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Abstract—Heterogeneous servers are becoming prevalent in
many high-performance computing environments, including clus-
ters and datacenters. In this paper, we consider multi-objective
scheduling for heterogeneous server systems to optimize simul-
taneously the application performance, energy consumption and
thermal imbalance. First, a greedy online framework is presented
to allow the scheduling decisions to be made based on any well-
defined cost function. To tackle the possibly conflicting objectives,
we propose a fuzzy-based priority approach for exploring the
tradeoffs of two or more objectives at the same time. Moreover,
we present a heuristic algorithm for the static placement of physi-
cal machines in order to reduce the maximum temperature at the
server outlets. Extensive simulations based on an emerging class
of high-density server system have demonstrated the effectiveness
of our proposed approach and heuristics in optimizing multiple
objectives while achieving better thermal balance.

Keywords-Multi-objective optimization; online scheduling; ma-
chine placement; job response time; energy consumption; ther-
mal imbalance; tradeoffs; heterogeneous server systems

I. INTRODUCTION

Server systems that consist of heterogeneous computing

nodes are becoming prevalent in clusters and datacenters. In

particular, many high-performance computing systems em-

brace machine heterogeneity in their designs, which is believed

by many to be the key for achieving energy-proportional

computing [3], [5]. While application scheduling in the hetero-

geneous environments has been an important area of research

for decades, traditional approaches have mostly focused on

application performance as the sole optimization criterion. In

recent years, the high energy consumption has emerged as a

major issue. Studies have shown that today’s datacenters are

consuming nearly 2% of the global energy [13], and up to

half of that is spent on cooling-related activities [18]. Hence,

the need for multi-objective schedulers that also consider the

energy and cooling efficiency is imminent.

In this paper, we address the Multi-Objective Optimization

Problem (MOOP) for Heterogeneous Server Systems (HSS).

Besides the traditional objective of application performance,

we also consider the energy consumption of the servers and the

thermal imbalance as additional objectives. The latter has been

particularly shown to have direct impacts on the efficiency and

cost of cooling in datacenters [16], [21]. As these objectives

can be conflicting with each other, the aim is to efficiently

explore their tradeoffs, and if possible, to optimize two or

more of them simultaneously. To systematically tackle this

problem, we apply two complementary approaches, which are

the placements of machines and applications, respectively.

While application placement (or scheduling) has been stud-

ied in the past to optimize the performance in HSS, machine

placement has received less attention. The reason is that the

traditional metric of job performance or even energy consump-

tion is independent of the positions of the physical machines,

and hence are not affected by different placement configura-

tions. In the presence of heterogeneous servers, however, the

placement of the machines can influence the distribution of the

generated heat, which has been shown to play an important

role in the cooling efficiency of datacenters [16], [21]. While

it is not feasible to dynamically reconfigure the machines’

positions based on the temporal variation of the workloads,

we focus on static machine placement and propose a heuristic

that minimizes the maximum temperature at the server outlets

according to their heat distribution characteristics in the idle

state. The strategy is effective due to the correlation between

the machines’ static and dynamic power consumptions.

The placement of the applications is also challenging. In

general, jobs arrive in an online manner, thus any future

knowledge is unknown to the scheduler. Unlike many previous

results (e.g., [2], [22]) that only optimize the jobs’ execution

times, we perform online assignment of jobs to machines using

a greedy framework, which allows the scheduling decisions

to be made based on any well-defined cost function. To

tackle multiple objectives at the same time, we propose a

fuzzy-based priority approach that optimizes two objectives

in sequence. A fuzzy factor is introduced to explore any

potential improvement for the second objective while relaxing

the first objective up to an acceptable range. The approach

is flexible enough to incorporate multiple objectives, such as

those obtained by weighted sums, into the optimization, and

the principle can potentially be applied to other multi-objective

optimization problems.

To evaluate our proposed approach, we model and simulate

Christmann’s Resource Efficient Cluster Server (RECS) [4],

a heterogeneous server system with high packing density and

integrated cooling support. The system represents an emerging

class of high-performance and energy-efficient servers for

racks and clusters in a typical datacenter environment. Using

average job response time, dynamic energy consumption and

maximum outlet temperature as three optimization objectives,

the simulation results show the effectiveness of our fuzzy-

based priority approach for exploring and optimizing the trade-

offs of two or more objectives. Our static machine placement

heuristic is also shown to provide significantly better thermal

balance at the server outlets in terms of both maximum and

average values.



The rest of this paper is organized as follows. Section II

reviews some related research in the field. Section III states

the models and the problems. Section IV presents our machine

placement heuristic. Section V describes the job scheduling

heuristics and the fuzzy-based priority approach. The simula-

tion results are presented in Section VI. Finally, Section VII

concludes the paper with some future directions.

II. RELATED WORK

Multi-objective optimization has attracted much attention in

various problem domains. In the following, we describes some

state-of-the-art approaches in this area.

First, combining multiple objectives into a single one is a

popular approach. The authors in [15] used Dynamic Voltage

& Frequency Scaling (DVFS) to tradeoff makespan with

energy consumption by considering a weighted sum of the two

objectives. In [20], the same technique was applied in an online

manner to minimize a combined objective of job response

time and energy. A similar approach was taken in [19], which

considers an additional objective of peak temperature in a

multicore system, and hence optimizing the weighted sum of

three objectives at the same time.

