-dependent for
zilany2014, verhulst2015b, verhulst2018,
king2019,and relanoiborral019. For verhulst2015,
verhulst2018, and relanoiborra2019, we further
observed a change in the location of their maximum
amplitude (green triangles in Fig. 4, fourth row). Although
a shift of the responses with increasing the stimulus level is
supported by experimental data [76, 78, 80], this argument
was later challenged [81] and rather attributed to shallower
upper tails in the responses. A final observation is that
king2019, zilany2014, verhulst2015 and
verhulst2018, showed a certain amount of distortion
in the frequency responses of 70- and 100-dB SPL sounds
(Fig. 4, second and third rows). For the responses to white
noises at CF = 502 Hz, the distortions occur in the upper
tail of the cochlear responses as a side effect of the
(amplitude) compression stage. This frequency-response
distortion is most prominent in king2019 due to its
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Figure 5. Input—output (I/O) curves for pure tones at 500 Hz (panels a—c) and 4000 Hz (panels d—f), at six model CF,, frequencies
(see Eq. (3)). Left (a,d): On-frequency simulations, i.e., output of the cochlear filter with the CF tuned to that of the stimulus
frequency. Middle (b,e), right (c,f): Off-frequency simulations, one ERB below and above the on-frequency, respectively. The exact
simulated on- and off-frequency CF's are indicated in the title of each panel. The filled markers indicate off-CF amplitudes that are also
highlighted in the corresponding frequency responses of Figure 4. All I/O curves were shifted vertically by the reference gains given in
Table 2 (see the text for details). Literature: Figures 1-3 from [79] and Figure 3 from [12].

broken-stick compression (rise of the amplitudes to the
power of 0.3).”

4.1.1 Compressive growth

The set of pure tones was further used to assess the
curves relating the input stimulus levels with levels at the
output of the cochlear filter banks, known as input—output
(I/O) curves. For this analysis we included stimulus levels
between 0 and 100 dB SPL in steps of 10 dB. The I/O
curves were obtained for (1) the on-frequency CF tuned
to the frequency of the input stimulus, and (2) the off-
frequency responses of cochlear filters tuned to one equiva-
lent rectangular bandwidth number (ERBy) [54] below and
above the stimulus frequency.

The obtained I/O curves are shown in Figure 5 for on-
frequency (left panels) and off-frequency simulations
(£1 ERBy, middle and right panels). The I/O curves were
vertically shifted by the reference gains indicated in Table 2
(as in Fig. 4). As expected for the level-independent Gam-
matone filters used in daul997 and osses2021, the
curves were linear in all panels of Figure 5. For the remain-
ing models, more compressive behaviour was observed for
on-frequency curves (left panels) while more linear curves

2 Note that king2019 was primarily developed to simulate
responses to pure tones or narrow-band signals using cochlear
channels with CFs that are either on-frequency (one cochlear
channel) [110] or spanning +2 ERBy around the on-frequency
CF (five cochlear channels) [37, 72|. The prominent frequency
distortions shown in Figure 4e (third row) are thus outside the
tested CF ranges for this model.

were obtained for off-frequency CFs (middle and right
panels), except for relanoiborra2019 and king2019,
that had on- and off-frequency compression.

For zilany2014/bruce2018, the I/O curves were
fairly linear in response to 500-Hz tones (top panels) for
both on- and off-frequency CFs. For 4000-Hz tones, a
prominent compressive behaviour was observed in the
on-frequency curves (Fig. 5d) where, additionally, the curve
for verhulst2018 turned from a compressive to a lin-
ear regime for signal levels above 80 dB. The off-frequency
I/O curves obtained for verhulst2018 were similar to
those for verhulst2015 but had overall lower and higher
amplitudes for the pure tones of 500 Hz (Fig. 5b—¢) and
4000 Hz (Fig. 5e-f)), respectively, as a consequence of
the differences in their middle-ear filters (see Fig. 3). The
tendency to a more linear regime in off-frequency CFs has
been shown previously [79]. This is in fact the basis for
having compression only applied to the on-frequency
channel in king2019 [37, 72|. However, the default
compression rate of 0.3 for the on-frequency channel with
no compression for off-frequency channels leads to an
unrealistic level balance between on- and off-frequency
channels.

4.1.2 Frequency selectivity: Filter tuning

The frequency selectivity of each filter bank was com-
puted in response to the described frozen noise waveform,
presented at 40, 70, and 100 dB SPL. The estimates of
frequency selectivity were obtained from FFT responses
averaged across 500-ms non-overlapped analysis windows,
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Literature: Figure 4 from [53] and Figure 4B from [12].

meaning that the estimates were obtained from six statisti-
cally-independent noise sections.

The frequency response of thirty-two filters with CFs
between 126 Hz (n = 396 in Eq. (3)) and 9587 Hz
(n =24 in Eq. (3)) at steps of n = 12 bins was obtained.
For illustration purposes, we also included in this analysis
the on-frequency CFs used in Figure 5 (CF = 502 Hg,
n = 305; CF = 4013 Hz, n = 112), whose obtained responses
are shown in Figure 4. For each filter response, a quality
factor Q_3 qp = CF/BW was obtained, where BW is the
bandwidth defined by the lower and upper 3-dB down
points of each filter transfer function (black dashed lines
in Fig. 4).

