
HAL Id: hal-03665939
https://hal.science/hal-03665939

Submitted on 12 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Continuous Developmental Model for Wind Farm
Layout Optimization

Dennis Wilson, Sylvain Cussat-Blanc, Kalyan Veeramachaneni, Una-May
O’Reilly, Hervé Luga

To cite this version:
Dennis Wilson, Sylvain Cussat-Blanc, Kalyan Veeramachaneni, Una-May O’Reilly, Hervé Luga. A
Continuous Developmental Model for Wind Farm Layout Optimization. Genetic and Evolutionary
Computation COnference (GECCO 2014), ACM Special Interest Group on Genetic and Evolutionary
Computation operates an annual Genetic and Evolutionary Computation Conference (GECCO), Jul
2014, Vancouver, Canada. pp.745-752, �10.1145/2576768.2598383�. �hal-03665939�

https://hal.science/hal-03665939
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 13059

To link to this article : DOI :10.1145/2576768.2598383
URL : http://dx.doi.org/10.1145/2576768.2598383

To cite this version : Wilson, Dennis and Cussat-Blanc, Sylvain and
Veeramachaneni, Kalyan and O'Reilly, Una-May and Luga, Hervé A
Continuous Developmental Model for Wind Farm Layout
Optimization. (2014) In: Genetic and Evolutionary Computation
COnference - GECCO 2014, 12 July 2014 - 16 July 2014 (Vancouver,
Canada).

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

http://oatao.univ-toulouse.fr/
http://oatao.univ-toulouse.fr/13059/
http://oatao.univ-toulouse.fr/13059/
http://oatao.univ-toulouse.fr/13059/
http://dx.doi.org/10.1145/2576768.2598383
mailto:staff-oatao@listes-diff.inp-toulouse.fr

A Continuous Developmental Model
for Wind Farm Layout Optimization

Dennis Wilson
CSAIL - MIT

32 Vassar Street
Cambridge, MA 02139, USA

dennisw@mit.edu

Sylvain Cussat-Blanc
University of Toulouse

IRIT - CNRS - UMR5505
21 allée de Brienne

31042 Toulouse, France
cussat@irit.fr

Kalyan Veeramachaneni
CSAIL - MIT

32 Vassar Street
Cambridge, MA 02139, USA

kalyan@csail.mit.edu

Una-May O’Reilly
CSAIL - MIT

32 Vassar Street
Cambridge, MA 02139, USA

unamay@csail.mit.edu

Hervé Luga
University of Toulouse

IRIT - CNRS - UMR5505
21 allée de Brienne

31042 Toulouse, France
luga@irit.fr

ABSTRACT

We present Devo-II, an improved cell-based developmen-
tal model for wind farm layout optimization. To address
the shortcomings of discretization, Devo-II’s gene regula-
tory networks control cells that act in a continuous rather
than discretized grid space. We find that Devo-II is com-
petitive, and in some cases, superior with respect to state-
of-the-art global, stochastic search approaches when a suite
of algorithms is evaluated on different wind scenarios. The
modularity of the genetic regulatory network computational
paradigm in terms of isolating its search algorithm, the reg-
ulatory network simulation and the cell simulation, allowed
this improvement to largely focus upon cell simulation. This
indicates a robustness property of the paradigm’s design. As
well, wind farm layout optimization highlights how develop-
mental models can be considered more efficient than other
optimization methods because of their “optimize once, use-
many” adaptability.

Keywords

Layout optimization; Developmental model; Gene regula-
tory network; Machine learning

1. INTRODUCTION
Wind farm layout optimization is a complex problem and

recent growth of large wind farms has increased demands on

designers. Typically, the problem has been cast as a geomet-
ric optimization problem, usually on a discrete grid, using
a power-based cost function. Direct search approaches have
been employed wherein specific constraints of the problem
are translated into a predefined fitness function and condi-
tions, e.g. wind speed data and farm dimensions, are inputs.
Once this configuration of the algorithm is set up by the
wind farm designer, the optimization takes hours or days to
converge, and must be run again if the problem changes.

We present a novel approach, Devo-II, that facilitates
wind farm optimization where, once a developmental model
is evolved, results are available in a matter of seconds re-
gardless of different constraints and conditions. In [23], we
designed a discrete cell-based developmental model, Devo-I,
and obtained encouraging results. This paper, with Devo-

II, represents an improvement on Devo-I, by casting the
developmental model in a continuous space. In general, a
cell-based developmental model grows a wind farm layout
using cells as an analog for turbines. The cells are each con-
trolled by a gene regulatory network which is trained using
a genetic algorithm to find the best turbine efficiency and
the best number of turbines. The cells respect the local and
global constraints and attempt to position themselves opti-
mally in a representation of the farm environment. To do
so, each cell senses the wind coming from various directions
and decides what to do: divide, reorient its division or mi-
gration heading, migrate, grow, or die. In Devo-I our farm
representation was discrete. With Devo-II we investigate
whether the continuous developmental model produces lay-
outs with comparable quality to state-of-the-art approaches.

