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Abstract—Nowadays the classical Delay-and-Sum (DAS) beam-
former is extensively used in ultrasound imaging due to its
low computational characteristics. However, it suffers from high
sidelobe level, poor resolution and low contrast. An alternative
is the Minimum-Variance (MV) beamformer which results in
a higher image quality both in terms of spatial resolution and
contrast. Even so, these benefits come at the expense of a higher
computation complexity that limits its real-time capabilities. One
solution that recently gained noticeable interest is the exploit of
the sparsity of the scanned medium. Based on this assumption,
we extend the DAS method to yield sparse results by using the
Bayesian Information Criterion (BIC). Our realistic simulations
demonstrate that the proposed beamforming (BF) method shows
better performance than the classical DAS and MV in terms of
lateral resolution, sidelobe reduction and contrast.

Index Terms—Adaptive beamforming, Bayesian Information
Criterion, sparse prior, synthetic aperture imaging.

I. INTRODUCTION

ULTRASOUND (US) medical imaging is widely used

nowadays because of its safety, low cost and real-time

characteristics. Beamforming plays a major role in medical

US imaging, allowing the spatial selectivity of the signal in

transmission/reception [1]. In reception, it steers and focus

the received echoes in a desired direction to detect tissue

structures. The BF methods can be classified as either data-

independent or data-dependent, following the type of weights

applied to the array output. Even if classical delay-and-sum

beamformer is data-independent, it is currently widely used

by the most commercial ultrasound scanners, because of its

simplicity and real-time capabilities. Its aim is to delay the

signals received by the sensors (raw signals), to weight them

using fixed weights and subsequently sum the signals from

individual sensors in order to form one radiofrequency (RF)

line. Capon BF [2], called Minimum-Variance BF in US

imaging [3], is a data-dependent beamformer whose aim is

to improve the contrast and the lateral resolution of DAS. The

main idea of MV BF is to adaptively weight the received

RF focused data prior of summing them. The weights are

computed from the analysis of the signals corresponding

to the point of interest over several ”observations” of that

point, such that they minimize the beamformer output power

while maintaining unity gain in the focus direction. Despite

the resolution and the interference suppression capability of

MV, its computation complexity is higher than that of DAS,

which limits its real-time capabilities. There has been growing

interest in lowering the computational complexity of MV.

Zeng et al. [4] and Asl et al. [5] reduced the computational

complexity of the MV beamformer from O(L3) to O(L2).
Recently, the sparse models have gained particular interest

in US imaging, as for example in compressive sampling related

applications [6]. More specifically, several authors proposed to

model the RF signals with sparse priors, e.g. [7]. In [8] Tur et

al. proposed that the echoes reflected by multiple reflectors,

located at some unknown positions, can be modeled as a sum

of pulses with known shapes and with unknown amplitudes.

Starting from this idea, we are interested in evaluating the

use of sparse priors in the BF process, based on a selection

criteria inspired from Bayesian Information Criterion (BIC),

e.g. [9]. BIC is widely used in speech processing, especially in

speaker recognition, where the speakers are sparsely located.

In ultrasound imaging we show how this model can be used

to sparsify the sources by choosing the goodness of fitness

between the raw data and the DAS BF data.

In this paper the BIC criteria was evaluated in the context

of US imaging in order to detect the strong reflectors from an

US RF image. The results were compared with those obtained

by DAS and MV beamformers, showing that the proposed

method yields better results in terms of contrast and lateral

resolution.

The outline of this paper is as follows: section II introduces

briefly the background of BF in US imaging and describes

the proposed method (US-BIC). Section III illustrates the

results of the proposed method on different simulated data,

and compares them with the ones obtained by applying DAS

and MV. The conclusions are given in Section IV.

II. PROPOSED METHOD

For a linear transducer of M elements, we consider hereafter

the case of a synthetic aperture US imaging, where Mact

active elements are used in both transmit and receive. The

beamformed output with the classical DAS BF can be written

as:

ŝi(n) =

Mact∑

k=1

wky
(i)
k (n−∆k(n)), i = 1, · · · ,M

n = 1, · · · , N,

(1)

where yk is the N×1 raw data received by the k-th element

of the transducer, ∆k(n) is the time delay dependent on the



➣ Form ŝi(n) using classical DAS BF.

➣ Set BICη to a very large value.

➣ Set the no. of detected strong reflectors, η = 0.

➣ Set the US-BIC beamformed line, ri(n) = 0.