The frequency-selectivity simulations for each of the
filter banks are shown in Figure 6 for noises of 40
(panel a), 70 (panel b), and 100 dB SPL (panel ¢). The ana-
lytical filter tuning curves given by equations (1) and (2)
are indicated as light and dark grey traces in Figure 6. Note
that with this comparison, we assume that the Q factors

within one ERB are similar to Q_3 4p values. The
results for 40-dB noises show that the frequency selectivity
follows either the analytical tuning of equation (1)
(zilany2014, brucel2018, verhust2015, and
verhulst2018) or the tuning of equation (2)
(daul997, relanoiborra2019, king2019, and
osses2021). When looking at the results for higher levels
(Fig. 6b—c), no change in tuning was observed for daul997
and osses2021, as expected for linear models. For the
nonlinear models, the results for 70-dB noises in Figure 6b
showed overall lower @ factors, but with only a small
change for king2019 and relanoiborra2019. The
results for 100-dB noises in Figure 6¢ showed a further
lowering of Q factors in the biophysical and phenomeno-
logical models, reaching values as low as Q ~ 2 in
verhulst2015, lower Q factors for frequencies up to
about 4000 Hz in relanoiborra2019, and virtually
unaffected Q factors in king2019. A closer inspection to
the outputs of king2019 revealed that there was a filter
broadening as a consequence of its broken-stick nonlinearity
stage, but this broadening predominantly affected the fre-
quency responses outside the range defined by the 3-dB
bandwidth used to derive the Q factors (see Fig. 4e). To
illustrate the Q-factor transition when increasing the signal
level in each model, the difference between Q factors
obtained from 40- to 100-dB noises is shown in Figure 6d,
where a decrease in @ factor with increasing signal level is
represented by a positive Q-factor difference.

Additionally, we observed that relanoiborra2019
and king2019 introduce a change in selectivity at overall
higher levels compared to the biophysical and phenomeno-
logical models. A closer look at this aspect revealed that
this change occurs because relanoiborral2019 and
king2019 only apply compression after the bandpass
filtering and, therefore, lower level signals are used as input
for their compression (broken-stick) module.

4.1.3 Frequency selectivity: Number of filters

The number of filters in a filter bank is relevant for sev-
eral model applications because too few filters can lead to a
loss of signal information (e.g., [84]) and too many filters
may unnecessarily increase the computational costs. The
number of filters is a free parameter in zilany2014/
bruce2018, but is fixed for verhulst2015 and
verhulst2018 to yield an accurate precision of the trans-
mission-line solver [85]. The remaining models use by
default one ERB-wide bands (daul997, king2019,
and osses2021), or have an overlap every 0.5 ERBy
(relanoiborra2019).

Here, we report the minimum number of filters that are
required to obtain a filter bank with overlapping at —3-dB
points of the individual filter responses. Using the empirical
Q-factors of Figure 6, we assessed the number of filters that
would be required to cover a frequency range between
126 Hz (n = 396 in Eq. (3)) and the first filter with its upper
cut-off frequency equal or greater than 8000 Hz. The
number of filters derived from the 40-dB and 100-dB fre-
quency tuning curves (Fig. 6, panels ¢ and d) are shown
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Figure 7. Simulated THC responses to pure tones of different frequencies evaluated at the corresponding on-frequency bin. The
amplitudes were normalised with respect to their maximum value to allow a direct comparison across models. Literature: Figure 9

from [82] and Figure 7 from [83].

in Table 2, including the average filter bandwidth in ERBy
for the corresponding model.

For the biophysical models, the filters were much
wider at the higher level than for the other models, with
average bandwidths being as wide as 3.05 ERBy for
verhulst2015 and 2.30 ERBy for verhulst2018. This
contrasts with the 1.57 ERBy for zilany2014 and
bruce2018 and the 1.15 ERBy or less for the remaining
models. These bandwidths are a consequence of the fast-
acting (sample-by-sample) compression that is applied just
before the transmission-line in the biophysical models and
the slower-acting bandwidth control in zilany2014
(denoted as the “control path” in the chirp filter bank).
While cochlear filters are generally wider at high sound
levels (e.g., [76, 86]), the appropriate tuning must be evalu-
ated depending on the species’ characteristics, the tested
CFs, and the type of evaluated excitation signals.

4.2 IHC processing: Phase locking to temporal fine
structure

To illustrate the loss in phase locking to temporal fine
structure with increasing stimulus frequency, we simulated
IHC responses to pure tones with frequencies between
150 Hz (n = 387 in Eq. (3)) and 4013 Hz (n = 112 in
Eq. (3)) spaced at n = 25 bins, resulting in 12 test frequen-
cies. The tones were generated at 80 dB SPL, with a dura-
tion of 100 ms, and were gated on and off with 5-ms raised-
cosine ramps. The simulated waveforms, that are assumed
to approximate the IHC potential, are displayed and
described in terms of AC (fast-varying) and DC (average
bias) components, and the simulated resting poten-
tials (Viest). The AC potential was assessed from the

peak-to-peak amplitudes as Vac = Vpeakmax — Vpeakmin-
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Figure 8. Ratio between simulated AC and DC components
(Vac/ Vbo, see the text) in response to 80-dB pure tones.
Literature: Figure 10 from [82] and Figure 8 from [83].

The DC potential was obtained as Vpc = (Vpeakmax +
Vpeak,min)/2 - erest [827 83]

The obtained THC waveforms are shown in Figure 7.
Within each panel, bottom to top waveforms represent
on-frequency simulations for the test signals, from low to
high frequency carriers, respectively. For some model out-
puts, the four highest carriers (1870 < f. < 4013 Hz) were
amplified by a factor of 3 to improve waveform visibility.
The simulated voltages before the tone onset, i.e., the rest-
ing potential V., were equal to 0 for all models except for
verhulst2018, where V. was —57.7 mV (not schema-
tised in Fig. 7). It seems clear, however, that the decrease of
peak-to-peak AC voltage towards high frequencies—a mea-
sure of the residual amount of temporal fine structure—is
significantly different across models. When increasing
the CFs from 1099 to 4013 Hz, three models showed
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Vac reductions of less than 76.0% (king2019: 59.7%-
decrease from 3.12 - 1072 to 1.26 - 10™* a.u.; daul997:
62.6%-decrease from 0.097 to 0.037 au.; and
verhulst2018: 76.0%-decrease from 39.2 to 9.4 mV),
while the other five models showed V¢ reductions of at
least 92.5%. From the low-frequency IHC waveforms
(bottom-most waveforms in each panel), it can be seen that
the simulated amplitudes of daul997, king2019,
relanoiborra2019, and osses2021 did not go below
their Ve (horizontal grid lines in Fig. 7) as a result of
the applied half-wave rectification process. Furthermore,
zilany2014/bruce2018 and verhulst2015 have
Vpeak,min @mplitudes of —66 mV and —4.7 mV, respectively.
Despite the different range in their minimum voltages, there
is a strong qualitative resemblance between waveforms
(green and red traces in the figure). In fact, both these
models use the same type of IHC nonlinearity (compare
Egs. (17)—(18) from [55] with Eqgs. (4)—(5) from [34]) and
the same LP filter implementation, albeit with a different
filter order and cut-off frequency (see Tab. 2).