2. WIND FARM LAYOUT OPTIMIZATION

PROBLEM
The wind farm layout optimization problem is to iden-

tify turbine positions in 2-D plane, x, y coordinates, such
that the energy capture is maximized while costs associated
with a number of other factors are minimized. The energy
capture for a turbine takes into account the following:

Wind Scenario: Wind speed, v, represented as a random
variable with a Weibull distribution that is a sum-

GRN(I,S) Interpret Select
Inputs for cell

Actions
Update

Cell State

Repeat for every cell

Controller

(a) A developmental step

Developmental

step

ntal
Map

Solution
Update

Inputs

for next step for next

Repeat until stop

(b) Generation of a solution

Figure 1: Two components of the developmental approach

mary of wind speed at that location for a period of
time. This is given by pv(v; c, k|θ), where c and k are
Weibull shape and scale parameters and θ is a wind
directional bin. The wind speed distribution is differ-
ent for different directional bins, θ. Additionally, wind
flows from a certain direction with some probability
p(θ). Together pv(v; c, k|θ) and p(θ) are referred to as
wind resource/scenario in this paper.

Power curve: A function η(v), known as a power curve,
gives the power generated by a turbine for the given
wind speed v. The power curve is dependent on the
turbine make and model.

Wake effects: In a particular directional bin, for a given
turbine i located at xi, yi a number of other turbines
affect the wind it experiences. This is called wake
effect. Given other turbines locations xj , yj for all
j ∈ {1 . . . i− 1, i+1 . . . n}, the turbines that affect the
particular turbine is determined using a wake model.
This is documented in [14]. If a turbine located at
xi, yi is in the wake of another turbine located at xj , yj
in a given direction, the wind speed distribution ex-
perienced by the turbine is modified by changing the
parameter c resulting in a turbine specific ci|θ. The
value ci < c is reduced in proportion to the euclidean
distance between i and j.

To evaluate the energy capture the objective function cal-
culates the expected value of the energy capture for a given
wind resource and turbine positions. For a single turbine
at position (xi, yi), it first determines its modified wind re-
source for each directional bin based on other turbine posi-
tions and then calculates its energy capture using:

E =

∫

θ

p(θ)

∫

v

pθv(v, ci, ki|θ)η(v) (1)

Equation 1 evaluates the overall average energy over all
wind speeds for a given wind direction, and then averages
this energy over all wind directions. Energy is calculated
for every turbine and then summed together to give global
energy capture. To implement a wake model and reproduce
the results there are three options as described in [14] and
[19].1

To evaluate the efficiency of a wind field, the energy cap-
ture is compared to the theoretical maximum energy possible
by as many turbines, if they were free of energy decreasing
wake effects, resulting in a wake free ratio:

1Software that evaluates energy capture given turbine
positions and wind resource is available from https://
github.com/d9w/WindFLO. A competition being organized
at GECCO 2014 will result in an open source software re-
lease for standardized comparisons.

Rwf =
Etot

Ewf ∗ n
(2)

where Rwf is the wake free ratio, Etot is the layout energy
output, Ewf is the theoretical maximum energy output of
one turbine and n is the number of turbines in the layout.

In situations where evaluation of both the efficiency, given
by the wake free ratio, and the number of turbines in a field is
necessary, in this paper we use the following fitness function:

f =











Rwf if 400 ≤ n ≤ 600

Rwf ∗ n
400

if n < 400

Rwf ∗ 1200−n
600

if n > 600

(3)

where Rwf is the wake free ratio of the layout and n is the
number of the turbines in the layout. This could be eas-
ily replaced by an economic model that pits energy capture
against turbine cost.

3. DEVELOPMENTAL APPROACH
In this paper, we develop an approach that works differ-

ently than a direct global search method. Our solution to
the optimization problem argmaxXf(X) consists of three
components:

1. Definition of a developmental step: As shown in
Figure 1 (a), the model is defined for entities termed
cells as characterized by their state S. A multi-input,
multi-output cell controller (GRN in this paper) pro-
cesses a cell’s current state information and inputs I
derived for the cell to generate its outputs. The inter-
preter uses these outputs to create actions for the cell
and updates the state of the cell. This process is re-
peated for every cell and is known as a developmental
step.

2. Generation of a solution At the end of each devel-
opmental step a solution is generated and the inputs
for the controller (on a per cell basis) are derived from
the solution. The developmental steps are repeated
till a stopping criterion is met. The solution at the
conclusion of the last developmental step is the final
solution for the design/optimization problem.

3. Learning the controller structure and parame-

ters: The problem of optimization then becomes that
of learning (or optimizing) the structure and parame-
ters for the controller such that when the developmen-
tal process is run it produces the best solution for the
problem. When the optimization problem is specified
by its scenarios, the developmental model is run for
multiple scenarios and average performance is consid-
ered when evaluating a controller’s efficacy.

Once a controller is learnt, when a new instance of the op-
timization problem is encountered, the developmental pro-
cess as described in components 1 and 2 are executed to
generate a solution. Note the optimization component (3)
does NOT have to be repeated. This is the computational
advantage of the developmental approach over any global
optimization procedure. Another advantage is that the di-
mensionality of the controller design problem only scales
with its inputs and outputs and not with the dimension-
ality of the original optimization problem. The efficacy of
this methodology is however dependent on the definition of
the cell, state, and its actions, the inputs for the controller
and its outputs and how they are interpreted. In this pa-
per, we focus on developing these for the wind farm layout
optimization problem.