Another approach is constrained optimization for one or

more objectives. In [17], DVS was used to minimize the energy

consumption subject to the makespan achieved in an initial

schedule. A double strategy was developed in [8] to minimize

the Euclidean distance between the generated solutions to a set

of user-specified constraints for a four-objective optimization

problem. The authors of [12] applied ǫ-constraint method to

cloud scheduling, which optimizes each objective in turn with

upper bounds on others.

Some research uses priority-based approaches to optimize

multiple objectives in sequence. In [1], a bi-criteria com-

promise function was introduced to set priorities between

makespan and reliability for scheduling real-time applications.

To minimize carbon emission and to maximize profit, two-

step policies were proposed in [11] to map applications to

heterogeneous data centers based on the relative priority of

the two objectives. In [6], the authors proposed heuristics to

optimize the QoS for interactive services before considering

energy consumption on DVS-enabled multicore systems.

Lastly, Pareto-based approach is often used in the offline

setting to generate more than one non-dominant solutions.

This technique was applied in [7] to tradeoff makespan and

energy consumption for heterogeneous servers. Evolution-

ary algorithms were employed in [10] to obtain a set of

alternative solutions for scheduling scientific workloads in

the Grid environment. In [23], the authors applied particle

swarm optimization to approximate the Pareto frontier for the

unrelated machine scheduling problem with uncertain inputs.

In this paper, we present a fuzzy-based priority approach.

Although multi-objective scheduling with “fuzzy” or “good

enough” solutions [25], [26] are known in the Pareto-based ap-

proach, our approach is novel in the online setting, especially

when different objectives have (soft) priorities. In the thermal-

aware scheduling literature, workload placement has been

considered in the presence of nonuniform heat distribution

in datacenter environments [16], [21], but no prior work has

addressed online scheduling for multiple objectives. We also

consider the placement problem for physical machines to

achieve better thermal balance in heterogeneous servers, which

to our best knowledge has not been studied in the past.

III. PROBLEM STATEMENT

A. System Model

Motivated by scheduling high-performance computing ap-

plications in Heterogeneous Server Systems (HSS), we con-

sider the following system model. There is a set M =
{M1, M2, · · · , Mm} of m heterogeneous machines, which

need to be placed inside a server system with m positions

{C1, C2, · · · , Cm} and l outlets {L1, L2, · · · , Ll}. Each ma-

chine Mj ∈ M has a static power consumption Ustat
j when it

is idle or not executing any job. A set J = {J1, J2, · · · , Jn}
of n jobs arrive at the system in an online manner, and each job

Ji ∈ J is characterized by a release time ri, a processing time

Pi,j and a dynamic power consumption Ui,j if it is executed

on machine Mj . We study both job scheduling and machine

placement for this model, which are described in the following.

1) Job Scheduling: The jobs are to be scheduled in an

online manner to the machines. That is, each job needs to

be assigned irrevocably to a machine without knowledge of

future job arrivals. Moreover, once a job has been assigned,

no preemption or migration is allowed, which usually incurs a

significant cost in terms of data reallocation. The total power

consumption of machine Mj at any time t is given by

U tot
j (t) = Ustat

j +

n
∑

i=1

δi,j(t) · Ui,j , (1)

where δi,j(t) is a binary variable that takes value 1 if job Ji is

running on machine Mj at time t and 0 otherwise. In order to

optimize performance, we restrict that each machine can host

only one job at any time. Thus, we have
∑n

i=1 δi,j(t) ≤ 1 for

all 1 ≤ j ≤ m at all time t.
2) Machine Placement: The set of machines need to be

statically placed in advance to the m positions in the server.

Assuming that the cooling of the system gives a steady airflow

pattern inside the server, the heat generated from each position

to each outlet can be described by a heat-distribution matrix

D, where each element dx,k ∈ D denotes the fraction of the

heat generated from position Cx to outlet Lk. As some heat

may be dissipated through other channels (such as small holes)

of the server instead of the outlets or even stay in the server

enclosure, we have
∑l

k=1 dx,k ≤ 1 for all 1 ≤ x ≤ m.

This model is general enough to capture the situation of

many heterogeneous server systems, such as those in racks or

clusters of typical datacenters.

B. Scheduling Model

There are two subproblems: First, we need to decide a

static machine placement, that is, to find a mapping π :
{1, 2, , · · · , m} → {1, 2, , · · · , m} from server positions to

machines so that each position Cx is filled with a machine

Mπ(x). Then, we need an online job scheduling strategy to

assign each arriving job to a machine for execution. Assuming

that the power consumption is completely transformed into



heat, the total amount of heat (or power) received by outlet

Lk at time t can be expressed as

Uout
k (t) =

m
∑

x=1

dx,k · U
tot
π(x)(t) . (2)

Given a constant temperature T in at all inlets of the server,

the temperature at outlet Lk is given by

T out
k (t) = T in + g(Uout

k (t)) , (3)

where function g(U) converts the amount of heat U (in Watt)
received by the outlet to the increase in its air temperature. In

general, the air temperature is a function of air density ρ (in

kg/m3), airflow throughput Q (in m3/s), and air heat capacity

C (in Joule/(oC · kg)) The following gives an expression of

g(U) in terms of these parameters [21]:

g(U) =
U

ρ ·Q · C
. (4)

C. Optimization Objectives

We consider the following Multi-Objective Optimization

Problem (MOOP): optimizing the performance of the jobs,

minimizing the energy consumption of the machines, and

balancing the temperatures at the server outlets.