The obtained AC/DC ratios are shown in Figure 8,
where a reduction in phase locking is given by a lower ratio.
For all models, the ratio decreased with increasing
frequency. All AC/DC curves, except those for
verhulst2018, overlap well at low frequencies with
ratios between 2.1 and 5.9 (below 1000 Hz), decreasing
to ratios between 0.06 (osses2021) and 0.83
(daul997) at 4013 Hz. Although the AC/DC curve for
verhulst2018 showed the highest overall ratios between
137.4 at 460 Hz down to 1.3 at 4013 Hz, due to its nearly
zero DC voltages towards low frequencies (see the fairly
symmetric waveforms around the horizontal grid in
Fig. 7d), we still observed the systematic decrease in ratio
with increasing frequency. If we further focus on the
AC/DC curves in the frequency range between 600 and
1000 Hz, where the phase-locking is expected to start
declining [82], all models showed monotonically decreas-
ing curves starting from about 833 Hz (except for
verhulst2018, that always showed a decreasing ten-
dency). The lowest ratios were observed for osses2021,
followed by the similarly steep curve of zilany2014.
Finally, a similar AC/DC curve was obtained for
relanoiborra2019 and verhulst2015.

4.3 AN firing patterns

Simulations included AN responses to pure tones and to
amplitude-modulated (AM) tones from which rate-level
functions expressed as onset and steady-state responses
were obtained. With these benchmarks we attempt to char-
acterise model responses at the output of the AN synapse
stage or their equivalent, with a particular interest in the
phenomenon of adaptation [60, 75]. We comment on how
adaptation is affected by the type of output of Stage 5,
using either the approximations from the effective models,
the average or instantaneous firing rate estimates of the
phenomenological models (zilany2014, bruce2018),
or the average rates of the biophysical models
(verhulst2015, verhulst2018).
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Figure 9. Simulated AN responses to a 4000-Hz pure tone of
70 dB SPL. For ease of visualisation, the responses from
osses2021, verhulst2015, and the PSTHs are horizontally
shifted by 20 ms. Literature: Figure 1 from [87] and Figures 3
and 10 from [36].

4.3.1 Adaptation

To illustrate the effect of auditory adaptation, we
obtained AN model responses to a 4000-Hz pure tone of
70 dB SPL, duration of 300 ms, that was gated on and
off with a cosine ramp of 2.5 ms. The obtained AN
responses are shown in Figure 9. All responses had an
amplitude overshoot just after the tone onset which then
decreased to a plateau (e.g., between 300 and 340 ms, grey
dashed lines). After the tone offset (¢ = 350 ms), the AN
responses showed an undershoot with decreased amplitudes
that subsequently returned to their resting level. This
stereotypical behaviour is related to the AN adaptation
process (e.g., [60]).

The waveforms from effective models using the
adaptation loops (daul997, relanoiborra2019,
osses2021) are shown in Figure 9a, where their ampli-
tudes had values between —230.5 MU and 1440.2 MU
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Figure 10. Simulated rate-level functions derived from the
steady-state AN responses of 4000-Hz pure tones. For all models,
average responses are shown (coloured traces). For the biophys-
ical and phenomenological models, the responses for HSR, MSR,
and LSR neurons are also shown (grey traces). Literature:
Figure 7 from [36], Figure 5A from [35], and Figure 3 from [44].

(daul997), with a strong onset overshoot and a resting
position at 0 MU. For king2019 (Fig. 9b), a mild over-
shoot was observed, whose maximum amplitude
(1.52 - 10™* a.u.) was higher in absolute value than that
for the undershoot (—1.08 - 107 a.u.). With an observed
steady-state peak-to-peak amplitude of 0.87 - 107 a.u.
king2019 is, at this stage, the model that preserves the
most temporal fine structure.

For the phenomenological models (zilany2014 and
bruce2018), the simulated waveforms using their two
types of AN synapse outputs are shown in Figure 9c¢—d,
based on a PSTH (dark green or brown curves) and
mean-rate synapse output (light green or brown curves).
The obtained PSTH and mean rate responses in
zilany2014 differ in their steady-state values (lower
values for the PSTH estimate), while for bruce2018 the
difference is in their onset responses, with almost no onset
adaptation in the simulated mean-rate output. For the
biophysical models (Fig. 9e), the AN synapse outputs rep-
resent mean firing rates where a stronger effect of adapta-
tion was observed for verhulst2018 (sky blue), with a
plateau after onset that was reached after about 150 ms
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Figure 11. Simulated rate-level functions derived from the
onset (maximum) AN responses of 4000-Hz pure tones. The
colour codes and legends are as in Figure 10. Literature: Figure 3
from [87].

(at t= 200 ms) while for verhulst2015 (red) the plateau
is reached shortly after the tone onset.