4. LAYOUT OPTIMIZATION - DEVELOP-

MENTAL MODEL
As explained in the previous section, for the developmen-

tal approach we define the cell structure, the state of the
cell, the inputs for the controller, the space of outputs and
actions of the cells and the mapping between controller out-
puts and actions of the cell. In this section we describe each
of these for the layout optimization problem. In next sec-
tion we describe the controller followed by a methodology
to learn the controller parameters and structure.
Cell definition and State: The cell is a circular structure
and a turbine is placed at its center. The state of a cell is
defined by 5 attributes - θm, θd, r, cen and b. θm and θd
are continuous values between 0 and 2π that represent the
migration and division directions, respectively. r is a con-
tinuous value between R/2 and R, where R is the minimum
possible distance between any two wind turbines, called the
security distance, and r represents the cell’s radius. There-
fore, two cells with minimum radii of R/2 each would be R
apart and would not be within the security distance. cen is
a vector of two continuous values, xc and yc, that represent
the position of the center of the cell, and therefore the tur-
bine, and are constrained to [0, w] and [0, h], respectively,
where w and h are the width and height of the farm. The
last state variable, b, is simply a boolean value indicating
whether or not the cell is “alive”. Dead cells, those with
b = False, are removed from the layout at the end of each
developmental step.
Inputs: The key elements that control the behavior of the
cell (which we define below) are the inputs and outputs
for the gene regulatory network (the controller). Devo-II’s
gene regulatory network uses five inputs. For each cell, the

r
!
"#

!
$#

update

!
$
%#

Ө
m
' &%#

(a) Update

!
"
#$

Ө
m
' %#$

!
"
#$

Ө
m
' %#$

Wait

(b) Wait

!
"
#$

Ө
m
'
%#$

Apoptosis

Ө
m
'
%#$

!
"
#$

(c) Apoptosis

!
"
#$

Ө
m
' %#$

Divide

Ө
m
'

Ө
m
'

%#$

%#$

!
"
#$

!
"
#$

(d) Divide

!

"
#
$%

Ө
m
' &$%

Migrate

&$%

Ө
m
'

"
#
$%

(e) Migrate

Figure 2: Different actions for the cells.

wind energy that could be harnessed is calculated for each
directional bin. Note that this is influenced by the other
turbines in the field (also, positions of other cells). For each
cell, the total energy captured at its center is also calculated
(the sum of energy capture in all directional bins). Let maxe

be the maximum energy capture for any single directional
bin among all cells, and let maxE be the maximum total
energy capture among all cells. The inputs for a cell are
calculated as follow:

1. the maximum energy capture at cen divided by the
maximum energy capture for a single directional bin
found by any cell, maxe,

2. the direction with the maximum energy capture, di-
vided by 2π,

3. the opposite direction of the maximum energy capture
by 2π,

4. the total energy capture for the cell divided by the
maximum total energy capture found by any cell,maxE .

5. the percentage of area covered by other cells within a
circle of radius 4R from cen.

These input proteins are non-trivially different from their
predecessors in Devo-I because they are relative, not ab-
solute. To compute these inputs, we use a wind model,
described in §2, that takes into account the inter-turbine in-
terferences. From the initial wind distribution provided by
the wind scenario, this model computes the wake generated
by the turbines and therefore their energy capture, which
allows the relative quantities in 1-4 to be calculated.
Outputs and actions: For our problem we define 12 out-
puts for the GRN. Four actions are defined for the cell as
shown in Figure 2. The interpreter uses the outputs and
performs the following steps.

1. Update State:

The cell state (orientation vectors and radius) are up-
dated using the concentrations of the proteins o1, o2,
o3, o4, o5, o6. o1 and o2 are used to update the orien-
tation for division, θd, by θd = θd+(o1−o2)/(o1+o2).
o3 and o4 are used to update the orientation for mi-
gration, θm, by θm = θm + (o3 − o4)/(o3 + o4). To
optimize their energy capture, the cells can also mod-
ify their radii in order to compact or to expand their
structure. A cell can increase or decrease its radius,
r, by r = r + (o5 − o6)/(o5 + o6), at each develop-
mental step, within the radius limit [170.5, 310]. The
minimum value corresponds to the turbine security dis-
tance. The maximum one has been chosen empirically
to keep the distance between the turbines consistent.
The process of updating the state of the cell is depicted
in Figure 2(a).

2. Choose an action: 4 outputs o7 . . . o10 function as
cell action selectors. Each represents a different action
and the action of the one with the highest concentra-
tion is selected. We list below the four actions.

(a) Divide: if divide is chosen the cell creates a new
cell adjacent to it 2r apart from its own center
in the direction of the orientation θd (as shown in
Figure 2(d)). The state of the new cell is the same
as the current cell. When the layout is formed it
is assumed that a turbine is at the center of new
cell.

(b) Wait: if wait is chosen the cell does not do any-
thing (as shown in Figure 2(b)).

(c) Apoptosis: if apoptosis is chosen the value b in
the state is changed to 0 implying that this cell
no longer exists.

(d) Migrate: if migrate is chosen, the cell ’s center is
moved in the direction of θm. 2 output proteins
o11 and o12 are used to determine the distance
by which the cell is moved. It is given by vm:
vm = r ∗ o11/(o11 + o12) where r is the cell radius
(as shown in Figure 2(e)).