For performance, we use the average response time Rave

of the jobs as the metric, and it is defined as

Rave =
1

n

n
∑

i=1

(ci − ri) , (5)

where ci and ri denote the completion time and release time

of job Ji, respectively.

The energy consumption can be divided into two parts: (a)

Estat due to the static power consumption of the machines;

and (b) Edync due to the dynamic execution of the jobs, which

is given by

Edync =

n
∑

i=1

m
∑

j=1

δi,j · Pi,j · Ui,j , (6)

where δi,j = 1 if job Ji is executed on machine Mj and 0

otherwise. The total energy consumption is therefore Etot =
Estat +Edync. In this paper, we assume that all machines are

turned on at all times, so the static energy is independent of

the scheduling of the jobs.

For the thermal imbalance, we use the maximum tempera-

ture T out
max and average temperature T out

ave at the server outlets as

metrics. Apparently, larger values for T out
max and T out

ave indicate

worse thermal imbalance. These two metrics are specified as

T out
max = max

t1≤t≤t2
max
1≤k≤l

T out
k (t) , (7)

T out
ave =

1

(t2 − t1) · l

∫ t2

t1

l
∑

k=1

T out
k (t)dt , (8)

where [t1, t2] denotes the interval of interest, in which all jobs

arrive and complete their executions.

Due to the heterogeneity of the machines, different job

scheduling and machine placement strategies may result in

very different job response time, dynamic energy and outlet

temperatures. Moreover, these objectives can be conflicting

with each other. In next section, we will propose heuristics to

address each one of them as well as to deal with their tradeoffs.

D. Motivation for Machine Placement

Many server systems exhibit a non-uniform heat distribution

between the positions and the outlets. Consider a simple server

system with two positions and two outlets. The first position

dissipates 50% of its generated heat to each outlet, whereas

the second position dissipates 80% of the heat to outlet 1

and 20% to outlet 2. Given two heterogeneous machines,

it is obviously more desirable to place the machine with

a larger heat dissipation to the first position, in order to

balance the temperatures at the two outlets and to reduce the

peak temperature. The situation becomes more challenging in

practical server systems with a larger number of positions

and outlets, as well as a more complex spatial correlation

between them. This motivates the study of machine placement

in heterogeneous systems.

IV. STATIC MACHINE PLACEMENT HEURISTIC

In this section, we present a heuristic algorithm for static

machine placement. As mentioned in Section III-D, the place-

ment of machines can have an impact on the thermal balance

at the outlets of a heterogeneous server system. While such an

impact comes from both static and dynamic power consump-

tions of the machines, the dynamic part is not a characteristic

of the machines and can be influenced by the job scheduling

decisions. Hence, we will only use static power consumption

to perform machine placement.1

To obtain the optimal placement of machines based on their

static power is NP-hard, since it can be shown to contain the

3-partition problem [9] as a special case. Therefore, we will

focus on heuristic solutions, and present a Greedy Machine

Placement (GMP) heuristic to reduce the maximum outlet

temperature. Algorithm 1 presents its pseudocode.

First, GMP sorts the machines in descending order of static

power consumption, since machines that consume more power

will have larger contributions to the temperatures at all outlets,

so they will be placed first to avoid high peak temperature

values. Let T out
k denote the existing temperature at outlet Lk,

and let T out
max(x) denote the maximum outlet temperature if

the next machine Mj ∈M is placed in position Cx, i.e.,

T out
max(x) = max

k=1···l
(T out

k + g(dx,k · U
stat
j )) . (9)

Then, machine Mj will be placed in one of the remaining

positions Cx′ ∈ C that minimizes the maximum outlet tem-

perature, i.e., x′ = argminx T out
max(x). After that, the filled

position Cx′ will be removed from the available set C, and

the temperatures at all outlets will be updated. The algorithm

terminates when all machines in M are placed in the server.

For the complexity of the GMP heuristic, the sorting and

initialization takes O(m log m + l) time. In the iteration,

placing each machine incurs O(ml) time as each remaining

1There tends to be a postive correlation between the static power consump-
tion of the machines and their dynamic power. That is, a machine with a
higher static power also consumes a higher dynamic power when executing a
given job. This justifies the use of static power alone for machine placement.



Algorithm 1 Greedy Machine Placement

Input: Set M = {M1, M2, · · · , Mm} of m machines,
set C = {C1, C2, · · · , Cm} of m server positions,
and heat distribution matrix D.