4.3.2 Rate-level functions

Rate-level functions were simulated for a 4000-Hz pure
tone presented at levels between 0 and 100 dB SPL with
a duration of 300 ms, gated on and off with 2.5-ms cosine
ramps. The obtained results are shown in Figures 10 and
11 for rate-level curves in the steady-state regime and for
onset responses, respectively. For all models, average rates
are shown (coloured traces) while for the phenomenological
and biophysical models (panels c-h), the simulated response
for the three types of neurons (HSR, MSR, and LSR) are
shown (grey traces).

For the phenomenological and biophysical models, the
discharge curves in Figure 10c-h tend to saturate towards
higher levels, which is in line with experimental evidence
(e.g., [87]). One difference between these curves is that they
start to increase at slightly higher levels for the biophysical
(from ~20 dB SPL) than for the phenomenological models
(from ~0 dB SPL).

For the effective models (Fig. 10a and b), with
the exception of relanoiborra2019, the simulated
rates did not show saturation as a function of level.
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In relanoiborra2019, the simulated rates were
between 70.2 and 83 MU for signal levels beyond 40 dB.
This saturation effect results from the combined action of
the nonlinear cochlear filter (Stage 3) with the later expan-
sion stage (Stage 5, Fig. 2) that precedes the adaptation
loops. Despite the overall lack of saturation in the evaluated
effective models when looking at the steady-state outputs, a
different situation is observed for the onset responses of
Figure 11, where the responses of the models using adapta-
tion loops had a prominent onset saturation (daul997:
1443 MU for levels above 50 dB; relanoiborra2019:
1435 MU for levels above 30 dB; osses2021: 614 MU
for levels above 50 dB). Other interesting aspects to high-
light are that: (1) almost no onset effect is observed in
the mean-rate output of bruce2018; (2) king2019 does
not account for any type of saturation as the signal level
increases (Figs. 10b and 11b). It should be noted that
although hard saturation (as in Fig. 11a) has not been
experimentally observed for onset AN responses, a decrease
in the rate of growth of onset-rate curves with level is
expected [87], a condition that is not met in king2019
or verhulst2015.

4.3.3 AM model responses

Model responses were obtained for a 500-ms 4000-Hz
pure tone that was sinusoidally modulated in amplitude
(modulation index of 100%) at a rate f,.q = 100 Hz,
presented at 60 dB SPL, including up/down ramps of
2.5 ms. The initial (0-50 ms) and later (350-400 ms) por-
tions of the simulated responses are shown in the left and
right panels of Figure 12, respectively. In all models, the
modulation rate of 100 Hz is visible as amplitude fluctua-
tions with the corresponding periodicity of 10 ms. In addi-
tion, adaptation was observed with stronger simulated
responses immediately after the tone onset (left panels)
than during the steady-state portion of the response (right

panels).
For the effective models with adaptation loops
(daul997, relanoiborral019, osses2021), the

maximum amplitudes (Fig. 12a, left) were much lower
in osses2021 than for daul99? and
relanoiborra2019, due to the stronger overshoot limi-
tation. For these models, it was also observed that their
phases are not perfectly aligned due to the outer- and
middle-ear filters that introduced a delay into
relanoiborra2019 (black traces run “ahead” the blue
traces of daul997), while the group-delay compensation
in osses2021 (Sect. 2.2) seemed to overcompensate the
alignment of the simulated waveforms (purple traces run
“behind” the blue traces). In the right panel, the dynamic
range of relanoiborra2019 (black traces) is lower than
for osses2021 and daul997, which have very similar
steady-state amplitudes. The reduced dynamic range in
relanoiborra2019 is mainly due to the nonlinear
cochlear compression of the filter bank that interacts further
with the expansion stage. In king2019 (Fig. 12b), a small
effect of adaptation was observed with a maximum onset
response of 0.88 - 10 a.u. (left panel) that decreases to a
local maximum amplitude of 0.24 - 10~ a.u. during the
steady-state response (right panel).

The AN responses produced by verhulst2015 and
verhulst2018 (Fig. 12¢) showed an overshoot reaching
firing rates of 598.5 and 565.2 spikes/s, respectively. After
the onset, the overshoot effect quickly disappeared in
verhulst2015, reaching a maximum local rate of
251 spikes/s during the second modulation cycle and
222 spikes/s between 370 and 400 ms. In contrast,
verhulst2018 adapted more slowly after the onset with
a maximum rate of 319 spikes/s in response to the second
modulation cycle, while the response continued adapting
reaching a maximum rate of 176 spikes/s between times
370 and 400 ms.

For zilany2014 (Fig. 12c¢) and bruce2018
(Fig. 12d), the mean-rate and PSTH outputs are shown
as lighter and darker traces, respectively. It can be observed
that in zilany2014, the AM modulations showed a sim-
ilar mean-rate and PSTH excursions of about 100 spikes/s
(Fig. 12b, right: mean rates between 194 and 295 spikes/s;
PSTHs with rates between 94 and 196 spikes/s), but the
PSTHs had overall lower rates. In bruce2018, a greater
AM fluctuation is observed for the PSTH outputs
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(darker brown traces) with an excursion of 185 spikes/s
(Fig. 12d, right: rates between 56 and 241 spikes/s)
compared with the 40 spikes/s (rates between 121 and
161 spikes/s) of its mean-rate output. Additionally,
bruce2018 showed a limited effect of adaptation in its
mean-rate outputs, along with a shallower AM response
in comparison to the obtained PSTH. We will not focus
on the mean-rate output of this model, because (1) their
authors validated the model primarily using PSTHs, recom-
mending the use of the AN synapse output for further
processing [36], (2) the model using PSTH outputs can be
used as input for subcortical processing stages from the
UR EAR toolbox [66], and (3) all the studies that we have
so far identified using bruce2018 consistently used PSTH
outputs [88, 89.

It should be noted that zilany2014, from the same
model family, has been extensively validated using both
mean-rate and PSTHs outputs. In fact, for studies where
psychoacoustic aspects have been investigated (e.g., [65])
there is a tendency to use the mean-rate model outputs.