Developmental process and stopping criteria

In each developmental step of the layout growth, each cell
updates its radius (size), migration and division directions,
chooses an action, and then executes that action. To en-
sure the turbine security constraint is not violated, a mass-
spring-damper system is used [13]. When two cells overlap,
a spring links their centers and the mass-spring-damper sys-
tem repulses the cells along the line joining them while the
dampers reduce the possible oscillatory behaviors generated
by the springs.

The mass-spring-damper system is run until all constraints
are resolved. Mass-spring-damper systems are often uses in
artificial developmental model [8, 5, 17] because they are
simple and efficient models to simulate cellular dynamics.
For our problem, they help constrain the developmental pro-
cess. After dampening all the cells that, either by division,
migration or due to the mass-spring-damper dynamics, move
into an invalid position (outside the layout or on an obsta-
cle) are deleted from the layout. This ensures the validity
of the final layout.

One last key element of the developmental model is how
development is deemed to be complete. One of our stop
criterions measures stability to determine the end of the de-
velopmental process. After five developmental steps which
initiate cell proliferation, the developmental process contin-
ues while at least one cell is dividing or moving, either by
migration or due to resizing. Another stop criterion caps
development at a maximum number of steps (proportional
to farm size).

5. A CELL’S CONTROLLER: GRN
As defined in the previous section, the outputs of the GRN

control the functioning of an individual cell. In this section
we describe the design of the GRN(I, S). In nature, a gene
regulatory network (GRN) is a network of proteins that con-
trols the behavior of the cells. In a living organism, a cell
has several functions described in its genome. A gene regula-
tory network controls their expressions by the use of external
signals collected from protein sensors localized on the mem-
brane [4]. These signals activate or inhibit the transcription
of the genes, which then determines the cell’s behavior.

In our model, a similar network of proteins is optimized in
order to generate the simulated cells’ behaviors. This kind
of controller has been used in many developmental models
of the literature [10, 5, 2] and to control virtual and real
robots [16, 11, 3].

The GRN model used in this work is a simplified com-
putational model of a real gene regulatory network. It has
been designed for computational purposes and not to sim-
ulate protein interactions. In it, a gene regulatory network
is defined as a set of interacting proteins. Each protein has
the following properties:

• The protein identifier, encoded as an integer between
0 and ε. ε (here equal to 32) can be changed in order
to control the precision of the GRN.

• The enhancer identifier, encoded as an integer between
0 and ε. The enhancer identifier is used to calculate
the enhancing matching factor between two proteins.

• The inhibitor identifier, encoded as an integer between
0 and ε. The inhibitor identifier is used to calculate
the inhibiting matching factor between two proteins.

• The type, which determines if the protein is an input
protein, whose concentration is given by the environ-
ment of the GRN and whose regulates other proteins
but is not regulated; an output protein, whose concen-
tration is used as an output of the network and which
is regulated but does not regulate other proteins; or a
regulatory protein, an internal protein that regulates
and is regulated by other proteins.

The dynamics of the GRN are calculated as follows. First,
the affinity of a protein a with another protein b is given by
the enhancing factor u+

ab and the inhibiting u−

ab:

u+
ab = ε− |enha − idb| ; u−

ab = ε− |inha − idb| (4)

where idj is the identifier, enhj is the enhancer identifier
and inhj is the inhibitor identifier of protein j.
Then, the proteins are compared two by two using the

enhancing and the inhibiting matching factors. For each
protein of the network, the global enhancing and inhibiting
values are given by the following equations:

gi =
1

N

N
∑

j

φje
β(u+

ij
−u+

max) ; hi =
1

N

N
∑

j

φje
β(u−

ij
−u−

max)

(5)
where gi (resp. hi) is the enhancing (resp. inhibiting) value
for a protein i, N is the number of proteins in the network,
φj is the concentration of protein j and u+

max (resp. u−

max) is
the maximum enhancing (resp. inhibiting) matching factor
observed. β is a control parameter described hereafter.

The final modification of protein i concentration is given
by the following differential equation:

dφi

dt
=

δ(gi − hi)

Nφ

(6)

where Nφ is a function that normalizes the output and reg-
ulatory protein concentrations to sum to 1.

β and δ are two constants that set up the speed of reaction
of the regulatory network. The higher these values, the more
sudden the transitions in the GRN. The lower they are, the
smoother the transitions.

6. LEARNING THE GRN
The GRN is encoded in a genome to be evolved by a stan-

dard genetic algorithm. The genome contains two indepen-
dent chromosomes. The first is a variable length chromo-
some of indivisible proteins. Each protein is encoded within
three integers between 0 and ε for the three different iden-
tifiers: input, output, and regulatory. The variation oper-
ators of a standard GA are redefined. Crossover consists
of exchanging subparts of two different networks. Because
proteins are indivisible, the crossover points have to be cho-
sen between two proteins. This ensures the integrity of each

Population size 500
Mutation rate 10%
Crossover rate 75%

Selection
3-player tournament

with elitism
5 input proteins +

Minimum GRN size 12 output proteins +
15 regulatory proteins
5 input proteins +

Maximum GRN size 12 output proteins +
50 regulatory proteins

Table 1: Parameters of the genetic algorithm used

to train the GRN.

sub-network, and the local connectivity is maintained; only
new links between the different sub-networks are created.
Mutation is applied in three equally probable ways: mu-
tating an existing protein by randomly changing one of its
three integers, adding a new protein randomly generated or
removing one protein randomly chosen in the network.