Output: A mapping π from server positions to machines.
1: Sort the machines in descending order of static power consump-

tions, i.e., Ustat
1 ≥ Ustat

2 ≥ · · · ≥ Ustat
m

2: Initialize T out
k = 0 for all 1 ≤ k ≤ l

3: for j = 1 to m do
4: x′ = 0 and T out

max(x′) = ∞
5: for each Cx ∈ C do
6: T out

max(x) = maxk=1..l

`

T out
k + g(dx,k · Ustat

j )
´

7: if T out
max(x) < T out

max(x′) then
8: T out

max(x′) = T out
max(x) and x′ = x

9: end if
10: end for
11: Place machine Mj to position Cx′ , i.e., π(x′) = j
12: Update T out

k = T out
k + g(dx′,k · Ustat

j ) for all 1 ≤ k ≤ l,
and update C = C \Cx′

13: end for

position is tested to determine the maximum outlet tempera-

ture. Therefore, the overall complexity is O(m2l).

V. ONLINE JOB SCHEDULING HEURISTICS

With a fixed machine placement, we need to perform job

scheduling in an online manner. This section presents heuris-

tics for online job scheduling to optimize various objectives.

A. Greedy Online Scheduling Framework

All of our online scheduling heuristics fall into a Greedy

Online Scheduling (GOS) framework, which is described in

Algorithm 2.

Algorithm 2 Greedy Online Scheduling

Input: Arrival of a new job Ji, and its processing time Pi,j and
dynamic power consumption Ui,j if it is executed on any
machine Mj ∈ M.

Output: Assignment of job Ji to a machine in M.
1: j′ = 0 and Hi,j′ = ∞
2: for j = 1 to m do
3: if Hi,j < Hi,j′ then
4: Hi,j′ = Hi,j and j′ = j
5: end if
6: end for
7: Assign job Ji to machine Mj′

Under the GOS framework, any newly arrived job will be

assigned greedily to a machine. The variable Hi,j shown in

the algorithm represents the cost of assigning the new job

Ji to machine Mj . Depending on the target objective, Hi,j

can be a function of job response time, energy consumption,

outlet temperature, or even a composite or combined function

of these objectives. The job will then be assigned to a machine

Mj′ with the minimum cost, i.e., j′ = argminj Hi,j . The rest

of this section will describe heuristics that minimize different

cost functions depending on the optimization objectives.

B. Mono-Objective Scheduling

Mono-objective scheduling considers a single optimization

objective when deciding where to assign each job. In this sub-

section, we present three mono-objective scheduling heuristics

that minimize job response time, dynamic energy consumption

and maximum outlet temperature, respectively. The following

describes the three heuristics and their cost functions.

• Fastest: Assign job Ji to a machine that renders the

minimum job response time. The cost function is

HR
i,j = max(ri, t

avail
j ) + Pi,j , (10)

where ri is the release time of job Ji and tavail
j denotes

the latest time when machine Mj becomes available.

• Greenest: Assign job Ji to a machine that incurs the min-

imum dynamic energy consumption. The cost function is

HE
i,j = Pi,j · Ui,j . (11)

• Coolest: Assign job Ji to a machine that minimizes the

maximum outlet temperature. The cost function is

HT
i,j = max

k=1···l
(T out

k + g(dj,k · Ui,j)) , (12)

where T out
k denotes the existing temperature at outlet Lk

before assigning the job, and dj,k denotes the fraction of

heat contributed from machine Mj to outlet Lk.

C. Multi-Objective Scheduling with a Fuzzy-Based Priority

Approach

To optimize two or more objectives at the same time, we

propose a novel fuzzy-based priority approach to perform

online job scheduling.
1) Dual-Objective Scheduling: We first consider optimizing

two objectives, for which we use the following composite cost

function

HX,Y
i,j = 〈HX

i,j(f), HY
i,j〉 . (13)

In this case, the objectives X and Y are considered one

after another by first selecting all machines that offer the best

performance in terms of X , and then selecting among this

subset any machine that offers the best performance in terms

of Y . To avoid depriving the second objective altogether, a

fuzzy factor f is used to relax the selection criterion for the

first objective up to an acceptable margin. The purpose of

introducing this factor is to explore any potential improvement

for Y while maintaining the performance for X within the

target range. Figure 1 illustrates the basic principle of this

approach using a simple example. As we can see, the machine

that compromises the first objective X up to the specified

fuzzy factor is selected to improve the second objective Y .

The simple priority approach, on the other hand, would have

scheduled for the best X with much worse Y . The value of

the fuzzy factor as well as the priority should depend on the

relative importance of the two objectives to optimize, which

can be set by the user or the system administrator.

To implement fuzzy-based priority in the GOS framework as

shown in Algorithm 2, the cost function for the first objective

X is normalized between 0 and 1 in order to take the fuzzy

factor into account, i.e.,

HX
i,j =

HX
i,j −HX

i,min

HX
i,max −HX

i,min

, (14)

where HX
i,min and HX

i,max denote the minimum and maximum

costs in terms of objective X among all machines to assign



X

Y

Selected by fuzzy-based 
priority approach

Acceptable range for objective X 
with a fuzzy factor f

Selected by simple 
priority approach 

Fig. 1. The fuzzy-based priority approach in dual-objective scheduling.

job Ji. The following rule compares the relative costs of any

two machines.