4.3.4 Synchrony capture

Model responses were obtained for a complex tone of
50 dB SPL formed by three sinusoids of equal peak
amplitude and frequencies of 414 Hz (9.6 ERBy), 650 Hz
(12.6 ERBy), and 1000 Hz (15.6 ERB ). This type of com-
plex tone with more carriers and greater range of frequen-
cies is commonly used in studies of profile analysis (e.g.,
[65]) and it is useful to explain an AN property named
“synchrony capture” [57, 63] that is believed to play a rele-
vant role in the neural coding of supra-threshold speech
sounds [33, 63]. When synchrony capture occurs, the neural
activity in on-frequency channels is driven primarily by one
frequency component in the harmonic complex, such that
there are minimal fluctuations due to the fundamental-
frequency envelope, while off-frequency channels exhibit
fluctuating AN patterns at the fundamental frequency.
To illustrate whether the evaluated models account for
synchrony capture, the model outputs in response to the
described complex tone were obtained for frequencies
between 415 Hz (n = 320 in Eq. (3)) and 1007 Hz
(n = 245 in Eq. (3)) for CFs spaced at approximately
1 ERBy (An = 12 or 13), resulting in three on-CF and four
off-CF channels. The obtained simulations are shown in
Figure 13 for a 30-ms window (between 220 and 250 ms).
For each waveform, a schematic metric of envelope
fluctuation was obtained and shown as thick grey lines.
Those envelope fluctuations were constructed by connect-
ing consecutive local maxima that had amplitudes above
the mean responses (onset excluded) of each simulated
channel. Subsequently, the standard deviation of the
obtained envelope estimate was (arbitrarily) divided by
one thirtieth of the amplitude scales shown in the insets
of each panel (e.g., divided by 800/30 MU for daul997,
relanoiborra2019, and osses2021). The obtained
estimates were drawn as maroon circles and connected with
dashed lines along the right vertical axes in Figure 13
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Figure 13. Simulated AN responses to a complex tone with
three frequency components at 414, 650, and 1000 Hz. The
model simulations were obtained at on- and off-frequency CF's
spaced at 1 ERB . The thick grey lines represent the envelope of
the AN responses. The maroon circle markers represent a metric
that is proportional to the standard deviation of the corre-
sponding envelope (see the text for details). Literature: Figures
7-8 from [90] and Figure 1 from [91].

(dimensionless scale with labels between 0 and 6, as indi-
cated in panels a and b), where higher values indicate
greater envelope fluctuation variability. The resulting
envelope scale allows for a direct comparison between
models. In Figure 13 it can be observed that for all models,
the on-frequency channels had nearly flat envelope fluctua-
tions. The wvariability estimate averaged across on-
frequency bins (at 415, 662, and 1007 Hz) ranged between
0.11 (king2019) and 1.71 (bruce2018). The variability
estimate across off-frequency bins (at 489, 574, 769, and
881 Hz) ranged between 0.74 (king2019) and 4.09
(relanoiborra2019, with a maximum deviation of
6.95 at CF = 881 Hz in Fig. 13g). For all models the off-
CF variability was greater than the on-CF variability, with
king2019 being the least sensitive model to code envelope
fluctuations.
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Figure 14. Modulation transfer functions (MTFs) of a modu-
lation filter with a BMF ~ 80 Hz, assessed using 1000-Hz AM
tones presented at 30 (panel a) or 70 dB SPL (panel b) that were
sinusoidally modulated with f,.q frequencies between 10 and
130 Hz. The MTFs are normalised to the maximum model
response across the tested f,..q frequencies. Literature: Figures
4-6 from [92] and Figures 1 and 4 from [93].

4.4 Subcortical neural processing

We show two sets of figures to schematise the subcorti-
cal processing of the evaluated models.

4.4.1 Modulation transfer function

The first set of figures represents a modulation transfer
function (MTF) in response to 100% AM tones modulated
at fioq rates between 10 and 130 Hz (steps of 5 Hz). The
tones were centred at 1000 Hz, had a duration of 300 ms,
included 5-ms up/down ramps, and were presented at
30 and 70 dB SPL. For this analysis, 100 ms in the last
portion of the simulated responses were used (between
times 190 and 290 ms). The MTFs were derived from the
maximum of the simulated responses. The responses were
normalised to the corresponding maximum estimate over
the set of tested f,,,q values, so that the MTF of each model
had a maximum value of 1. The resulting MTFs are shown
in Figure 14.

The results in Figure 14 show that the models pro-
duce bandpass-shaped MTFs with estimated BMFs
between 35 Hz (zilany2014) and 70 Hz (daul997,
relanoiborra2019, and osses2021) that are below
the theoretical BMFs (see Tab. 2). It is interesting to
observe that the sharpest MTFs were obtained not only
for daul997 and osses2021 (both designed with
Q = 2), but also for king2019 (which has a Q = 1), while
a wider tuning was observed for the remaining models,
including relanoiborra2019 (which has a Q = 2).

For the biophysical and phenomenological models, the
MTFs obtained for the 70-dB AM tones (Fig. 14b) were
different than those obtained for 30 dB (Fig. 14a). For these
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Figure 15. Simulated IC responses using one modulation filter
(BMF =~ 80 Hz) to a click train of alternating polarity with a
total duration of 1 s, repetition rate of 10 Hz and click duration
of 100 ps. Only the responses to the two last clicks are shown,
whose peak-to-peak amplitudes are indicated in Table 2. Liter-
ature: Figure 1 from [94] and Figures 8-9 from [95].

models, the MTFs were no longer bell-shaped and seemed
to act as lowpass filters, which is inline with physiological
evidence indicating that regions of “enhancement” in MTF's
of low level-signals can become regions of “suppression” for
higher presentation levels (see, e.g., Fig. 4 from [92]).