Initialization step:

For each RF line

➣ nη = argmax
n

ŝi(n), different from the previous

nk, k = 1, · · · , η − 1.
➣ ri(n)← ri(n) + ŝi(n) · rectwin( n−nη

τpulse
),

τpulse = duration of an excitation pulse.

➣ Update BICη value.

BICη

≤
BICη−1

?

Strong reflectors detection:

ri(n)yes

no

Fig. 1: Flow diagram of the US-BIC BF algorithm.

distance between the k-th element and the focus point and wk

are the beamformer weights.

We can rewrite Eq. 1 as:

ŝi(n) = w
H(n)y

(i)
d (n), (2)

where yd(n) ∈ R
M×1, yd(n) = y(n − ∆k(n)) is

the dynamically focused version of the raw data y(n) =

[y
(i)
1 (n), . . . , y

(i)
Mact(n)]

T , w(n) = [w1, . . . , wMact]
T is the

vector of the beamformer weights, (·)T and (·)H represent

the transpose and conjugate transpose, respectively.

The aim of the proposed method is to automatically detect

the strong reflectors in the RF images by using a US-adapted

BIC minimization. As input, we consider the result of DAS

method, on which we apply the BIC model selection. The

proposed US-BIC BF algorithm is summarized in the Fig. 1.

In the initialization step we consider as input the DAS

beamformed RF data, whose equation is given in Eq. 1, we

set the BIC to a very large value and we assume that we

did not detect any strong reflector, by setting the number of

the reflectors, η = 0 and its retained signal, ri(n) = 0. In

the Strong reflectors detection step we pick the first most

strongest reflector, by means of its amplitude and we extract

its signal, ri(n), from its corresponding DAS beamformed

d
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η
η

η

η

η

η

η

η η

η

η
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η

Fig. 2: Strong reflector detection in US-BIC BF: (a) The

scanned medium. (b) The raw RF data, y
(i)
d (n). (c) The signals

obtained after applying DAS BF for all the raw RF data. (d)

The distribution of the amplitudes of the RF signals from (c).

RF line, ŝi(n). Using the aforementioned data, we therefore

calculate the BICη cost function:

BICη =

data attachement
︷ ︸︸ ︷

2MNln(
M∑

i=1

Mact∑

k=1

‖ri(n)− y
(i)
d (n)‖22)+ ηλln(MN)

︸ ︷︷ ︸

sparsity constrain

,

(3)

where λ is the hyper-parameter balancing between the data

attachment and the sparsity constraint. If BICη is bigger than

the one calculated at the previous iteration, the algorithm stops,

we consider that the number of the strong reflectors of the RF

line is found, and ri(n) will be the US-BIC beamformed RF

line. Otherwise, we repeat the Strong reflectors detection step

until BICη will be higher than the previously calculated one.

Briefly, for one RF line, the US-BIC method iteratively esti-

mates η by minimizing the BICη cost function, representing

a trade-off (imposed by λ) between data attachment and the

sparsity of the beamformed RF line.

To illustrate our method, we show in Fig. 2 a toy example

of a medium containing five point sources placed at different

depths and positions (Fig. 2(a)). Supposing that a US probe is



TABLE I: Parameters of Field II simulations

Transducer

Transducer type Linear array
Transducer element pitch 231 µm
Transducer element kerf 38.5 µm
Transducer element height 14 mm
Center frequency, f0 4 MHz
Sampling frequency, fs 40 MHz
Speed of sound, c 1540 m/s
Wavelength 385 µm
Excitation pulse Two-cycle sinusoidal at f0

Synthetic Aperture Emission

Receive Apodization Hanning
Number of transmitting elements 64
Number of receiving elements 64
Number of emissions 204

scanning this medium, the RF raw signals y
(i)
d (n) received by

one element of the probe are shown in Fig. 2(b). If we apply

the DAS BF to this set of raw signals, we obtain the DAS

beamformed RF lines in Fig. 2(c). The strongest point sources

are shown in the Fig. 2(d). Using the flow process of the US-

BIC BF method described in the Fig. 1, we show the values of

BICη in Fig. 2(e). We can observe that the minimum value

of BICη is obtained for η = 5, which represents the exact

number of the strong detectors present in the given medium.

The final US-BIC beamformed RF lines are illustrated in the

Fig. 2(f).