Fuzzy-Based Priority Rule: The costs incurred by schedul-

ing job Ji on any two machines Mj1 and Mj2 satisfy HX,Y
i,j1

<

HX,Y
i,j2

if one of the following conditions holds:

• HX
i,j1

≤ f < HX
i,j2

, or

• HX
i,j1

≤ f and HX
i,j2

≤ f and HY
i,j1

< HY
i,j2

, or

• HX
i,j1

< HX
i,j2

≤ f and HY
i,j1

= HY
i,j2

, or

• f < HX
i,j1

< HX
i,j2

, or

• f < HX
i,j1

= HX
i,j2

and HY
i,j1

< HY
i,j2

.

This rule can be applied to optimize any two objectives

with well-defined cost functions, such as the ones given in

Equations (10)-(12) for job response time, energy consumption

and maximum outlet temperature, respectively.

2) Multi-Objective Scheduling: With more than two ob-

jectives, we can take a similar approach of optimizing one

objective after another, but with combined cost functions that

consist of two or more objectives. For instance, the weighted

sum method can be used to combine job response time and

energy consumption to form a single objective, i.e.,

HRE
i,j = αHR

i,j + (1− α)HE
i,j , (15)

where α ∈ [0, 1] denotes the relative weight assigned to job

response time. Note that the cost functions for both objectives

are normalized between 0 and 1 to form meaningful com-

bination. Then, to optimize the maximum outlet temperature

with the combined cost (of job response time and energy

consumption), the following composite cost function can be

constructed

HT,RE
i,j = 〈HT

i,j(f), HRE
i,j 〉 , (16)

or conversely

HRE,T
i,j = 〈HRE

i,j (f), HT
i,j〉 . (17)

In the case where the first objective is a combination of

two or more objectives as in Equation (17), the combined cost

needs again to be normalized to take into account the fuzzy

factor, i.e.,

HRE
i,j =

HRE
i,j −HRE

i,min

HRE
i,max −HRE

i,min

. (18)

The fuzzy-based priority rule described previously can then

be applied in the same way as before. The exact priori-

ties/weights among different objectives and the fuzzy factor

again depend on their relative importance.

VI. PERFORMANCE EVALUATIONS

In this section, we will evaluate the proposed machine

placement and job scheduling heuristics. The evaluations are

performed using the DCworms simulator [14] developed for

modeling and simulating performance, power and thermal

behaviors of server systems in datacenters.

A. Server Platform

Our modeled platform is based on Christmann’s Resource

Efficient Cluster Server (RECS) [4], which is a 1U multi-server

system consisting of 18 heterogeneous computing nodes with

integrated cooling support. The built-in power and temperature

sensors allow the hardware and the application profiles to

be monitored and modeled with fine granularity and high

accuracy. This system represents an emerging class of high-

density servers, which allows a significant number of them to

be integrated in just a few rack units. While the RECS platform

is chosen to conduct our experiments, our proposed models

and heuristics can be generally applied to other heterogeneous

servers at both cluster and datacenter environments.

Our heterogeneous RECS server consists of 8 nodes of Intel

i7-2715QE, 4 nodes of Intel Atom D510 and 6 nodes of AMD

G-T40N. Table I describes the detailed hardware configuration.

The 18 positions of the server are laid out in two rows, as

depicted in Figure 2, where two positions along the same

column share a pair of inlet and outlet, with airflow drawn

by fans directly attached to them.

TABLE I
HARDWARE CONFIGURATION OF THE RECS SERVER.

Intel Core Intel Atom AMD
i7-2715QE D510 G-T40N

Frequency 2.1GHz 1.66GHz 1GHz

Static power 11.5W 9W 6.4W

#Cores (#Threads) 4(8) 2(4) 2(2)

RAM 16GB 2GB 4GB

Cache 6MB 1MB 1MB

Node count 8 4 6

C1 C2 C3 C9

C10 C11 C12 C18

Inlets

Outlets

Fans

Fans

L1 L2 L3 L9

. . .    . . . 

. . .    . . . 

Fig. 2. The layout of the RECS server system.

For simulation purpose, the temperature at all inlets is fixed

at T in = 25oC. The thermodynamic constants are set to

be ρ = 1.168kg/m3 and C = 1004Joule/(oC · kg). With

all fans turned on, the air throughput at each inlet/outlet is

around Q = 0.0055m3/s, according to the measurements



performed in [24]. Simple profiling of the hardware also gives

the following heat-distribution matrix:

dx,k =











1, if x = k

0.84, if x = k + 9

0, otherwise

,

which suggests that each inlet node contributes only 84%

of the generated heat to the corresponding outlet due to the

relatively long heat dissipation path. The remaining heat stays

in or is dissipated through other directions of the server

enclosure, which is hard to measure.

B. HPC Benchmarks and Workload

For the simulation, we adopt the set of HPC benchmarks

used in [14], which consist of the following applications: fft,

c-ray, abinit, linpack, and tar. In particular, an application-

specific approach was employed to build the performance

and power profiles of these applications with different input

parameters and number of threads. Table II shows the average

execution time and dynamic power consumption of each ap-

plication on the three types of computing nodes. The exclusive

execution mode (i.e., running one job per node) was used to

ensure accurate measurements of the application profiles. Lack

of values in the table means that the particular application

could not be executed on the corresponding node. Therefore,

the node is ignored by the online scheduling heuristics for

assigning that application.