The coefficients β and δ presented in the dynamics model
are encoded in a second independent chromosome which
contains only these values. They are coded with double-
precision floats in [0.5; 2] (empirically chosen).

In this work, we have used a master-worker model dis-
tributed genetic algorithm in order to reduce the optimiza-
tion duration. Table 1 presents the parameters used to
evolve the gene regulatory network in this experience.

As the developmental process is completely deterministic,
running the developmental process only once is sufficient to
calculate the fitness of the corresponding wind farm layout.
However, to avoid over-specialization on one scenario, this
procedure is repeated on three different scenarios and the
minimum fitness of all three scenarios is kept as the final
fitness. The wind scenarios used to train the regulatory net-
work are described in the supplementary materials as sce-
narios 1-3, and are available for download as well as part of
the aforementioned open source software.

7. COMPARATIVE STUDY
We compare Devo-II to a set of state-of-the-art layout

optimization techniques: a genetic algorithm (GA), Particle

Initial state Final layout

Figure 3: Example of development of a layout, show-

ing the first, middle, and last developmental steps.

Swarm Optimization (PSO), and the Turbine Distribution
Algorithm (TDA). We also compare Devo-II to Devo-I.
After briefly explaining these techniques, which are further
detailed in [12, 20, 23], this section presents these compar-
isons.

7.1 Existing approaches

7.1.1 Genetic algorithm (GA)

Genetic algorithms are commonly used to optimize wind
farm layout. The farm area is discretized with a grid [15, 7,
9, 21, 6, 18, 24]. The size of each cell of the grid corresponds
to the minimal security distance between 2 turbines. The
genetic algorithm then optimizes a binary genome in which
each gene represents the presence or absence of a turbine in
each cell of the grid. This approach has the advantage of
optimizing the number of turbines, but the position of the
turbines is not precisely optimized as they are limited to the
center of the cell. In the scope of this study, we have im-
plemented our own genetic algorithm. The fitness function
used to evaluate each layout is the one presented in equa-
tion 2. The genetic algorithm is set up with a population
size of 500 individuals, a 3-player tournament selection with
elitism, 20% of mutation and 70% of crossover. The genetic
algorithm is run for 500 generations, which is sufficient to
converge.

7.1.2 Particle swarm optimization (PSO)

In the particle swarm optimization approach, a particle
represents a turbine layout by a vector of N (x, y) Carte-
sian coordinates, where N is the maximum number of tur-
bines[22, 1, 19]. In other words, the PSO search space has
2N dimensions, N being the maximum possible number of
turbines. The particle also maintains a memory of the global
best position already found in a population of particles. For
each iteration of the algorithm, the particles’ velocities are
calculated according to their own fitness, the position of the
current best solution, and nearby particles’ positions. The
next positions of the particles can be immediately deduced
from the velocities. A constraint-repairing algorithm, de-
scribed in [19], is used to meet the security distance con-
straint. In this method, starting with an initial turbine, a
turbine is added to a layout at position proposed by the
particle only if it is not within the security distance to any
existing turbine. The PSO is run with each particle on a dif-
ferent thread with a maximum of 1000 turbines, 20 particles,
a neighborhood size of 3, and the fitness function 2. The con-
straint reparation mechanism causes many of the turbines
to not enter the layout; 1000 as a maximum was determined
empirically to place 400 turbines. The PSO is run for 100
iterations or equivalently 2000 layout evaluations, which is
sufficient to converge.

7.1.3 Turbine Distribution Algorithm (TDA)

TDA uses randomized modification of turbine location
starting with an initial layout [20]. At each iteration, the
best layout is modified by slightly modifying a randomly
chosen turbine in the layout and perturbing it to move it
away from its closest neighbors in order to minimize the lo-
cal interferences produced by the turbines. The new layout
is compared to the previous best layout using energy output.
This process is repeated a sufficient number of iterations to
reach an optimal layout. This approach has the advantage of

Figure 4: Results of the comparative study of layout

optimization approaches. Each approach has been

evaluated 8 times on each scenarios.

precisely positioning the turbines in the layout because each
turbine position is computed with a high resolution but it
requires a high number of layout evaluation (which is com-
putationally expensive) and only works with a fixed number
of turbines. This approach is, to our knowledge, the current
best approach to optimize a layout with a fixed number of
turbines. We have used the Wagner & al. implementation
of TDA [20]2, with the number of turbines determined by
Devo-II. First, we run TDA for 2000 iterations, as done
in [20], to determine an optimal layout. Then, we compare
TDA running for the same number of evaluations as Devo-

II to provide a balanced comparison based on runtime.

7.1.4 Discrete developmental model (Devo-I)

Devo-I is very similar to Devo-II: cells are controlled by
a gene regulatory network to populate a 2-D layout. They
use wind velocity input to decide their action: divide, rotate
their division clockwise or counterclockwise, wait and die.
However, instead of populating a continuous space, the cells
are confined to a grid. The size of the grid cells is equal to
the security distance, which keeps the layout valid during
the developmental process. The GRN is also trained with a
genetic algorithm in order to produce the final layout. More
details are given in [23]. The GRN has been trained with the
fitness function from equation 2 on the same three training
scenarios than Devo-II.