The effective models were more insensitive to the change
in presentation levels. The only exception to this is
relanoiborra2019, where a narrower MTF was
obtained in Figure 14b (compared with panel a). The
models daul997, osses2021, and king2019 have
MTFs that are qualitatively similar across presentation
levels.

4.4.2 Response to clicks of alternating polarity

The second set of figures focuses on simulating the
response to a typical click train as used in the assessment
of auditory brainstem responses (ABRs) [95]. We used a
click train with a repetition rate of 10 Hz and a duration
of 1 s (i.e., containing 10 clicks). The clicks had an alternat-
ing polarity (amplitude A or —A) and were presented at
70 dB peak-equivalent SPL (dB peSPL) [96], i.e., using
A = 0.1789 Pa. Each individual click had a duration of
100 ps. For this processing, the simulated outputs of Stage
6 of each model (see Fig. 2) were averaged across CFs to
obtain a broadband representation, i.e., all simulated repre-
sentations were added together and then divided by the
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number of CFs [34, 35]. This type of output can be used to
derive a peak-to-peak or peak-to-trough amplitude correlate
of the wave-V ABR component [95].

For this processing, we used the default number of CFs
for the biophysical and effective models, while for
zilany2014 and bruce2018, 50 CFs were obtained
between CF,, = 133.7 Hz (n = 393, Eq. (3)) and CF,, =
12010 Hz (n = 1), spaced at n = 8 bins to roughly meet
the number of filters from Table 2. The obtained click
responses are shown in Figure 15 and are illustrated for
the last two clicks (of amplitudes A and —A) of the test
click train.

The biophysical models provided click responses that
had positive and negative amplitudes (Figs. 15e—f), which
was not the case for the phenomenological models that also
use the SFIE model. This is because verhulst2015 and
verhulst2018 assume that a population response can
be obtained from the sum of single neuron activity (as,
e.g., in [56]), with no half-wave rectification in the SFIE
model (a non-explicit choice of the authors [34, 35]) that,
after scaling [35, 41|, results in a simplified neural represen-
tation that correlates with changes in electrical dipoles
visible in scalp-recorded potentials [35].

The effective models, that use the modulation-filter-
bank concept, showed only positive amplitudes for all filters
with BMFs > 10 Hz [31] due to their envelope extraction, a
phase-insensitive (“venelope”) processing [37, 70]. For
modulation frequencies below 10 Hz, the perceptual models
preserve the phase information, something that is not illus-
trated in Figure 15 (nor in Fig. 14).

Finally, the simulated peak-to-peak amplitudes in
response to the last positive and negative clicks of the pulse
train (ninth and tenth click, shown in Fig. 15) are shown in
the entries “Click A” and “Click — A” of Table 2. From those
amplitudes, it can be observed that there are models that
have higher peak-to-peak amplitudes in response to positive
clicks (zilany2014, verhulst2015, bruce2018,
relanoiborra2019) and others where higher ampli-
tudes are observed in response to the clicks of negative
polarity  (daul997, verhulst2018, king2019,
osses2021). Although we do not discuss the significance
of this polarity sensitivity, this aspect has been a matter of
discussion, in particular for electrical hearing, where it has
been found that evoked potentials in response to positive
and negative polarity clicks represent one of the differences
between humans (e.g., [97]) and other mammals (e.g., [98]),
whose responses are more sensitive to stimulation with
clicks of negative and positive polarities, respectively.

4.5 Computational costs

The computational cost required to run each model was
measured using the same click train as described in the pre-
vious section. Therefore, we assessed the time required to
process an input signal of 1-s duration between Stages 1
and 6 of each model (Fig. 2). This metric aims at providing
a relative notion of the processing times across models. Note
that some model implementations can use parallel process-
ing, which was disabled in this evaluation. The assessment

was performed on a personal computer equipped with an
Intel Core i5-10210UR, 1.6-GHz processor with 16 GB of
RAM memory.

The results of the computational costs used by each
model are given in the entry “Performance” of Table 2.
The time required by the models to process one frequency
channel ranged between ~0.02 s (0osses2021, daul997)
and 2.5 s (bruce2018). For individual frequency channels,
the  biophysical models (verhulst2015  and
verhulst2018) showed moderate calculation times
between 0.3 and 0.8 s. However, these models always
require (internally) the simulation of the whole discretised
cochlea with 1000 cochlear sections, independent of the
number of user-requested cochlear channels (default
number of 401 for the Verhulst models). This means for
the current simulations, that the reported processing
times of 122.9 and 319.5 s for verhulst2015 and
verhulst2018, respectively, cannot be further reduced,
even if the user requests the simulation of fewer CF's. In con-
trast, in any model based on a parallel filter bank, including
zilany2014 and bruce2018, each cochlear section is
independent of each other, and a user-defined number of
frequency channels can be simulated, which vastly reduces
the computation time for different model configurations.

Due to the long processing time of the evaluated
biophysical models, their implementations include an
option of parallel processing (also available in the original
implementation of bruce2018 [36]), where multiple input
signals can be processed simultaneously. The number of
signals that can be processed in parallel will depend on
the number of threads of the host computer. As a further
solution to the long processing time, Stages 2-5 of
verhulst2018 (transmission-line, IHC, and AN
modules) and bruce2018 (generating mean PSTHs) have
been approximated using deep neural networks in [99, 100]
and [101], respectively.

5 Models in perspective

The stimuli and comparison measures used in our
evaluation (Sect. 4) were chosen to reflect relevant temporal
and spectral properties of the models in a normal-hearing
condition. Our evaluation provides an objective view,
accompanied by a graphical representation of how the
model responses reflect specific aspects of the hearing pro-
cess in their model structure.