TABLE II
AVERAGE EXECUTION TIME AND DYNAMIC POWER CONSUMPTION OF THE

BENCHMARKS.

Intel Core Intel Atom AMD
i7-2715QE D510 G-T40N

fft 1375s, 11.5W 6040s, 0.75W 7710s, 2.58W

c-ray 1445s, 11.79W 8445s, 0.84W 9650s, 2.16W

abinit 4388s, 22.52W - -

linpack 1360s, 18.30W 20130s, 2.20W -

tar 6400s, 9.83W 23385s, 1.79W 22900s, 3.08W

The simulation workload consists of 1000 jobs, and each

job is randomly selected from one of these benchmarks. The

jobs arrive at the system according to the Poisson process. The

load intensity ρ is proportional to the average arrival rate λ
(in number of jobs per hour), and it is given by ρ = λ/10.

C. Simulation Results

We apply the greedy heuristic presented in Section IV to

generate a machine placement for the RECS server system,

which will be used throughout this section for evaluating

different scheduling heuristics. In Section VI-C4, we will come

back to machine placement and compare our heuristic with

two alternative placements for evaluating the impact on outlet

temperatures. All results are obtained by carrying out the

experiments 10 times and taking the average.

1) Performance of Mono-Objective Heuristics: We first

evaluate the three mono-objective scheduling heuristics pre-

sented in Section V-B. Their performance will be used as ref-

erences for exploring the tradeoffs of two or more objectives.

Two versions of the three heuristics are implemented. One

considers only the available or idle machines when assigning

each job, and in case all machines are busy the assignment will

be postponed until some machine becomes available. The other

version considers all machines and therefore may possibly

reserve a future time slot of a machine for the job in advance.

We call the two versions “available” and “all”, respectively.

They are compared with two other scheduling policies, namely

Random and RoundRobin. The former assigns each job to an

available machine randomly, and the latter selects the machines

in turn for assigning the jobs. Both policies are commonly used

for balancing the machine loads.

Figures 3 and 4 present the simulation results of the two

versions. The results show that the three heuristics (Fastest,

Greenest and Coolest) achieve the best performance with

respect to their target objective functions. For the “available”

heuristics as shown in Figure 3, the performance gains under

light loads are up to 40-60% for average job response time,

around 15% for dynamic energy consumption, and 1.4-1.6oC

for maximum outlet temperature. The advantages diminish

slowly as the load intensity increases, as the utilization of the

computing nodes becomes higher, so jobs tend to be postponed

or assigned to nodes with less energy or thermal efficiency.

For the average outlet temperature, all heuristics have similar

performance except RoundRobin, which performs better at

medium to high loads at the expense of job response time

and energy consumption.

For the performance of the “all” heuristics, by comparing

Figures 3(a) and 4(a), we can see that the average job response

time becomes worse by at least an order of magnitude. (Note

the difference in scale.) Since all machines are considered in

this case, a subset of them is almost always selected for their

energy and thermal efficiency, resulting in highly unbalanced

machine loads and hence deterioration of job response times.

For the same reason, the advantages of Greenest and Coolest

in terms of dynamic energy consumption and maximum outlet

temperature are maintained even at high load intensities.

In particular for Greenest, all jobs are concentrated on the

most energy-efficient nodes (e.g., Intel Atom) while the other

machines with low power efficiency but high performance

(e.g., Intel Core i7) are left idle. Naturally, it leads to the

lowest average outlet temperature for this heuristic.

For the Fastest heuristic, Figure 5 shows that the “available”

version, which implicitly balances the utilization of the com-

puting resources, outperforms the “all” version in terms of the

jobs’ average response time at high loads. The “all” version,

on the other hand, performs better in terms of the maximum

response time of all jobs, since it makes the best local decision

for each individual job regardless of the machine availability.

In the rest of this section, we will focus on the “available”

heuristics to study the tradeoffs of various objectives and the

impact of different machine placements.

2) Impact of Fuzzy Factor for Dual-Objective Scheduling:

We now evaluate the effectiveness of the fuzzy-based priority

approach for exploring the tradeoffs between two objectives.

For this purpose, we consider three cost functions defined in

Equations (10)-(12), for minimizing average job response time,

dynamic energy consumption and maximum outlet tempera-
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Fig. 3. Performance of the “available” version of the three mono-objective scheduling heuristics with Random and RoundRobin.
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Fig. 4. Performance of the “all” version of the three mono-objective scheduling heuristics with Random and RoundRobin.
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Fig. 5. Comparison of the two versions of the Fastest heuristic in terms of
average and maximum job response time.

ture, respectively.

Figure 6 shows the impact of varying the fuzzy factor f
from −1 to 1 when minimizing any two out of the three

objectives at 20% load intensity. In particular, f = −1
means that the scheduling decision is solely based on the

first objective. In this case, ties on the first cost function

are broken randomly, so the second objective is completely

ignored. Figures 6(a), 6(e) and 6(i) along the diagonal show

the optimization of two identical objectives, which make them

equivalent to the mono-objective case. The other figures plot

the changes of the two objectives as a function of f , with the

first objective shown on the left Y axis and the second one on

the right Y axis.