III. RESULTS: RECONSTRUCTION OF US IMAGES

In this section we provide two simulated examples to

compare the performance of the proposed BF method with

DAS and MV, in terms of lateral resolution, contrast and

sidelobe levels. The first one is based on a sparse assumption

of the sources. The second one, more realistic, represents the

simulation of a cardiac image (the amplitudes of the scatterers

were related to the grey levels of an Apical 4 Chambers (A4C)

view in-vivo image), as suggested in [10]. The raw data for

both examples was simulated using the Field II US simulation

program [11]. The same simulation parameters, given in the

Table I were used for both examples. The display range of the

B-mode images was set to 60 dB.

A. Simulation image of individual scatterers

The resulted images after applying the discussed methods

on a sparse medium of only five reflectors are shown in the

Fig. 3. In the Fig. 3(a) is the result after applying DAS BF.

The lateral resolution is poor and the sidelobes are relatively

high. In the Fig. 3(b) MV BF allows the increase of the lateral

resolution and the decrease of the sidelobes. Although MV

offers better resolution, it still contains high sidelobes. Clearly,

Fig. 3(c) presents superiority in terms of high resolution and

low sidelobes over DAS and MV BF. This is highlighted by

the Fig. 3(d) that illustrates the lateral profiles at the axial

Fig. 3: Comparison between DAS, MV and US-BIC for a

sparse medium (the one from the Fig. 2(a)).

depth 42.8 mm of the resulted images using the discussed BF

methods.

B. Simulation of a cardiac apical view in-vivo image

The apical view is very useful in echocardiography, giving

information about the ventricle and atrium of the heart. The

simulation results are illustrated in Fig. 4, where the left

ventricle (LV) is displayed. With this example we investigate

the contrast of the aforementioned beamformers. We used the

contrast ratio (CR) index and the contrast-to-noise ratio (CNR)

to evaluate the contrast resolution of the resulted images.

These metrics were computed based on the envelope-detected

signals independent of image display range. CR [12] is defined

as the ratio of the mean value in the region R1 (represented

in the Fig. 4(a) by a white rectangle) to the mean value

in the region R2 (represented in the Fig. 4(a) by a black

rectangle): CR = |µR1 − µR2|. CNR is defined as [13]:

CNR = CR√
σ2

R1
+σ2

R2

, where σR1 is the standard deviation of

intensities in R1 and σR2 the standard deviation of intensities

R2.

US-BIC was tested for different values of λ. As expected,

the MV beamformed image from Fig. 4(b) exhibits an overall

higher contrast and better resolution than the DAS beam-

formed image, but not to significant as US-BIC beamformed

image.

The values of CR and CNR are presented in the Table II.

We can see an improvement of the CR of more than 20 dB

compared with DAS and MV. The highest CR and CNR were

obtained for λ = 50. In Fig. 4(c) and Fig. 4(d) we can see that

only the most important information is kept, the one related to

the interventricular septum (the brightest zone in the image)

of the cardiac image. In summary, when we are dealing with

some non-sparse medium, λ is an important parameter that

coordinates the appearance of the final image. Our empirical



λ λ

Fig. 4: Results of (a) DAS, (b) MV, (c)-(d) US-BIC BF for

different λ.The values of CNR and CR are given in dB.

experience suggests that in the case of a small value of λ,

the resulted image will be similar with the DAS beamformed

image. As much as we increase λ, less strong reflectors will

be detected using US-BIC BF method.

IV. CONCLUSION

In this paper we proposed a novel beamforming approach,

based on sparse prior of the RF signals. Combining DAS BF

with BIC technique, it was shown via numerical experiments

that can highly reduce the sidelobes, and increase the spatial

resolution and the contrast of the beamformed image. We

saw that for sparse scanned medium this method is perfectly

detecting the number of present scatterers. For a less sparse

medium, the λ parameter is deciding how much speckle is

filtered out. Independent on the value of λ, the contrast of the

TABLE II: CR and CNR values for Fig. 4

BF Method CR[dB] CNR[dB]

DAS 13.88 1.56

MV 16.68 1.63

US-BIC (λ = 50) 51.56 2.69

US-BIC (λ = 100) 47.87 2.16

resulted image can be highly improved (a CR of more than 30

dB and a CNR of more than 1 dB) compared with the one of

DAS and MV. The proposed approach may be improved by the

use of sparse prior in basis such as Fourier [14], or wave atoms

[6], or trained dictionaries [15]. Since the term λ is established

empirical, another improvement can be the development of a

method that automatically detects the optimal value of λ.
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