7.2 Results
To evaluate Devo-II, we compare its results to layouts

obtained using Devo-I, GA, PSO, and TDA on 10 different
wind scenarios. Devo-I and Devo-II were exposed to 3 of
the scenarios during training, but were run without exposure
to the other 7. All scenarios are available in the supplemen-
tary materials and online. As both Devo-I and Devo-II are
deterministic once trained, the trained result was run only
once on each scenario. The GA, PSO, and TDA were run 8
times on each scenario. Table 2 presents the best results for
each method, and figure 4 presents the results of all runs.

First, we compareDevo-I andDevo-II. The gain brought
by the use of a continuous space is undeniable. The layouts

2Since TDA also uses Kusiak’s wind model and after cross
verifications, the layouts produced by TDA produce the
same energy output as the layouts produced by our imple-
mentations

produced by Devo-II are 7.9% better than the discrete ones,
as the use of a continuous space allows Devo-II to locally
optimize the positions of the same number of turbines.

Then, Devo-II and the GA are compared. With the
same fitness function, Devo-II does better on all scenar-
ios: Devo-II uses more turbines but has a more efficient
layout, getting a higher wake free ratio. Moreover, the num-
ber of evaluations is extremely low: 250,000 evaluations for
the genetic algorithm in comparison to less than 100 evalu-
ations for Devo-II. The PSO again displays the advantages
of a continuous model when compared to the GA, where it
achieves better efficiencies with at least the same number of
turbines. However, most likely due to constraint repairing
mechanism [19], the PSO doesn’t perform as well asDevo-II

or TDA. The number of evaluations necessary for the PSO,
2000, is very costly compared to Devo-II.

Compared to TDA with 2000 evalutions (TDA 2k), Devo-

II produces solutions with a lower quality: the wake free
ratio is 2.79% lower for Devo-II. However, Devo-II also
optimizes the number of turbines, which is simply reused by
TDA to optimize the layout.

To compare Devo-II to TDA with comparable evaluation
conditions, we run TDA with the number of evaluations used
by Devo-II. As shown in the column named “TDA devo” in
table 2, Devo-II produces equivalent solutions in quality
to TDA using the number of turbines optimized and the
number of evaluations used by Devo-II.

We use a t-test to compare the results of each method
with all others for each scenario. In these t-tests, only two
from different methods have p > 0.05: in scenario 1, Devo-

II and TDA 2k aren’t significantly different, and in scenario
3, Devo-II and TDA devo aren’t significantly different. The
t-test was performed over all 8 trials of each approach, where
2 only shows the best result from each trial.

These experiments demonstrate that Devo-II produces
layouts that can compete with TDA in comparable condi-
tions and outperforms GA and PSO. Moreover, Devo-II can
tackle a more complex problem than TDA: the optimization
of both the number of turbines and their layout. This prop-
erty can be useful in the design process of wind farms. In
the conclusion, we will discuss the benefits and drawbacks
of this approach in the wind farm design process.

8. ADAPTATION TO THE ENVIRONMENT
In our previous work using a discrete developmental model,

Devo-I, to produce the wind farm layouts [23], we briefly
show that Devo-I was able to adapt to changes in the lay-
out size and to obstacles without retraining. Here, we offer
a detailed study of Devo-II’s ability to adapt to changes in
the layout size and to obstacles.

8.1 Adaptation to the layout size
To show the capacity of Devo-II to adapt to the layout

size, we produce layouts based on the previous wind scenar-
ios but on a small layout (6.2km by 9.61km) and a large
one (9.92km by 20.15km). Devo-II is compared to Devo-I

and TDA with 2000 evaluations. Table 3 shows the results
of this study. Both Devo-I and Devo-II’s results are de-
terministic, and TDA was run 8 times and the maximum
fitness is showed in the table. As in the comparative study,
TDA is run with the number of turbines given by Devo-II.

The same conclusion as in §7 can be made when compar-
ing these approaches, Devo-I, Devo-II, and TDA, on the

Scenario
Devo-II Devo-I GA PSO TDA 2k TDA devo

Rwf #t #e Rwf #t #e Rwf #t #e Rwf #t #e Rwf #t #e Rwf #t #e
0 0.880 403 100 0.825 399 100 0.873 399 250k 0.880 400 2000 0.901 403 2000 0.873 403 100
1 0.934 408 100 0.862 461 100 0.927 400 250k 0.928 400 2000 0.936 408 2000 0.898 408 100
2 0.870 400 100 0.825 406 100 0.858 400 250k 0.865 405 2000 0.890 400 2000 0.864 400 100
3 0.857 400 59 0.794 405 100 0.838 400 250k 0.855 401 2000 0.892 400 2000 0.863 400 59
4 0.853 399 58 0.791 466 100 0.837 399 250k 0.851 398 2000 0.893 399 2000 0.863 399 58
5 0.881 405 100 0.833 403 100 0.871 399 250k 0.879 404 2000 0.908 405 2000 0.885 405 100
6 0.892 400 100 0.781 627 100 0.880 400 250k 0.890 402 2000 0.912 400 2000 0.886 400 100
7 0.875 402 61 0.780 479 100 0.879 400 250k 0.871 404 2000 0.909 402 2000 0.881 402 61
8 0.890 409 62 0.822 523 100 0.879 400 250k 0.889 404 2000 0.911 409 2000 0.886 409 62
9 0.891 401 57 0.848 424 100 0.874 400 250k 0.889 404 2000 0.913 401 2000 0.892 401 57

Table 2: Maximum results of the comparative study of the wind farm layout optimization approaches. Italic

values represents the parameters given to the algorithm, and thus not optimized. Columns are the wake

free ratio Rwf , the number of turbines #t and the number of layout evaluation #e required to produce the

layout.

small and large layouts: TDA achieves optimal results but
of the same order of magnitude (on average, TDA is 2.76%
better than Devo-II). This means Devo-II scales perfectly
when the environment configuration changes; it performs
the same relative to TDA as it does on the training layout.
The number of evaluations is particularly crucial in this ex-
periment, in particular on large layouts; whereas Devo-II

needs less than 4 minutes to produce the layouts, TDA 2k
needs nearly one hour for each layout.