First, Figures 6(b) and 6(d) indicate no change to the aver-

age response time and dynamic energy consumption unless the

fuzzy factor f is set above 0.7 for HR,E
i,j and 0.5 for HE,R

i,j .

The results suggest that it is difficult to have good performance

for one objective without significant performance degradation

for the other. Depending on the relative importance of the two

objectives, the fuzzy factor in this case can be set in the range

of [0.6, 0.9] to obtain a desirable tradeoff.

Figures 6(c) and 6(f) show that the maximum outlet temper-

ature can be minimized simultaneously with average response

time or dynamic energy consumption as soon as the second

objective (temperature) is taken into account, i.e., f ≥ 0,

and before the first objective (response time or energy) is

compromised, i.e., f ≤ 0.6. Similar results can be observed in

Figures 6(g) and 6(h), which optimize the temperature before

response time or energy consumption. In this case, the second

objective stabilizes after f reaches 0.3, and interestingly, the

first objective (temperature) is also reduced slightly (by 0.1-

0.2oC) due to the consideration of the second objective. The

improvement is probably due to the perturbation introduced in

the scheduling decision that helped escape the local optimum,

which was experienced by considering temperature alone. In

general for optimizing response time or energy with maximum

outlet temperature, the fuzzy factor can be set in the range of

[0.3, 0.6] for the optimal performance.

Figure 7 shows the results when the load intensity is at 40%.

As can be seen, by setting appropriate values for the fuzzy

factor, desirable tradeoffs between average response time and

dynamic energy can again be attained. Temperature can also be

optimized together with the other two objectives, but stablizes

at a higher value due to the increase of load intensity. The

results demonstrate the effectiveness of this fuzzy-based ap-

proach for exploring and optimizing dual-objective tradeoffs.

3) Results of Multi-objective Scheduling: We use average

response time, dynamic energy consumption and maximum

outlet temperature as the three objectives to evaluate the

performance of multi-objective scheduling.

Previous results on dual-objective scheduling have shown

the difficulty of minimizing response time and energy si-

multaneously. Hence, we combine the two objectives with

a weighted cost function HRE
i,j as defined in Equation (15),

and optimize it together with temperature using the composite



−1  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  1 
2000

4000

6000

8000

10000

12000

T
im

e
 (

s
e

c
s
)

fuzzy factor f

HR
i,j

 

 

Average Response Time

(a)

−1  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  1 
2000

4000

6000

8000

10000

12000

T
im

e
 (

s
e
c
s
)

fuzzy factor f
−1  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  1 

1.05

1.1

1.15

1.2

1.25

1.3

1.35
x 10

4

E
n
e
rg

y
 (

W
h
)

HR,E
i,j = 〈H R

i,j(f), HE
i,j〉

(b)

−1  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  1 
2000

4000

6000

8000

10000

12000

T
im

e
 (

s
e

c
s
)

fuzzy factor f
−1  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  1 

31.5

32

32.5

33

33.5

34

T
e

m
p

e
ra

tu
re

 (
 o

C
)

HR,T
i,j = 〈H R

i,j(f), HT
i,j〉

(c)

−1  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  1 
1.05

1.1

1.15

1.2

1.25

1.3

1.35
x 10

4

E
n
e
rg

y
 (

W
h
)

fuzzy factor f
−1  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  1 

2000

4000

6000

8000

10000

12000
T

im
e
 (

s
e
c
s
)

HE,R
i,j = 〈H E

i,j(f), HR
i,j〉

(d)

−1  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  1 
1.05

1.1

1.15

1.2

1.25

1.3

1.35
x 10

4

E
n

e
rg

y
 (

W
h

)

fuzzy factor f

HE
i,j

 

 

Dynamic Energy Consumption

(e)

−1  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  1 
1.05

1.1

1.15

1.2

1.25

1.3

1.35
x 10

4

E
n

e
rg

y
 (

W
h

)

fuzzy factor f
−1  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  1 

31.5

32

32.5

33

33.5

34

T
e

m
p

e
ra

tu
re

 (
 o

C
)

HE,T
i,j = 〈H E

i,j(f), HT
i,j〉

(f)

−1  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  1 
31.5

32

32.5

33

33.5

34

T
e

m
p

e
ra

tu
re

 (
 o

C
)

fuzzy factor f
−1  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  1 

2000

4000

6000

8000

10000

12000

T
im

e
 (

s
e

c
s
)

HT,R
i,j = 〈H T

i,j(f), HR
i,j〉

(g)

−1  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  1 
31.5

32

32.5

33

33.5

34

T
e

m
p

e
ra

tu
re

 (
 o

C
)

fuzzy factor f
−1  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  1 

1.05

1.1

1.15

1.2

1.25

1.3

1.35
x 10

4

E
n

e
rg

y
 (

W
h

)

HT,E
i,j = 〈H T

i,j(f), HE
i,j〉

(h)

−1  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  1 
31.5

32

32.5

33

33.5

34

T
e
m

p
e
ra

tu
re

 (
 o

C
)

fuzzy factor f

HT
i,j

 

 

Maximum Outlet Temperature

(i)

Fig. 6. The use of fuzzy-based priority approach for dual-objective scheduling at 20% load intensity. The subfigures on the diagonal show the reference
values for average response time, dynamic energy consumption and maximum outlet temperature, respectively. The legends therein apply to all the subfigures.

functions HT,RE
i,j and HRE,T

i,j as defined in Equations (16)

and (17). Since similar performance was observed for the two

cases, we only present the results for HT,RE
i,j .