The content of this study might be considered as a
guideline for model selection, but the motivation was not
to select a “winner” among the different evaluated models.
We compared models which were verified in different exper-
imental conditions or in connection to different hearing
applications, and we only presented raw model outputs
(Figs. 7, 9, 12, 13, 15) or outputs transformed to charac-
terise specific hearing properties (Figs. 4-6, 8, 10, 11, 14).
These outputs reflect model responses to a very specific
dataset that may not be suitable to appropriately verify
all models. Any model, though, to be informative, needs
to be verifiable and falsifiable, such that it is possible to
understand both its essential characteristics and features
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that explain the predictive power in a given range of
conditions, as well as its limitations that make transparent
where the model fails. In the following sections we provide a
brief overview of the context in which each of the selected
models has been used and include general recommendations
for further applications.

5.1 Applications of the evaluated auditory models

Daul997 is a monaural model that has been used to
simulate a number of psychoacoustic tasks including tone-
in-noise and AM detection experiments using a forced-
choice paradigm (e.g., [31, 44]). To enable the model for
the comparison between two or more sounds, the output
of Stage 6 (Fig. 2) is used as input to a decision back-end
based on a signal-detection-theory (SDT) framework, the
template-matching approach. This framework, extended
to adopt two templates, has been recently validated to
account for the perceptual similarity between two sounds
using osses2021 [39].

The models zilany2014 and bruce2018 can
account for elevated hearing thresholds due to OHC
(“Cochlear gain loss” in Stage 3) or IHC impairment
(“IHC loss” in Stage 4) [55]. The AN stage (Stage 5) includes
two types of outputs: An actual spike generator and an
analytical mean-rate synapse output. The spike generator
has been primarily used to simulate physiological data,
including the phenomenon of short- and long-term
adaptation [75]. The mean-rate synapse output using
zilany2014 has been used to simulate specific psychoa-
coustic tasks [65, 102], including speech intelligibility pre-
dictions [103].

The models verhulst2015 and verhulst2018
were initially designed to simulate otoacoustic emissions
[26] and can account for elevated hearing thresholds due
to OHC impairment (“Cochlear gain loss” in Stage 3).
Furthermore, they allow to study effects of the gradual
disconnection of AN fibres, known as synaptopathy, on
auditory brainstem responses [35, 104]. When coupled
with a decision back-end, they have been used to simu-
late psychoacoustic performance in simultaneous tone-
in-noise and high-rate AM tasks (fyoqa ~100-120 Hz)
[105, 106].

The model relanoiborra2019 can predict speech
intelligibility [38] when coupled with a decision back-end
stage [38, 107]. Relying on the prediction power of earlier
model implementations [77, 108], relanoiborra2019
should be able to (1) account for elevated thresholds based
on OHC and THC impairment [108], and (2) to predict a
number of psychoacoustic tasks including simultaneous
and forward masking and amplitude modulation [77]. Our
results showed that relanoiborra2019 accounts well
for hearing properties such as nonlinearities in the cochlear
processing and auditory adaptation, including a saturation
behaviour similar to that of the AN physiological models.

The model king2019 was designed to simulate percep-
tual tasks of amplitude- and frequency-modulation detec-
tion, primarily at low modulation rates (fi.qa < 20 Hz).
The model’s decision back-end includes deterministic

limitations (suboptimal template matching strategies) or
stochastic limitations such as internal additive noise, multi-
plicative noise [109], and memory noise [72, 110]. The model
can be adapted to simulate hearing impairment by modify-
ing its compression parameters (knee point and compres-
sion rate), and by increasing the bandwidth of the
underlying cochlear filters. Despite the simplicity of this
model—in fact one of its strengths—we have shown in this
paper that the model can account for several of the compar-
ison metrics, with the exception of the broadening of
cochlear filters at higher presentation levels (Fig. 6), the
adaptation saturation (Figs. 10-11), and the coding of
fluctuation profiles (with minimal difference in amplitude
fluctuations in Fig. 13).

5.2 Other applications of auditory models

Apart from the listed applications, auditory models
have also been used in several other applications such as
sound quality assessment (e.g., [10, 111-113]), prediction
of speech intelligibility (e.g., [103, 114]), and automatic
speech recognition (e.g., [115]).

In the context of this special issue on binaural hearing, it
is worth mentioning a number of binaural applications that
rely on the evaluated monaural auditory models: The low-
pass modulation filter (similar to daul997) [31, 44] served
as the basis for a model of binaural masking that uses a
decision stage based on the equalisation-cancellation theory
[116]. This model was later extended to predict perceptual
attributes of room acoustics [117-119]. The model
zilany2014 has been used to predict (1) the sensitivity
to interaural time and level differences by estimating the
disparity between left and right AN responses using a deci-
sion back-end based on shuffled cross-correlograms [120],
and (2) the median-plane sound localisation for various pro-
files of sensorineural hearing loss (OHC impairment) [121].
Finally, bruce2018 has been used to simulate the lateral-
isation of high-frequency stimuli in a coincidence-counting
model [88].

5.3 Simplified auditory representations

When an auditory model is used to broaden our under-
standing of auditory processes [1, 2], it is required that the
model be as complete as possible. More details in the model
often come at the price of a more computationally-
expensive implementation. Such a level of detail is repre-
sented in the selected biophysical and phenomenological
models, that attempt to shed light on the mechanisms
behind the cellular and neural elements included in auditory
processing. On the other hand, effective models have a more
epistemic status providing an intelligible but simplified
representation of the process. These models can guide the
design of new experiments or facilitate the development of
listener-targeted products. Such model simplification,
however, potentially reduces the number of effects a model
can account for, leading to an actual narrowing of its
application field. An example of a successful model simplifi-
cation is presented in [27], where MTFs were simulated
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using only a stage of envelope extraction followed by a
modulation filter bank, omitting the stages of cochlear
filtering and auditory adaptation. This model, however, is
not thought to predict the performance in listening condi-
tions where the omitted model stages do play a role as it
is the case (in this example) for forward-masking tasks.