8.2 Handling obstacles
Devo-II can naturally handle obstacles in the environ-

ment. This property is crucial since the wind farm design
process has to account for possible obstacles such as lakes,
roads, buildings, etc. In our approach, an obstacle is de-
signed as a invalid position where the cells are forbidden to

Sc Size
Devo-II Devo-I TDA 2k

Rwf #t #e Rwf #t #e Rwf #t #e
0 small 0.884 248 61 0.817 275 61 0.907 248 2000
1 small 0.940 244 61 0.845 345 61 0.945 244 2000
2 small 0.871 245 41 0.804 275 61 0.897 245 2000
3 small 0.868 242 47 0.796 291 61 0.900 242 2000
4 small 0.857 254 43 0.830 230 61 0.893 254 2000
5 small 0.887 246 61 0.799 345 61 0.914 246 2000
6 small 0.895 248 61 0.772 256 61 0.916 248 2000
7 small 0.878 245 45 0.733 351 61 0.916 245 2000
8 small 0.896 246 52 0.848 254 61 0.918 246 2000
9 small 0.894 247 41 0.813 335 61 0.918 247 2000
0 large 0.879 817 205 0.813 1013 205 0.890 817 2000
1 large 0.922 833 205 0.865 1012 205 0.924 833 2000
2 large 0.860 824 205 0.796 936 205 0.876 824 2000
3 large 0.849 817 79 0.784 1012 205 0.881 817 2000
4 large 0.847 841 87 0.808 786 205 0.876 841 2000
5 large 0.878 817 87 0.817 1013 205 0.898 817 2000
6 large 0.887 824 87 0.743 1013 205 0.900 824 2000
7 large 0.869 819 81 0.793 1010 205 0.898 819 2000
8 large 0.886 814 81 0.837 900 205 0.903 814 2000
9 large 0.879 863 205 0.830 858 205 0.899 863 2000

Table 3: Results of the modification of the farm size.

Italic values represent the parameters given to the

algorithm, and thus not optimized.

Scenario
No obstacle Obstacles

Size Energy # of Size Energy # of
(km2) per km2 turb. (km2) per km2 turb.

0 98 26,474 403 96.04 28,966 401
1 98 54,640 408 96.04 54,813 402
2 98 19,546 400 96.04 20,253 409
3 98 24,506 400 96.04 25,241 404
4 98 22,064 399 96.04 22,561 399
5 98 32,333 405 96.04 32,558 399
6 98 36,727 400 96.04 38,547 417
7 98 32,730 402 96.04 32,542 391
8 98 37,553 409 96.04 37,240 398
9 98 38,460 401 96.04 39,573 406

Table 4: Obstacle handling with Devo-II

go. Here again, no further training is necessary to take this
new constraint into consideration: the evolved GRNs can
directly produce layouts optimized with the obstacles.

To our knowledge, Devo-I and Devo-II are the only ap-
proaches that currently tackle this problem. Therefore, to
evaluate the quality of the generated layout, we propose a
comparison of the energy output per kilometer square avail-
able in the environment. We use an initial 7km x 14 km
layout size in this study. Table 4 presents the results of this
comparison.

The energy per km2 is very comparable between the layout
with and without obstacles. It only differs 2.4% on average
on the 10 scenarios. This comparison is conclusive: Devo-

II can adapt to obstacles in environment without modifying
the properties of the layout it generates.

9. CONCLUSION
The paper presents a continuous developmental model,

Devo-II, to optimize wind farm layouts. To evaluate this
novel approach, we compare it to state-of-the-art techniques
in layout optimization. We show that, in comparable con-
ditions, Devo-II generates layouts with comparable quality
to those from state-of-the-art techniques. However, Devo-

II optimizes both the number of turbines and their layout,
and can adapt to handle changing layout size and obstacles
without retraining. These properties are crucial during the
design process of a wind farm.

The main benefit of this approach is its immediate reac-
tivity which is not found in other approaches. The devel-
opmental model only needs a few seconds to adapt to new
constraints. Therefore, Devo-II could be an helpful tool for
wind farm designers, bearing in mind that the layout process
requires a great deal of auxillary input guidance from engi-
neers. Devo-II could be used as a real-time optimization
tool during this design phase. Designers could interact with
the cells, constraints, etc. while the cells are optimizing the
layout.

Of course, because Devo-II doesn’t currently provide the
optimal layout, this tool could be used along with a stan-
dard layout optimizer. TDA could be used, for example, to
precisely position the final turbines generated by Devo-II.
Our hypothesis is that TDA could optimize this layout faster
and potentially better because of Devo-II, which provides
the number of turbines and an efficient starting layout.