Figure 8 shows the results with different values of α and f
at 20% load intensity. First, as α increases from 0 to 1 in the

weighted sum, we can clearly see the performance transitions

for both response time and energy consumption as long as they

are considered, i.e., f 6= −1. When the value of α is large,

indicating that response time is favored more than energy, the

response time is reduced as f increases. The same can be

observed for energy consumption when the value of α is small.

This demonstrates the effectiveness of using f in exploring the

potential performance improvements for combined objectives.

Figure 8(c) shows that the maximum outlet temperature can

again be slightly improved by considering the response time

and energy as the second objective, which also correspond to

the results shown in Figures 6(g) and 6(h).

Figure 9 shows the performance of the algorithm with fixed

f = 0.4 and α = 0.5. We call the resulting algorithm

Combined and compare it with the three reference heuristics.

The results show a good tradeoff between average response

time and dynamic energy consumption under all system loads,

using Fastest and Greenest as the references. Moreover, this

is achieved together with good maximum outlet temperature,

which is close to the one obtained by the Coolest heuristic.

4) Impact of Different Machine Placements: Lastly, we

study the impact of machine placement on the performance

of the online scheduling heuristics. To this end, we generate

three different placements of the machines, one by our GMP

heuristic and two by its variants which we call MP2 and MP3,

respectively. The two variants work in a similar fashion as

GMP. However, MP2 sorts the machines in ascending order

of static power instead of descending order, while MP3 assigns

each machine to a remaining position that maximizes the max-

imum outlet temperature instead of minimizing it. Apparently,

MP2 and MP3 are counter-intuitive, so they may not generate

desirable machine configrations. They are included to simply

demonstrate the impact of different machine placements on

the performance, especially the outlet temperature.

Figure 10 shows the performance of the three machine

placements for the same scheduling heuristic that optimizes the

combined cost function HRE,T
i,j with f = 0.1 and α = 0.4.

The results clearly show that job response time and energy

consumption are not affected by different machine placements.

However, our GMP heuristic reduces the maximum outlet tem-

perature by 1oC compared to MP2, and depending on the load

of the system the improvement is up to 3oC compared to MP3.

Moreover, GMP also improves the average outlet temperature

by around 0.1-0.2oC, especially at high system loads. Similar

performance was also observed for other scheduling heuristics.
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Fig. 7. The use of fuzzy-based priority approach for dual-objective scheduling at 40% load intensity. The subfigures on the diagonal show the reference
values for average response time, dynamic energy consumption and maximum outlet temperature, respectively. The legends therein apply to all the subfigures.
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Fig. 8. Multi-objective scheduling for H
T,RE
i,j

= 〈H T
i,j(f), αH R

i,j + (1 − α)H E
i,j〉 with different f and α at 20% load intensity.

The results confirm that machine placement indeed affects the

thermal balance at the server outlets, which directly impacts

the efficiency and cost of the cooling system.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have considered online job scheduling and

static machine placement for heterogeneous server systems.

We applied a novel fuzzy-based priority approach to a greedy

online scheduling framework for simultaneously optimizing

multiple objectives, including average job response time, dy-

namic energy consumption and maximum outlet temperature.

Simulations based on a high-density server system have shown

that optimizing only one objective can have a negative impact

on the others. The results also demonstrated the effectiveness

of our approach for exploring and optimizing the tradeoffs

between two or more objectives. In particular, response time

and energy were shown to be orthogonal metrics, which are

difficult to minimize simultaneously. However, either of them

or a weighted combination can be optimized together with

outlet temperature by setting appropriate fuzzy factors. Finally,

different machine placements were shown to have a strong

impact on the thermal balance at the server outlets, which has

implications for the cost of the cooling system.

For future work, we will apply power management tech-

niques, such as DVS or turning off idle machines, to reduce

the static power consumption for better energy and thermal

efficiency. For machine placement, Computational Fluid Dy-
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Fig. 9. Multi-objective scheduling for H
T,RE
i,j = 〈H T

i,j(f), αH R
i,j + (1− α)H E

i,j〉 with f = 0.4 and α = 0.5 at different load intensities.
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Fig. 10. Scheduling for H
RE,T
i,j = 〈H RE

i,j (f), αH R
i,j + (1 − α)H E

i,j〉 with f = 0.1 and α = 0.4 under three different machine placements.

namics (CFD) simulations can be carried out to validate the

results. Finally, the approach presented in this paper can be

extended to scheduling multiple servers in a datacenter by

directly considering the cooling cost.
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