Peripheral auditory models are often combined with a
decision back-end module converting simulated responses
into (1) a behavioural response that reflects detectability
or discriminability of a sound (e.g., [2]), or into (2)
perceptual metrics to estimate, e.g., loudness [28], perceived
reverberation [117, 118], and sound-source localisation [122,
123]. For successful simulations, the decision stage should
appropriately weight the information contained in the
model representations. An analysis of weighted time-
frequency representations (time, audio frequency, and/or
modulation frequency) can reveal what portions of the
simulated responses are more relevant (e.g., [39, 124]).

It is important to note that the simplification of
auditory models based on statistical methods or machine
learning processes requires a careful interpretation. While
these approaches might be well suited to achieve goals such
as real-time processing (e.g., [99]) in applications of speech
perception (e.g., [L01]) or in the prediction of evoked poten-
tials [89], they limit the modular comprehension of each
auditory stage, especially if multiple model stages are
approximated (as in [89, 101]).

In a recent study [89)], firing rates of cortical A1 neurons
in ferrets were approximated using several time-frequency
representations ranging from simple short-time Fourier
transforms to more detailed models of AN synapses (includ-
ing bruce2018) to which a linear-nonlinear (LNL) enco-
der was used. Based on their separately-fitted encoders,
the authors concluded that cortical processing in ferrets
perform a “very simple signal transformation,” without dis-
cussing how different the linear and nonlinear components
in each of their encoders were. Despite the success of the
authors in approximating neural responses in ferrets, we
believe that it is difficult to know whether the “simple trans-
formation” is indeed related to the underlying mechanisms
of hearing (the cortical processing in ferrets) or rather is
related to the complexity of operations in the fitted
encoders.

5.4 Considerations for further modelling work

The following is a list of aspects that we recommend to
keep in mind for further auditory modelling work, based on
the general observations of this study:

o If the evaluated sounds are assumed to be reproduced
via loudspeakers, or supra-aural or circumaural head-
phones, we recommend to use an outer-ear module as
in relanoiborra2019, osses2021, or to apply
an HRTF (as in [57]). Although we did not evaluate
this effect, such an omission implicitly assumes that
the outer ear (compare the grey and black lines for
relanoiborra2019 and osses2021 in Fig. 3)
does not influence the coding of incoming signals in
the ascending auditory pathway.

e The results in Figures 6 and 14 show that there are
nonlinear interactions between model stages as a func-
tion of level and for different types of signals. This
suggests that different sets of stimuli are required to
characterise the behaviour of complex processes such
as that of nonlinear filter banks. In other words, mod-
els may not always act as a linear time invariant (LTT)
system.

In Section 4.1.3, we suggested a minimum number of
filters for each filter bank to roughly meet a —3-dB
filter crossing (Tab. 2, “40 dB: Number of bands”).
The required number of bands may vary from applica-
tion to application and depend on the type of sounds
that are to be simulated. This choice can be particu-
larly critical in models where the number of bands
are a free parameter (here zilany2014 and
bruce2018). For models that are used as front-ends
to machine-learning applications, Lyon [22] suggested
a “not-too-sparse set of channels” with about a 50%
overlap between filters, i.e., twice the number of chan-
nels that we recommend in Table 2. It is important to
keep in mind, however, that our estimation was based
on model responses to white noises, which are sus-
tained signals in time and broadband in frequency.
At higher presentation levels, where nonlinear filter
banks act as compressors, similar estimations using
sine tones (sustained narrowband signals, as in
Fig. 5) or clicks (transient broadband sounds) may
result in a different number of required bands.
Different simulation results can be expected when eval-
uating mean-rate and PSTH outputs of models includ-
ing AN synapse stages as shown in Figures 9-12. The
particular choice of the type of output depends on
the target application of the model. The spike genera-
tor is primarily used to simulate physiological data
(e.g., [36, 75], while the mean-rate synapse output is
typically used to simulate specific psychoacoustic tasks
(e.g., 65, 102]).

The choice of a set of stimuli to test and validate a
specific model is crucial. As we stated in Section 1,
the simulation of “unseen” (arbitrary) sounds may
produce model outputs that have not been previously
validated (or at least not reported) by the model devel-
opers. Actually, an unexpected model behaviour may
not be strictly related to an unseen sound, but rather
to an unseen sound property. For example, the models
with adaptation loops have historically had an oversen-
sitivity to transient sounds (e.g., [39, 125, 126]), lead-
ing to model versions with limited onset responses to
counteract this effect [31, 39] or have used stimuli with
smoother onsets in their evaluation.

When using large datasets, where the stimuli are split
into training and validation data (e.g., [16, 101, 112]), the
stimuli should contain representative samples of the rele-
vant sound properties that the model user wishes to test.
A practice like this can help to support (or not) the appli-
cability of a specific model to sounds that may have not
been even validated before, the “unseen sounds”, reducing
(or generating awareness of) the potential limitations of
the test model.
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6 Conclusions

In this study we compared eight monaural models of
human auditory processing that simulate responses—with
different levels of accuracy—up to the level of the inferior
colliculus in the midbrain. We described and quantified
the similarities and differences among model implementa-
tions and derived a minimum number of filters required
for those stages to ensure the preservation of auditory infor-
mation based on our estimates of frequency selectivity.

We showed that despite the differences in model design
that result in more physiologically- (biophysical and phe-
nomenological models) or perceptually-plausible approxi-
mations (effective models), all the models can account for
a number of basic hearing properties. Examples of these
properties are the phase-locking reduction in inner-hair-cell
processing and the phenomenon of auditory adaptation.
Still, an in-depth understanding of each of the model stages
is required when selecting a model for a specific application.
We encourage future users to be explicitly aware of the
specific datasets of sounds and experimental paradigms
upon which their models have been evaluated, as well as
of other underlying model limitations. To this end, a com-
parison across model implementations provides a guideline
for their selection and an excellent way to challenge the
capabilities of different models.

Data availability statement

The implementations of the evaluated models (see
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