Acknowledgement

This work was granted access to the HPC resources of CALMIP
under the allocation 2013-1319

10. REFERENCES
[1] S. Chowdhury, J. Zhang, A. Messac, and L. Castillo.

Unrestricted wind farm layout optimization (uwflo):
Investigating key factors influencing the maximum
power generation. Renewable Energy, 38(1):16–30,
2012.

[2] S. Cussat-Blanc, J. Pascalie, S. Mazac, H. Luga, and
Y. Duthen. A synthesis of the Cell2Organ
developmental model. Morphogenetic Engineering,
2012.

[3] S. Cussat-Blanc, S. Sanchez, and Y. Duthen.
Controlling cooperative and conflicting continuous
actions with a gene regulatory network. In Conference
on Computational Intelligence in Games (CIG’12).
IEEE, 2012.

[4] E. H. Davidson. The regulatory genome: gene
regulatory networks in development and evolution.
Academic Press, 2006.

[5] R. Doursat. Organically grown architectures: Creating
decentralized, autonomous systems by embryomorphic
engineering. Organic Computing, pages 167–200, 2008.

[6] A. Emami and P. Noghreh. New approach on
optimization in placement of wind turbines within
wind farm by genetic algorithms. Renewable Energy,
35(7):1559–1564, 2010.

[7] S. Grady, M. Hussaini, and M. M. Abdullah.
Placement of wind turbines using genetic algorithms.
Renewable Energy, 30(2):259–270, 2005.

[8] P. E. Hotz. Genome-physics interaction as a new
concept to reduce the number of genetic parameters in
artificial evolution. In Evolutionary Computation,
2003. CEC’03. The 2003 Congress on, volume 1,
pages 191–198. IEEE, 2003.

[9] H.-S. Huang. Distributed genetic algorithm for
optimization of wind farm annual profits. In
Intelligent Systems Applications to Power Systems,
2007. ISAP 2007. International Conference on, pages
1–6. IEEE, 2007.

[10] M. Joachimczak and B. Wróbel. Evo-devo in silico: a
model of a gene network regulating multicellular

development in 3d space with artificial physics. In
Proceedings of the 11th International Conference on
Artificial Life, pages 297–304. MIT Press, 2008.

[11] M. Joachimczak and B. Wróbel. Evolving Gene
Regulatory Networks for Real Time Control of
Foraging Behaviours. In Proceedings of the 12th
International Conference on Artificial Life, 2010.

[12] S. A. Khan and S. Rehman. Iterative
non-deterministic algorithms in on-shore wind farm
design: A brief survey. Renewable and Sustainable
Energy Reviews, 19:370–384, 2013.

[13] V. Komkov. Optimal control theory for the damping of
vibrations of simple elastic systems. Springer-Verlag
Berlin, 1972.

[14] A. Kusiak and Z. Song. Design of wind farm layout for
maximum wind energy capture. Renewable Energy,
35(3):685–694, 2010.

[15] G. Mosetti, C. Poloni, and B. Diviacco. Optimization
of wind turbine positioning in large windfarms by
means of a genetic algorithm. Journal of Wind
Engineering and Industrial Aerodynamics,
51(1):105–116, 1994.

[16] M. Nicolau, M. Schoenauer, and W. Banzhaf.
Evolving genes to balance a pole. Genetic
Programming, pages 196–207, 2010.

[17] B. Porter. A developmental system for organic form
synthesis. In Artificial Life: Borrowing from Biology,
pages 136–148. Springer, 2009.

[18] S. Şişbot, Ö. Turgut, M. Tunç, and Ü. Çamdalı.
Optimal positioning of wind turbines on gökçeada
using multi-objective genetic algorithm. Wind Energy,
13(4):297–306, 2010.

[19] K. Veeramachaneni, M. Wagner, U.-M. O’Reilly, and
F. Neumann. Optimizing energy output and layout
costs for large wind farms using particle swarm
optimization. In Evolutionary Computation (CEC),
2012 IEEE Congress on, pages 1–7. IEEE, 2012.

[20] M. Wagner, J. Day, and F. Neumann. A fast and
effective local search algorithm for optimizing the
placement of wind turbines. Renewable Energy,
51(0):64 – 70, 2013.

[21] C. Wan, J. Wang, G. Yang, X. Li, and X. Zhang.
Optimal micro-siting of wind turbines by genetic
algorithms based on improved wind and turbine
models. In Decision and Control, 2009 held jointly
with the 2009 28th Chinese Control Conference.
CDC/CCC 2009. Proceedings of the 48th IEEE
Conference on, pages 5092–5096. IEEE, 2009.

[22] C. Wan, J. Wang, G. Yang, and X. Zhang. Optimal
micro-siting of wind farms by particle swarm
optimization. In Advances in swarm intelligence, pages
198–205. Springer, 2010.

[23] D. Wilson, E. Awa, S. Cussat-Blanc,
K. Veeramachaneni, and U.-M. O’Reilly. On learning
to generate wind farm layouts. In Proceeding of the
fifteenth annual conference on Genetic and
evolutionary computation conference. ACM, 2013.

[24] C. Xu, Y. Yan, D. Y. Liu, Y. Zheng, and C. Q. Li.
Optimization of wind farm micro sitting based on
genetic algorithm. Advanced Materials Research,
347:3545–3550, 2012.

